1
|
Computational Modeling of Blood Flow Hemodynamics for Biomechanical Investigation of Cardiac Development and Disease. J Cardiovasc Dev Dis 2021; 8:jcdd8020014. [PMID: 33572675 PMCID: PMC7912127 DOI: 10.3390/jcdd8020014] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/16/2021] [Accepted: 01/21/2021] [Indexed: 12/11/2022] Open
Abstract
The heart is the first functional organ in a developing embryo. Cardiac development continues throughout developmental stages while the heart goes through a serious of drastic morphological changes. Previous animal experiments as well as clinical observations showed that disturbed hemodynamics interfere with the development of the heart and leads to the formation of a variety of defects in heart valves, heart chambers, and blood vessels, suggesting that hemodynamics is a governing factor for cardiogenesis, and disturbed hemodynamics is an important source of congenital heart defects. Therefore, there is an interest to image and quantify the flowing blood through a developing heart. Flow measurement in embryonic fetal heart can be performed using advanced techniques such as magnetic resonance imaging (MRI) or echocardiography. Computational fluid dynamics (CFD) modeling is another approach especially useful when the other imaging modalities are not available and in-depth flow assessment is needed. The approach is based on numerically solving relevant physical equations to approximate the flow hemodynamics and tissue behavior. This approach is becoming widely adapted to simulate cardiac flows during the embryonic development. While there are few studies for human fetal cardiac flows, many groups used zebrafish and chicken embryos as useful models for elucidating normal and diseased cardiogenesis. In this paper, we explain the major steps to generate CFD models for simulating cardiac hemodynamics in vivo and summarize the latest findings on chicken and zebrafish embryos as well as human fetal hearts.
Collapse
|
2
|
Daems M, Peacock HM, Jones EAV. Fluid flow as a driver of embryonic morphogenesis. Development 2020; 147:147/15/dev185579. [PMID: 32769200 DOI: 10.1242/dev.185579] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fluid flow is a powerful morphogenic force during embryonic development. The physical forces created by flowing fluids can either create morphogen gradients or be translated by mechanosensitive cells into biological changes in gene expression. In this Primer, we describe how fluid flow is created in different systems and highlight the important mechanosensitive signalling pathways involved for sensing and transducing flow during embryogenesis. Specifically, we describe how fluid flow helps establish left-right asymmetry in the early embryo and discuss the role of flow of blood, lymph and cerebrospinal fluid in sculpting the embryonic cardiovascular and nervous system.
Collapse
Affiliation(s)
- Margo Daems
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, 3000 Leuven, Belgium
| | - Hanna M Peacock
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, 3000 Leuven, Belgium
| | - Elizabeth A V Jones
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
3
|
Keller BB, Kowalski WJ, Tinney JP, Tobita K, Hu N. Validating the Paradigm That Biomechanical Forces Regulate Embryonic Cardiovascular Morphogenesis and Are Fundamental in the Etiology of Congenital Heart Disease. J Cardiovasc Dev Dis 2020; 7:E23. [PMID: 32545681 PMCID: PMC7344498 DOI: 10.3390/jcdd7020023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 05/31/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023] Open
Abstract
The goal of this review is to provide a broad overview of the biomechanical maturation and regulation of vertebrate cardiovascular (CV) morphogenesis and the evidence for mechanistic relationships between function and form relevant to the origins of congenital heart disease (CHD). The embryonic heart has been investigated for over a century, initially focusing on the chick embryo due to the opportunity to isolate and investigate myocardial electromechanical maturation, the ability to directly instrument and measure normal cardiac function, intervene to alter ventricular loading conditions, and then investigate changes in functional and structural maturation to deduce mechanism. The paradigm of "Develop and validate quantitative techniques, describe normal, perturb the system, describe abnormal, then deduce mechanisms" was taught to many young investigators by Dr. Edward B. Clark and then validated by a rapidly expanding number of teams dedicated to investigate CV morphogenesis, structure-function relationships, and pathogenic mechanisms of CHD. Pioneering studies using the chick embryo model rapidly expanded into a broad range of model systems, particularly the mouse and zebrafish, to investigate the interdependent genetic and biomechanical regulation of CV morphogenesis. Several central morphogenic themes have emerged. First, CV morphogenesis is inherently dependent upon the biomechanical forces that influence cell and tissue growth and remodeling. Second, embryonic CV systems dynamically adapt to changes in biomechanical loading conditions similar to mature systems. Third, biomechanical loading conditions dynamically impact and are regulated by genetic morphogenic systems. Fourth, advanced imaging techniques coupled with computational modeling provide novel insights to validate regulatory mechanisms. Finally, insights regarding the genetic and biomechanical regulation of CV morphogenesis and adaptation are relevant to current regenerative strategies for patients with CHD.
Collapse
Affiliation(s)
- Bradley B. Keller
- Cincinnati Children’s Heart Institute, Greater Louisville and Western Kentucky Practice, Louisville, KY 40202, USA
| | - William J. Kowalski
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA;
| | - Joseph P. Tinney
- Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY 40202, USA;
| | - Kimimasa Tobita
- Department of Medical Affairs, Abiomed Japan K.K., Muromachi Higashi Mitsui Bldg, Tokyo 103-0022, Japan;
| | - Norman Hu
- Department of Pediatrics, University of Utah, Salt Lake City, UT 84108, USA;
| |
Collapse
|
4
|
Tseng YT, Ko CL, Chang CT, Lee YH, Huang Fu WC, Liu IH. Leucine-rich repeat containing 8A contributes to the expansion of brain ventricles in zebrafish embryos. Biol Open 2020; 9:bio048264. [PMID: 31941702 PMCID: PMC6994961 DOI: 10.1242/bio.048264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/23/2019] [Indexed: 12/16/2022] Open
Abstract
The sodium osmotic gradient is necessary for the initiation of brain ventricle inflation, but a previous study predicted that organic and inorganic osmolytes play equivalently important roles in osmotic homeostasis in astrocytes. To test whether organic osmoregulation also plays a role in brain ventricle inflation, the core component for volume-regulated anion and organic osmolyte channel, lrrc8a, was investigated in the zebrafish model. RT-PCR and whole-mount in situ hybridization indicated that both genes were ubiquitously expressed through to 12 hpf, and around the ventricular layer of neural tubes and the cardiogenic region at 24 hpf. Knocking down either one lrrc8a paralog with morpholino oligos resulted in abnormalities in circulation at 32 hpf. Morpholino oligos or CRISPR interference against either paralog led to smaller brain ventricles at 24 hpf. Either lrrc8aa or lrrc8ab mRNA rescued the phenotypic penetrance in both lrrc8aa and lrrc8ab morphants. Supplementation of taurine in the E3 medium and overexpression csad mRNA also rescued lrrc8aa and lrrc8ab morphants. Our results indicate that the two zebrafish lrrc8a paralogs are maternal message genes and are ubiquitously expressed in early embryos. The two genes play redundant roles in the expansion of brain ventricles and the circulatory system and taurine contributes to brain ventricle expansion via the volume-regulated anion and organic osmolyte channels.
Collapse
Affiliation(s)
- Yen-Tzu Tseng
- Department of Animal Science and Technology, National Taiwan University, Taipei, 106, Taiwan
| | - Chun-Lin Ko
- Department of Animal Science and Technology, National Taiwan University, Taipei, 106, Taiwan
| | - Chia-Teng Chang
- Department of Animal Science and Technology, National Taiwan University, Taipei, 106, Taiwan
| | - Yen-Hua Lee
- Department of Animal Science and Technology, National Taiwan University, Taipei, 106, Taiwan
| | - Wei-Chun Huang Fu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 110 Taiwan
| | - I-Hsuan Liu
- Department of Animal Science and Technology, National Taiwan University, Taipei, 106, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, 106, Taiwan
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, 106, Taiwan
| |
Collapse
|
5
|
Haller S, Gerrah R, Rugonyi S. Towards virtual surgery planning: the modified Blalock-Taussig Shunt. AIMS BIOPHYSICS 2020. [DOI: 10.3934/biophy.2020014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
6
|
Ryvlin J, Lindsey SE, Butcher JT. Systematic Analysis of the Smooth Muscle Wall Phenotype of the Pharyngeal Arch Arteries During Their Reorganization into the Great Vessels and Its Association with Hemodynamics. Anat Rec (Hoboken) 2019; 302:153-162. [PMID: 30312026 PMCID: PMC6312499 DOI: 10.1002/ar.23942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 07/08/2018] [Accepted: 07/18/2018] [Indexed: 12/23/2022]
Abstract
Early outflow morphogenesis is a critical event in cardiac development. Understanding mechanical and molecular based morphogenetic relationships at early stages of cardiogenesis is essential for the advancement of cardiovascular technology related to congenital heart defects. In this study, we pair molecular changes in pharyngeal arch artery (PAA) vascular smooth muscle cells (VSMCs) with hemodynamic changes over the course of the same period. We focus on Hamburger Hamilton stage 24-36 chick embryos, using both Doppler ultrasound and histological sections to phenotype PAA VSMCs, and establish a relationship between hemodynamics and PAA composition. Our findings show that PAA VSMCs transition through a synthetic, intermediate, and contractile phenotype over time. Wall shear stress magnitude per arch varies throughout development. Despite distinct hemodynamic and fractional expression trends, no strong correlation was found between the two, indicating that WSS magnitude is not the main driver of PAA wall remodeling and maturation. While WSS magnitude was not found to be a major driver, this work provides a basic framework for investigating relationships between hemodynamic forces and tunica media during a critical period of development. Anat Rec, 302:153-162, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jessica Ryvlin
- Nancy E. and Peter C. Meinig School of Biomedical Engineering
| | | | | |
Collapse
|
7
|
Lindsey SE, Butcher JT, Vignon-Clementel IE. Cohort-based multiscale analysis of hemodynamic-driven growth and remodeling of the embryonic pharyngeal arch arteries. Development 2018; 145:145/20/dev162578. [PMID: 30333235 DOI: 10.1242/dev.162578] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 08/31/2018] [Indexed: 01/16/2023]
Abstract
Growth and remodeling of the primitive pharyngeal arch artery (PAA) network into the extracardiac great vessels is poorly understood but a major source of clinically serious malformations. Undisrupted blood flow is required for normal PAA development, yet specific relationships between hemodynamics and remodeling remain largely unknown. Meeting this challenge is hindered by the common reductionist analysis of morphology to single idealized models, where in fact structural morphology varies substantially. Quantitative technical tools that allow tracking of morphological and hemodynamic changes in a population-based setting are essential to advancing our understanding of morphogenesis. Here, we have developed a methodological pipeline from high-resolution nano-computed tomography imaging and live-imaging flow measurements to multiscale pulsatile computational models. We combine experimental-based computational models of multiple PAAs to quantify hemodynamic forces in the rapidly morphing Hamburger Hamilton (HH) stage HH18, HH24 and HH26 embryos. We identify local morphological variation along the PAAs and their association with specific hemodynamic changes. Population-level mechano-morphogenic variability analysis is a powerful strategy for identifying stage-specific regions of well and poorly tolerated morphological and/or hemodynamic variation that may protect or initiate cardiovascular malformations.
Collapse
Affiliation(s)
- Stephanie E Lindsey
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Ithaca, NY 14850, USA
| | - Jonathan T Butcher
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Ithaca, NY 14850, USA
| | - Irene E Vignon-Clementel
- INRIA Centre de recherche de Paris, Paris 75012, France .,Laboratoire Jacques Louis Lions, Sorbonne Universités UPMC, Paris 75005, France
| |
Collapse
|
8
|
Courchaine K, Rugonyi S. Quantifying blood flow dynamics during cardiac development: demystifying computational methods. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170330. [PMID: 30249779 PMCID: PMC6158206 DOI: 10.1098/rstb.2017.0330] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2018] [Indexed: 12/27/2022] Open
Abstract
Blood flow conditions (haemodynamics) are crucial for proper cardiovascular development. Indeed, blood flow induces biomechanical adaptations and mechanotransduction signalling that influence cardiovascular growth and development during embryonic stages and beyond. Altered blood flow conditions are a hallmark of congenital heart disease, and disrupted blood flow at early embryonic stages is known to lead to congenital heart malformations. In spite of this, many of the mechanisms by which blood flow mechanics affect cardiovascular development remain unknown. This is due in part to the challenges involved in quantifying blood flow dynamics and the forces exerted by blood flow on developing cardiovascular tissues. Recent technologies, however, have allowed precise measurement of blood flow parameters and cardiovascular geometry even at early embryonic stages. Combined with computational fluid dynamics techniques, it is possible to quantify haemodynamic parameters and their changes over development, which is a crucial step in the quest for understanding the role of mechanical cues on heart and vascular formation. This study summarizes some fundamental aspects of modelling blood flow dynamics, with a focus on three-dimensional modelling techniques, and discusses relevant studies that are revealing the details of blood flow and their influence on cardiovascular development.This article is part of the Theo Murphy meeting issue 'Mechanics of development'.
Collapse
Affiliation(s)
- Katherine Courchaine
- Biomedical Engineering, Oregon Health and Science University, Portland, OR 97239, USA
| | - Sandra Rugonyi
- Biomedical Engineering, Oregon Health and Science University, Portland, OR 97239, USA
| |
Collapse
|
9
|
Vedula V, Lee J, Xu H, Kuo CCJ, Hsiai TK, Marsden AL. A method to quantify mechanobiologic forces during zebrafish cardiac development using 4-D light sheet imaging and computational modeling. PLoS Comput Biol 2017; 13:e1005828. [PMID: 29084212 PMCID: PMC5679653 DOI: 10.1371/journal.pcbi.1005828] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 11/09/2017] [Accepted: 10/15/2017] [Indexed: 01/09/2023] Open
Abstract
Blood flow and mechanical forces in the ventricle are implicated in cardiac development and trabeculation. However, the mechanisms of mechanotransduction remain elusive. This is due in part to the challenges associated with accurately quantifying mechanical forces in the developing heart. We present a novel computational framework to simulate cardiac hemodynamics in developing zebrafish embryos by coupling 4-D light sheet imaging with a stabilized finite element flow solver, and extract time-dependent mechanical stimuli data. We employ deformable image registration methods to segment the motion of the ventricle from high resolution 4-D light sheet image data. This results in a robust and efficient workflow, as segmentation need only be performed at one cardiac phase, while wall position in the other cardiac phases is found by image registration. Ventricular hemodynamics are then quantified by numerically solving the Navier-Stokes equations in the moving wall domain with our validated flow solver. We demonstrate the applicability of the workflow in wild type zebrafish and three treated fish types that disrupt trabeculation: (a) chemical treatment using AG1478, an ErbB2 signaling inhibitor that inhibits proliferation and differentiation of cardiac trabeculation; (b) injection of gata1a morpholino oligomer (gata1aMO) suppressing hematopoiesis and resulting in attenuated trabeculation; (c) weak-atriumm58 mutant (wea) with inhibited atrial contraction leading to a highly undeveloped ventricle and poor cardiac function. Our simulations reveal elevated wall shear stress (WSS) in wild type and AG1478 compared to gata1aMO and wea. High oscillatory shear index (OSI) in the grooves between trabeculae, compared to lower values on the ridges, in the wild type suggest oscillatory forces as a possible regulatory mechanism of cardiac trabeculation development. The framework has broad applicability for future cardiac developmental studies focused on quantitatively investigating the role of hemodynamic forces and mechanotransduction during morphogenesis.
Collapse
Affiliation(s)
- Vijay Vedula
- Department of Pediatrics (Cardiology), Stanford University, Stanford, California, United States of America
| | - Juhyun Lee
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Hao Xu
- Department of Electrical Engineering, University of Southern California, Los Angeles, California, United States of America
| | - C.-C. Jay Kuo
- Department of Electrical Engineering, University of Southern California, Los Angeles, California, United States of America
| | - Tzung K. Hsiai
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Alison L. Marsden
- Department of Pediatrics (Cardiology), Stanford University, Stanford, California, United States of America
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
- Institute for Computational and Mathematical Engineering (ICME), Stanford University, Stanford, California, United States of America
| |
Collapse
|
10
|
Goenezen S, Chivukula VK, Midgett M, Phan L, Rugonyi S. 4D subject-specific inverse modeling of the chick embryonic heart outflow tract hemodynamics. Biomech Model Mechanobiol 2015; 15:723-43. [PMID: 26361767 DOI: 10.1007/s10237-015-0720-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 08/17/2015] [Indexed: 01/10/2023]
Abstract
Blood flow plays a critical role in regulating embryonic cardiac growth and development, with altered flow leading to congenital heart disease. Progress in the field, however, is hindered by a lack of quantification of hemodynamic conditions in the developing heart. In this study, we present a methodology to quantify blood flow dynamics in the embryonic heart using subject-specific computational fluid dynamics (CFD) models. While the methodology is general, we focused on a model of the chick embryonic heart outflow tract (OFT), which distally connects the heart to the arterial system, and is the region of origin of many congenital cardiac defects. Using structural and Doppler velocity data collected from optical coherence tomography, we generated 4D ([Formula: see text]) embryo-specific CFD models of the heart OFT. To replicate the blood flow dynamics over time during the cardiac cycle, we developed an iterative inverse-method optimization algorithm, which determines the CFD model boundary conditions such that differences between computed velocities and measured velocities at one point within the OFT lumen are minimized. Results from our developed CFD model agree with previously measured hemodynamics in the OFT. Further, computed velocities and measured velocities differ by [Formula: see text]15 % at locations that were not used in the optimization, validating the model. The presented methodology can be used in quantifications of embryonic cardiac hemodynamics under normal and altered blood flow conditions, enabling an in-depth quantitative study of how blood flow influences cardiac development.
Collapse
Affiliation(s)
- Sevan Goenezen
- Department of Mechanical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Venkat Keshav Chivukula
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Madeline Midgett
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Ly Phan
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Sandra Rugonyi
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, 97239, USA.
| |
Collapse
|
11
|
Lindsey SE, Menon PG, Kowalski WJ, Shekhar A, Yalcin HC, Nishimura N, Schaffer CB, Butcher JT, Pekkan K. Growth and hemodynamics after early embryonic aortic arch occlusion. Biomech Model Mechanobiol 2015; 14:735-51. [PMID: 25416845 PMCID: PMC4452432 DOI: 10.1007/s10237-014-0633-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 11/05/2014] [Indexed: 01/28/2023]
Abstract
The majority of severe clinically significant forms of congenital heart disease (CHD) are associated with great artery lesions, including hypoplastic, double, right or interrupted aortic arch morphologies. While fetal and neonatal interventions are advancing, their potential ability to restore cardiac function, optimal timing, location, and intensity required for intervention remain largely unknown. Here, we combine computational fluid dynamics (CFD) simulations with in vivo experiments to test how individual pharyngeal arch artery hemodynamics alter as a result of local interventions obstructing individual arch artery flow. Simulated isolated occlusions within each pharyngeal arch artery were created with image-derived three-dimensional (3D) reconstructions of normal chick pharyngeal arch anatomy at Hamburger-Hamilton (HH) developmental stages HH18 and HH24. Acute flow redistributions were then computed using in vivo measured subject-specific aortic sinus inflow velocity profiles. A kinematic vascular growth-rendering algorithm was then developed and implemented to test the role of changing local wall shear stress patterns in downstream 3D morphogenesis of arch arteries. CFD simulations predicted that altered pressure gradients and flow redistributions were most sensitive to occlusion of the IVth arches. To evaluate these simulations experimentally, a novel in vivo experimental model of pharyngeal arch occlusion was developed and implemented using two-photon microscopy-guided femtosecond laser-based photodisruption surgery. The right IVth arch was occluded at HH18, and resulting diameter changes were followed for up to 24 h. Pharyngeal arch diameter responses to acute hemodynamic changes were predicted qualitatively but poorly quantitatively. Chronic growth and adaptation to hemodynamic changes, however, were predicted in a subset of arches. Our findings suggest that this complex biodynamic process is governed through more complex forms of mechanobiological vascular growth rules. Other factors in addition to wall shear stress or more complex WSS rules are likely important in the long-term arterial growth and patterning. Combination in silico/experimental platforms are essential for accelerating our understanding and prediction of consequences from embryonic/fetal cardiovascular occlusions and lay the foundation for noninvasive methods to guide CHD diagnosis and fetal intervention.
Collapse
Affiliation(s)
| | - Prahlad G. Menon
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA
| | - William J. Kowalski
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA
| | - Akshay Shekhar
- Department of Biomedical Engineering, Cornell University, Ithaca, NY
| | - Huseyin C. Yalcin
- Department of Mechanical Engineering, Dogus University, Istanbul, Turkey
| | - Nozomi Nishimura
- Department of Biomedical Engineering, Cornell University, Ithaca, NY
| | - Chris B. Schaffer
- Department of Biomedical Engineering, Cornell University, Ithaca, NY
| | | | - Kerem Pekkan
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA
| |
Collapse
|
12
|
Kowalski WJ, Pekkan K, Tinney JP, Keller BB. Investigating developmental cardiovascular biomechanics and the origins of congenital heart defects. Front Physiol 2014; 5:408. [PMID: 25374544 PMCID: PMC4204442 DOI: 10.3389/fphys.2014.00408] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 10/02/2014] [Indexed: 11/24/2022] Open
Abstract
Innovative research on the interactions between biomechanical load and cardiovascular (CV) morphogenesis by multiple investigators over the past 3 decades, including the application of bioengineering approaches, has shown that the embryonic heart adapts both structure and function in order to maintain cardiac output to the rapidly growing embryo. Acute adaptive hemodynamic mechanisms in the embryo include the redistribution of blood flow within the heart, dynamic adjustments in heart rate and developed pressure, and beat to beat variations in blood flow and vascular resistance. These biomechanically relevant events occur coincident with adaptive changes in gene expression and trigger adaptive mechanisms that include alterations in myocardial cell growth and death, regional and global changes in myocardial architecture, and alterations in central vascular morphogenesis and remodeling. These adaptive mechanisms allow the embryo to survive these biomechanical stresses (environmental, maternal) and to compensate for developmental errors (genetic). Recent work from numerous laboratories shows that a subset of these adaptive mechanisms is present in every developing multicellular organism with a “heart” equivalent structure. This chapter will provide the reader with an overview of some of the approaches used to quantify embryonic CV functional maturation and performance, provide several illustrations of experimental interventions that explore the role of biomechanics in the regulation of CV morphogenesis including the role of computational modeling, and identify several critical areas for future investigation as available experimental models and methods expand.
Collapse
Affiliation(s)
- William J Kowalski
- Cardiovascular Innovation Institute, University of Louisville Louisville, KY, USA ; Department of Pediatrics, University of Louisville Louisville, KY, USA
| | - Kerem Pekkan
- Department of Biomedical Engineering, Carnegie Mellon University Pittsburgh, PA, USA
| | - Joseph P Tinney
- Cardiovascular Innovation Institute, University of Louisville Louisville, KY, USA ; Department of Pediatrics, University of Louisville Louisville, KY, USA
| | - Bradley B Keller
- Cardiovascular Innovation Institute, University of Louisville Louisville, KY, USA ; Department of Pediatrics, University of Louisville Louisville, KY, USA ; Department of Biomedical Engineering, Carnegie Mellon University Pittsburgh, PA, USA
| |
Collapse
|
13
|
Yap CH, Liu X, Pekkan K. Characterization of the vessel geometry, flow mechanics and wall shear stress in the great arteries of wildtype prenatal mouse. PLoS One 2014; 9:e86878. [PMID: 24475188 PMCID: PMC3903591 DOI: 10.1371/journal.pone.0086878] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 12/18/2013] [Indexed: 12/16/2022] Open
Abstract
Introduction Abnormal fluid mechanical environment in the pre-natal cardiovascular system is hypothesized to play a significant role in causing structural heart malformations. It is thus important to improve our understanding of the prenatal cardiovascular fluid mechanical environment at multiple developmental time-points and vascular morphologies. We present such a study on fetal great arteries on the wildtype mouse from embryonic day 14.5 (E14.5) to near-term (E18.5). Methods Ultrasound bio-microscopy (UBM) was used to measure blood velocity of the great arteries. Subsequently, specimens were cryo-embedded and sectioned using episcopic fluorescent image capture (EFIC) to obtain high-resolution 2D serial image stacks, which were used for 3D reconstructions and quantitative measurement of great artery and aortic arch dimensions. EFIC and UBM data were input into subject-specific computational fluid dynamics (CFD) for modeling hemodynamics. Results In normal mouse fetuses between E14.5–18.5, ultrasound imaging showed gradual but statistically significant increase in blood velocity in the aorta, pulmonary trunk (with the ductus arteriosus), and descending aorta. Measurement by EFIC imaging displayed a similar increase in cross sectional area of these vessels. However, CFD modeling showed great artery average wall shear stress and wall shear rate remain relatively constant with age and with vessel size, indicating that hemodynamic shear had a relative constancy over gestational period considered here. Conclusion Our EFIC-UBM-CFD method allowed reasonably detailed characterization of fetal mouse vascular geometry and fluid mechanics. Our results suggest that a homeostatic mechanism for restoring vascular wall shear magnitudes may exist during normal embryonic development. We speculate that this mechanism regulates the growth of the great vessels.
Collapse
Affiliation(s)
- Choon Hwai Yap
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Xiaoqin Liu
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Kerem Pekkan
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
14
|
Lee J, Moghadam ME, Kung E, Cao H, Beebe T, Miller Y, Roman BL, Lien CL, Chi NC, Marsden AL, Hsiai TK. Moving domain computational fluid dynamics to interface with an embryonic model of cardiac morphogenesis. PLoS One 2013; 8:e72924. [PMID: 24009714 PMCID: PMC3751826 DOI: 10.1371/journal.pone.0072924] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 07/12/2013] [Indexed: 12/12/2022] Open
Abstract
Peristaltic contraction of the embryonic heart tube produces time- and spatial-varying wall shear stress (WSS) and pressure gradients (∇P) across the atrioventricular (AV) canal. Zebrafish (Danio rerio) are a genetically tractable system to investigate cardiac morphogenesis. The use of Tg(fli1a:EGFP) (y1) transgenic embryos allowed for delineation and two-dimensional reconstruction of the endocardium. This time-varying wall motion was then prescribed in a two-dimensional moving domain computational fluid dynamics (CFD) model, providing new insights into spatial and temporal variations in WSS and ∇P during cardiac development. The CFD simulations were validated with particle image velocimetry (PIV) across the atrioventricular (AV) canal, revealing an increase in both velocities and heart rates, but a decrease in the duration of atrial systole from early to later stages. At 20-30 hours post fertilization (hpf), simulation results revealed bidirectional WSS across the AV canal in the heart tube in response to peristaltic motion of the wall. At 40-50 hpf, the tube structure undergoes cardiac looping, accompanied by a nearly 3-fold increase in WSS magnitude. At 110-120 hpf, distinct AV valve, atrium, ventricle, and bulbus arteriosus form, accompanied by incremental increases in both WSS magnitude and ∇P, but a decrease in bi-directional flow. Laminar flow develops across the AV canal at 20-30 hpf, and persists at 110-120 hpf. Reynolds numbers at the AV canal increase from 0.07±0.03 at 20-30 hpf to 0.23±0.07 at 110-120 hpf (p< 0.05, n=6), whereas Womersley numbers remain relatively unchanged from 0.11 to 0.13. Our moving domain simulations highlights hemodynamic changes in relation to cardiac morphogenesis; thereby, providing a 2-D quantitative approach to complement imaging analysis.
Collapse
Affiliation(s)
- Juhyun Lee
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, United States of America
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, United States of America
| | - Mahdi Esmaily Moghadam
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, United States of America
| | - Ethan Kung
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, United States of America
| | - Hung Cao
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, United States of America
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, United States of America
| | - Tyler Beebe
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, United States of America
| | - Yury Miller
- Division of Cardiology, Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Beth L. Roman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Ching-Ling Lien
- Children’s Hospital Los Angeles, Los Angeles, California, United States of America
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Neil C. Chi
- Division of Cardiology, Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Alison L. Marsden
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, United States of America
| | - Tzung K. Hsiai
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, United States of America
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, United States of America
- Division of Cardiology, Department of Medicine, School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
15
|
Gregg CL, Butcher JT. Translational paradigms in scientific and clinical imaging of cardiac development. ACTA ACUST UNITED AC 2013; 99:106-20. [PMID: 23897595 DOI: 10.1002/bdrc.21034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 05/14/2013] [Indexed: 01/25/2023]
Abstract
Congenital heart defects (CHD) are the most prevalent congenital disease, with 45% of deaths resulting from a congenital defect due to a cardiac malformation. Clinically significant CHD permit survival upon birth, but may become immediately life threatening. Advances in surgical intervention have significantly reduced perinatal mortality, but the outcome for many malformations is bleak. Furthermore, patients living while tolerating a CHD often acquire additional complications due to the long-term systemic blood flow changes caused by even subtle anatomical abnormalities. Accurate diagnosis of defects during fetal development is critical for interventional planning and improving patient outcomes. Advances in quantitative, multidimensional imaging are necessary to uncover the basic scientific and clinically relevant morphogenetic changes and associated hemodynamic consequences influencing normal and abnormal heart development. Ultrasound is the most widely used clinical imaging technology for assessing fetal cardiac development. Ultrasound-based fetal assessment modalities include motion mode (M-mode), two dimensional (2D), and 3D/4D imaging. These datasets can be combined with computational fluid dynamics analysis to yield quantitative, volumetric, and physiological data. Additional imaging modalities, however, are available to study basic mechanisms of cardiogenesis, including optical coherence tomography, microcomputed tomography, and magnetic resonance imaging. Each imaging technology has its advantages and disadvantages regarding resolution, depth of penetration, soft tissue contrast considerations, and cost. In this review, we analyze the current clinical and scientific imaging technologies, research studies utilizing them, and appropriate animal models reflecting clinically relevant cardiogenesis and cardiac malformations. We conclude with discussing the translational impact and future opportunities for cardiovascular development imaging research.
Collapse
Affiliation(s)
- Chelsea L Gregg
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
16
|
Kowalski WJ, Dur O, Wang Y, Patrick MJ, Tinney JP, Keller BB, Pekkan K. Critical transitions in early embryonic aortic arch patterning and hemodynamics. PLoS One 2013; 8:e60271. [PMID: 23555940 PMCID: PMC3605337 DOI: 10.1371/journal.pone.0060271] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 02/25/2013] [Indexed: 02/01/2023] Open
Abstract
Transformation from the bilaterally symmetric embryonic aortic arches to the mature great vessels is a complex morphogenetic process, requiring both vasculogenic and angiogenic mechanisms. Early aortic arch development occurs simultaneously with rapid changes in pulsatile blood flow, ventricular function, and downstream impedance in both invertebrate and vertebrate species. These dynamic biomechanical environmental landscapes provide critical epigenetic cues for vascular growth and remodeling. In our previous work, we examined hemodynamic loading and aortic arch growth in the chick embryo at Hamburger-Hamilton stages 18 and 24. We provided the first quantitative correlation between wall shear stress (WSS) and aortic arch diameter in the developing embryo, and observed that these two stages contained different aortic arch patterns with no inter-embryo variation. In the present study, we investigate these biomechanical events in the intermediate stage 21 to determine insights into this critical transition. We performed fluorescent dye microinjections to identify aortic arch patterns and measured diameters using both injection recordings and high-resolution optical coherence tomography. Flow and WSS were quantified with 3D computational fluid dynamics (CFD). Dye injections revealed that the transition in aortic arch pattern is not a uniform process and multiple configurations were documented at stage 21. CFD analysis showed that WSS is substantially elevated compared to both the previous (stage 18) and subsequent (stage 24) developmental time-points. These results demonstrate that acute increases in WSS are followed by a period of vascular remodeling to restore normative hemodynamic loading. Fluctuations in blood flow are one possible mechanism that impacts the timing of events such as aortic arch regression and generation, leading to the variable configurations at stage 21. Aortic arch variations noted during normal rapid vascular remodeling at stage 21 identify a temporal window of increased vulnerability to aberrant aortic arch morphogenesis with the potential for profound effects on subsequent cardiovascular morphogenesis.
Collapse
Affiliation(s)
- William J. Kowalski
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Onur Dur
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Yajuan Wang
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Michael J. Patrick
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Joseph P. Tinney
- Department of Pediatrics, Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky, United States of America
| | - Bradley B. Keller
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- Department of Pediatrics, Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky, United States of America
| | - Kerem Pekkan
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
17
|
Goenezen S, Rennie MY, Rugonyi S. Biomechanics of early cardiac development. Biomech Model Mechanobiol 2012; 11:1187-204. [PMID: 22760547 DOI: 10.1007/s10237-012-0414-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 06/20/2012] [Indexed: 12/31/2022]
Abstract
Biomechanics affect early cardiac development, from looping to the development of chambers and valves. Hemodynamic forces are essential for proper cardiac development, and their disruption leads to congenital heart defects. A wealth of information already exists on early cardiac adaptations to hemodynamic loading, and new technologies, including high-resolution imaging modalities and computational modeling, are enabling a more thorough understanding of relationships between hemodynamics and cardiac development. Imaging and modeling approaches, used in combination with biological data on cell behavior and adaptation, are paving the road for new discoveries on links between biomechanics and biology and their effect on cardiac development and fetal programming.
Collapse
Affiliation(s)
- Sevan Goenezen
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | |
Collapse
|
18
|
Mechanotransduction in embryonic vascular development. Biomech Model Mechanobiol 2012; 11:1149-68. [PMID: 22744845 DOI: 10.1007/s10237-012-0412-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 06/09/2012] [Indexed: 12/25/2022]
Abstract
A plethora of biochemical signals provides spatial and temporal cues that carefully orchestrate the complex process of vertebrate embryonic development. The embryonic vasculature develops not only in the context of these biochemical cues, but also in the context of the biomechanical forces imparted by blood flow. In the mature vasculature, different blood flow regimes induce distinct genetic programs, and significant progress has been made toward understanding how these forces are perceived by endothelial cells and transduced into biochemical signals. However, it cannot be assumed that paradigms that govern the mature vasculature are pertinent to the developing embryonic vasculature. The embryonic vasculature can respond to the mechanical forces of blood flow, and these responses are critical in vascular remodeling, certain aspects of sprouting angiogenesis, and maintenance of arterial-venous identity. Here, we review data regarding mechanistic aspects of endothelial cell mechanotransduction, with a focus on the response to shear stress, and elaborate upon the multifarious effects of shear stress on the embryonic vasculature. In addition, we discuss emerging predictive vascular growth models and highlight the prospect of combining signaling pathway information with computational modeling. We assert that correlation of precise measurements of hemodynamic parameters with effects on endothelial cell gene expression and cell behavior is required for fully understanding how blood flow-induced loading governs normal vascular development and shapes congenital cardiovascular abnormalities.
Collapse
|