1
|
Pires THV, Madeira JFA, Castro APG, Fernandes PR. Direct MultiSearch optimization of TPMS scaffolds for bone tissue engineering. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 257:108461. [PMID: 39413676 DOI: 10.1016/j.cmpb.2024.108461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/18/2024]
Abstract
BACKGROUND Scaffolds designed for tissue engineering must consider multiple parameters, namely the permeability of the design and the wall shear stress experienced by the cells on the scaffold surface. However, these parameters are not independent from each other, with changes that improve wall shear stress, negatively impacting permeability and vice versa. This study introduces a novel multi-objective optimization framework using Direct MultiSearch (DMS) to design triply periodic minimal surface (TPMS) scaffolds for bone tissue engineering. METHOD The optimization algorithm focused on maximizing the permeability of the scaffolds and obtaining a desired value of average wall shear stress (which ranges between the values that promote osteogenic differentiation of 0.1 mPa and 10 mPa). Multiple fluid inlet velocities and target wall shear stress were analyzed. The DMS method successfully generated Pareto fronts for each configuration, enabling the selection of optimized scaffolds based on specific structural requirements. RESULTS The findings reveal that increasing the target wall shear stress results in a greater number of non-dominated points on the Pareto front, highlighting a more robust optimization process. Additionally, it was also demonstrated that the tested Schwartz diamond scaffolds had a better permeability-wall shear stress relation when compared to Schoen gyroid geometries. CONCLUSIONS Direct MultiSearch was proven as an effective tool to aid in the design of tissue engineering scaffolds. This adaptable optimization framework has potential applications beyond bone tissue engineering, including cartilage tissue differentiation.
Collapse
Affiliation(s)
- T H V Pires
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - J F A Madeira
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; ISEL, Instituto Politécnico de Lisboa, Lisboa, Portugal
| | - A P G Castro
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; ESTSetúbal, Instituto Politécnico de Setúbal, Setúbal, Portugal
| | - P R Fernandes
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
2
|
Kumar V, Naqvi SM, Verbruggen A, McEvoy E, McNamara LM. A mechanobiological model of bone metastasis reveals that mechanical stimulation inhibits the pro-osteolytic effects of breast cancer cells. Cell Rep 2024; 43:114043. [PMID: 38642336 DOI: 10.1016/j.celrep.2024.114043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/01/2023] [Accepted: 03/19/2024] [Indexed: 04/22/2024] Open
Abstract
Bone is highly susceptible to cancer metastasis, and both tumor and bone cells enable tumor invasion through a "vicious cycle" of biochemical signaling. Tumor metastasis into bone also alters biophysical cues to both tumor and bone cells, which are highly sensitive to their mechanical environment. However, the mechanobiological feedback between these cells that perpetuate this cycle has not been studied. Here, we develop highly advanced in vitro and computational models to provide an advanced understanding of how tumor growth is regulated by the synergistic influence of tumor-bone cell signaling and mechanobiological cues. In particular, we develop a multicellular healthy and metastatic bone model that can account for physiological mechanical signals within a custom bioreactor. These models successfully recapitulated mineralization, mechanobiological responses, osteolysis, and metastatic activity. Ultimately, we demonstrate that mechanical stimulus provided protective effects against tumor-induced osteolysis, confirming the importance of mechanobiological factors in bone metastasis development.
Collapse
Affiliation(s)
- Vatsal Kumar
- Mechanobiology and Medical Device Research Group (MMDRG), Biomedical Engineering, College of Science and Engineering, University of Galway, H91 HX31 Galway, Ireland
| | - Syeda M Naqvi
- Mechanobiology and Medical Device Research Group (MMDRG), Biomedical Engineering, College of Science and Engineering, University of Galway, H91 HX31 Galway, Ireland
| | - Anneke Verbruggen
- Mechanobiology and Medical Device Research Group (MMDRG), Biomedical Engineering, College of Science and Engineering, University of Galway, H91 HX31 Galway, Ireland
| | - Eoin McEvoy
- Biomedical Engineering, College of Science and Engineering, University of Galway, H91 HX31 Galway, Ireland
| | - Laoise M McNamara
- Mechanobiology and Medical Device Research Group (MMDRG), Biomedical Engineering, College of Science and Engineering, University of Galway, H91 HX31 Galway, Ireland.
| |
Collapse
|
3
|
Channasanon S, Kaewkong P, Chantaweroad S, Tesavibul P, Pratumwal Y, Otarawanna S, Kirihara S, Tanodekaew S. Scaffold geometry and computational fluid dynamics simulation supporting osteogenic differentiation in dynamic culture. Comput Methods Biomech Biomed Engin 2024; 27:587-598. [PMID: 37014922 DOI: 10.1080/10255842.2023.2195961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023]
Abstract
Geometry of porous scaffolds is critical to the success of cell adhesion, proliferation, and differentiation in bone tissue engineering. In this study, the effect of scaffold geometry on osteogenic differentiation of MC3T3-E1 pre-osteoblasts in a perfusion bioreactor was investigated. Three geometries of oligolactide-HA scaffolds, named Woodpile, LC-1000, and LC-1400, were fabricated with uniform pore size distribution and interconnectivity using stereolithography (SL) technique, and tested to evaluate for the most suitable scaffold geometry. Compressive tests revealed sufficiently high strength of all scaffolds to support new bone formation. The LC-1400 scaffold showed the highest cell proliferation in accordance with the highest level of osteoblast-specific gene expression after 21 days of dynamic culture in a perfusion bioreactor; however, it deposited less amount of calcium than the LC-1000 scaffold. Computational fluid dynamics (CFD) simulation was employed to predict and explain the effect of flow behavior on cell response under dynamic culture. The findings concluded that appropriate flow shear stress enhanced cell differentiation and mineralization in the scaffold, with the LC-1000 scaffold performing best due to its optimal balance between permeability and flow-induced shear stress.
Collapse
Affiliation(s)
| | - Pakkanun Kaewkong
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), Klongluang, Pathumthani, Thailand
| | - Surapol Chantaweroad
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), Klongluang, Pathumthani, Thailand
| | - Passakorn Tesavibul
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), Klongluang, Pathumthani, Thailand
| | - Yotsakorn Pratumwal
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), Klongluang, Pathumthani, Thailand
| | - Somboon Otarawanna
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), Klongluang, Pathumthani, Thailand
| | - Soshu Kirihara
- Joining and Welding Research International (JWRI), Osaka University, Suita, Osaka, Japan
| | - Siriporn Tanodekaew
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), Klongluang, Pathumthani, Thailand
| |
Collapse
|
4
|
Manescu (Paltanea) V, Paltanea G, Antoniac A, Gruionu LG, Robu A, Vasilescu M, Laptoiu SA, Bita AI, Popa GM, Cocosila AL, Silviu V, Porumb A. Mechanical and Computational Fluid Dynamic Models for Magnesium-Based Implants. MATERIALS (BASEL, SWITZERLAND) 2024; 17:830. [PMID: 38399081 PMCID: PMC10890492 DOI: 10.3390/ma17040830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/26/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024]
Abstract
Today, mechanical properties and fluid flow dynamic analysis are considered to be two of the most important steps in implant design for bone tissue engineering. The mechanical behavior is characterized by Young's modulus, which must have a value close to that of the human bone, while from the fluid dynamics point of view, the implant permeability and wall shear stress are two parameters directly linked to cell growth, adhesion, and proliferation. In this study, we proposed two simple geometries with a three-dimensional pore network dedicated to a manufacturing route based on a titanium wire waving procedure used as an intermediary step for Mg-based implant fabrication. Implant deformation under different static loads, von Mises stresses, and safety factors were investigated using finite element analysis. The implant permeability was computed based on Darcy's law following computational fluid dynamic simulations and, based on the pressure drop, was numerically estimated. It was concluded that both models exhibited a permeability close to the human trabecular bone and reduced wall shear stresses within the biological range. As a general finding, the proposed geometries could be useful in orthopedics for bone defect treatment based on numerical analyses because they mimic the trabecular bone properties.
Collapse
Affiliation(s)
- Veronica Manescu (Paltanea)
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (V.M.); (A.R.); (M.V.); (S.A.L.)
- Faculty of Electrical Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania;
| | - Gheorghe Paltanea
- Faculty of Electrical Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania;
| | - Aurora Antoniac
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (V.M.); (A.R.); (M.V.); (S.A.L.)
| | - Lucian Gheorghe Gruionu
- Faculty of Mechanics, University of Craiova, 13 Alexandru Ioan Cuza, RO-200585 Craiova, Romania;
| | - Alina Robu
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (V.M.); (A.R.); (M.V.); (S.A.L.)
| | - Marius Vasilescu
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (V.M.); (A.R.); (M.V.); (S.A.L.)
| | - Stefan Alexandru Laptoiu
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (V.M.); (A.R.); (M.V.); (S.A.L.)
| | - Ana Iulia Bita
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (V.M.); (A.R.); (M.V.); (S.A.L.)
| | - Georgiana Maria Popa
- Department of Surgical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, RO-410073 Oradea, Romania; (G.M.P.); (A.L.C.); (V.S.)
| | - Andreea Liliana Cocosila
- Department of Surgical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, RO-410073 Oradea, Romania; (G.M.P.); (A.L.C.); (V.S.)
| | - Vlad Silviu
- Department of Surgical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, RO-410073 Oradea, Romania; (G.M.P.); (A.L.C.); (V.S.)
| | - Anca Porumb
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, RO-410073 Oradea, Romania;
| |
Collapse
|
5
|
Krasnyakov I, Bratsun D. Cell-Based Modeling of Tissue Developing in the Scaffold Pores of Varying Cross-Sections. Biomimetics (Basel) 2023; 8:562. [PMID: 38132501 PMCID: PMC10741956 DOI: 10.3390/biomimetics8080562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
In this work, we present a mathematical model of cell growth in the pores of a perfusion bioreactor through which a nutrient solution is pumped. We have developed a 2-D vertex model that allows us to reproduce the microscopic dynamics of the microenvironment of cells and describe the occupation of the pore space with cells. In this model, each cell is represented by a polygon; the number of vertices and shapes may change over time. The model includes mitotic cell division and intercalation. We study the impact of two factors on cell growth. On the one hand, we consider a channel of variable cross-section, which models a scaffold with a porosity gradient. On the other hand, a cluster of cells grows under the influence of a nutrient solution flow, which establishes a non-uniform distribution of shear stresses in the pore space. We present the results of numerical simulation of the tissue growth in a wavy channel. The model allows us to obtain complete microscopic information that includes the dynamics of intracellular pressure, the local elastic energy, and the characteristics of cell populations. As we showed, in a functional-graded scaffold, the distribution of the shear stresses in the pore space has a complicated structure, which implies the possibility of controlling the growth zones by varying the pore geometry.
Collapse
Affiliation(s)
| | - Dmitry Bratsun
- Applied Physics Department, Perm National Research Polytechnic University, 614990 Perm, Russia;
| |
Collapse
|
6
|
Mohol SS, Kumar M, Sharma V. PLA-based nature-inspired architecture for bone scaffolds: A finite element analysis. Comput Biol Med 2023; 163:107163. [PMID: 37329619 DOI: 10.1016/j.compbiomed.2023.107163] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/04/2023] [Accepted: 06/07/2023] [Indexed: 06/19/2023]
Abstract
The implantation of bio-degradable scaffolds is considered as a promising approach to address the repair of bone defects. This article aims to develop a computational approach to study the mechanical behaviour, fluid dynamic, and degradation impact on polylactic acid scaffolds with nature-inspired design structures. Scaffold design is considered to be one of the main factors for the regulation of mechanical characteristics and fluid flow dynamics. In this article, five scaffolds with different nature-inspired architectures have been designed within a specific porosity range. Based on finite element analysis, their mechanical behaviour and computational fluid dynamic study are performed to evaluate the respective properties of different scaffolds. In addition, diffusion-governed degradation analysis of the scaffolds has been performed to compute the total time required for the scaffold to degrade within a given environment. Based on the mechanical behaviour, the Spider-web architecture scaffold was found to have the least deformation, and also the lowest value of equivalent stress and strain. The Nautilus Shell architecture scaffold had the highest value of equivalent stress and strain. The permeability of all the scaffolds was found to meet the requirement of the cancellous bone. All computational fluid dynamics (CFD) results of wall shear stress are in line with the requirement for cell differentiation. It was observed that the Spider-web architecture scaffold had undergone the slowest degradation, and the Giant Water Lily architecture scaffold experienced the fastest degradation.
Collapse
Affiliation(s)
- Shubham Shankar Mohol
- Additive and Subtractive Manufacturing Lab, Department of Mechanical and Industrial Engineering, IIT Roorkee, India
| | - Mohit Kumar
- Additive and Subtractive Manufacturing Lab, Department of Mechanical and Industrial Engineering, IIT Roorkee, India
| | - Varun Sharma
- Additive and Subtractive Manufacturing Lab, Department of Mechanical and Industrial Engineering, IIT Roorkee, India; Department of Mechanical and Industrial Engineering, IIT Roorkee, India.
| |
Collapse
|
7
|
Altunbek M, Afghah SF, Fallah A, Acar AA, Koc B. Design and 3D Printing of Personalized Hybrid and Gradient Structures for Critical Size Bone Defects. ACS APPLIED BIO MATERIALS 2023; 6:1873-1885. [PMID: 37071829 DOI: 10.1021/acsabm.3c00107] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Treating critical-size bone defects with autografts, allografts, or standardized implants is challenging since the healing of the defect area necessitates patient-specific grafts with mechanically and physiologically relevant structures. Three-dimensional (3D) printing using computer-aided design (CAD) is a promising approach for bone tissue engineering applications by producing constructs with customized designs and biomechanical compositions. In this study, we propose 3D printing of personalized and implantable hybrid active scaffolds with a unique architecture and biomaterial composition for critical-size bone defects. The proposed 3D hybrid construct was designed to have a gradient cell-laden poly(ethylene glycol) (PEG) hydrogel, which was surrounded by a porous polycaprolactone (PCL) cage structure to recapitulate the anatomical structure of the defective area. The optimized PCL cage design not only provides improved mechanical properties but also allows the diffusion of nutrients and medium through the scaffold. Three different designs including zigzag, zigzag/spiral, and zigzag/spiral with shifting the zigzag layers were evaluated to find an optimal architecture from a mechanical point of view and permeability that can provide the necessary mechanical strength and oxygen/nutrient diffusion, respectively. Mechanical properties were investigated experimentally and analytically using finite element analysis (FEA), and computational fluid dynamics (CFD) simulation was used to determine the permeability of the structures. A hybrid scaffold was fabricated via 3D printing of the PCL cage structure and a PEG-based bioink comprising a varying number of human bone marrow mesenchymal stem cells (hBMSCs). The gradient bioink was deposited inside the PCL cage through a microcapillary extrusion to generate a mineralized gradient structure. The zigzag/spiral design for the PCL cage was found to be mechanically strong with sufficient and optimum nutrient/gas axial and radial diffusion while the PEG-based hydrogel provided a biocompatible environment for hBMSC viability, differentiation, and mineralization. This study promises the production of personalized constructs for critical-size bone defects by printing different biomaterials and gradient cells with a hybrid design depending on the need for a donor site for implantation.
Collapse
Affiliation(s)
- Mine Altunbek
- Nanotechnology Research and Application Center, Sabanci University, Istanbul 34956, Turkey
- University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Seyedeh Ferdows Afghah
- Nanotechnology Research and Application Center, Sabanci University, Istanbul 34956, Turkey
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| | - Ali Fallah
- Nanotechnology Research and Application Center, Sabanci University, Istanbul 34956, Turkey
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Istanbul 34906, Turkey
| | - Anil Ahmet Acar
- Nanotechnology Research and Application Center, Sabanci University, Istanbul 34956, Turkey
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| | - Bahattin Koc
- Nanotechnology Research and Application Center, Sabanci University, Istanbul 34956, Turkey
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Istanbul 34906, Turkey
| |
Collapse
|
8
|
Efficient calculation of fluid-induced wall shear stress within tissue engineering scaffolds by an empirical model. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2023. [DOI: 10.1016/j.medntd.2023.100223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
|
9
|
Kwan JC, Dondani J, Iyer J, Muaddi HA, Nguyen TT, Tran SD. Biomimicry and 3D-Printing of Mussel Adhesive Proteins for Regeneration of the Periodontium-A Review. Biomimetics (Basel) 2023; 8:biomimetics8010078. [PMID: 36810409 PMCID: PMC9944831 DOI: 10.3390/biomimetics8010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Innovation in the healthcare profession to solve complex human problems has always been emulated and based on solutions proven by nature. The conception of different biomimetic materials has allowed for extensive research that spans several fields, including biomechanics, material sciences, and microbiology. Due to the atypical characteristics of these biomaterials, dentistry can benefit from these applications in tissue engineering, regeneration, and replacement. This review highlights an overview of the application of different biomimetic biomaterials in dentistry and discusses the key biomaterials (hydroxyapatite, collagen, polymers) and biomimetic approaches (3D scaffolds, guided bone and tissue regeneration, bioadhesive gels) that have been researched to treat periodontal and peri-implant diseases in both natural dentition and dental implants. Following this, we focus on the recent novel application of mussel adhesive proteins (MAPs) and their appealing adhesive properties, in addition to their key chemical and structural properties that relate to the engineering, regeneration, and replacement of important anatomical structures in the periodontium, such as the periodontal ligament (PDL). We also outline the potential challenges in employing MAPs as a biomimetic biomaterial in dentistry based on the current evidence in the literature. This provides insight into the possible increased functional longevity of natural dentition that can be translated to implant dentistry in the near future. These strategies, paired with 3D printing and its clinical application in natural dentition and implant dentistry, develop the potential of a biomimetic approach to overcoming clinical problems in dentistry.
Collapse
Affiliation(s)
- Jan C. Kwan
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada
| | - Jay Dondani
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada
| | - Janaki Iyer
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada
| | - Hasan A. Muaddi
- Department of Oral and Maxillofacial Surgery, King Khalid University, Abha 62529, Saudi Arabia
| | - Thomas T. Nguyen
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada
- Division of Periodontics, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada
| | - Simon D. Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada
- Correspondence:
| |
Collapse
|
10
|
Chauhan A, Bhatt AD. A review on design of scaffold for osteoinduction: Toward the unification of independent design variables. Biomech Model Mechanobiol 2023; 22:1-21. [PMID: 36121530 DOI: 10.1007/s10237-022-01635-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022]
Abstract
Biophysical stimulus quantifies the osteoinductivity of the scaffold concerning the mechanoregulatory mathematical models of scaffold-assisted cellular differentiation. Consider a set of independent structural variables ($) that comprises bulk porosity levels ([Formula: see text]) and a set of morphological features of the micro-structure ([Formula: see text]) associated with scaffolds, i.e., [Formula: see text]. The literature suggests that biophysical stimulus ([Formula: see text]) is a function of independent structural variables ($). Limited understanding of the functional correlation between biophysical stimulus and structural features results in the lack of the desired osteoinductivity in a scaffold. Consequently, it limits their broad applicability to assist bone tissue regeneration for treating critical-sized bone fractures. The literature indicates the existence of multi-dimensional independent design variable space as a probable reason for the general lack of osteoinductivity in scaffolds. For instance, known morphological features are the size, shape, orientation, continuity, and connectivity of the porous regions in the scaffold. It implies that the number of independent variables ([Formula: see text]) is more than two, i.e., [Formula: see text], which interact and influence the magnitude of [Formula: see text] in a unified manner. The efficiency of standard engineering design procedures to analyze the correlation between dependent variable ([Formula: see text]) and independent variables ($) in 3D mutually orthogonal Cartesian coordinate system diminishes proportionally with the increase in the number of independent variables ([Formula: see text]) (Deb in Optimization for engineering design-algorithms and examples, PHI Learning Private Limited, New Delhi, 2012). Therefore, there is an immediate need to devise a framework that has the potential to quantify the micro-structural's morphological features in a unified manner to increase the prospects of scaffold-assisted bone tissue regeneration.
Collapse
Affiliation(s)
- Atul Chauhan
- Department of Mechanical Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh, 211004, India.
| | - Amba D Bhatt
- Department of Mechanical Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh, 211004, India
| |
Collapse
|
11
|
Chao L, He Y, Gu J, Xie D, Yang Y, Shen L, Wu G, Wang L, Tian Z. Evaluation of Compressive and Permeability Behaviors of Trabecular-Like Porous Structure with Mixed Porosity Based on Mechanical Topology. J Funct Biomater 2023; 14:jfb14010028. [PMID: 36662075 PMCID: PMC9861825 DOI: 10.3390/jfb14010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/26/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
The mechanical properties and permeability properties of artificial bone implants have high-level requirements. A method for the design of trabecular-like porous structure (TLPS) with mixed porosity is proposed based on the study of the mechanical and permeability characteristics of natural bone. With this technique, the morphology and density of internal porous structures can be adjusted, depending on the implantation requirements, to meet the mechanical and permeability requirements of natural bone. The design parameters mainly include the seed points, topology optimization coefficient, load value, irregularity, and scaling factor. Characteristic parameters primarily include porosity and pore size distribution. Statistical methods are used to analyze the relationship between design parameters and characteristic parameters for precise TLPS design and thereby provide a theoretical basis and guidance. TLPS scaffolds were prepared by selective laser melting technology. First, TLPS under different design parameters were analyzed using the finite element method and permeability simulation. The results were then verified by quasistatic compression and cell experiments. The scaling factor and topology optimization coefficient were found to largely affect the mechanical and permeability properties of the TLPS. The corresponding compressive strength reached 270-580 MPa; the elastic modulus ranged between 6.43 and 9.716 GPa, and permeability was 0.6 × 10-9-21 × 10-9; these results were better than the mechanical properties and permeability of natural bone. Thus, TLPS can effectively improve the success rate of bone implantation, which provides an effective theory and application basis for bone implantation.
Collapse
Affiliation(s)
- Long Chao
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Yangdong He
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Jiasen Gu
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Deqiao Xie
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Youwen Yang
- College of Mechanical and Electrical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
- Correspondence: (Y.Y.); (L.S.)
| | - Lida Shen
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
- Correspondence: (Y.Y.); (L.S.)
| | - Guofeng Wu
- Stomatological Digital Engineering Center, Nanjing Stomatological Hospital, Nanjing 210008, China
| | - Lin Wang
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Zongjun Tian
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
- Nanjing Hangpu Machinery Technology Co., Ltd., Nanjing 211806, China
| |
Collapse
|
12
|
Capuana E, Campora S, Catanzaro G, Lopresti F, Conoscenti G, Ghersi G, La Carrubba V, Brucato V, Pavia FC. Computational modeling and experimental characterization of fluid dynamics in micro-CT scanned scaffolds within a multiple-sample airlift perfusion bioreactor. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
13
|
Pires THV, Dunlop JWC, Castro APG, Fernandes PR. Wall Shear Stress Analysis and Optimization in Tissue Engineering TPMS Scaffolds. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7375. [PMID: 36295440 PMCID: PMC9612273 DOI: 10.3390/ma15207375] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/28/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
When designing scaffolds for bone tissue engineering (BTE), the wall shear stress (WSS), due to the fluid flow inside the scaffold, is an important factor to consider as it influences the cellular process involved in new tissue formation. The present work analyzed the average WSS in Schwartz diamond (SD) and gyroid (SG) scaffolds with different surface topologies and mesh elements using computational fluid dynamics (CFD) analysis. It was found that scaffold meshes with a smooth surface topology with tetrahedral elements had WSS levels 35% higher than the equivalent scaffold with a non-smooth surface topology with hexahedral elements. The present work also investigated the possibility of implementing the optimization algorithm simulated annealing to aid in the design of BTE scaffolds with a specific average WSS, with the outputs showing that the algorithm was able to reach WSS levels in the vicinity of 5 mPa (physiological range) within the established limit of 100 iterations. This proved the efficacy of combining CFD and optimization methods in the design of BTE scaffolds.
Collapse
Affiliation(s)
- Tiago H. V. Pires
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - John W. C. Dunlop
- MorphoPhysics Group, Department of the Chemistry and Physics of Materials, University of Salzburg, 5020 Salzburg, Austria
| | - André P. G. Castro
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- ESTSetúbal, Instituto Politécnico de Setúbal, 2914-761 Setúbal, Portugal
| | - Paulo R. Fernandes
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| |
Collapse
|
14
|
Fallah A, Altunbek M, Bartolo P, Cooper G, Weightman A, Blunn G, Koc B. 3D printed scaffold design for bone defects with improved mechanical and biological properties. J Mech Behav Biomed Mater 2022; 134:105418. [PMID: 36007489 DOI: 10.1016/j.jmbbm.2022.105418] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/28/2022] [Accepted: 08/12/2022] [Indexed: 10/15/2022]
Abstract
Bone defect treatment is still a challenge in clinics, and synthetic bone scaffolds with adequate mechanical and biological properties are highly needed. Adequate waste and nutrient exchange of the implanted scaffold with the surrounded tissue is a major concern. Moreover, the risk of mechanical instability in the defect area during regular activity increases as the defect size increases. Thus, scaffolds with better mass transportation and mechanical properties are desired. This study introduces 3D printed polymeric scaffolds with a continuous pattern, ZigZag-Spiral pattern, for bone defects treatments. This pattern has a uniform distribution of pore size, which leads to uniform distribution of wall shear stress which is crucial for uniform differentiation of cells attached to the scaffolds. The mechanical, mass transportation, and biological properties of the 3D printed scaffolds are evaluated. The results show that the presented scaffolds have permeability similar to natural bone and, with the same porosity level, have higher mechanical properties than scaffolds with conventional lay-down patterns 0-90° and 0-45°. Finally, human mesenchymal stem cells are seeded on the scaffolds to determine the effects of geometrical microstructure on cell attachment and morphology. The results show that cells in scaffold with ZigZag-Spiral pattern infilled pores gradually, while the other patterns need more time to fill the pores. Considering mechanical, transportation, and biological properties of the considered patterns, scaffolds with ZigZag-Spiral patterns can mimic the properties of cancellous bones and be a better choice for treatments of bone defects.
Collapse
Affiliation(s)
- Ali Fallah
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Istanbul, 34906, Turkey; Nanotechnology Research and Application Center, Sabanci University, Istanbul, 34956, Turkey; Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, 34956, Turkey
| | - Mine Altunbek
- Nanotechnology Research and Application Center, Sabanci University, Istanbul, 34956, Turkey; Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, 34956, Turkey
| | - Paulo Bartolo
- School of Mechanical, Aerospace and Civil Engineering, Manchester Institute of Biotechnology, University of Manchester, Manchester, M13 9PL, UK; Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Glen Cooper
- School of Mechanical, Aerospace and Civil Engineering, Manchester Institute of Biotechnology, University of Manchester, Manchester, M13 9PL, UK
| | - Andrew Weightman
- School of Mechanical, Aerospace and Civil Engineering, Manchester Institute of Biotechnology, University of Manchester, Manchester, M13 9PL, UK
| | - Gordon Blunn
- School of Pharmacy and Biomedical Sciences, University Portsmouth, Portsmouth, PO1 2UP, UK
| | - Bahattin Koc
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Istanbul, 34906, Turkey; Nanotechnology Research and Application Center, Sabanci University, Istanbul, 34956, Turkey; Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, 34956, Turkey.
| |
Collapse
|
15
|
Karaman D, Ghahramanzadeh Asl H. Biomechanical behavior of diamond lattice scaffolds obtained by two different design approaches with similar porosity; a numerical investigation with FEM and CFD analysis. Proc Inst Mech Eng H 2022; 236:794-810. [DOI: 10.1177/09544119221091346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Scaffolds provide a suitable environment for the bone tissue to maintain its self-healing ability and help new bone-cell formation by creating structures with similar mechanical properties to the surrounding tissue. In the modeling of the scaffolds, an optimum environment is tried to be provided by changing the geometrical properties of the cell architecture such as porosity, pore size, and specific surface area. For this purpose, different design approaches have been used in studies to change these properties. This study aims to determine whether scaffolds with similar porosities modeled by different design approaches exhibit distinct biomechanical behaviors or not. By using the Diamond lattice architecture, two different design approaches were constituted. The first approach has constant wall thickness and variable cell size, whereas the second approach contains variable wall thickness and constant cell size. The usage of different design approaches affected the amount of specific surface area in models with similar porosity. Mechanical compression tests were conducted via finite element analysis, while the permeability performance of configurations with similar porosities (50%, 60%, 70%, 80%, and 90%) was evaluated by using computational fluid dynamics. The mechanical results revealed that the structural strength decreased with increasing porosity. Since their higher specific surface area causes lower pressure drops, the second group exhibits better permeability. In addition, it was found that to evaluate the wall shear stresses occurring on the scaffold surfaces properly, it is essential to consider the stress distributions within the scaffold rather than the maximum values.
Collapse
Affiliation(s)
- Derya Karaman
- Department of Mechanical Engineering, Engineering Faculty, Karadeniz Technical University, Trabzon, Turkey
| | - Hojjat Ghahramanzadeh Asl
- Department of Mechanical Engineering, Engineering Faculty, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
16
|
Lipreri MV, Baldini N, Graziani G, Avnet S. Perfused Platforms to Mimic Bone Microenvironment at the Macro/Milli/Microscale: Pros and Cons. Front Cell Dev Biol 2022; 9:760667. [PMID: 35047495 PMCID: PMC8762164 DOI: 10.3389/fcell.2021.760667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/30/2021] [Indexed: 11/26/2022] Open
Abstract
As life expectancy increases, the population experiences progressive ageing. Ageing, in turn, is connected to an increase in bone-related diseases (i.e., osteoporosis and increased risk of fractures). Hence, the search for new approaches to study the occurrence of bone-related diseases and to develop new drugs for their prevention and treatment becomes more pressing. However, to date, a reliable in vitro model that can fully recapitulate the characteristics of bone tissue, either in physiological or altered conditions, is not available. Indeed, current methods for modelling normal and pathological bone are poor predictors of treatment outcomes in humans, as they fail to mimic the in vivo cellular microenvironment and tissue complexity. Bone, in fact, is a dynamic network including differently specialized cells and the extracellular matrix, constantly subjected to external and internal stimuli. To this regard, perfused vascularized models are a novel field of investigation that can offer a new technological approach to overcome the limitations of traditional cell culture methods. It allows the combination of perfusion, mechanical and biochemical stimuli, biological cues, biomaterials (mimicking the extracellular matrix of bone), and multiple cell types. This review will discuss macro, milli, and microscale perfused devices designed to model bone structure and microenvironment, focusing on the role of perfusion and encompassing different degrees of complexity. These devices are a very first, though promising, step for the development of 3D in vitro platforms for preclinical screening of novel anabolic or anti-catabolic therapeutic approaches to improve bone health.
Collapse
Affiliation(s)
| | - Nicola Baldini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Biomedical Science and Technologies Lab, IRCSS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Gabriela Graziani
- Laboratory for NanoBiotechnology (NaBi), IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Sofia Avnet
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
17
|
Pires T, Dunlop JWC, Fernandes PR, Castro APG. Challenges in computational fluid dynamics applications for bone tissue engineering. Proc Math Phys Eng Sci 2022; 478:20210607. [PMID: 35153613 PMCID: PMC8791047 DOI: 10.1098/rspa.2021.0607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/13/2021] [Indexed: 12/21/2022] Open
Abstract
Bone injuries or defects that require invasive surgical treatment are a serious clinical issue, particularly when it comes to treatment success and effectiveness. Accordingly, bone tissue engineering (BTE) has been researching the use of computational fluid dynamics (CFD) analysis tools to assist in designing optimal scaffolds that better promote bone growth and repair. This paper aims to offer a comprehensive review of recent studies that use CFD analysis in BTE. The mechanical and fluidic properties of a given scaffold are coupled to each other via the scaffold architecture, meaning an optimization of one may negatively affect the other. For example, designs that improve scaffold permeability normally result in a decreased average wall shear stress. Linked with these findings, it appears there are very few studies in this area that state a specific application for their scaffolds and those that do are focused on in vitro bioreactor environments. Finally, this review also demonstrates a scarcity of studies that combine CFD with optimization methods to improve scaffold design. This highlights an important direction of research for the development of the next generation of BTE scaffolds.
Collapse
Affiliation(s)
- Tiago Pires
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - John W C Dunlop
- MorphoPhysics Group, Department of the Chemistry and Physics of Materials, University of Salzburg, Salzburg, Austria
| | | | - André P G Castro
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
18
|
García-Aznar JM, Nasello G, Hervas-Raluy S, Pérez MÁ, Gómez-Benito MJ. Multiscale modeling of bone tissue mechanobiology. Bone 2021; 151:116032. [PMID: 34118446 DOI: 10.1016/j.bone.2021.116032] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/25/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023]
Abstract
Mechanical environment has a crucial role in our organism at the different levels, ranging from cells to tissues and our own organs. This regulatory role is especially relevant for bones, given their importance as load-transmitting elements that allow the movement of our body as well as the protection of vital organs from load impacts. Therefore bone, as living tissue, is continuously adapting its properties, shape and repairing itself, being the mechanical loads one of the main regulatory stimuli that modulate this adaptive behavior. Here we review some key results of bone mechanobiology from computational models, describing the effect that changes associated to the mechanical environment induce in bone response, implant design and scaffold-driven bone regeneration.
Collapse
Affiliation(s)
- José Manuel García-Aznar
- Multiscale in Mechanical and Biological Engineering, Instituto de Investigación en Ingeniería de Aragón (I3A), Instituto de Investigación Sanitaria Aragón (IIS Aragón), University of Zaragoza, Zaragoza, Spain.
| | - Gabriele Nasello
- Multiscale in Mechanical and Biological Engineering, Instituto de Investigación en Ingeniería de Aragón (I3A), Instituto de Investigación Sanitaria Aragón (IIS Aragón), University of Zaragoza, Zaragoza, Spain; Biomechanics Section, KU Leuven, Leuven, Belgium
| | - Silvia Hervas-Raluy
- Multiscale in Mechanical and Biological Engineering, Instituto de Investigación en Ingeniería de Aragón (I3A), Instituto de Investigación Sanitaria Aragón (IIS Aragón), University of Zaragoza, Zaragoza, Spain
| | - María Ángeles Pérez
- Multiscale in Mechanical and Biological Engineering, Instituto de Investigación en Ingeniería de Aragón (I3A), Instituto de Investigación Sanitaria Aragón (IIS Aragón), University of Zaragoza, Zaragoza, Spain
| | - María José Gómez-Benito
- Multiscale in Mechanical and Biological Engineering, Instituto de Investigación en Ingeniería de Aragón (I3A), Instituto de Investigación Sanitaria Aragón (IIS Aragón), University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
19
|
Shi F, Xiao D, Zhang C, Zhi W, Liu Y, Weng J. The effect of macropore size of hydroxyapatite scaffold on the osteogenic differentiation of bone mesenchymal stem cells under perfusion culture. Regen Biomater 2021; 8:rbab050. [PMID: 34567788 PMCID: PMC8457200 DOI: 10.1093/rb/rbab050] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/19/2021] [Accepted: 09/02/2021] [Indexed: 11/12/2022] Open
Abstract
Previous studies have proved that dynamic culture could facilitate nutrients transport and apply mechanical stimulation to the cells within three-dimensional scaffolds, thus enhancing the differentiation of stem cells towards the osteogenic phenotype. However, the effects of macropore size on osteogenic differentiation of stem cells under dynamic condition are still unclear. Therefore, the objective of this study was to investigate the effects of macropore size of hydroxyapatite (HAp) scaffolds on osteogenic differentiation of bone mesenchymal stem cells under static and perfusion culture conditions. In vitro cell culture results showed that cell proliferation, alkaline phosphate (ALP) activity, mRNA expression of ALP, collagen-I (Col-I), osteocalcin (OCN) and osteopontin (OPN) were enhanced when cultured under perfusion condition in comparison to static culture. Under perfusion culture condition, the ALP activity and the gene expression of ALP, Col-I, OCN and OPN were enhanced with the macropore size decreasing from 1300 to 800 µm. However, with the further decrease in macropore size from 800 to 500 µm, the osteogenic related gene expression and protein secretion were reduced. Computational fluid dynamics analysis showed that the distribution areas of medium- and high-speed flow increased with the decrease in macropore size, accompanied by the increase of the fluid shear stress within the scaffolds. These results confirm the effects of macropore size on fluid flow stimuli and cell differentiation, and also help optimize the macropore size of HAp scaffolds for bone tissue engineering.
Collapse
Affiliation(s)
- Feng Shi
- Collaboration Innovation Center for Tissue Repair Material Engineering Technology, College of Life Science, China West Normal University, No.1 Shida Road, Nanchong, Sichuan 637002, China.,Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, the Second Clinical College of North Sichuan Medical College, No.97 Renmin South Road, Nanchong, Sichuan 637000, China.,College of Medicine, Southwest Jiaotong University, No.111 North 1st Section of Second Ring Road, Chengdu, Sichuan 610031, China
| | - Dongqin Xiao
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, the Second Clinical College of North Sichuan Medical College, No.97 Renmin South Road, Nanchong, Sichuan 637000, China
| | - Chengdong Zhang
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, the Second Clinical College of North Sichuan Medical College, No.97 Renmin South Road, Nanchong, Sichuan 637000, China.,College of Medicine, Southwest Jiaotong University, No.111 North 1st Section of Second Ring Road, Chengdu, Sichuan 610031, China
| | - Wei Zhi
- College of Medicine, Southwest Jiaotong University, No.111 North 1st Section of Second Ring Road, Chengdu, Sichuan 610031, China
| | - Yumei Liu
- Collaboration Innovation Center for Tissue Repair Material Engineering Technology, College of Life Science, China West Normal University, No.1 Shida Road, Nanchong, Sichuan 637002, China.,College of Environmental Science and Engineering, China West Normal University, No.1 Shida Road, Nanchong, Sichuan 637002, China
| | - Jie Weng
- College of Medicine, Southwest Jiaotong University, No.111 North 1st Section of Second Ring Road, Chengdu, Sichuan 610031, China
| |
Collapse
|
20
|
Zhao F, Xiong Y, Ito K, van Rietbergen B, Hofmann S. Porous Geometry Guided Micro-mechanical Environment Within Scaffolds for Cell Mechanobiology Study in Bone Tissue Engineering. Front Bioeng Biotechnol 2021; 9:736489. [PMID: 34595161 PMCID: PMC8476750 DOI: 10.3389/fbioe.2021.736489] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/27/2021] [Indexed: 12/15/2022] Open
Abstract
Mechanobiology research is for understanding the role of mechanics in cell physiology and pathology. It will have implications for studying bone physiology and pathology and to guide the strategy for regenerating both the structural and functional features of bone. Mechanobiological studies in vitro apply a dynamic micro-mechanical environment to cells via bioreactors. Porous scaffolds are commonly used for housing the cells in a three-dimensional (3D) culturing environment. Such scaffolds usually have different pore geometries (e.g. with different pore shapes, pore dimensions and porosities). These pore geometries can affect the internal micro-mechanical environment that the cells experience when loaded in the bioreactor. Therefore, to adjust the applied micro-mechanical environment on cells, researchers can tune either the applied load and/or the design of the scaffold pore geometries. This review will provide information on how the micro-mechanical environment (e.g. fluid-induced wall shear stress and mechanical strain) is affected by various scaffold pore geometries within different bioreactors. It shall allow researchers to estimate/quantify the micro-mechanical environment according to the already known pore geometry information, or to find a suitable pore geometry according to the desirable micro-mechanical environment to be applied. Finally, as future work, artificial intelligent - assisted techniques, which can achieve an automatic design of solid porous scaffold geometry for tuning/optimising the micro-mechanical environment are suggested.
Collapse
Affiliation(s)
- Feihu Zhao
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
- Zienkiewicz Centre for Computational Engineering, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom
| | - Yi Xiong
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen, China
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| | - Bert van Rietbergen
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Sandra Hofmann
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
21
|
Paz C, Suárez E, Gil C, Parga O. Numerical modelling of osteocyte growth on different bone tissue scaffolds. Comput Methods Biomech Biomed Engin 2021; 25:641-655. [PMID: 34459293 DOI: 10.1080/10255842.2021.1972290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The most common solution for the regeneration or replacement of damaged bones is the implantation of prostheses comprising ceramic or metallic materials. However, these implants are known to cause problems such as post-operative infections, collapse of the prosthesis, and lack of osseointegration. Consequently, bone tissue engineering was established because of the limitations of such implants. Osteogenic implants offer promising solutions for bone regeneration; however, three-dimensional scaffolds should be used as supportive structures. It is challenging to correctly design these structures and their compositions or properties to provide a microenvironment that promotes tissue regeneration and expedites bone formation. Computational fluid dynamics can be used to model the main phenomena that occur in bioreactors, such as cell metabolism, nutrient transport, and cell culture growth, or to model the influence of several key mechanisms related to the fluid medium, in particular, the wall shear stress. In this work, a new numerical bone cell growth model was developed, which considered the oxygen and nutrient consumption as well as the wall shear stress effect on cell proliferation. The model was implemented using 35 three-dimensional scaffolds of different porosities, and the effect of the main geometrical parameters involved in each scaffold type was analysed. The porosity plays an important role, however, a similar porosity did not guarantee similar shear stress or cell growth among the scaffolds. Randomised trabecular scaffolds, that more closely resembled trabecular bone, showed the highest cell growth values, so these are the best candidates for cell growth in a bioreactor.
Collapse
Affiliation(s)
- Concepción Paz
- CINTECX, Universidade de Vigo, Campus Universitario Lagoas-Marcosende, Vigo, España.,Biofluids Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Eduardo Suárez
- CINTECX, Universidade de Vigo, Campus Universitario Lagoas-Marcosende, Vigo, España.,Biofluids Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Christian Gil
- CINTECX, Universidade de Vigo, Campus Universitario Lagoas-Marcosende, Vigo, España
| | - Oscar Parga
- CINTECX, Universidade de Vigo, Campus Universitario Lagoas-Marcosende, Vigo, España
| |
Collapse
|
22
|
Han S, Currier T, Edraki M, Liu B, Lynch ME, Modarres-Sadeghi Y. Flow inside a bone scaffold: Visualization using 3D phase contrast MRI and comparison with numerical simulations. J Biomech 2021; 126:110625. [PMID: 34293601 DOI: 10.1016/j.jbiomech.2021.110625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
We report on results of experimental flow measurements inside a bone scaffold model, subjected to a uniform incoming flow (applied perfusion). Understanding the flow behavior inside a tissue engineered scaffold is essential for mechanistic studies of mechanobiology, particularly flow-sensitive bone cells. Nearly all existing studies that quantify interstitial flow inside engineered bone scaffolds have been based on numerical results, in part due to the difficulties associated with quantitative measurements and visualization of flow inside large, opaque bone or bone mimics. Thus, an experimental platform to complement and validate in silico studies is needed. Therefore, we developed a flow visualization method using Phase-Contrast Magnetic Resonance Imaging (PC-MRI) to measure flow velocities within a 3D-printed microCT-based rendering of a bone scaffold. We designed and built a non-magnetic recirculating water tunnel to apply uniform perfusion to the 3D-printed model and we measured flow distribution within the scaffold and compared these experimental results with CFD results. Both magnitude and distribution of flow velocities observed at different slices of the scaffold were in quantitative agreement numerically and experimentally. This experimental approach can be used to both validate numerical studies and provide insight into the flow behavior inside tissue-engineered scaffolds for a range of applications, including fundamental mechanobiology of healthy cells, and in the context of diseases, such as cancer.
Collapse
Affiliation(s)
- Suyue Han
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA, USA
| | - Todd Currier
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA, USA
| | - Mahdiar Edraki
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA, USA
| | - Boyuan Liu
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA, USA
| | - Maureen E Lynch
- Department of Mechanical Engineering, University of Boulder, CO, USA
| | - Yahya Modarres-Sadeghi
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
23
|
Fu M, Wang F, Lin G. Design and research of bone repair scaffold based on two-way fluid-structure interaction. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 204:106055. [PMID: 33784546 DOI: 10.1016/j.cmpb.2021.106055] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND OBJECTIVE Porous bone repair scaffolds are an important method of repairing bone defects. Fluid flow in the scaffold plays a vital role in tissue differentiation and permeability and fluid shear stress (FSS) are two important factors. The differentiation of bone tissue depends on the osteogenic differentiation of cells, FSS affects cell proliferation and differentiation, and permeability affects the transportation of nutrients and metabolic waste. Therefore, it is necessary to better understand and analyze the FSS on the cell surface and the permeability of the scaffold to obtain better osteogenic performance. METHODS In this study, computational fluid dynamics (CFD) was used to analyze fluid flow in the scaffold. Three structures and nine scaffold unit cell models were designed and the cell models were loaded onto the scaffold surface. Considering cell deformability, the two-way fluid-structure interaction (FSI) method was used to evaluate the FSS on the cell surface. RESULTS The simulation results showed that as the pore size of the scaffold increases, its permeability increases and the FSS decreases. The FSS received on the cell surface was much larger than scaffold surface. Moreover the FSS on the cell surface was distributed in steps. CONCLUSIONS The results showed the permeability of all models matches that of human bone tissue. Based on the cell surface FSS as the criterion, it was found that the spherical-560 scaffold exhibited the best osteogenic performance. This provided a strategy to design a better bone repair scaffold from biological aspects.
Collapse
Affiliation(s)
- Mengguang Fu
- School of Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Fei Wang
- School of Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Guimei Lin
- School of Pharmaceutical Science, Shandong University, Jinan 250012, China
| |
Collapse
|
24
|
The Application of Mechanical Stimulations in Tendon Tissue Engineering. Stem Cells Int 2020; 2020:8824783. [PMID: 33029149 PMCID: PMC7532391 DOI: 10.1155/2020/8824783] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/22/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022] Open
Abstract
Tendon injury is the most common disease in the musculoskeletal system. The current treatment methods have many limitations, such as poor therapeutic effects, functional loss of donor site, and immune rejection. Tendon tissue engineering provides a new treatment strategy for tendon repair and regeneration. In this review, we made a retrospective analysis of applying mechanical stimulation in tendon tissue engineering, and its potential as a direction of development for future clinical treatment strategies. For this purpose, the following topics are discussed; (1) the context of tendon tissue engineering and mechanical stimulation; (2) the applications of various mechanical stimulations in tendon tissue engineering, as well as their inherent mechanisms; (3) the application of magnetic force and the synergy of mechanical and biochemical stimulation. With this, we aim at clarifying some of the main questions that currently exist in the field of tendon tissue engineering and consequently gain new knowledge that may help in the development of future clinical application of tissue engineering in tendon injury.
Collapse
|
25
|
Bahraminasab M. Challenges on optimization of 3D-printed bone scaffolds. Biomed Eng Online 2020; 19:69. [PMID: 32883300 PMCID: PMC7469110 DOI: 10.1186/s12938-020-00810-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/22/2020] [Indexed: 12/15/2022] Open
Abstract
Advances in biomaterials and the need for patient-specific bone scaffolds require modern manufacturing approaches in addition to a design strategy. Hybrid materials such as those with functionally graded properties are highly needed in tissue replacement and repair. However, their constituents, proportions, sizes, configurations and their connection to each other are a challenge to manufacturing. On the other hand, various bone defect sizes and sites require a cost-effective readily adaptive manufacturing technique to provide components (scaffolds) matching with the anatomical shape of the bone defect. Additive manufacturing or three-dimensional (3D) printing is capable of fabricating functional physical components with or without porosity by depositing the materials layer-by-layer using 3D computer models. Therefore, it facilitates the production of advanced bone scaffolds with the feasibility of making changes to the model. This review paper first discusses the development of a computer-aided-design (CAD) approach for the manufacture of bone scaffolds, from the anatomical data acquisition to the final model. It also provides information on the optimization of scaffold's internal architecture, advanced materials, and process parameters to achieve the best biomimetic performance. Furthermore, the review paper describes the advantages and limitations of 3D printing technologies applied to the production of bone tissue scaffolds.
Collapse
Affiliation(s)
- Marjan Bahraminasab
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
26
|
Inlet flow rate of perfusion bioreactors affects fluid flow dynamics, but not oxygen concentration in 3D-printed scaffolds for bone tissue engineering: Computational analysis and experimental validation. Comput Biol Med 2020; 124:103826. [PMID: 32798924 DOI: 10.1016/j.compbiomed.2020.103826] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/15/2020] [Accepted: 05/15/2020] [Indexed: 02/08/2023]
Abstract
Fluid flow dynamics and oxygen-concentration in 3D-printed scaffolds within perfusion bioreactors are sensitive to controllable bioreactor parameters such as inlet flow rate. Here we aimed to determine fluid flow dynamics, oxygen-concentration, and cell proliferation and distribution in 3D-printed scaffolds as a result of different inlet flow rates of perfusion bioreactors using experiments and finite element modeling. Pre-osteoblasts were treated with 1 h pulsating fluid flow with low (0.8 Pa; PFFlow) or high peak shear stress (6.5 Pa; PFFhigh), and nitric oxide (NO) production was measured to validate shear stress sensitivity. Computational analysis was performed to determine fluid flow between 3D-scaffold-strands at three inlet flow rates (0.02, 0.1, 0.5 ml/min) during 5 days. MC3T3-E1 pre-osteoblast proliferation, matrix production, and oxygen-consumption in response to fluid flow in 3D-printed scaffolds inside a perfusion bioreactor were experimentally assessed. PFFhigh more strongly stimulated NO production by pre-osteoblasts than PFFlow. 3D-simulation demonstrated that dependent on inlet flow rate, fluid velocity reached a maximum (50-1200 μm/s) between scaffold-strands, and fluid shear stress (0.5-4 mPa) and wall shear stress (0.5-20 mPa) on scaffold-strands surfaces. At all inlet flow rates, gauge fluid pressure and oxygen-concentration were similar. The simulated cell proliferation and distribution, and oxygen-concentration data were in good agreement with the experimental results. In conclusion, varying a perfusion bioreactor's inlet flow rate locally affects fluid velocity, fluid shear stress, and wall shear stress inside 3D-printed scaffolds, but not gauge fluid pressure, and oxygen-concentration, which seems crucial for optimized bone tissue engineering strategies using bioreactors, scaffolds, and cells.
Collapse
|
27
|
Zhao F, Lacroix D, Ito K, van Rietbergen B, Hofmann S. Changes in scaffold porosity during bone tissue engineering in perfusion bioreactors considerably affect cellular mechanical stimulation for mineralization. Bone Rep 2020; 12:100265. [PMID: 32613033 PMCID: PMC7315008 DOI: 10.1016/j.bonr.2020.100265] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/24/2020] [Accepted: 04/02/2020] [Indexed: 11/24/2022] Open
Abstract
Bone tissue engineering (BTE) experiments in vitro have shown that fluid-induced wall shear stress (WSS) can stimulate cells to produce mineralized extracellular matrix (ECM). The application of WSS on seeded cells can be achieved through bioreactors that perfuse medium through porous scaffolds. In BTE experiments in vitro, commonly a constant flow rate is used. Previous studies have found that tissue growth within the scaffold will result in an increase of the WSS over time. To keep the WSS in a reported optimal range of 10–30 mPa, the applied external flow rate can be decreased over time. To investigate what reduction of the external flow rate during culturing is needed to keep the WSS in the optimal range, we here conducted a computational study, which simulated the formation of ECM, and in which we investigated the effect of constant fluid flow and different fluid flow reduction scenarios on the WSS. It was found that for both constant and reduced fluid flow scenarios, the WSS did not exceed a critical value, which was set to 60 mPa. However, the constant flow velocity resulted in a reduction of the cell/ECM surface being exposed to a WSS in the optimal range from 50% at the start of culture to 18.6% at day 21. Reducing the fluid flow over time could avoid much of this effect, leaving the WSS in the optimal range for 40.9% of the surface at 21 days. Therefore, for achieving more mineralized tissue, the conventional manner of loading the perfusion bioreactors (i.e. constant flow rate/velocity) should be changed to a decreasing flow over time in BTE experiments. This study provides an in silico tool for finding the best fluid flow reduction strategy.
Collapse
Affiliation(s)
- Feihu Zhao
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5600 MB Eindhoven, the Netherlands
- Zienkiewicz Centre for Computational Engineering (ZCCE), College of Engineering, Swansea University, SA1 8EN Swansea, United Kingdom
| | - Damien Lacroix
- INSIGNEO Institute for in silico Medicine, Department of Mechanical Engineering, University of Sheffield, S1 3JD Sheffield, United Kingdom
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5600 MB Eindhoven, the Netherlands
| | - Bert van Rietbergen
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB, Eindhoven, the Netherlands
- Corresponding authors at: Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, the Netherlands.
| | - Sandra Hofmann
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5600 MB Eindhoven, the Netherlands
- Corresponding authors at: Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, the Netherlands.
| |
Collapse
|
28
|
Castilho M, de Ruijter M, Beirne S, Villette CC, Ito K, Wallace GG, Malda J. Multitechnology Biofabrication: A New Approach for the Manufacturing of Functional Tissue Structures? Trends Biotechnol 2020; 38:1316-1328. [PMID: 32466965 DOI: 10.1016/j.tibtech.2020.04.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/03/2020] [Accepted: 04/29/2020] [Indexed: 01/25/2023]
Abstract
Most available 3D biofabrication technologies rely on single-component deposition methods, such as inkjet, extrusion, or light-assisted printing. It is unlikely that any of these technologies used individually would be able to replicate the complexity and functionality of living tissues. Recently, new biofabrication approaches have emerged that integrate multiple manufacturing technologies into a single biofabrication platform. This has led to fabricated structures with improved functionality. In this review, we provide a comprehensive overview of recent advances in the integration of different manufacturing technologies with the aim to fabricate more functional tissue structures. We provide our vision on the future of additive manufacturing (AM) technology, digital design, and the use of artificial intelligence (AI) in the field of biofabrication.
Collapse
Affiliation(s)
- Miguel Castilho
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands; Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Regenerative Medicine Center Utrecht, Utrecht, The Netherlands.
| | - Mylène de Ruijter
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands; Regenerative Medicine Center Utrecht, Utrecht, The Netherlands
| | - Stephen Beirne
- Intelligent Polymer Research Institute, and ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, Australia
| | - Claire C Villette
- Structural Biomechanics, Department of Civil and Environmental Engineering, Imperial College London, London, UK
| | - Keita Ito
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands; Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Regenerative Medicine Center Utrecht, Utrecht, The Netherlands
| | - Gordon G Wallace
- Intelligent Polymer Research Institute, and ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, Australia
| | - Jos Malda
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands; Regenerative Medicine Center Utrecht, Utrecht, The Netherlands; Department of Clinical Sciences, Faculty of Veterinary Sciences Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
29
|
Checchi M, Bertacchini J, Cavani F, Magarò MS, Reggiani Bonetti L, Pugliese GR, Tamma R, Ribatti D, Maurel DB, Palumbo C. Scleral ossicles: angiogenic scaffolds, a novel biomaterial for regenerative medicine applications. Biomater Sci 2019; 8:413-425. [PMID: 31738355 DOI: 10.1039/c9bm01234f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Given the current prolonged life expectancy, various pathologies affect increasingly the aging subjects. Regarding the musculoskeletal apparatus, bone fragility induces more susceptibility to fractures, often not accompanied by good ability of self-repairing, in particular when critical-size defects (CSD) occur. Currently orthopedic surgery makes use of allografting and autografting which, however, have limitations due to the scarce amount of tissue that can be taken from the donor, the possibility of disease transmission and donor site morbidity. The need to develop new solutions has pushed the field of tissue engineering (TE) research to study new scaffolds to be functionalized in order to obtain constructs capable of promoting tissue regeneration and achieve stable bone recovery over time. This investigation focuses on the most important aspect related to bone tissue regeneration: the angiogenic properties of the scaffold to be used. As an innovative solution, scleral ossicles (SOs), previously characterized as natural, biocompatible and spontaneously decellularized scaffolds used for bone repair, were tested for angiogenic potential and biocompatibility. To reach this purpose, in ovo Chorioallantoic Membrane Assay (CAM) was firstly used to test the angiogenic potential; secondly, in vivo subcutaneous implantation of SOs (in a rat model) was performed in order to assess the biocompatibility and the inflammatory response. Finally, thanks to the analysis of mass spectrometry (LCMSQE), the putative proteins responsible for the SO angiogenic properties were identified. Thus, a novel natural biomaterial is proposed, which is (i) able to induce an angiogenic response in vivo by subcutaneous implantation in a non-immunodeficient animal model, (ii) which does not induce any inflammatory response, and (iii) is useful for regenerative medicine application for the healing of bone CSD.
Collapse
Affiliation(s)
- Marta Checchi
- Department of Biomedical, Metabolic Science and Neuroscience, University of Modena and Reggio Emilia, 41125 Modena, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Arjunan A, Demetriou M, Baroutaji A, Wang C. Mechanical performance of highly permeable laser melted Ti6Al4V bone scaffolds. J Mech Behav Biomed Mater 2019; 102:103517. [PMID: 31877520 DOI: 10.1016/j.jmbbm.2019.103517] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/08/2019] [Accepted: 10/31/2019] [Indexed: 01/05/2023]
Abstract
Critically engineered stiffness and strength of a scaffold are crucial for managing maladapted stress concentration and reducing stress shielding. At the same time, suitable porosity and permeability are key to facilitate biological activities associated with bone growth and nutrient delivery. A systematic balance of all these parameters are required for the development of an effective bone scaffold. Traditionally, the approach has been to study each of these parameters in isolation without considering their interdependence to achieve specific properties at a certain porosity. The purpose of this study is to undertake a holistic investigation considering the stiffness, strength, permeability, and stress concentration of six scaffold architectures featuring a 68.46-90.98% porosity. With an initial target of a tibial host segment, the permeability was characterised using Computational Fluid Dynamics (CFD) in conjunction with Darcy's law. Following this, Ashby's criterion, experimental tests, and Finite Element Method (FEM) were employed to study the mechanical behaviour and their interdependencies under uniaxial compression. The FE model was validated and further extended to study the influence of stress concentration on both the stiffness and strength of the scaffolds. The results showed that the pore shape can influence permeability, stiffness, strength, and the stress concentration factor of Ti6Al4V bone scaffolds. Furthermore, the numerical results demonstrate the effect to which structural performance of highly porous scaffolds deviate, as a result of the Selective Laser Melting (SLM) process. In addition, the study demonstrates that stiffness and strength of bone scaffold at a targeted porosity is linked to the pore shape and the associated stress concentration allowing to exploit the design freedom associated with SLM.
Collapse
Affiliation(s)
- Arun Arjunan
- School of Engineering, University of Wolverhampton, Telford, TF2 9NT, UK.
| | - Marios Demetriou
- School of Engineering, University of Wolverhampton, Telford, TF2 9NT, UK
| | - Ahmad Baroutaji
- School of Engineering, University of Wolverhampton, Telford, TF2 9NT, UK
| | - Chang Wang
- Department of Engineering and Design, University of Sussex, Brighton, BN1 9RH, UK
| |
Collapse
|
31
|
Hadida M, Marchat D. Strategy for achieving standardized bone models. Biotechnol Bioeng 2019; 117:251-271. [PMID: 31531968 PMCID: PMC6915912 DOI: 10.1002/bit.27171] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 12/24/2022]
Abstract
Reliably producing functional in vitro organ models, such as organ-on-chip systems, has the potential to considerably advance biology research, drug development time, and resource efficiency. However, despite the ongoing major progress in the field, three-dimensional bone tissue models remain elusive. In this review, we specifically investigate the control of perfusion flow effects as the missing link between isolated culture systems and scientifically exploitable bone models and propose a roadmap toward this goal.
Collapse
Affiliation(s)
- Mikhael Hadida
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, Saint-Etienne, France
| | - David Marchat
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, Saint-Etienne, France
| |
Collapse
|
32
|
Patel DB, Luthers CR, Lerman MJ, Fisher JP, Jay SM. Enhanced extracellular vesicle production and ethanol-mediated vascularization bioactivity via a 3D-printed scaffold-perfusion bioreactor system. Acta Biomater 2019; 95:236-244. [PMID: 30471476 DOI: 10.1016/j.actbio.2018.11.024] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/12/2018] [Accepted: 11/15/2018] [Indexed: 01/08/2023]
Abstract
Extracellular vesicles (EVs) have garnered significant interest in the biotechnology field due to their intrinsic therapeutic properties as well as their ability to serve as vehicles for bioactive cargo. However, the lack of an established biomanufacturing platform and limited potency of EVs in vivo remain critical bottlenecks for clinical translation. In this study, we utilized a 3D-printed scaffold-perfusion bioreactor system to assess the response of dynamic culture on extracellular vesicle production from endothelial cells (ECs). We also investigated whether ethanol conditioning, which was previously shown to enhance vascularization bioactivity of EC-derived EVs produced in standard 2D culture conditions, could be employed successfully for the same purpose in a 3D production system. Our results indicate that dynamic culture in a perfusion bioreactor significantly enhances EV production from human ECs. Moreover, the use of ethanol conditioning in conjunction with dynamic culture induces pro-vascularization bioactivity of EC-derived EVs that is correlated with increased EV levels of pro-angiogenic lncRNAs HOTAIR and MALAT1. Thus, this study represents one of the first reports of rationally-designed EV potency enhancement that is conserved between static 2D and dynamic 3D EV production systems, increasing the potential for scalable biomanufacturing of therapeutic EC-derived EVs for a variety of applications. STATEMENT OF SIGNIFICANCE: Extracellular vesicles (EVs) have substantial therapeutic potential in a variety of applications. However, translation of EV-based therapies may be hindered by biomanufacturing challenges. EV production to date has predominantly involved the use of tissue culture flasks. Here, we report, for the first time, the use of a tubular perfusion bioreactor system with an integrated 3D-printed biomaterial scaffold for EV production from human endothelial cells. This system increases EV yield by over 100-fold compared to conventional tissue culture systems. Further, we show that an ethanol-conditioning approach that our group previously developed in 2D culture for enhancing EV potency is compatible with this new system. Thus, potency enhancement of EVs for vascularization applications is possible even with significantly increased production rate.
Collapse
Affiliation(s)
- Divya B Patel
- Fischell Department of Bioengineering, University of Maryland 3102 A. James Clark Hall, College Park, MD 20742, United States
| | - Christopher R Luthers
- Fischell Department of Bioengineering, University of Maryland 3102 A. James Clark Hall, College Park, MD 20742, United States
| | - Max J Lerman
- Department of Materials Science and Engineering, University of Maryland 4418 Stadium Drive, College Park, MD 20742, United States; Center for Engineering Complex Tissues, University of Maryland 3102 A. James Clark Hall, College Park, MD 20742, United States; Surface and Trace Chemical Analysis Group, Materials Measurement Science Division National Institute of Standards and Technology 100 Bureau Drive, Mailstop 6431, Gaithersburg, MD 20899, United States
| | - John P Fisher
- Fischell Department of Bioengineering, University of Maryland 3102 A. James Clark Hall, College Park, MD 20742, United States; Center for Engineering Complex Tissues, University of Maryland 3102 A. James Clark Hall, College Park, MD 20742, United States
| | - Steven M Jay
- Fischell Department of Bioengineering, University of Maryland 3102 A. James Clark Hall, College Park, MD 20742, United States; Greenbaum Comprehensive Cancer Center, University of Maryland - Baltimore, Baltimore, MD 21201, United States; Program in Molecular and Cell Biology, University of Maryland College Park, MD 20742, United States.
| |
Collapse
|
33
|
Xue R, Chung B, Tamaddon M, Carr J, Liu C, Cartmell SH. Osteochondral tissue coculture: An in vitro and in silico approach. Biotechnol Bioeng 2019; 116:3112-3123. [PMID: 31334830 PMCID: PMC6790609 DOI: 10.1002/bit.27127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 07/10/2019] [Accepted: 07/17/2019] [Indexed: 01/02/2023]
Abstract
Osteochondral tissue engineering aims to regenerate functional tissue‐mimicking physiological properties of injured cartilage and its subchondral bone. Given the distinct structural and biochemical difference between bone and cartilage, bilayered scaffolds, and bioreactors are commonly employed. We present an osteochondral culture system which cocultured ATDC5 and MC3T3‐E1 cells on an additive manufactured bilayered scaffold in a dual‐chamber perfusion bioreactor. Also, finite element models (FEM) based on the microcomputed tomography image of the manufactured scaffold as well as on the computer‐aided design (CAD) were constructed; the microenvironment inside the two FEM was studied and compared. In vitro results showed that the coculture system supported osteochondral tissue growth in terms of cell viability, proliferation, distribution, and attachment. In silico results showed that the CAD and the actual manufactured scaffold had significant differences in the flow velocity, differentiation media mixing in the bioreactor and fluid‐induced shear stress experienced by the cells. This system was shown to have the desired microenvironment for osteochondral tissue engineering and it can potentially be used as an inexpensive tool for testing newly developed pharmaceutical products for osteochondral defects.
Collapse
Affiliation(s)
- Ruikang Xue
- School of Materials, Faculty of Science and Engineering, University of Manchester, Manchester, UK
| | - Benedict Chung
- School of Materials, Faculty of Science and Engineering, University of Manchester, Manchester, UK
| | - Maryam Tamaddon
- Institute of Orthopaedics and Musculo-Skeletal Science, University College London, London, UK
| | - James Carr
- Manchester Imaging Facility, University of Manchester, Manchester, UK
| | - Chaozong Liu
- Institute of Orthopaedics and Musculo-Skeletal Science, University College London, London, UK
| | - Sarah Harriet Cartmell
- School of Materials, Faculty of Science and Engineering, University of Manchester, Manchester, UK
| |
Collapse
|
34
|
Thibeaux R, Duval H, Smaniotto B, Vennat E, Néron D, David B. Assessment of the interplay between scaffold geometry, induced shear stresses, and cell proliferation within a packed bed perfusion bioreactor. Biotechnol Prog 2019; 35:e2880. [PMID: 31271252 DOI: 10.1002/btpr.2880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/29/2019] [Accepted: 06/27/2019] [Indexed: 11/12/2022]
Abstract
By favoring cell proliferation and differentiation, perfusion bioreactors proved efficient at optimizing cell culture. The aim of this study was to quantify cell proliferation within a perfusion bioreactor and correlate it to the wall shear stress (WSS) distribution by combining 3-D imaging and computational fluid dynamics simulations.NIH-3T3 fibroblasts were cultured onto a scaffold model made of impermeable polyacetal spheres or Polydimethylsiloxane cubes. After 1, 2, and 3 weeks of culture, constructs were analyzed by micro-computed tomography (μCT) and quantification of cell proliferation was assessed. After 3 weeks, the volume of cells was found four times higher in the stacking of spheres than in the stacking of cube.3D-μCT reconstruction of bioreactors was used as input for the numerical simulations. Using a lattice-Boltzmann method, we simulated the fluid flow within the bioreactors. We retrieved the WSS distribution (PDF) on the scaffolds surface at the beginning of cultivation and correlated this distribution to the local presence of cells after 3 weeks of cultivation. We found that the WSS distributions strongly differ between spheres and cubes even if the porosity and the specific wetted area of the stackings were very similar. The PDF is narrower and the mean WSS is lower for cubes (11 mPa) than for spheres (20 mPa). For the stacking of spheres, the relative occupancy of the surface sites by cells is maximal when WSS is greater than 20 mPa. For cubes, the relative occupancy is maximal when the WSS is lower than 10 mPa. The discrepancies between spheres and cubes are attributed to the more numerous sites in stacking of spheres that may induce 3-D (multi-layered) proliferation.
Collapse
Affiliation(s)
- Roman Thibeaux
- MSSMat, CentraleSupélec, Université Paris Saclay, CNRS, Gif sur Yvette, France
| | - Hervé Duval
- LGPM, CentraleSupélec, Université Paris Saclay, Gif sur Yvette, France
| | | | - Elsa Vennat
- MSSMat, CentraleSupélec, Université Paris Saclay, CNRS, Gif sur Yvette, France
| | - David Néron
- LMT, ENS Paris-Saclay, CNRS, Université Paris-Saclay, Cachan, France
| | - Bertrand David
- MSSMat, CentraleSupélec, Université Paris Saclay, CNRS, Gif sur Yvette, France
| |
Collapse
|
35
|
Zhao F, Melke J, Ito K, van Rietbergen B, Hofmann S. A multiscale computational fluid dynamics approach to simulate the micro-fluidic environment within a tissue engineering scaffold with highly irregular pore geometry. Biomech Model Mechanobiol 2019; 18:1965-1977. [PMID: 31201621 PMCID: PMC6825226 DOI: 10.1007/s10237-019-01188-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/06/2019] [Indexed: 12/14/2022]
Abstract
Mechanical stimulation can regulate cellular behavior, e.g., differentiation, proliferation, matrix production and mineralization. To apply fluid-induced wall shear stress (WSS) on cells, perfusion bioreactors have been commonly used in tissue engineering experiments. The WSS on cells depends on the nature of the micro-fluidic environment within scaffolds under medium perfusion. Simulating the fluidic environment within scaffolds will be important for gaining a better insight into the actual mechanical stimulation on cells in a tissue engineering experiment. However, biomaterial scaffolds used in tissue engineering experiments typically have highly irregular pore geometries. This complexity in scaffold geometry implies high computational costs for simulating the precise fluidic environment within the scaffolds. In this study, we propose a low-computational cost and feasible technique for quantifying the micro-fluidic environment within the scaffolds, which have highly irregular pore geometries. This technique is based on a multiscale computational fluid dynamics approach. It is demonstrated that this approach can capture the WSS distribution in most regions within the scaffold. Importantly, the central process unit time needed to run the model is considerably low.
Collapse
Affiliation(s)
- Feihu Zhao
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Johanna Melke
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Bert van Rietbergen
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.
| | - Sandra Hofmann
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands. .,Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.
| |
Collapse
|
36
|
Scaffolds with a High Surface Area-to-Volume Ratio and Cultured Under Fast Flow Perfusion Result in Optimal O2 Delivery to the Cells in Artificial Bone Tissues. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9112381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tissue engineering has the potential for repairing large bone defects, which impose a heavy financial burden on the public health. However, difficulties with O2 delivery to the cells residing in the interior of tissue engineering scaffolds make it challenging to grow artificial tissues of clinically-relevant sizes. This study uses image-based simulation in order to provide insight into how to better optimize the scaffold manufacturing parameters, and the culturing conditions, in order to resolve the O2 bottleneck. To do this, high resolution 3D X-ray images of two common scaffold types (salt leached foam and non-woven fiber mesh) are fed into Lattice Boltzmann Method fluid dynamics and reactive Lagrangian Scalar Tracking mass transfer solvers. The obtained findings indicate that the scaffolds should have maximal surface area-to-solid volume ratios for higher chances of the molecular collisions with the cells. Furthermore, the cell culture media should be flown through the scaffold pores as fast as practically possible (without detaching or killing the cells). Finally, we have provided a parametric sweep that maps how the molecular transport within the scaffolds is affected by variations in rates of O2 consumption by the cells. Ultimately, the results of this study are expected to benefit the computer-assisted design of tissue engineering scaffolds and culturing experiments.
Collapse
|
37
|
Histological Method to Study the Effect of Shear Stress on Cell Proliferation and Tissue Morphology in a Bioreactor. Tissue Eng Regen Med 2019; 16:225-235. [PMID: 31205852 DOI: 10.1007/s13770-019-00181-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/26/2018] [Accepted: 01/22/2019] [Indexed: 12/15/2022] Open
Abstract
Background Tissue engineering represents a promising approach for the production of bone substitutes. The use of perfusion bioreactors for the culture of bone-forming cells on a three-dimensional porous scaffold resolves mass transport limitations and provides mechanical stimuli. Despite the recent and important development of bioreactors for tissue engineering, the underlying mechanisms leading to the production of bone substitutes remain poorly understood. Methods In order to study cell proliferation in a perfusion bioreactor, we propose a simplified experimental set-up using an impermeable scaffold model made of 2 mm diameter glass beads on which mechanosensitive cells, NIH-3T3 fibroblasts are cultured for up to 3 weeks under 10 mL/min culture medium flow. A methodology combining histological procedure, image analysis and analytical calculations allows the description and quantification of cell proliferation and tissue production in relation to the mean wall shear stress within the bioreactor. Results Results show a massive expansion of the cell phase after 3 weeks in bioreactor compared to static control. A scenario of cell proliferation within the three-dimensional bioreactor porosity over the 3 weeks of culture is proposed pointing out the essential role of the contact points between adjacent beads. Calculations indicate that the mean wall shear stress experienced by the cells changes with culture time, from about 50 mPa at the beginning of the experiment to about 100 mPa after 3 weeks. Conclusion We anticipate that our results will help the development and calibration of predictive models, which rely on estimates and morphological description of cell proliferation under shear stress.
Collapse
|
38
|
Burova I, Wall I, Shipley RJ. Mathematical and computational models for bone tissue engineering in bioreactor systems. J Tissue Eng 2019; 10:2041731419827922. [PMID: 30834100 PMCID: PMC6391543 DOI: 10.1177/2041731419827922] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/01/2019] [Indexed: 01/13/2023] Open
Abstract
Research into cellular engineered bone grafts offers a promising solution to problems associated with the currently used auto- and allografts. Bioreactor systems can facilitate the development of functional cellular bone grafts by augmenting mass transport through media convection and shear flow-induced mechanical stimulation. Developing successful and reproducible protocols for growing bone tissue in vitro is dependent on tuning the bioreactor operating conditions to the specific cell type and graft design. This process, largely reliant on a trial-and-error approach, is challenging, time-consuming and expensive. Modelling can streamline the process by providing further insight into the effect of the bioreactor environment on the cell culture, and by identifying a beneficial range of operational settings to stimulate tissue production. Models can explore the impact of changing flow speeds, scaffold properties, and nutrient and growth factor concentrations. Aiming to act as an introductory reference for bone tissue engineers looking to direct their experimental work, this article presents a comprehensive framework of mathematical models on various aspects of bioreactor bone cultures and overviews modelling case studies from literature.
Collapse
Affiliation(s)
- Iva Burova
- Department of Mechanical Engineering, University College London (UCL), London, UK
| | - Ivan Wall
- Aston Medical Research Institute and School of Life & Health Sciences, Aston University, Birmingham, UK
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
| | - Rebecca J Shipley
- Department of Mechanical Engineering, University College London (UCL), London, UK
| |
Collapse
|
39
|
Kadri OE, Williams C, Sikavitsas V, Voronov RS. Numerical accuracy comparison of two boundary conditions commonly used to approximate shear stress distributions in tissue engineering scaffolds cultured under flow perfusion. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2018; 34:e3132. [PMID: 30047248 DOI: 10.1002/cnm.3132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/04/2018] [Accepted: 07/15/2018] [Indexed: 06/08/2023]
Abstract
INTRODUCTION Flow-induced shear stresses have been found to be a stimulatory factor in pre-osteoblastic cells seeded in 3D porous scaffolds and cultured under continuous flow perfusion. However, due to the complex internal structure of the scaffolds, whole scaffold calculations of the local shear forces are computationally intensive. Instead, representative volume elements (RVEs), which are obtained by extracting smaller portions of the scaffold, are commonly used in literature without a numerical accuracy standard. OBJECTIVE Hence, the goal of this study is to examine how closely the whole scaffold simulations are approximated by the two types of boundary conditions used to enable the RVEs: "wall boundary condition" (WBC) and "periodic boundary condition" (PBC). METHOD To that end, lattice Boltzmann method fluid dynamics simulations were used to model the surface shear stresses in 3D scaffold reconstructions, obtained from high-resolution microcomputed tomography images. RESULTS It was found that despite the RVEs being sufficiently larger than 6 times the scaffold pore size (which is the only accuracy guideline found in literature), the stresses were still significantly under-predicted by both types of boundary conditions: between 20% and 80% average error, depending on the scaffold's porosity. Moreover, it was found that the error grew with higher porosity. This is likely due to the small pores dominating the flow field, and thereby negating the effects of the unrealistic boundary conditions, when the scaffold porosity is small. Finally, it was found that the PBC was always more accurate and computationally efficient than the WBC. Therefore, it is the recommended type of RVE.
Collapse
Affiliation(s)
- Olufemi E Kadri
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Cortes Williams
- Stephenson School of Biomedical Engineering, The University of Oklahoma Norman, OK, 73019, USA
| | - Vassilios Sikavitsas
- Stephenson School of Biomedical Engineering, The University of Oklahoma Norman, OK, 73019, USA
| | - Roman S Voronov
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| |
Collapse
|
40
|
Zhao F, van Rietbergen B, Ito K, Hofmann S. Flow rates in perfusion bioreactors to maximise mineralisation in bone tissue engineering in vitro. J Biomech 2018; 79:232-237. [PMID: 30149981 DOI: 10.1016/j.jbiomech.2018.08.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/28/2018] [Accepted: 08/10/2018] [Indexed: 12/31/2022]
Abstract
In bone tissue engineering experiments, fluid-induced shear stress is able to stimulate cells to produce mineralised extracellular matrix (ECM). The application of shear stress on seeded cells can for example be achieved through bioreactors that perfuse medium through porous scaffolds. The generated mechanical environment (i.e. wall shear stress: WSS) within the scaffolds is complex due to the complexity of scaffold geometry. This complexity has so far prevented setting an optimal loading (i.e. flow rate) of the bioreactor to achieve an optimal distribution of WSS for stimulating cells to produce mineralised ECM. In this study, we demonstrate an approach combining computational fluid dynamics (CFD) and mechano-regulation theory to optimise flow rates of a perfusion bioreactor and various scaffold geometries (i.e. pore shape, porosity and pore diameter) in order to maximise shear stress induced mineralisation. The optimal flow rates, under which the highest fraction of scaffold surface area is subjected to a wall shear stress that induces mineralisation, are mainly dependent on the scaffold geometries. Nevertheless, the variation range of such optimal flow rates are within 0.5-5 mL/min (or in terms of fluid velocity: 0.166-1.66 mm/s), among different scaffolds. This approach can facilitate the determination of scaffold-dependent flow rates for bone tissue engineering experiments in vitro, avoiding performing a series of trial and error experiments.
Collapse
Affiliation(s)
- Feihu Zhao
- Orthopaedic Biomechanics Group, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands; Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Bert van Rietbergen
- Orthopaedic Biomechanics Group, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Keita Ito
- Orthopaedic Biomechanics Group, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands; Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands; Department of Orthopaedics, UMC Utrecht, PO Box 85500, 3508 GA Utrecht, The Netherlands
| | - Sandra Hofmann
- Orthopaedic Biomechanics Group, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands; Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands.
| |
Collapse
|
41
|
Permeability and fluid flow-induced wall shear stress of bone tissue scaffolds: Computational fluid dynamic analysis using Newtonian and non-Newtonian blood flow models. Comput Biol Med 2018; 99:201-208. [DOI: 10.1016/j.compbiomed.2018.06.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/02/2018] [Accepted: 06/18/2018] [Indexed: 12/17/2022]
|
42
|
Ali D, Sen S. Computational Fluid Dynamics Study of the Effects of Surface Roughness on Permeability and Fluid Flow-Induced Wall Shear Stress in Scaffolds. Ann Biomed Eng 2018; 46:2023-2035. [DOI: 10.1007/s10439-018-2101-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 07/17/2018] [Indexed: 12/23/2022]
|
43
|
Rhombicuboctahedron unit cell based scaffolds for bone regeneration: geometry optimization with a mechanobiology – driven algorithm. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 83:51-66. [DOI: 10.1016/j.msec.2017.09.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/18/2017] [Accepted: 09/27/2017] [Indexed: 12/28/2022]
|
44
|
Reitmaier S, Kovtun A, Schuelke J, Kanter B, Lemm M, Hoess A, Heinemann S, Nies B, Ignatius A. Strontium(II) and mechanical loading additively augment bone formation in calcium phosphate scaffolds. J Orthop Res 2018; 36:106-117. [PMID: 28574614 DOI: 10.1002/jor.23623] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 05/28/2017] [Indexed: 02/04/2023]
Abstract
Calcium phosphate cements (CPCs) are widely used for bone-defect treatment. Current developments comprise the fabrication of porous scaffolds by three-dimensional plotting and doting using biologically active substances, such as strontium. Strontium is known to increase osteoblast activity and simultaneously to decrease osteoclast resorption. This study investigated the short- and long-term in vivo performances of strontium(II)-doted CPC (SrCPC) scaffolds compared to non-doted CPC scaffolds after implantation in unloaded or load-bearing trabecular bone defects in sheep. After 6 weeks, both CPC and SrCPC scaffolds exhibited good biocompatibility and osseointegration. Fluorochrome labeling revealed that both scaffolds were penetrated by newly formed bone already after 4 weeks. Neither strontium doting nor mechanical loading significantly influenced early bone formation. In contrast, after 6 months, bone formation was significantly enhanced in SrCPC compared to CPC scaffolds. Energy dispersive X-ray analysis demonstrated the release of strontium from the SrCPC into the bone. Strontium addition did not significantly influence material resorption or osteoclast formation. Mechanical loading significantly stimulated bone formation in both CPC and SrCPC scaffolds after 6 months without impairing scaffold integrity. The most bone was found in SrCPC scaffolds under load-bearing conditions. Concluding, these results demonstrate that strontium doting and mechanical loading additively stimulated bone formation in CPC scaffolds and that the scaffolds exhibited mechanical stability under moderate load, implying good clinical suitability. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:106-117, 2018.
Collapse
Affiliation(s)
- Sandra Reitmaier
- Trauma Research Center, Institute of Orthopedic Research and Biomechanics, University of Ulm, Helmholtzstrasse 14, Ulm 89081, Germany
| | - Anna Kovtun
- Trauma Research Center, Institute of Orthopedic Research and Biomechanics, University of Ulm, Helmholtzstrasse 14, Ulm 89081, Germany
| | - Julian Schuelke
- Trauma Research Center, Institute of Orthopedic Research and Biomechanics, University of Ulm, Helmholtzstrasse 14, Ulm 89081, Germany
| | - Britta Kanter
- Trauma Research Center, Institute of Orthopedic Research and Biomechanics, University of Ulm, Helmholtzstrasse 14, Ulm 89081, Germany
| | - Madlin Lemm
- InnoTERE GmbH, Pharmapark Radebeul, Radebeul, Germany
| | - Andreas Hoess
- InnoTERE GmbH, Pharmapark Radebeul, Radebeul, Germany
| | | | - Berthold Nies
- InnoTERE GmbH, Pharmapark Radebeul, Radebeul, Germany
| | - Anita Ignatius
- Trauma Research Center, Institute of Orthopedic Research and Biomechanics, University of Ulm, Helmholtzstrasse 14, Ulm 89081, Germany
| |
Collapse
|
45
|
Ali D, Sen S. Finite element analysis of mechanical behavior, permeability and fluid induced wall shear stress of high porosity scaffolds with gyroid and lattice-based architectures. J Mech Behav Biomed Mater 2017; 75:262-270. [DOI: 10.1016/j.jmbbm.2017.07.035] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 07/17/2017] [Accepted: 07/24/2017] [Indexed: 12/01/2022]
|
46
|
The role of nuclear mechanics in cell deformation under creeping flows. J Theor Biol 2017; 432:25-32. [DOI: 10.1016/j.jtbi.2017.07.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/24/2017] [Accepted: 07/30/2017] [Indexed: 11/19/2022]
|
47
|
Zhao F, Vaughan TJ, Mc Garrigle MJ, McNamara LM. A coupled diffusion-fluid pressure model to predict cell density distribution for cells encapsulated in a porous hydrogel scaffold under mechanical loading. Comput Biol Med 2017; 89:181-189. [DOI: 10.1016/j.compbiomed.2017.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/28/2017] [Accepted: 08/02/2017] [Indexed: 12/19/2022]
|
48
|
Zhao F, Mc Garrigle MJ, Vaughan TJ, McNamara LM. In silico study of bone tissue regeneration in an idealised porous hydrogel scaffold using a mechano-regulation algorithm. Biomech Model Mechanobiol 2017; 17:5-18. [PMID: 28779266 DOI: 10.1007/s10237-017-0941-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/15/2017] [Indexed: 01/11/2023]
Abstract
Mechanical stimulation, in the form of fluid perfusion or mechanical strain, enhances osteogenic differentiation and overall bone tissue formation by mesenchymal stems cells cultured in biomaterial scaffolds for tissue engineering applications. In silico techniques can be used to predict the mechanical environment within biomaterial scaffolds, and also the relationship between bone tissue regeneration and mechanical stimulation, and thereby inform conditions for bone tissue engineering experiments. In this study, we investigated bone tissue regeneration in an idealised hydrogel scaffold using a mechano-regulation model capable of predicting tissue differentiation, and specifically compared five loading cases, based on known experimental bioreactor regimes. These models predicted that low levels of mechanical loading, i.e. compression (0.5% strain), pore pressure of 10 kPa and a combination of compression (0.5%) and pore pressure (10 kPa), could induce more osteogenic differentiation and lead to the formation of a higher bone tissue fraction. In contrast greater volumes of cartilage and fibrous tissue fractions were predicted under higher levels of mechanical loading (i.e. compression strain of 5.0% and pore pressure of 100 kPa). The findings in this study may provide important information regarding the appropriate mechanical stimulation for in vitro bone tissue engineering experiments.
Collapse
Affiliation(s)
- Feihu Zhao
- Biomechanics Research Centre (BMEC), Biomedical Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland
| | - Myles J Mc Garrigle
- Biomechanics Research Centre (BMEC), Biomedical Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland
| | - Ted J Vaughan
- Biomechanics Research Centre (BMEC), Biomedical Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland
| | - Laoise M McNamara
- Biomechanics Research Centre (BMEC), Biomedical Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland.
| |
Collapse
|
49
|
Aznar JMG, Valero C, Borau C, Garijo N. Computational mechano-chemo-biology: a tool for the design of tissue scaffolds. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s40898-016-0002-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
50
|
Giorgi M, Verbruggen SW, Lacroix D. In silico bone mechanobiology: modeling a multifaceted biological system. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2016; 8:485-505. [PMID: 27600060 PMCID: PMC5082538 DOI: 10.1002/wsbm.1356] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/27/2016] [Accepted: 07/27/2016] [Indexed: 12/04/2022]
Abstract
Mechanobiology, the study of the influence of mechanical loads on biological processes through signaling to cells, is fundamental to the inherent ability of bone tissue to adapt its structure in response to mechanical stimulation. The immense contribution of computational modeling to the nascent field of bone mechanobiology is indisputable, having aided in the interpretation of experimental findings and identified new avenues of inquiry. Indeed, advances in computational modeling have spurred the development of this field, shedding new light on problems ranging from the mechanical response to loading by individual cells to tissue differentiation during events such as fracture healing. To date, in silico bone mechanobiology has generally taken a reductive approach in attempting to answer discrete biological research questions, with research in the field broadly separated into two streams: (1) mechanoregulation algorithms for predicting mechanobiological changes to bone tissue and (2) models investigating cell mechanobiology. Future models will likely take advantage of advances in computational power and techniques, allowing multiscale and multiphysics modeling to tie the many separate but related biological responses to loading together as part of a larger systems biology approach to shed further light on bone mechanobiology. Finally, although the ever‐increasing complexity of computational mechanobiology models will inevitably move the field toward patient‐specific models in the clinic, the determination of the context in which they can be used safely for clinical purpose will still require an extensive combination of computational and experimental techniques applied to in vitro and in vivo applications. WIREs Syst Biol Med 2016, 8:485–505. doi: 10.1002/wsbm.1356 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Mario Giorgi
- Department of Oncology and Metabolism and INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, UK
| | | | - Damien Lacroix
- INSIGNEO Institute for In Silico Medicine, Department of Mechanical Engineering, University of Sheffield, Sheffield, UK.
| |
Collapse
|