1
|
Meng K, Chen H, Pan Y, Li Y. The dynamics of red blood cells traversing slits of mechanical heart valves under high shear. Biophys J 2024; 123:3780-3797. [PMID: 39340153 DOI: 10.1016/j.bpj.2024.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/04/2024] [Accepted: 09/25/2024] [Indexed: 09/30/2024] Open
Abstract
Hemolysis, including subclinical hemolysis, is a potentially severe complications of mechanical heart valves (MHVs), which leads to shortened red blood cell (RBC) lifespan and hemolytic anemia. Serious hemolysis is usually associated with structural deterioration and regurgitation. However, the shear stress in MHVs' narrow leakage slits is much lower than the shear stress threshold causing hemolysis and the mechanisms in this context remain largely unclear. This study investigated the hemolysis mechanism of RBCs in cell-size slits under high shear rates by establishing in vitro microfluidic devices and a coarse-grained molecular dynamics (CGMD) model, considering both fluid and structural effects simultaneously. Microfluidic experiments and computational simulation revealed six distinct dynamic states of RBC traversal through MHVs' microscale slits under various shear rates and slit sizes. It elucidated that RBC dynamic states were influenced by not only by fluid forces but significantly by the compressive force of slit walls. The variation of the potential energy of the cell membrane indicated its stretching, deformation, and rupture during traversal, corresponding to the six dynamic states. The maximum forces exerted on membrane by water particles and slit walls directly determined membrane rupture, serving as a critical determinant. This analysis helps in understanding the contribution of the slit walls to membrane rupture and identifying the threshold force that leads to membrane rupture. The hemolysis mechanism of traversing microscale slits is revealed to effectively explain the occurrences of hemolysis and subclinical hemolysis.
Collapse
Affiliation(s)
- Kuilin Meng
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Haosheng Chen
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Yunfan Pan
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Yongjian Li
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, China.
| |
Collapse
|
2
|
Porcaro C, Saeedipour M. Unresolved RBCs: An upscaling strategy for the CFD-DEM simulation of blood flow with deformable cells. Comput Biol Med 2024; 181:109081. [PMID: 39208506 DOI: 10.1016/j.compbiomed.2024.109081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/05/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Numerical simulation of blood flow is a challenging topic due to the multiphase nature of this biological fluid. The choice of a specific method among the ones available in literature is often motivated by the physical scale of interest. Single-phase approximation allows for lower computational time, but does not consider this multiphase nature. Cell-level simulation, on the other hand, requires high computational resources and is limited to small scales. This work proposes a scale-up approach for cell-level simulation of blood flow, in the framework of unresolved CFD-DEM technique. This method offers the possibility to simulate hundreds of thousands of particles with limited computational effort, but requires specific models for fluid-particle interactions. Regarding blood flow, drag and lift force acting on the red blood cells (RBCs) are responsible for several macroscopic blood characteristics. Despite several correlations available for drag and lift force acting on rigid particles, specific force models for the simulation of deformable particles compatible with RBCs physics are missing. This study employs data obtained from cell-level simulations to derive equations then used in unresolved simulation of RBCs. The strategy followed during the modeling phase is presented, together with the model verification and validation. This approach returns satisfying results when used to simulate blood flow in large-scale channels. Up to half a million RBCs are considered, and computational effort is reported to allow a comparison with other existing methods. Future perspectives include further improvement of the model, such as a deeper understanding of particle-particle interactions.
Collapse
Affiliation(s)
- Carmine Porcaro
- Department of Particulate Flow Modelling, Johannes Kepler University, A-4040 Linz, Austria; Linz Institute of Technology (LIT), Johannes Kepler University, A-4040 Linz, Austria
| | - Mahdi Saeedipour
- Department of Particulate Flow Modelling, Johannes Kepler University, A-4040 Linz, Austria; Linz Institute of Technology (LIT), Johannes Kepler University, A-4040 Linz, Austria.
| |
Collapse
|
3
|
Liu X, Li Y, Jia J, Wang H, Xi Y, Sun A, Wang L, Deng X, Chen Z, Fan Y. Analysis of non-physiological shear stress-induced red blood cell trauma across different clinical support conditions of the blood pump. Med Biol Eng Comput 2024; 62:3209-3223. [PMID: 38802609 DOI: 10.1007/s11517-024-03121-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 05/04/2024] [Indexed: 05/29/2024]
Abstract
Systematic research into device-induced red blood cell (RBC) damage beyond hemolysis, including correlations between hemolysis and RBC-derived extracellular vesicles, remains limited. This study investigated non-physiological shear stress-induced RBC damage and changes in related biochemical indicators under two blood pump clinical support conditions. Pressure heads of 100 and 350 mmHg, numerical simulation methods, and two in vitro loops were utilized to analyze the shear stress and changes in RBC morphology, hemolysis, biochemistry, metabolism, and oxidative stress. The blood pump created higher shear stress in the 350-mmHg condition than in the 100-mmHg condition. With prolonged blood pump operation, plasma-free hemoglobin and cholesterol increased, whereas plasma glucose and nitric oxide decreased in both loops. Notably, plasma iron and triglyceride concentrations increased only in the 350-mmHg condition. The RBC count and morphology, plasma lactic dehydrogenase, and oxidative stress across loops did not differ significantly. Plasma extracellular vesicles, including RBC-derived microparticles, increased significantly at 600 min in both loops. Hemolysis correlated with plasma triglyceride, cholesterol, glucose, and nitric oxide levels. Shear stress, but not oxidative stress, was the main cause of RBC damage. Hemolysis alone inadequately reflects overall blood pump-induced RBC damage, suggesting the need for additional biomarkers for comprehensive assessments.
Collapse
Affiliation(s)
- Xinyu Liu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Room 223, Building 5, No.37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Yuan Li
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Room 223, Building 5, No.37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Jinze Jia
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Room 223, Building 5, No.37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Hongyu Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Room 223, Building 5, No.37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Yifeng Xi
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Room 223, Building 5, No.37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Anqiang Sun
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Room 223, Building 5, No.37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Lizhen Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Room 223, Building 5, No.37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Xiaoyan Deng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Room 223, Building 5, No.37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Zengsheng Chen
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Room 223, Building 5, No.37 Xueyuan Road, Haidian District, Beijing, 100083, China.
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Room 223, Building 5, No.37 Xueyuan Road, Haidian District, Beijing, 100083, China.
| |
Collapse
|
4
|
Onder A, Incebay O, Yapici R. Computational fluid dynamics simulating of the FDA benchmark blood pump with different coefficient sets and scaler shear stress models used in the power-law hemolysis model. J Artif Organs 2024:10.1007/s10047-024-01468-6. [PMID: 39177925 DOI: 10.1007/s10047-024-01468-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 08/11/2024] [Indexed: 08/24/2024]
Abstract
Hemolysis is the most important issue to consider in the design and optimization of blood-contacting devices. Although the use of Computational Fluid Dynamics (CFD) in hemolysis prediction studies provides convenience and has promising potential, it is an extremely challenging process. Hemolysis predictions with CFD depend on the mesh, implementation method, coefficient set, and scalar-shear-stress model. To this end, an attempt was made to find the combination that would provide the most accurate result in hemolysis prediction with the commonly cited power-law based hemolysis model. In the hemolysis predictions conducted using CFD on the Food and Drug Administration (FDA) benchmark blood pump, 3 different scalar-shear-stress models, and 5 different coefficient sets with the power-law based hemolysis model were used. Also, a mesh independence test based on hemolysis and pressure head was performed. The pressure head results of CFD simulations were compared with published pressure head of the FDA benchmark blood pump and a good agreement was observed. In addition, results of CFD-hemolysis predictions which are conducted with scalar-shear-stress model and coefficient set combinations were compared with experimental hemolysis data at three operating conditions such as 6-7 L/min flow rates at 3500 rpm rotational speeds and 6 L/min at 2500 rpm. One of the combinations of the scalar-shear-stress model and the coefficient set was found to be within the error limits of the experimental measurements, while all other combinations overestimated hemolysis.
Collapse
Affiliation(s)
- Ahmet Onder
- Technical Sciences Vocational School, Mechanical and Metal Technologies Department, Konya Technical University, Konya, Turkey.
| | - Omer Incebay
- Faculty of Engineering and Natural Science, Mechanical Engineering Department, Konya Technical University, Konya, Turkey
| | - Rafet Yapici
- Faculty of Engineering and Natural Science, Mechanical Engineering Department, Konya Technical University, Konya, Turkey
| |
Collapse
|
5
|
Bornoff J, Zaman SF, Najar A, Finocchiaro T, Perkins IL, Cookson AN, Fraser KH. Assessment of haemolysis models for a positive-displacement total artificial heart. Int J Artif Organs 2024; 47:570-581. [PMID: 39297328 DOI: 10.1177/03913988241267797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
The assessment and reduction of haemolysis within mechanical circulatory support (MCS) remains a concern with regard to device safety and regulatory approval. Numerical methods for predicting haemolysis have typically been applied to rotary MCS devices and the extent to which these methods apply to positive-displacement MCS is unclear. The aim of this study was to evaluate the suitability of these methods for assessing haemolysis in positive-displacement blood pumps. Eulerian scalar-transport and Lagrangian particle-tracking approaches derived from the shear-based power-law relationship were used to calculate haemolysis in a computational fluid dynamics model of the Realheart total artificial heart. A range of power-law constants and their effect on simulated haemolysis were also investigated. Both Eulerian and Lagrangian methods identified the same key mechanism of haemolysis: leakage flow through the bileaflet valves. Whilst the magnitude of haemolysis varied with different power-law constants, the method of haemolysis generation remained consistent. The Eulerian method was more robust and reliable at identifying sites of haemolysis generation, as it was able to capture the persistent leakage flow throughout the entire pumping cycle. This study paves the way for different positive-displacement MCS devices to be compared across different operating conditions, enabling the optimisation of these pumps for improved patient outcomes.
Collapse
Affiliation(s)
- Joseph Bornoff
- Department of Mechanical Engineering, University of Bath, Bath, UK
- Centre for Bioengineering & Biomedical Technologies, University of Bath, UK
| | | | - Azad Najar
- Scandinavian Real Heart AB, Västerås, Sweden
| | | | | | - Andrew N Cookson
- Department of Mechanical Engineering, University of Bath, Bath, UK
- Centre for Bioengineering & Biomedical Technologies, University of Bath, UK
| | - Katharine H Fraser
- Department of Mechanical Engineering, University of Bath, Bath, UK
- Centre for Bioengineering & Biomedical Technologies, University of Bath, UK
| |
Collapse
|
6
|
Imtiaz N, Poskus MD, Stoddard WA, Gaborski TR, Day SW. Empirical and Computational Evaluation of Hemolysis in a Microfluidic Extracorporeal Membrane Oxygenator Prototype. MICROMACHINES 2024; 15:790. [PMID: 38930760 PMCID: PMC11205701 DOI: 10.3390/mi15060790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
Microfluidic devices promise to overcome the limitations of conventional hemodialysis and oxygenation technologies by incorporating novel membranes with ultra-high permeability into portable devices with low blood volume. However, the characteristically small dimensions of these devices contribute to both non-physiologic shear that could damage blood components and laminar flow that inhibits transport. While many studies have been performed to empirically and computationally study hemolysis in medical devices, such as valves and blood pumps, little is known about blood damage in microfluidic devices. In this study, four variants of a representative microfluidic membrane-based oxygenator and two controls (positive and negative) are introduced, and computational models are used to predict hemolysis. The simulations were performed in ANSYS Fluent for nine shear stress-based parameter sets for the power law hemolysis model. We found that three of the nine tested parameters overpredict (5 to 10×) hemolysis compared to empirical experiments. However, three parameter sets demonstrated higher predictive accuracy for hemolysis values in devices characterized by low shear conditions, while another three parameter sets exhibited better performance for devices operating under higher shear conditions. Empirical testing of the devices in a recirculating loop revealed levels of hemolysis significantly lower (<2 ppm) than the hemolysis ranges observed in conventional oxygenators (>10 ppm). Evaluating the model's ability to predict hemolysis across diverse shearing conditions, both through empirical experiments and computational validation, will provide valuable insights for future micro ECMO device development by directly relating geometric and shear stress with hemolysis levels. We propose that, with an informed selection of hemolysis parameters based on the shear ranges of the test device, computational modeling can complement empirical testing in the development of novel high-flow blood-contacting microfluidic devices, allowing for a more efficient iterative design process. Furthermore, the low device-induced hemolysis measured in our study at physiologically relevant flow rates is promising for the future development of microfluidic oxygenators and dialyzers.
Collapse
Affiliation(s)
- Nayeem Imtiaz
- Rochester Institute of Technology, Kate Gleason College of Engineering, Rochester, NY 14623, USA; (N.I.); (W.A.S.); (T.R.G.)
| | - Matthew D. Poskus
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - William A. Stoddard
- Rochester Institute of Technology, Kate Gleason College of Engineering, Rochester, NY 14623, USA; (N.I.); (W.A.S.); (T.R.G.)
| | - Thomas R. Gaborski
- Rochester Institute of Technology, Kate Gleason College of Engineering, Rochester, NY 14623, USA; (N.I.); (W.A.S.); (T.R.G.)
| | - Steven W. Day
- Rochester Institute of Technology, Kate Gleason College of Engineering, Rochester, NY 14623, USA; (N.I.); (W.A.S.); (T.R.G.)
| |
Collapse
|
7
|
Froese V, Goubergrits L, Kertzscher U, Lommel M. Experimental validation of the power law hemolysis model using a Couette shearing device. Artif Organs 2024; 48:495-503. [PMID: 38146895 DOI: 10.1111/aor.14702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/22/2023] [Accepted: 12/12/2023] [Indexed: 12/27/2023]
Abstract
BACKGROUND The study of blood trauma, such as hemolysis in blood-carrying devices, is crucial due to the high incidence of adverse events like alteration of blood function, bleeding, and multi-organ failure. The extent of flow-induced hemolysis, predominantly influenced by stress duration and intensity, is described by established model parameters based on the power law approach. In recent years, various parameters were determined using different Couette shearing devices and donor species. However, they have not been validated due to limited experimental data. METHODS This study provides hemolysis measurements in a Couette shearing device and evaluates the suitability of different power law parameters. The revised Couette shearing device generates well-defined dynamic stress loads that are repeatedly applied to blood samples at a defined temperature. Human blood samples with an adjusted hematocrit of 30%, were tested with varying repetitions (20 to 80 times). The half-sinusoidal stress loads had amplitudes of 73 to 140 Pa and exposure times of 24 msec per repetition. The parameters of five common power law hemolysis approaches were then compared with the experimental data. RESULTS The prediction with the power law model parameters C = 3.458 × 10-6, α = 0.2777 and β = 2.0639 showed a good agreement with the experimental results. CONCLUSION The effect of multiple short-time stresses on hemolysis was investigated to validate the power law hemolysis model with the Couette shearing device of this study.
Collapse
Affiliation(s)
- Vera Froese
- Institute of Computer-assisted Cardiovascular Medicine, Biofluid Mechanics Laboratory, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Leonid Goubergrits
- Institute of Computer-assisted Cardiovascular Medicine, Biofluid Mechanics Laboratory, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ulrich Kertzscher
- Institute of Computer-assisted Cardiovascular Medicine, Biofluid Mechanics Laboratory, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michael Lommel
- Institute of Computer-assisted Cardiovascular Medicine, Biofluid Mechanics Laboratory, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
8
|
Li Y, Liu X, Sun A, Deng X, Chen Z, Fan Y. Multi-Method Investigation of Blood Damage Induced By Blood Pumps in Different Clinical Support Modes. ASAIO J 2024; 70:280-292. [PMID: 38215762 DOI: 10.1097/mat.0000000000002116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024] Open
Abstract
To investigate the effects of blood pumps operated in different modes on nonphysiologic flow patterns, cell and protein function, and the risk of bleeding, thrombosis, and hemolysis, an extracorporeal blood pump (CentriMag) was operated in three clinical modalities including heart failure (HF), venous-venous (V-V) extracorporeal membrane oxygenation (ECMO), and venous-arterial (V-A) ECMO. Computational fluid dynamics (CFD) methods and coupled hemolysis models as well as recently developed bleeding and thrombosis models associated with changes in platelet and von Willebrand factor (vWF) function were used to predict hydraulic performance and hemocompatibility. The V-A ECMO mode had the highest flow losses and shear stress levels, the V-V ECMO mode was intermediate, and the HF mode was the lowest. Different nonphysiologic flow patterns altered cell/protein morphology and function. The V-A ECMO mode resulted in the highest levels of platelet activation, receptor shedding, vWF unfolding, and high molecular weight multimers vWF (HMWM-vWF) degradation, leading to the lowest platelet adhesion and the highest vWF binding capacity, intermediate in the V-V ECMO mode, and opposite in the HF mode. The V-A ECMO mode resulted in the highest risk of bleeding, thrombosis, and hemolysis, with the V-V ECMO mode intermediate and the HF mode lowest. These findings are supported by published experimental or clinical statistics. Further studies found that secondary blood flow passages resulted in the highest risk of blood damage. Nonphysiologic blood flow patterns were strongly associated with cell and protein function changing, blood damage, and complications.
Collapse
Affiliation(s)
- Yuan Li
- From the Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | | | | | | | | | | |
Collapse
|
9
|
Rydquist G, Esmaily M. Analysis of the Suitability of an Effective Viscosity to Represent Interactions Between Red Blood Cells in Shear Flow. J Biomech Eng 2024; 146:021007. [PMID: 38071488 PMCID: PMC10750787 DOI: 10.1115/1.4064213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/03/2023] [Indexed: 12/21/2023]
Abstract
Many methods to computationally predict red blood cell damage have been introduced, and among these are Lagrangian methods that track the cells along their pathlines. Such methods typically do not explicitly include cell-cell interactions. Due to the high volume fraction of red blood cells (RBCs) in blood, these interactions could impact cell mechanics and thus the amount of damage caused by the flow. To investigate this question, cell-resolved simulations of red blood cells in shear flow were performed for multiple interacting cells, as well as for single cells in unbounded flow at an effective viscosity. Simulations run without adjusting the bulk viscosity produced larger errors unilaterally and were not considered further for comparison. We show that a periodic box containing at least 8 cells and a spherical harmonic of degree larger than 10 are necessary to produce converged higher-order statistics. The maximum difference between the single-cell and multiple-cell cases in terms of peak strain was 3.7%. To achieve this, one must use the whole blood viscosity and average over multiple cell orientations when adopting a single-cell simulation approach. The differences between the models in terms of average strain were slightly larger (maximum difference of 6.9%). However, given the accuracy of the single-cell approach in predicting the maximum strain, which is useful in hemolysis prediction, and its computational cost that is orders of magnitude less than the multiple-cell approach, one may use it as an affordable cell-resolved approach for hemolysis prediction.
Collapse
Affiliation(s)
- Grant Rydquist
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14850
| | - Mahdi Esmaily
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14850
| |
Collapse
|
10
|
Abeken J, de Zelicourt D, Kurtcuoglu V. Incorporating Unresolved Stresses in Blood Damage Modeling: Energy Dissipation More Accurate Than Reynolds Stress Formulation. IEEE Trans Biomed Eng 2024; 71:563-573. [PMID: 37643096 DOI: 10.1109/tbme.2023.3309338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
OBJECTIVE Reynolds Averaged Navier Stokes (RANS) models are often used as the basis for modeling blood damage in turbulent flows. To predict blood damage by turbulence stresses that are not resolved in RANS, a stress formulation that represents the corresponding scales is required. Here, we compare two commonly employed stress formulations: a scalar stress representation that uses Reynolds stresses as a surrogate for unresolved fluid stresses, and an effective stress formulation based on energy dissipation. METHODS We conducted unsteady RANS simulations of the CentriMag blood pump with three different closure models and a Large Eddy Simulation (LES) for reference. We implemented both stress representations in all models and compared the resulting total stress distributions in Eulerian and Lagrangian frameworks. RESULTS The Reynolds-stress-based approach overestimated the contribution of unresolved stresses in RANS, with differences between closure models of up to several orders of magnitude. With the dissipation-based approach, the total stresses predicted with RANS deviated by about 50% from the LES reference, which was more accurate than only considering resolved stresses. CONCLUSION The Reynolds-stress-based formulation proved unreliable for estimating scalar stresses in our RANS simulations, while the dissipation-based approach provided an accuracy improvement over simply neglecting unresolved stresses. SIGNIFICANCE Our results suggest that dissipation-based inclusion of unresolved stresses should be the preferred choice for blood damage modeling in RANS.
Collapse
|
11
|
Chen C, Zhang M, Hao P, He F, Zhang X. An in silico analysis of unsteady flow structures in a microaxial blood pump under a pulsating rotation speed. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 243:107919. [PMID: 37972458 DOI: 10.1016/j.cmpb.2023.107919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/02/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND AND OBJECTIVE Ventricular assist devices (VADs) are generally designed to perform continuous flow. However, it has been proven that continuous flow, which is not a physiological hemodynamic state, may cause severe complications such as gastrointestinal bleeding, pulmonary hypertension, and ventricular suction. For these reasons, many pulsating blood pump control strategies have been proposed and have the potential for application in percutaneous ventricular assist devices (pVADs) or microaxial blood pumps. A few cases report extra hemolysis when introducing pulsating speed, while none involve blood pumps. This research's primary purpose is to evaluate the potential hemolysis of pVAD under pulsating flow conditions. METHODS First, the pulsating flow state is deduced using a heart failure model and varying speed. The heart model is established according to the pathology state collected from a clinical check. The rotation speed and boundary physical state are set to fit the heart failure model. The computational fluid dynamics (CFD) method with the hemolysis prediction model is performed. Furthermore, we used proper orthogonal decomposition (POD) analysis to reconstruct the flow field and obtain more details about shearing and transporting effects. RESULTS (1) As a variable rotational speed was introduced, no significant gain in hemolysis accumulation appeared in pVAD. This is quite different from long-term implantable VADs. (2) Pulsation affects hemolysis mainly through pressure (or normal stress). Variable rotational speed affects hemolysis mainly through flow instability. (3) Variable rotational speed will increase the instability and influence hemolysis by transporting and shearing effects, while the transporting effect is more significant. CONCLUSIONS The unsteady flow state will affect the spatial distribution of hemolysis, which should be taken into account during control strategy and impeller shape design.
Collapse
Affiliation(s)
- Chenghan Chen
- Applied Mechanics Laboratory, Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing, PR China; Department of Cardiovascular Surgery, First Hospital of Tsinghua University, Beijing, PR China
| | - Mingkui Zhang
- Department of Cardiovascular Surgery, First Hospital of Tsinghua University, Beijing, PR China
| | - Pengfei Hao
- Applied Mechanics Laboratory, Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing, PR China
| | - Feng He
- Applied Mechanics Laboratory, Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing, PR China
| | - Xiwen Zhang
- Applied Mechanics Laboratory, Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing, PR China.
| |
Collapse
|
12
|
Fiusco F, Lemétayer J, Broman LM, Prahl Wittberg L. Effect of flow rate ratio and positioning on a lighthouse tip ECMO return cannula. Biomech Model Mechanobiol 2023; 22:1891-1899. [PMID: 37454305 PMCID: PMC10613146 DOI: 10.1007/s10237-023-01741-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Extracorporeal membrane oxygenation is a life-saving support therapy in the case of cardiopulmonary refractory failure. Its use is associated to complications due to the presence of artificial surfaces and supraphysiological stress conditions. Thus, knowledge of the fluid structures associated to each component can give insight into sources of blood damage. In this study, an experimentally validated numerical study of a conventional lighthouse tip cannula in return configuration was carried out to characterize the flow structures using water or a Newtonian blood analog with different flow rate ratios and cannula positioning and their influence on hemolysis. The results showed that strong shear layers developed where the jets from the side holes met the co-flow. Stationary backflow regions at the vessel wall were also present downstream of the cannula. In the tilted case, the recirculation was much more pronounced on the wide side and almost absent on the narrow side. Small vortical backflow structures developed at the side holes which behaved like obstacles to the co-flow, creating pairs of counter-rotating vortices, which induced locally higher risk of hemolysis. However, global hemolysis index did not show significant deviations. Across the examined flow rate ratios, the holes on the narrow side consistently reinfused a larger fraction of fluid. A radial force developed in the tilted case in a direction so as to recenter the cannula in the vessel.
Collapse
Affiliation(s)
- Francesco Fiusco
- FLOW, Department of Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden.
| | - Julien Lemétayer
- FLOW, Department of Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Lars Mikael Broman
- ECMO Centre Karolinska, Pediatric Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Lisa Prahl Wittberg
- FLOW, Department of Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
13
|
Pongérard A, Mallo L, Do Sacramento V, Boiron O, Eckly A, Gachet C, Lanza F, Knapp Y, Strassel C. Development of an efficient, ready to use, blood platelet-release device based on two new flow regime parameters: The periodic hydrodynamic loading and the shear stress accumulation. N Biotechnol 2023; 77:68-79. [PMID: 37442418 DOI: 10.1016/j.nbt.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/13/2023] [Accepted: 07/09/2023] [Indexed: 07/15/2023]
Abstract
In vitro production of blood platelets for transfusion purposes is gaining interest. While platelet production is now possible on a laboratory scale, the challenge is to move towards industrial production. Attaining this goal calls for the development of platelet release devices capable of producing large quantities of platelets. To this end, we have developed a continuous-flow platelet release device composed of five spherical chambers each containing two calibrated cones placed in a staggered configuration. Following perfusion of proplatelet-bearing cultured megakaryocytes, the device achieves a high yield of about 100 bona-fide platelets/megakaryocyte, at a flow rate of ∼80 mL/min. Performances and operating conditions comply with the requirements of large-scale platelet production. Moreover, this device enabled an in-depth analysis of the flow regimes through Computational Fluid Dynamics (CFD). This revealed two new universal parameters to be taken into account for an optimal platelet release: i.e. a periodic hydrodynamic load and a sufficient accumulation of shear stress. An efficient 16 Pa.s shear stress accumulation is obtained in our system at a flow rate of 80 mL/min.
Collapse
Affiliation(s)
- Anaïs Pongérard
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, F-67065 Strasbourg, France
| | - Léa Mallo
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, F-67065 Strasbourg, France
| | - Valentin Do Sacramento
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, F-67065 Strasbourg, France
| | - Olivier Boiron
- CNRS, Université Aix-Marseille, Ecole Centrale Marseille, IRPHE UMR7342, F-13000 Marseille, France
| | - Anita Eckly
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, F-67065 Strasbourg, France
| | - Christian Gachet
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, F-67065 Strasbourg, France
| | - François Lanza
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, F-67065 Strasbourg, France
| | - Yannick Knapp
- Université Avignon, LAPEC UPR-4278, F-84000 Avignon, France
| | - Catherine Strassel
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, F-67065 Strasbourg, France.
| |
Collapse
|
14
|
Faghih MM, Craven BA, Sharp MK. Practical implications of the erroneous treatment of exposure time in the Eulerian hemolysis power law model. Artif Organs 2023; 47:1531-1538. [PMID: 37032625 DOI: 10.1111/aor.14543] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/13/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023]
Abstract
BACKGROUND Eulerian and Lagrangian power-law formulations are both widely used for computational fluid dynamics (CFD) to predict flow-induced hemolysis in blood-contacting medical devices. Both are based on the same empirical power-law correlation between hemolysis and the shear stress and exposure time. In the Lagrangian approach, blood damage is predicted by tracking both the stress and exposure time along a finite number of pathlines in the domain. In the Eulerian approach, a scalar transport equation is solved for a time-linearized damage index within the entire domain. Previous analytical work has demonstrated that there is a fundamental problem with the treatment of exposure time in the Eulerian model formulation such that the only condition under which the model correctly represents the true exposure time is in a flow field with no streamwise velocity variation. However, the practical implications of this limitation have yet to be thoroughly investigated. METHODS In this study, we demonstrate the inaccuracy of Eulerian hemolysis power-law model predictions due to the erroneous treatment of exposure time by systematically considering four benchmark test cases with increasing degrees of flow acceleration: Poiseuille flow through a straight tube, inclined Couette flow, and flow through a converging tube with two different convergence ratios. RESULTS Compared with Lagrangian predictions, we show that, as flow acceleration becomes more pronounced, the resultant inaccuracy in the Eulerian predictions increases. For the inclined Couette flow case, there is a small degree of flow acceleration that yields a discrepancy in the range of 10% between Lagrangian and Eulerian predictions. For flows with a larger degree of acceleration, as occurs in the converging tube flow cases, the discrepancy is considerably larger (up to 257%). CONCLUSION The inaccuracy of hemolysis predictions due to the erroneous treatment of exposure time in the Eulerian power-law model can be significant when there is streamwise velocity variation in the flow field. These results may partially explain the extremely large variability in CFD hemolysis predictions reported in the literature between Lagrangian and Eulerian models.
Collapse
Affiliation(s)
- Mohammad M Faghih
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, United States Food and Drug Administration, Silver Spring, Maryland, USA
| | - Brent A Craven
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, United States Food and Drug Administration, Silver Spring, Maryland, USA
| | - M Keith Sharp
- Department of Mechanical Engineering, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
15
|
Hanekop G, Kollmeier JM, Frahm J, Iwanowski I, Khabbazzadeh S, Kutschka I, Tirilomis T, Ulrich C, Friedrich MG. Turbulence in surgical suction heads as detected by MRI. THE JOURNAL OF EXTRA-CORPOREAL TECHNOLOGY 2023; 55:70-81. [PMID: 37378439 DOI: 10.1051/ject/2023015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 04/06/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND Blood loss is common during surgical procedures, especially in open cardiac surgery. Allogenic blood transfusion is associated with increased morbidity and mortality. Blood conservation programs in cardiac surgery recommend re-transfusion of shed blood directly or after processing, as this decreases transfusion rates of allogenic blood. But aspiration of blood from the wound area is often associated with increased hemolysis, due to flow induced forces, mainly through development of turbulence. METHODS We evaluated magnetic resonance imaging (MRI) as a qualitative tool for detection of turbulence. MRI is sensitive to flow; this study uses velocity-compensated T1-weighted 3D MRI for turbulence detection in four geometrically different cardiotomy suction heads under comparable flow conditions (0-1250 mL/min). RESULTS Our standard control suction head Model A showed pronounced signs of turbulence at all flow rates measured, while turbulence was only detectable in our modified Models 1-3 at higher flow rates (Models 1 and 3) or not at all (Model 2). CONCLUSIONS The comparison of flow performance of surgical suction heads with different geometries via acceleration-sensitized 3D MRI revealed significant differences in turbulence development between our standard control Model A and the modified alternatives (Models 1-3). As flow conditions during measurement have been comparable, the specific geometry of the respective suction heads must have been the main factor responsible. The underlying mechanisms and causative factors can only be speculated about, but as other investigations have shown, hemolytic activity is positively associated with degree of turbulence. The turbulence data measured in this study correlate with data from other investigations about hemolysis induced by surgical suction heads. The experimental MRI technique used showed added value for further elucidating the underlying physical phenomena causing blood damage due to non-physiological flow.
Collapse
Affiliation(s)
- Gunnar Hanekop
- Department of Anesthesiology, Intensive Care, Emergency Medicine, Pain Therapy, University Medicine, Georg-August-University, Robert-Koch-Strasse 40, 37075 Goettingen, Germany
| | - Jost M Kollmeier
- Max-Planck-Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077 Goettingen, Germany
| | - Jens Frahm
- Max-Planck-Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077 Goettingen, Germany
| | - Ireneusz Iwanowski
- Department of Heart-Thoracic- and Vascular-Surgery, University Medicine, Georg-August-University, Robert-Koch-Strasse 40, 37075 Goettingen, Germany
| | - Sepideh Khabbazzadeh
- Department of Anesthesiology, Intensive Care, Emergency Medicine, Pain Therapy, University Medicine, Georg-August-University, Robert-Koch-Strasse 40, 37075 Goettingen, Germany
| | - Ingo Kutschka
- Department of Heart-Thoracic- and Vascular-Surgery, University Medicine, Georg-August-University, Robert-Koch-Strasse 40, 37075 Goettingen, Germany
| | - Theodor Tirilomis
- Department of Heart-Thoracic- and Vascular-Surgery, University Medicine, Georg-August-University, Robert-Koch-Strasse 40, 37075 Goettingen, Germany
| | - Christian Ulrich
- Department of Heart-Thoracic- and Vascular-Surgery, University Medicine, Georg-August-University, Robert-Koch-Strasse 40, 37075 Goettingen, Germany
| | - Martin G Friedrich
- Department of Heart-Thoracic- and Vascular-Surgery, University Medicine, Georg-August-University, Robert-Koch-Strasse 40, 37075 Goettingen, Germany
| |
Collapse
|
16
|
Porcaro C, Saeedipour M. Hemolysis prediction in bio-microfluidic applications using resolved CFD-DEM simulations. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 231:107400. [PMID: 36774792 DOI: 10.1016/j.cmpb.2023.107400] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND AND OBJECTIVE Hemolysis, namely hemoglobin leakage from red blood cells (RBCs), is one of the major sources of incorrect results in clinical tests, especially when passive microfluidics is involved. This is due to small characteristic dimensions which could cause strong RBCs deformation. Prediction of hemolysis is essential in the design and optimization of lab-on-a-chip devices for cell sorting and plasma separation. The aim of this work is to provide a numerical simulation tool this purpose applicable to real-scale bio-microfluidic devices with affordable computational cost. METHODS Blood is modelled as a suspension of biological cells, mainly RBCs, in liquid plasma assumed as a Newtonian, incompressible carrier fluid. Therefore, the physics of cells and carrier fluid is coupled by means of an immersed boundary concept known as resolved CFD-DEM. In this approach, the Navier-Stokes equations are numerically solved through a finite volume method with an additional penalty term to account for the presence of RBCs. RBCs' positions and velocities are updated by solving Newton and Euler equations for conservation of linear and angular momentum. To model the RBCs deformation, a reduced-order model is employed, where each RBC is represented by a clump of overlapping rigid spheres connected by fictional numerical bonds, whose properties are tuned to reproduce the ones of RBCs viscoelastic membrane. This coupled approach allows access to cell-level information and facilitates the usage of strain-based hemolysis models. RESULTS Different micro-channel geometries and blood hematocrits are simulated, to explore the influence of these factors on RBCs damage. Statistical analysis is performed to extract relevant biophysical quantities from numerical simulations such as hemolysis index distribution at the channel exit. Finally, the effect of carrier fluid viscosity is studied in relation to cell-cell interactions. CONCLUSIONS Simulation results show that hemolysis occurrence is almost independent of the hematocrit values in the microchannel, implying the possibility to speed up calculation using low hematocrit values. Nevertheless, using whole blood viscosity for the carrier fluid overestimates the value of the hemolysis index by almost one order of magnitude.
Collapse
Affiliation(s)
- Carmine Porcaro
- Department of Particulate Flow Modelling, Johannes Kepler University, A-4040 Linz, Austria; Linz Institute of Technology (LIT), Johannes Kepler University, A-4040 Linz, Austria; Christian Doppler Laboratory for Multi-scale Modelling of Multiphase Processes, Johannes Kepler University, A-4040 Linz, Austria
| | - Mahdi Saeedipour
- Department of Particulate Flow Modelling, Johannes Kepler University, A-4040 Linz, Austria; Linz Institute of Technology (LIT), Johannes Kepler University, A-4040 Linz, Austria.
| |
Collapse
|
17
|
Squiccimarro E, Colombaro C, Civita A, Rociola R, Buys D, Gesualdo L, Paparella D, Lorusso R. Addressing inadequate blood flow during normothermic regional perfusion for in-situ donation after circulatory death grafts preservation. Perfusion 2023; 38:54-58. [PMID: 36592992 DOI: 10.1177/02676591221150358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Donation after circulatory death (DCD) has emerged as attainable strategy to tackle the issue of organ shortage, expanding the donor pool. The DCD concept has been applied to the multiple declinations of circulatory arrest, as per the Modified Maastricht Classification. Notwithstanding, whichever the scenario, DCD donors experience a variable warm ischemia time whose correlation with graft dysfunction is ascertained. This applies to both "controlled" (cDCD) donors (i.e., the timespan from the withdrawal of life-sustaining therapies to the onset of in-situ perfusion), and "uncontrolled" DCD (uDCD) (i.e., the low-flow period during cardiopulmonary resuscitation - CPR). This sums up to the no-flow time from cardiac arrest to the start of CPR for uDCD donors, and to the no-touch period for both uDCDs and cDCDs. Static and hypothermic storage may not be appropriate for DCD grafts. In order to overcome this ischemic insult, extracorporeal membrane oxygenation devices are adopted to guarantee the in-situ grafts preservation by means of techniques such as the normothermic regional perfusion (NRP) which consists in a selective abdominal perfusion obtained via the endovascular or surgical occlusion of the thoracic aorta. The maintenance of an adequate pump flood throughout NRP is therefore a sine qua non to accomplish the DCD donation. The issue of insufficient pump flow during NRP is prevalent and clinically significant but its management remains technically challenging and not standardized. Hereby we propose a systematic algorithmic approach to address this relevant occurrence.
Collapse
Affiliation(s)
- Enrico Squiccimarro
- Division of Cardiac Surgery, Department of Medical and Surgical Sciences, 18972University of Foggia, Foggia, Italy.,Cardio-Thoracic Surgery Department, Heart and Vascular Centre, 82246Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Chiara Colombaro
- Division of Cardiac Surgery, Department of Medical and Surgical Sciences, 18972University of Foggia, Foggia, Italy
| | - Antonio Civita
- Division of Anesthesia and Intensive Care, Department of Emergency and Organ Transplantation, 18499University of Bari, Bari, Italy
| | - Ruggiero Rociola
- Division of Cardiac Surgery, Department of Medical and Surgical Sciences, 18972University of Foggia, Foggia, Italy
| | - Dedre Buys
- Department of Cardiothoracic Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, 9295University of Bari, Bari, Italy
| | - Domenico Paparella
- Division of Cardiac Surgery, Department of Medical and Surgical Sciences, 18972University of Foggia, Foggia, Italy.,Division of Cardiac Surgery, Santa Maria Hospital, GVM Care and Research, Bari, Italy
| | - Roberto Lorusso
- Cardio-Thoracic Surgery Department, Heart and Vascular Centre, 82246Maastricht University Medical Centre, Maastricht, The Netherlands.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| |
Collapse
|
18
|
Wang L, Yun Z, Yao J, Tang X, Feng Y, Xiang C. A novel model for hemolysis estimation in rotating impeller blood pumps considering red blood cell aging. Front Physiol 2023; 14:1174188. [PMID: 37123255 PMCID: PMC10130582 DOI: 10.3389/fphys.2023.1174188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
For blood pumps with a rotating vane-structure, hemolysis values are estimated using a stress-based power-law model. It has been reported that this method does not consider the red blood cell (RBC) membrane's shear resistance, leading to inaccurate estimation of the hemolysis value. The focus of this study was to propose a novel hemolysis model which can more accurately predict the hemolysis value when designing the axial flow blood pump. The movement behavior of a single RBC in the shear flow field was simulated at the mesoscale. The critical value of shear stress for physiological injury of RBCs was determined. According to the critical value, the equivalent treatment of RBC aging was studied. A novel hemolysis model was established considering the RBC's aging and the hemolysis' initial value. The model's validity was verified under the experimental conditions of shear stress loading and the conditions of the shear flow field of the blood pump. The results showed that compared with other hemolysis models for estimating the hemolysis value of blood pumps, the novel hemolysis model proposed in this paper could effectively reduce the estimation error of the hemolysis value and provide a reference for the optimal design of rotary vane blood pumps.
Collapse
Affiliation(s)
- Liang Wang
- School of Mechanical and Electrical Engineering, Central South University, Changsha, China
- College of Mechanical Engineering, Hunan University of Arts and Science, Changde, China
| | - Zhong Yun
- School of Mechanical and Electrical Engineering, Central South University, Changsha, China
- *Correspondence: Zhong Yun,
| | - Jinfu Yao
- School of Mechanical and Electrical Engineering, Central South University, Changsha, China
| | - Xiaoyan Tang
- School of Mechanical and Electrical Engineering, Central South University, Changsha, China
| | - Yunhao Feng
- School of Mechanical and Electrical Engineering, Central South University, Changsha, China
| | - Chuang Xiang
- College of Mechanical Engineering, Hunan University of Arts and Science, Changde, China
| |
Collapse
|
19
|
Perveen G, Alturise F, Alkhalifah T, Daanial Khan Y. Hemolytic-Pred: A machine learning-based predictor for hemolytic proteins using position and composition-based features. Digit Health 2023; 9:20552076231180739. [PMID: 37434723 PMCID: PMC10331097 DOI: 10.1177/20552076231180739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/22/2023] [Indexed: 07/13/2023] Open
Abstract
Objective The objective of this study is to propose a novel in-silico method called Hemolytic-Pred for identifying hemolytic proteins based on their sequences, using statistical moment-based features, along with position-relative and frequency-relative information. Methods Primary sequences were transformed into feature vectors using statistical and position-relative moment-based features. Varying machine learning algorithms were employed for classification. Computational models were rigorously evaluated using four different validation. The Hemolytic-Pred webserver is available for further analysis at http://ec2-54-160-229-10.compute-1.amazonaws.com/. Results XGBoost outperformed the other six classifiers with an accuracy value of 0.99, 0.98, 0.97, and 0.98 for self-consistency test, 10-fold cross-validation, Jackknife test, and independent set test, respectively. The proposed method with the XGBoost classifier is a workable and robust solution for predicting hemolytic proteins efficiently and accurately. Conclusions The proposed method of Hemolytic-Pred with XGBoost classifier is a reliable tool for the timely identification of hemolytic cells and diagnosis of various related severe disorders. The application of Hemolytic-Pred can yield profound benefits in the medical field.
Collapse
Affiliation(s)
- Gulnaz Perveen
- Department of Computer Science, School
of Systems and Technology, University of Management and Technology, Lahore, Punjab,
Pakistan
| | - Fahad Alturise
- Department of Computer, College of
Science and Arts in Ar Rass Qassim University, Buraidah, Qassim, Saudi Arabia
| | - Tamim Alkhalifah
- Department of Computer, College of
Science and Arts in Ar Rass Qassim University, Buraidah, Qassim, Saudi Arabia
| | - Yaser Daanial Khan
- Department of Computer Science, School
of Systems and Technology, University of Management and Technology, Lahore, Punjab,
Pakistan
| |
Collapse
|
20
|
Zainal Abidin NA, Timofeeva M, Szydzik C, Akbaridoust F, Lav C, Marusic I, Mitchell A, Hamilton JR, Ooi AS, Nesbitt WS. A microfluidic method to investigate platelet mechanotransduction under extensional strain. Res Pract Thromb Haemost 2023; 7:100037. [PMID: 36846647 PMCID: PMC9944983 DOI: 10.1016/j.rpth.2023.100037] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/17/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Background Blood platelets have evolved a complex mechanotransduction machinery to rapidly respond to hemodynamic conditions. A variety of microfluidic flow-based approaches have been developed to explore platelet mechanotransduction; however, these experimental models primarily focus on the effects of increased wall shear stress on platelet adhesion events and do not consider the critical effects of extensional strain on platelet activation in free flow. Objectives We report the development and application of a hyperbolic microfluidic assay that allows for investigation of platelet mechanotransduction under quasi-homogenous extensional strain rates in the absence of surface adhesions. Methods Using a combined computational fluid dynamic and experimental microfluidic approach, we explore 5 extensional strain regimes (geometries) and their effect on platelet calcium signal transduction. Results We demonstrate that in the absence of canonical adhesion, receptor engagement platelets are highly sensitive to both initial increase and subsequent decrease in extensional strain rates within the range of 747 to 3319/s. Furthermore, we demonstrate that platelets rapidly respond to the rate of change in extensional strain and define a threshold of ≥7.33 × 106/s/m, with an optimal range of 9.21 × 107 to 1.32 × 108/s/m. In addition, we demonstrate a key role of both the actin-based cytoskeleton and annular microtubules in the modulation of extensional strain-mediated platelet mechanotransduction. Conclusion This method opens a window onto a novel platelet signal transduction mechanism and may have potential diagnostic utility in the identification of patients who are prone to thromboembolic complications associated with high-grade arterial stenosis or are on mechanical circulatory support systems, for which the extensional strain rate is a predominant hemodynamic driver.
Collapse
Affiliation(s)
- Nurul A. Zainal Abidin
- The Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Mariia Timofeeva
- Department of Mechanical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Crispin Szydzik
- The Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- School of Engineering, RMIT University, Melbourne, Victoria, Australia
| | - Farzan Akbaridoust
- Department of Mechanical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Chitrarth Lav
- Department of Mechanical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Victoria, Australia
- Scuderia AlphaTauri F1, Bicester, UK
| | - Ivan Marusic
- Department of Mechanical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Arnan Mitchell
- School of Engineering, RMIT University, Melbourne, Victoria, Australia
| | - Justin R. Hamilton
- The Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Andrew S.H. Ooi
- Department of Mechanical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Warwick S. Nesbitt
- The Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
21
|
Cuddington CT, Wolfe SR, Belcher DA, Allyn M, Greenfield A, Gu X, Hickey R, Lu S, Salvi T, Palmer AF. Pilot scale production and characterization of next generation high molecular weight and tense quaternary state polymerized human hemoglobin. Biotechnol Bioeng 2022; 119:3447-3461. [PMID: 36120842 PMCID: PMC9828582 DOI: 10.1002/bit.28233] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/25/2022] [Accepted: 09/11/2022] [Indexed: 01/12/2023]
Abstract
Polymerized human hemoglobin (PolyhHb) is being studied as a possible red blood cell (RBC) substitute for use in scenarios where blood is not available. While the oxygen (O2 ) carrying capacity of PolyhHb makes it appealing as an O2 therapeutic, the commercial PolyhHb PolyHeme® (Northfield Laboratories Inc.) was never approved for clinical use due to the presence of large quantities of low molecular weight (LMW) polymeric hemoglobin (Hb) species (<500 kDa), which have been shown to elicit vasoconstriction, systemic hypertension, and oxidative tissue injury in vivo. Previous bench-top scale studies in our lab demonstrated the ability to synthesize and purify PolyhHb using a two-stage tangential flow filtration purification process to remove almost all undesirable Hb species (>0.2 µm and <500 kDa) in the material, to create a product that should be safer for transfusion. Therefore, to enable future large animal studies and eventual human clinical trials, PolyhHb synthesis and purification processes need to be scaled up to the pilot scale. Hence in this study, we describe the pilot scale synthesis and purification of PolyhHb. Characterization of pilot scale PolyhHb showed that PolyhHb could be successfully produced to yield biophysical properties conducive for its use as an RBC substitute. Size exclusion high performance liquid chromatography showed that pilot scale PolyhHb yielded a high molecular weight Hb polymer containing a small percentage of LMW Hb species (<500 kDa). Additionally, the auto-oxidation rate of pilot scale PolyhHb was even lower than that of previous generations of PolyhHb. Taken together, these results demonstrate that PolyhHb has the ability to be seamlessly manufactured at the pilot scale to enable future large animal studies and clinical trials.
Collapse
Affiliation(s)
- Clayton T. Cuddington
- William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusOHUSA
| | - Savannah R. Wolfe
- William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusOHUSA
| | - Donald A. Belcher
- William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusOHUSA
| | - Megan Allyn
- William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusOHUSA
| | - Alisyn Greenfield
- William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusOHUSA
| | - Xiangming Gu
- William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusOHUSA
| | - Richard Hickey
- William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusOHUSA
| | - Shuwei Lu
- William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusOHUSA
| | - Tanmay Salvi
- William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusOHUSA
| | - Andre F. Palmer
- William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusOHUSA
| |
Collapse
|
22
|
Examining the universality of the hemolysis power law model from simulations of the FDA nozzle using calibrated model coefficients. Biomech Model Mechanobiol 2022; 22:433-451. [PMID: 36418603 PMCID: PMC10101913 DOI: 10.1007/s10237-022-01655-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 10/27/2022] [Indexed: 11/25/2022]
Abstract
Computational fluid dynamics (CFD) is widely used to predict mechanical hemolysis in medical devices. The most popular hemolysis model is the stress-based power law model that is based on an empirical correlation between hemoglobin release from red blood cells (RBCs) and the magnitude of flow-induced stress and exposure time. Empirical coefficients are traditionally calibrated using data from experiments in simplified Couette-type blood-shearing devices with uniform-shear laminar flow and well-defined exposure times. Use of such idealized coefficients in simulations of real medical devices with complex hemodynamics is thought to be a primary reason for the historical inaccuracy of absolute hemolysis predictions using the power law model. Craven et al. (Biomech Model Mechanobiol 18:1005-1030, 2019) recently developed a CFD-based Kriging surrogate modeling approach for calibrating empirical coefficients in real devices that could potentially be used to more accurately predict absolute hemolysis. In this study, we use the FDA benchmark nozzle to investigate whether utilizing such calibrated coefficients improves the predictive accuracy of the standard Eulerian power law model. We first demonstrate the credibility of our CFD flow simulations by comparing with particle image velocimetry measurements. We then perform hemolysis simulations and compare the results with in vitro experiments. Importantly, the simulations use coefficients calibrated for the flow of a suspension of bovine RBCs through a small capillary tube, which is relatively comparable to the flow of bovine blood through the FDA nozzle. The results show that the CFD predictions of relative hemolysis in the FDA nozzle are reasonably accurate. The absolute predictions are, however, highly inaccurate with modified index of hemolysis values from CFD in error by roughly three orders of magnitude compared with the experiments, despite using calibrated model coefficients from a relatively similar geometry. We rigorously examine the reasons for the inaccuracy that include differences in the flow conditions in the hemolytic regions of each device and the lack of universality of the hemolysis power law model that is entirely empirical. Thus, while the capability to predict relative hemolysis is valuable for product development, further improvements are needed before the power law model can be relied upon to accurately predict the absolute hemolytic potential of a medical device.
Collapse
|
23
|
Contraction of the rigor actomyosin complex drives bulk hemoglobin expulsion from hemolyzing erythrocytes. Biomech Model Mechanobiol 2022; 22:417-432. [PMID: 36357646 PMCID: PMC10097772 DOI: 10.1007/s10237-022-01654-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/23/2022] [Indexed: 11/12/2022]
Abstract
Erythrocyte ghost formation via hemolysis is a key event in the physiological clearance of senescent red blood cells (RBCs) in the spleen. The turnover rate of millions of RBCs per second necessitates a rapid efflux of hemoglobin (Hb) from RBCs by a not yet identified mechanism. Using high-speed video-microscopy of isolated RBCs, we show that electroporation-induced efflux of cytosolic ATP and other small solutes leads to transient cell shrinkage and echinocytosis, followed by osmotic swelling to the critical hemolytic volume. The onset of hemolysis coincided with a sudden self-propelled cell motion, accompanied by cell contraction and Hb-jet ejection. Our biomechanical model, which relates the Hb-jet-driven cell motion to the cytosolic pressure generation via elastic contraction of the RBC membrane, showed that the contributions of the bilayer and the bilayer-anchored spectrin cytoskeleton to the hemolytic cell motion are negligible. Consistent with the biomechanical analysis, our biochemical experiments, involving extracellular ATP and the myosin inhibitor blebbistatin, identify the low abundant non-muscle myosin 2A (NM2A) as the key contributor to the Hb-jet emission and fast hemolytic cell motion. Thus, our data reveal a rapid myosin-based mechanism of hemolysis, as opposed to a much slower diffusive Hb efflux.
Collapse
|
24
|
Liu R, Pitruzzello G, Rosa M, Battisti A, Cerri C, Tortora G. Towards an Innovative Sensor in Smart Capsule for Aerial Drones for Blood and Blood Component Delivery. MICROMACHINES 2022; 13:1664. [PMID: 36296017 PMCID: PMC9611978 DOI: 10.3390/mi13101664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/21/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Aerial drone technology is currently being investigated worldwide for the delivery of blood components. Although it has been demonstrated to be safe, the delivered medical substances still need to be analyzed at the end of the flight mission to assess the level of haemolysis and pH prior to the use in a patient. This process can last up to 30 min and prevent the time saved using drone delivery. Our study aims to integrating an innovative sensor for the haemolysis and pH detection into the Smart Capsule, an already demonstrated technology capable of managing transfusion transport through drones. In the proposed scenario, the haemolysis is evaluated optically by a minilysis device using LED-photodetector combination. The preliminary validation has been demonstrated for both the thermal stability of the Smart Capsule and the haemolysis detection of the minilysis device prototype. Firstly, the onboard temperature test has shown that the delivery system is capable of maintaining proper temperature, even though the samples have been manipulated to reach a higher temperature before inserting into the Smart Capsule. Then, in the laboratory haemolysis test, the trend of linear regression between the outputs from the spectrophotometer and the minilysis prototype confirmed the concept design of the minilysis device.
Collapse
Affiliation(s)
- Rongrong Liu
- BioRobotics Institute, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | - Giorgio Pitruzzello
- BioRobotics Institute, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Smart Medical Theatre Laboratory, ABzero, 56124 Pisa, Italy
| | - Mafalda Rosa
- BioRobotics Institute, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | - Antonella Battisti
- Istituto Nanoscienze—CNR and Scuola Normale Superiore, 56127 Pisa, Italy
| | - Chiara Cerri
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | | |
Collapse
|
25
|
Wu P. Recent advances in the application of computational fluid dynamics in the development of rotary blood pumps. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
26
|
Rydquist G, Esmaily M. A cell-resolved, Lagrangian solver for modeling red blood cell dynamics in macroscale flows. JOURNAL OF COMPUTATIONAL PHYSICS 2022; 461:111204. [PMID: 36275186 PMCID: PMC9580997 DOI: 10.1016/j.jcp.2022.111204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
When red blood cells (RBCs) experience non-physiologically high stresses, e.g., in medical devices, they can rupture in a process called hemolysis. Directly simulating this process is computationally unaffordable given that the length scales of a medical device are several orders of magnitude larger than that of a RBC. To overcome this separation of scales, the present work introduces an affordable computational framework that accurately resolves the stress and deformation of a RBC in a spatially and temporally varying macroscale flow field such as those found in a typical medical device. The underlying idea of the present framework is to treat RBCs as one-way coupled tracers in the macroscale flow by capturing the effect of the flow on their dynamics but neglecting their effect on the flow at the macroscale. As a result, the RBC dynamics are simulated after those of the flow in a postprocessing step by receiving the fluid velocity gradient tensor measured along the RBC trajectory as the input. To resolve the fluid velocity in the immediate vicinity of the RBC as well as the motion of the membrane, we employ the boundary integral method coupled to a structural solver. The governing equations are discretized in space using spherical harmonics, yielding spectral integration accuracy. The predictions produced by this formulation are in good agreement with those obtained from simulations of spherical capsules in shear flows and optical tweezers experiments. The accuracy of the present method is evaluated using unbounded shear flow as a benchmark. Its computational cost grows proportional to p 5, where p is the degree of the spherical harmonic. It also exhibits a fast convergence rate that is approximately O ( p 6 ) for p ⪅ 20.
Collapse
Affiliation(s)
- Grant Rydquist
- Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14850, United States
| | - Mahdi Esmaily
- Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14850, United States
| |
Collapse
|
27
|
Incebay O, Onder A, Arif Sen M, Yapici R, Kalyoncu M. Fuzzy-based modeling and speed optimization of a centrifugal blood pump using a modified and constrained Bees algorithm. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 221:106867. [PMID: 35597207 DOI: 10.1016/j.cmpb.2022.106867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 03/07/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVE Side effects that may occur when using blood pumps for treatment of patients are the main limitations on pump rotational speed determination. Efforts are being made to reduce side effects in both design and usage procedures. In determining the pump speed for treatment, decreasing the pressure on the main artery and preserving the valve functions are taken into consideration. In addition to these, the parameters considered for design which include pump efficiency and mechanical effects on blood cells, should also be taken into consideration. In this study, the aim is to obtain the optimum pump speed for the maximum hydraulic efficiency and minimum wall shear stresses that occur inside the pump. METHODS Blood pump modeling based on fuzzy logic is created on the hydraulic performance data of a centrifugal blood pump, whose design, CFD analysis, manufacture and experimental testing have been performed previously. Using this fuzzy logic model, the optimum pump speeds were determined using the Bees Algorithm, an intuitive optimization algorithm, in the operating range 1-7 L/min fluid flow rate. In the optimization process, the aim is to achieve minimum shear stress with maximal efficiency. Intravascular pressure limits (90-160 mm-Hg) were set as pressure constraints. RESULTS The optimum operating point is obtained as a 3350 rpm pump speed and a 4.35 L/min flow rate. At this operating point, CFD simulation is performed, and maximum wall shear stress was found to be 1458 Pa and its efficiency as 34.2%. CONCLUSIONS In addition to the parameters commonly used in the pump speed optimization of blood pumps, the use of wall shear stresses and pump efficiency can provide certain improvements.
Collapse
Affiliation(s)
- Omer Incebay
- Faculty of Engineering and Natural Science, Konya Technical University, Konya, Turkey.
| | - Ahmet Onder
- Technical Sciences Vocational School, Konya Technical University, Konya, Turkey
| | - Muhammed Arif Sen
- Faculty of Engineering and Natural Science, Konya Technical University, Konya, Turkey
| | - Rafet Yapici
- Faculty of Engineering and Natural Science, Konya Technical University, Konya, Turkey
| | - Mete Kalyoncu
- Faculty of Engineering and Natural Science, Konya Technical University, Konya, Turkey
| |
Collapse
|
28
|
Effect of Conical Spiral Flow Channel and Impeller Parameters on Flow Field and Hemolysis Performance of an Axial Magnetic Blood Pump. Processes (Basel) 2022. [DOI: 10.3390/pr10050853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
For a blood pump, the blood flow channel and impeller parameters directly affect the performance of the pump and the resulting blood circulation. The flow channel in particular has a great impact on the hydraulic performance of the pump (e.g., flow and pressure), which directly determines the overall performance of the blood pump. Traditional bearing-supported blood pumps can cause mechanical damage to blood cells, leading to hemolysis and thrombosis. In this study, therefore, we designed a conical spiral axial blood pump with magnetic levitation. The blood pump was supported by electrodynamic bearings in the radial direction and electromagnetic bearings in the axial direction. The impeller and the front and rear hubs were integrated to minimize blood stagnation and reduce the formation of thrombosis. The hub had a conical spiral flow channel design, which not only reduced the size of the impeller but also increased blood flow and pressure while meeting the design requirements. Computational fluid dynamics (CFD) analysis was used to analyze the flow field of the axial blood pump, a power function model was used to establish a hemolysis prediction model, and the particle tracking method was used to obtain the flow trajectories of individual blood cells, thereby predicting hemolysis-related performance of the blood pump. The simulation results showed that the main high shear stress area in the blood pump was located in the impeller inlet and the clearance between the top of the impeller and the inner chamber of the blood pump. When the hub taper angle of the blood pump was 0.72° and the clearance was 0.3 mm, the average hemolysis prediction value was 0.00216. This prediction value was smaller than that of traditional axial blood pumps. These findings can provide an important reference for the structural design of axial blood pumps and for reducing the hemolysis prediction value.
Collapse
|
29
|
Parker LP, Svensson Marcial A, Brismar TB, Broman LM, Prahl Wittberg L. Impact of Altered Vena Cava Flow Rates on Right Atrium Flow Characteristics. J Appl Physiol (1985) 2022; 132:1167-1178. [PMID: 35271411 PMCID: PMC9054263 DOI: 10.1152/japplphysiol.00649.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The right atrium (RA) combines the superior (SVC) and inferior vena cava (IVC) flows. Treatments like extracorporeal membrane oxygenation (ECMO) and hemodialysis by catheter alter IVC/SVC flows. Here we assess how altered IVC/SVC flow contributions impact RA flow. Four healthy volunteers were imaged with CT, reconstructed and combined into a patient-averaged model. Large Eddy Simulations (LES) were performed for a range of IVC/SVC flow contributions (30-70% each, increments of 5%) and common flow metrics were recorded. Model sensitivity to reconstruction domain extent, constant/pulsatile inlets and hematocrit was also assessed. Consistent with literature, a single vortex occupied the central RA across all flowrates with a smaller counter-rotating vortex, not previously reported, in the auricle. Vena cava flow was highly helical. RA turbulent kinetic energy (TKE) (P=0.027) and time-averaged wall shear stress (WSS) (P<0.001) increased with SVC flow. WSS was lower in the auricle (2 Pa, P<0.001). WSS in the vena cava were equal at IVC/SVC =65/35%. The model was highly sensitive to the reconstruction domain with cropped geometries lacking helicity in the vena cavae, altering RA flow. RA flow was not significantly affected by constant inlets or hematocrit. The rotational flow conventionally described in the RA is confirmed however a new, smaller vortex was also recorded in the auricle. When IVC flow dominates, as is normal, TKE in the RA is reduced and WSS in the vena cavae equalize. Significant helicity exists in the vena cava, a result of distal geometry and this geometry appears crucial to accurately simulating RA flow.
Collapse
Affiliation(s)
- Louis P Parker
- FLOW and BioMEx, Department of Engineering Mechanics, Royal Institute of Technology, KTH, Stockholm, Sweden
| | - Anders Svensson Marcial
- Department of Clinical Science, Intervention and Technology at Karolinska Institute, Division of Medical Imaging and Technology, Stockholm, Sweden.,Department of Radiology, Karolinska University Hospital in Huddinge, Stockholm, Sweden
| | - Torkel B Brismar
- Department of Clinical Science, Intervention and Technology at Karolinska Institute, Division of Medical Imaging and Technology, Stockholm, Sweden.,Department of Radiology, Karolinska University Hospital in Huddinge, Stockholm, Sweden
| | - Lars Mikael Broman
- ECMO Centre Karolinska, Pediatric Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden.,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Lisa Prahl Wittberg
- FLOW and BioMEx, Department of Engineering Mechanics, Royal Institute of Technology, KTH, Stockholm, Sweden
| |
Collapse
|
30
|
Krishnamurthy V, Karanth S. Rational Approach to Chatter in Veno-venous Extracorporeal Membrane Oxygenation to Limit Fluid Administration: An Algorithmic Description. Indian J Crit Care Med 2022; 26:244-245. [PMID: 35712730 PMCID: PMC8857718 DOI: 10.5005/jp-journals-10071-24113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Krishnamurthy V, Karanth S. Rational Approach to Chatter in Venovenous Extracorporeal Membrane Oxygenation to Limit Fluid Administration: An Algorithmic Description. Indian J Crit Care Med 2022;26(2):244–245.
Collapse
Affiliation(s)
- Vinay Krishnamurthy
- Department of Critical Care Medicine, Manipal Hospital, Bengaluru, Karnataka, India
- Vinay Krishnamurthy, Department of Critical Care Medicine, Manipal Hospital, Bengaluru, Karnataka, India, Phone: +91 9738515164, e-mail:
| | - Sunil Karanth
- Department of Critical Care Medicine, Manipal Hospital, Bengaluru, Karnataka, India
| |
Collapse
|
31
|
Krisher JA, Malinauskas RA, Day SW. The Effect of Blood Viscosity on Shear-Induced Hemolysis using a Magnetically Levitated Shearing Device. Artif Organs 2022; 46:1027-1039. [PMID: 35030287 DOI: 10.1111/aor.14172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/17/2021] [Accepted: 12/30/2021] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Blood contacting medical devices, including rotary blood pumps, can cause shear-induced blood damage that may lead to adverse effects in patients. Due in part to an inadequate understanding of how cell-scale fluid mechanics impact red blood cell membrane deformation and damage, there is currently not a uniformly accepted engineering model for predicting blood damage caused by complex flow fields within ventricular assist devices (VADs). METHODS We empirically investigated hemolysis in a magnetically levitated axial Couette flow device typical of a rotary VAD. The device is able to accurately control the shear rate and exposure time experienced by blood and to minimize the effects of other uncharacterized stresses. Using this device, we explored the effects of both hematocrit and plasma viscosity on shear-induced hemolysis to characterize blood damage based on the viscosity-independent shear rate, rather than on shear stress. RESULTS Over a shear rate range of 20,000-80,000 1/s, the Index of Hemolysis (IH) was found to be dependent upon and well-predicted by shear rate alone. IH was independent of hematocrit, bulk viscosity, or the suspension media viscosity, and less correlated to shear stress (MSE=0.46-0.75) than to shear rate (MSE=0.06-0.09). CONCLUSION This study recommends that future investigations of shear-induced blood damage report findings with respect to the viscosity-neutral term of shear rate, in addition to the bulk whole blood viscosity measured at an appropriate shear rate relevant to the flow conditions of the device.
Collapse
Affiliation(s)
- James A Krisher
- Kate Gleason College of Engineering, Rochester Institute of Technology
| | | | - Steven W Day
- Kate Gleason College of Engineering, Rochester Institute of Technology
| |
Collapse
|
32
|
Distribution and history of extensional stresses on vWF surrogate molecules in turbulent flow. Sci Rep 2022; 12:171. [PMID: 34997036 PMCID: PMC8742075 DOI: 10.1038/s41598-021-04034-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022] Open
Abstract
The configuration of proteins is critical for their biochemical behavior. Mechanical stresses that act on them can affect their behavior leading to the development of decease. The von Willebrand factor (vWF) protein circulating with the blood loses its efficacy when it undergoes non-physiological hemodynamic stresses. While often overlooked, extensional stresses can affect the structure of vWF at much lower stress levels than shear stresses. The statistical distribution of extensional stress as it applies on models of the vWF molecule within turbulent flow was examined here. The stress on the molecules of the protein was calculated with computations that utilized a Lagrangian approach for the determination of the molecule trajectories in the flow filed. The history of the stresses on the proteins was also calculated. Two different flow fields were considered as models of typical flows in cardiovascular mechanical devises, one was a Poiseuille flow and the other was a Poiseuille–Couette flow field. The data showed that the distribution of stresses is important for the design of blood flow devices because the average stress can be below the critical value for protein damage, but tails of the distribution can be outside the critical stress regime.
Collapse
|
33
|
von Petersdorff-Campen K, Schmid Daners M. Hemolysis Testing In Vitro: A Review of Challenges and Potential Improvements. ASAIO J 2022; 68:3-13. [PMID: 33989208 DOI: 10.1097/mat.0000000000001454] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Many medical devices such as cardiopulmonary bypass systems, mechanical heart valves, or ventricular assist devices are intended to come into contact with blood flow during use. In vitro hemolysis testing can provide valuable information about the hemocompatibility of prototypes and thus help reduce the number of animal experiments required. Such tests play an important role as research and development tools for objective comparisons of prototypes and devices as well as for the extrapolation of their results to clinical outcomes. Therefore, it is important to explore and provide new ways to improve current practices. In this article, the main challenges of hemolysis testing are described, namely the difficult blood sourcing, the high experimental workload, and the low reproducibility of test results. Several approaches to address the challenges identified are proposed and the respective literature is reviewed. These include the replacement of blood as the "shear-sensitive fluid" by alternative test fluids, the replacement of sparse, manual sampling and blood damage assessment by a continuous and automated monitoring, as well as an analysis of categories and causes of variability in hemolysis test results that may serve as a structural template for future studies.
Collapse
Affiliation(s)
- Kai von Petersdorff-Campen
- From the Product Development Group Zurich, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
34
|
Chan CHH, Simmonds MJ, Fraser KH, Igarashi K, Ki KK, Murashige T, Joseph MT, Fraser JF, Tansley GD, Watanabe N. Discrete responses of erythrocytes, platelets, and von Willebrand factor to shear. J Biomech 2021; 130:110898. [PMID: 34896790 DOI: 10.1016/j.jbiomech.2021.110898] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/18/2021] [Accepted: 12/01/2021] [Indexed: 01/14/2023]
Abstract
Despite decades of technological advancements in blood-contacting medical devices, complications related to shear flow-induced blood trauma are still frequently observed in clinic. Blood trauma includes haemolysis, platelet activation, and degradation of High Molecular Weight von Willebrand Factor (HMW vWF) multimers, all of which are dependent on the exposure time and magnitude of shear stress. Specifically, accumulating evidence supports that when blood is exposed to shear stresses above a certain threshold, blood trauma ensues; however, it remains unclear how various constituents of blood are affected by discrete shears experimentally. The aim of this study was to expose blood to discrete shear stresses and evaluate blood trauma indices that reflect red cell, platelet, and vWF structure. Citrated human whole blood (n = 6) was collected and its haematocrit was adjusted to 30 ± 2% by adding either phosphate buffered saline (PBS) or polyvinylpyrrolidone (PVP). Viscosity of whole blood was adjusted to 3.0, 12.5, 22.5 and 37.5 mPa·s to yield stresses of 3, 6, 9, 12, 50, 90 and 150 Pa in a custom-developed shearing system. Blood samples were exposed to shear for 0, 300, 600 and 900 s. Haemolysis was measured using spectrophotometry, platelet activation using flow cytometry, and HMW vWF multimer degradation was quantified with gel electrophoresis and immunoblotting. For tolerance to 300, 600 and 900 s of exposure time, the critical threshold of haemolysis was reached after blood was exposed to 90 Pa for 600 s (P < 0.05), platelet activation and HMW vWF multimer degradation were 50 Pa for 600 s and 12 Pa for 300 s respectively (P < 0.05). Our experimental results provide simultaneous comparison of blood trauma indices and thus also the relation between shear duration and magnitude required to induce damage to red cells, platelets, and vWF. Our results also demonstrate that near-physiological shear stress (<12 Pa) is needed in order to completely avoid any form of blood trauma. Therefore, there is an urgent need to design low shear-flow medical devices in order to avoid blood trauma in this blood-contacting medical device field.
Collapse
Affiliation(s)
- Chris H H Chan
- School of Engineering and Built Environment, Griffith University, Queensland, Australia; Critical Care Research Group, The Prince Charles Hospital, Queensland, Australia; Faculty of Medicine, University of Queensland, Queensland, Australia.
| | - Michael J Simmonds
- Menzies Health Institute Queensland, Griffith University, Queensland, Australia
| | - Katharine H Fraser
- Department of Mechanical Engineering, University of Bath, Bath, United Kingdom
| | - Kosuke Igarashi
- School of Engineering and Built Environment, Griffith University, Queensland, Australia; Critical Care Research Group, The Prince Charles Hospital, Queensland, Australia; Department of Life Sciences, Systems Engineering and Science, Graduate School of Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| | - Katrina K Ki
- Critical Care Research Group, The Prince Charles Hospital, Queensland, Australia; Faculty of Medicine, University of Queensland, Queensland, Australia
| | - Tomotaka Murashige
- School of Engineering and Built Environment, Griffith University, Queensland, Australia; School of Engineering, Tokyo Institute of Technology, Tokyo, Japan
| | - Mary T Joseph
- Critical Care Research Group, The Prince Charles Hospital, Queensland, Australia
| | - John F Fraser
- Critical Care Research Group, The Prince Charles Hospital, Queensland, Australia; Faculty of Medicine, University of Queensland, Queensland, Australia; School of Medicine, Griffith University, Queensland, Australia
| | - Geoff D Tansley
- School of Engineering and Built Environment, Griffith University, Queensland, Australia; Critical Care Research Group, The Prince Charles Hospital, Queensland, Australia
| | - Nobuo Watanabe
- Department of Life Sciences, Systems Engineering and Science, Graduate School of Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| |
Collapse
|
35
|
Erythrocyte morphological symmetry analysis to detect sublethal trauma in shear flow. Sci Rep 2021; 11:23566. [PMID: 34876652 PMCID: PMC8651737 DOI: 10.1038/s41598-021-02936-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/24/2021] [Indexed: 11/29/2022] Open
Abstract
The viscoelastic properties of red blood cells (RBC) facilitate flexible shape change in response to extrinsic forces. Their viscoelasticity is intrinsically linked to physical properties of the cytosol, cytoskeleton, and membrane-all of which are highly sensitive to supraphysiological shear exposure. Given the need to minimise blood trauma within artificial organs, we observed RBC in supraphysiological shear through direct visualisation to gain understanding of processes leading to blood damage. Using a custom-built counter-rotating shear generator fit to a microscope, healthy red blood cells (RBC) were directly visualised during exposure to different levels of shear (10-60 Pa). To investigate RBC morphology in shear flow, we developed an image analysis method to quantify (a)symmetry of deforming ellipsoidal cells-following RBC identification and centroid detection, cell radius was determined for each angle around the circumference of the cell, and the resultant bimodal distribution (and thus RBC) was symmetrically compared. While traditional indices of RBC deformability (elongation index) remained unaltered in all shear conditions, following ~100 s of exposure to 60 Pa, the frequency of asymmetrical ellipses and RBC fragments/extracellular vesicles significantly increased. These findings indicate RBC structure is sensitive to shear history, where asymmetrical morphology may indicate sublethal blood damage in real-time shear flow.
Collapse
|
36
|
Martinolli M, Cornat F, Vergara C. Computational Fluid-Structure Interaction Study of a New Wave Membrane Blood Pump. Cardiovasc Eng Technol 2021; 13:373-392. [PMID: 34773241 DOI: 10.1007/s13239-021-00584-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/13/2021] [Indexed: 01/11/2023]
Abstract
PURPOSE Wave membrane blood pumps (WMBP) are novel pump designs in which blood is propelled by means of wave propagation by an undulating membrane. In this paper, we computationally studied the performance of a new WMBP design (J-shaped) for different working conditions, in view of potential applications in human patients. METHODS Fluid-structure interaction (FSI) simulations were conducted in 3D pump geometries and numerically discretized by means of the extended finite element method (XFEM). A contact model was introduced to capture membrane-wall collisions in the pump head. Mean flow rate and membrane envelope were determined to evaluate hydraulic performance. A preliminary hemocompatibility analysis was performed via calculation of fluid shear stress. RESULTS Numerical results, validated against in vitro experimental data, showed that the hydraulic output increases when either the frequency or the amplitude of membrane oscillations were higher, with limited increase in the fluid stresses, suggesting good hemocompatibility properties. Also, we showed better performance in terms of hydraulic power with respect to a previous design of the pump. We finally studied an operating point which achieves physiologic flow rate target at diastolic head pressure of 80 mmHg. CONCLUSION A new design of WMBP was computationally studied. The proposed FSI model with contact was employed to predict the new pump hydraulic performance and it could help to properly select an operating point for the upcoming first-in-human trials.
Collapse
Affiliation(s)
- Marco Martinolli
- MOX, Dipartimento di Matematica, Politecnico di Milano, Milan, Italy
| | | | - Christian Vergara
- LaBS, Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Milan, Italy.
| |
Collapse
|
37
|
Foster KM, Papavassiliou DV, O’Rear EA. Elongational Stresses and Cells. Cells 2021; 10:2352. [PMID: 34572002 PMCID: PMC8471242 DOI: 10.3390/cells10092352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/04/2021] [Accepted: 09/04/2021] [Indexed: 01/03/2023] Open
Abstract
Fluid forces and their effects on cells have been researched for quite some time, especially in the realm of biology and medicine. Shear forces have been the primary emphasis, often attributed as being the main source of cell deformation/damage in devices like prosthetic heart valves and artificial organs. Less well understood and studied are extensional stresses which are often found in such devices, in bioreactors, and in normal blood circulation. Several microfluidic channels utilizing hyperbolic, abrupt, or tapered constrictions and cross-flow geometries, have been used to isolate the effects of extensional flow. Under such flow cell deformations, erythrocytes, leukocytes, and a variety of other cell types have been examined. Results suggest that extensional stresses cause larger deformation than shear stresses of the same magnitude. This has further implications in assessing cell injury from mechanical forces in artificial organs and bioreactors. The cells' greater sensitivity to extensional stress has found utility in mechanophenotyping devices, which have been successfully used to identify pathologies that affect cell deformability. Further application outside of biology includes disrupting cells for increased food product stability and harvesting macromolecules for biofuel. The effects of extensional stresses on cells remains an area meriting further study.
Collapse
Affiliation(s)
| | | | - Edgar A. O’Rear
- Department of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, OK 73019, USA; (K.M.F.); (D.V.P.)
| |
Collapse
|
38
|
Kelly NS, McCree D, Fresiello L, Brynedal Ignell N, Cookson AN, Najar A, Perkins IL, Fraser KH. Video-based valve motion combined with computational fluid dynamics gives stable and accurate simulations of blood flow in the Realheart total artificial heart. Artif Organs 2021; 46:57-70. [PMID: 34460941 DOI: 10.1111/aor.14056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 07/29/2021] [Accepted: 08/25/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Patients with end-stage, biventricular heart failure, and for whom heart transplantation is not an option, may be given a Total Artificial Heart (TAH). The Realheart® is a novel TAH which pumps blood by mimicking the native heart with translation of an atrioventricular plane. The aim of this work was to create a strategy for using Computational Fluid Dynamics (CFD) to simulate haemodynamics in the Realheart®, including motion of the atrioventricular plane and valves. METHODS The accuracies of four different computational methods for simulating fluid-structure interaction of the prosthetic valves were assessed by comparison of chamber pressures and flow rates with experimental measurements. The four strategies were: prescribed motion of valves opening and closing at the atrioventricular plane extrema; simulation of fluid-structure interaction of both valves; prescribed motion of the mitral valve with simulation of fluid-structure interaction of the aortic valve; motion of both valves prescribed from video analysis of experiments. RESULTS The most accurate strategy (error in ventricular pressure of 6%, error in flow rate of 5%) used video-prescribed motion. With the Realheart operating at 80 bpm, the power consumption was 1.03 W, maximum shear stress was 15 Pa, and washout of the ventricle chamber after 4 cycles was 87%. CONCLUSIONS This study, the first CFD analysis of this novel TAH, demonstrates that good agreement between computational and experimental data can be achieved. This method will therefore enable future optimisation of the geometry and motion of the Realheart®.
Collapse
Affiliation(s)
| | - Danny McCree
- Department of Mechanical Engineering, University of Bath, Bath, UK
| | - Libera Fresiello
- Department of Cardiovascular Sciences, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | | | - Andrew N Cookson
- Department of Mechanical Engineering, University of Bath, Bath, UK
| | - Azad Najar
- Scandinavian Real Heart AB, Västerås, Sweden
| | | | | |
Collapse
|
39
|
Wu P, Huo J, Dai W, Wu WT, Yin C, Li S. On the Optimization of a Centrifugal Maglev Blood Pump Through Design Variations. Front Physiol 2021; 12:699891. [PMID: 34220556 PMCID: PMC8249853 DOI: 10.3389/fphys.2021.699891] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 05/25/2021] [Indexed: 11/13/2022] Open
Abstract
Centrifugal blood pumps are usually designed with secondary flow paths to avoid flow dead zones and reduce the risk of thrombosis. Due to the secondary flow path, the intensity of secondary flows and turbulence in centrifugal blood pumps is generally very high. Conventional design theory is no longer applicable to centrifugal blood pumps with a secondary flow path. Empirical relationships between design variables and performance metrics generally do not exist for this type of blood pump. To date, little scientific study has been published concerning optimization and experimental validation of centrifugal blood pumps with secondary flow paths. Moreover, current hemolysis models are inadequate in an accurate prediction of hemolysis in turbulence. The purpose of this study is to optimize the hydraulic and hemolytic performance of an inhouse centrifugal maglev blood pump with a secondary flow path through variation of major design variables, with a focus on bringing down intensity of turbulence and secondary flows. Starting from a baseline design, through changing design variables such as blade angles, blade thickness, and position of splitter blades. Turbulent intensities have been greatly reduced, the hydraulic and hemolytic performance of the pump model was considerably improved. Computational fluid dynamics (CFD) combined with hemolysis models were mainly used for the evaluation of pump performance. A hydraulic test was conducted to validate the CFD regarding the hydraulic performance. Collectively, these results shed light on the impact of major design variables on the performance of modern centrifugal blood pumps with a secondary flow path.
Collapse
Affiliation(s)
- Peng Wu
- Artificial Organ Technology Laboratory, School of Mechanical and Electric Engineering, Soochow University, Suzhou, China
| | - Jiadong Huo
- Artificial Organ Technology Laboratory, School of Mechanical and Electric Engineering, Soochow University, Suzhou, China
| | - Weifeng Dai
- Artificial Organ Technology Laboratory, School of Mechanical and Electric Engineering, Soochow University, Suzhou, China
| | - Wei-Tao Wu
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Chengke Yin
- Artificial Organ Technology Laboratory, School of Mechanical and Electric Engineering, Soochow University, Suzhou, China
| | - Shu Li
- Institute for Medical Device Control, National Institutes for Food and Drug Control, Beijing, China
| |
Collapse
|
40
|
Onder A, Incebay O, Sen MA, Yapici R, Kalyoncu M. Heuristic optimization of impeller sidewall gaps-based on the bees algorithm for a centrifugal blood pump by CFD. Int J Artif Organs 2021; 44:765-772. [PMID: 34128420 DOI: 10.1177/03913988211023773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Optimization studies on blood pumps that require complex designs are gradually increasing in number. The essential design criteria of centrifugal blood pump are minimum shear stress with maximal efficiency. The geometry design of impeller sidewall gaps (blade tip clearance, axial gap, radial gap) is highly effective with regard to these two criteria. Therefore, unlike methods such as trial and error, the optimal dimensions of these gaps should be adjusted via a heuristic method, giving more effective results. In this study, the optimal gaps that can ensure these two design criteria with The Bees Algorithm (BA), which is a population-based heuristic method, are investigated. Firstly, a Computational Fluid Dynamics (CFD) analysis of sample pump models, which are selected according to the orthogonal array and pre-designed with different gaps, are performed. The dimensions of the gaps are optimized through this mathematical model. The simulation results for the improved pump model are nearly identical to those predicted by the BA. The improved pump model, as designed with the optimal gap dimensions so obtained, is able to meet the design criteria better than all existing sample pumps. Thanks to the optimal gap dimensions, it has been observed that compared to average values, it has provided a 42% reduction in aWSS and a 20% increase in efficiency. Moreover, original an approach to the design of impeller sidewall gaps was developed. The results show that computational costs have been significantly reduced by using the BA in blood pump geometry design.
Collapse
Affiliation(s)
- Ahmet Onder
- Technical Sciences Vocational School, Mechanical and Metal Technologies Department, Konya Technical University, Konya, Turkey
| | - Omer Incebay
- Faculty of Engineering and Natural Science, Mechanical Engineering Department, Konya Technical University, Konya, Turkey
| | - Muhammed Arif Sen
- Faculty of Engineering and Natural Science, Mechanical Engineering Department, Konya Technical University, Konya, Turkey
| | - Rafet Yapici
- Faculty of Engineering and Natural Science, Mechanical Engineering Department, Konya Technical University, Konya, Turkey
| | - Mete Kalyoncu
- Faculty of Engineering and Natural Science, Mechanical Engineering Department, Konya Technical University, Konya, Turkey
| |
Collapse
|
41
|
Hemolysis estimation in turbulent flow for the FDA critical path initiative centrifugal blood pump. Biomech Model Mechanobiol 2021; 20:1709-1722. [PMID: 34106362 DOI: 10.1007/s10237-021-01471-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 05/28/2021] [Indexed: 02/08/2023]
Abstract
Hemolysis in medical devices and implants has been a primary concern over the past fifty years. Turbulent flow in particular can cause cell trauma and hemolysis in such devices. In this work, the effects of turbulence on red blood cell (RBC) damage are examined by simulating the flow field through a centrifugal blood pump that has been identified as a case study through the critical path initiative of the US Food and Drug Administration (FDA). In this study, a new model was employed to predict hemolysis in the turbulent flow environment in the pump selected for the FDA critical path initiative. The operating conditions for a centrifugal blood pump were specified by the FDA for rotational speeds of 2500 and 3500 rpm. The model is based on the analysis of the smaller eddies within the turbulent flow field, since it is assumed that turbulent flow eddies with sizes comparable to the dimensions of the RBCs lead to cell trauma. The Kolmogorov length scale of the velocity field is used to identify such small eddies. Using model parameters obtained in prior work through comparisons to capillary and jet flow, it is found that hemolysis for the 2500-rpm pump was predicted well, while hemolysis for the 3500-rpm pump was overpredicted. Results indicate refinement of the model and empirical constants with better experimental data is needed.
Collapse
|
42
|
Rubenstein DA. Platelet adhesion potential estimation in a normal and diseased coronary artery model: effects of shear stress magnitude versus shear stress history. Comput Methods Biomech Biomed Engin 2021; 25:73-83. [PMID: 34036866 DOI: 10.1080/10255842.2021.1931847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Platelets play a salient role in the pathogenesis of coronary diseases; primarily through their adhesion to other platelets, endothelial cells and plasma proteins. It is necessary for platelets to activate in order for them to adhere to these different substrates. One of the key regulatory mechanical factors in platelet activation is shear stress, which has been shown to alter multiple platelet functions through the activation of mechanoreceptors. Our goal was to investigate how different numerical shear stress tracking techniques affect platelet adhesion estimates within physiologically relevant computational models. Previously, we developed a physiological coronary artery computational fluid dynamics model. Shear stress waveforms, obtained from these models, were used to monitor in vitro platelet and endothelial cell adhesion marker expression. In this work, the adhesion marker expression data was regressed to obtain numerical functions for receptor expression predictions. These functions were input into a customized adhesion model utilizing different shear stress tracking techniques. For the normal vascular conditions and minimal pathological disease models, shear stress tracking did not significantly affect the adhesion estimates. However, for the severe pathological model, the two shear stress tracking methods had vastly different estimates. Therefore, shear stress tracking methods must be chosen accurately to predict platelet adhesion potentials for accurate modeling techniques.
Collapse
Affiliation(s)
- David A Rubenstein
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
43
|
Faghih MM, Islam A, Sharp MK. On the Discretization of the Power-Law Hemolysis Model. J Biomech Eng 2021; 143:011009. [PMID: 32793961 DOI: 10.1115/1.4048075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Indexed: 11/08/2022]
Abstract
Flow-induced hemolysis remains a concern for blood-contacting devices, and computer-based prediction of hemolysis could facilitate faster and more economical refinement of such devices. While evaluation of convergence of velocity fields obtained by computational fluid dynamics (CFD) simulations has become conventional, convergence of hemolysis calculations is also essential. In this paper, convergence of the power-law hemolysis model is compared for simple flows, including pathlines with exponentially increasing and decreasing stress, in gradually expanding and contracting Couette flows, in a sudden radial expansion and in the Food and Drug Administration (FDA) channel. In the exponential cases, convergence along a pathline required from one to tens of thousands of timesteps, depending on the exponent. Greater timesteps were required for rapidly increasing (large exponent) stress and for rapidly decreasing (small exponent) stress. Example pathlines in the Couette flows could be fit with exponential curves, and convergence behavior followed the trends identified from the exponential cases. More complex flows, such as in the radial expansion and the FDA channel, increase the likelihood of encountering problematic pathlines. For the exponential cases, comparison of converged hemolysis values with analytical solutions demonstrated that the error of the converged solution may exceed 10% for both rapidly decreasing and rapidly increasing stress.
Collapse
Affiliation(s)
- Mohammad M Faghih
- Biofluid Mechanics Laboratory, Department of Mechanical Engineering, University of Louisville, Louisville, KY 40292
| | - Ahmed Islam
- Computational Thermo-Fluid Laboratory, Department of Mechanical Engineering, University of Louisville, Lousville, KY 40292
| | - M Keith Sharp
- Biofluid Mechanics Laboratory, Department of Mechanical Engineering, University of Louisville, Louisville, KY 40292
| |
Collapse
|
44
|
Model Verification and Error Sensitivity of Turbulence-Related Tensor Characteristics in Pulsatile Blood Flow Simulations. FLUIDS 2020. [DOI: 10.3390/fluids6010011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Model verification, validation, and uncertainty quantification are essential procedures to estimate errors within cardiovascular flow modeling, where acceptable confidence levels are needed for clinical reliability. While more turbulent-like studies are frequently observed within the biofluid community, practical modeling guidelines are scarce. Verification procedures determine the agreement between the conceptual model and its numerical solution by comparing for example, discretization and phase-averaging-related errors of specific output parameters. This computational fluid dynamics (CFD) study presents a comprehensive and practical verification approach for pulsatile turbulent-like blood flow predictions by considering the amplitude and shape of the turbulence-related tensor field using anisotropic invariant mapping. These procedures were demonstrated by investigating the Reynolds stress tensor characteristics in a patient-specific aortic coarctation model, focusing on modeling-related errors associated with the spatiotemporal resolution and phase-averaging sampling size. Findings in this work suggest that attention should also be put on reducing phase-averaging related errors, as these could easily outweigh the errors associated with the spatiotemporal resolution when including too few cardiac cycles. Also, substantially more cycles are likely needed than typically reported for these flow regimes to sufficiently converge the phase-instant tensor characteristics. Here, higher degrees of active fluctuating directions, especially of lower amplitudes, appeared to be the most sensitive turbulence characteristics.
Collapse
|
45
|
Kuck L, Simmonds MJ, Chan CHH, Pauls JP, Tansley GD, Feldmann F, McNamee AP. Ex vivo assessment of erythrocyte tolerance to the HeartWare ventricular assist device operated in three discrete configurations. Artif Organs 2020; 45:E146-E157. [PMID: 33236358 DOI: 10.1111/aor.13877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/11/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022]
Abstract
Despite technological advances in ventricular assist devices (VADs) to treat end-stage heart failure, hemocompatibility remains a constant concern, with supraphysiological shear stresses an unavoidable reality with clinical use. Given that impeller rotational speed is related to the instantaneous shear within the pump housing, it is plausible that the modulation of pump speed may regulate peak mechanical shear stresses and thus ameliorate blood damage. The present study investigated the hemocompatibility of the HeartWare HVAD in three configurations typical of clinical applications: standard systemic support left VAD (LVAD), pediatric support LVAD, and pulmonary support right VAD (RVAD) conditions. Two ex vivo mock circulation blood loops were constructed using explanted HVADs, in which pump speed and external loop resistance were manipulated to reflect the flow rates and differential pressures reported in configurations for standard adult LVAD (at 3150 rev⸱min-1 ), pediatric LVAD (at 2400 rev⸱min-1 ), and adult RVAD (at 1900 rev⸱min-1 ). Using bovine blood, the mock circulation blood loops were tested at 37°C over a period of 6 hours (consistent with ASTM F1841-97) and compared with static control. Hemocompatibility assessments were conducted for each test condition, examining hematology, hemolysis (absolute and normalized index), osmotic fragility, and blood viscosity. Regardless of configuration, continuous exposure of blood to the VAD over the 6-hour period significantly altered hematological and rheological blood parameters, and induced increased hemolysis when compared with a static control sample. Comparison of the three operational VAD configurations identified that the adult LVAD condition-associated with the highest pump speed, flow rate, and differential pressure across the pump-resulted in increased normalized hemolysis index (NIH; 0.07) when compared with the lower pump speed "off-label" counterparts (NIH of 0.04 in pediatric LVAD and 0.01 in adult RVAD configurations). After normalizing blood residence times between configurations, pump speed was identified as the primary determinant of accumulated blood damage; plausibly, blood damage could be limited by restricting pump speed to the minimum required to support matched cardiac output, but not beyond.
Collapse
Affiliation(s)
- Lennart Kuck
- Biorheology Research Laboratory, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Michael J Simmonds
- Biorheology Research Laboratory, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Chris Hoi Houng Chan
- School of Engineering and Built Environment, Griffith University, Southport, QLD, Australia.,Innovative Cardiovascular Engineering and Technology Laboratory, Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Jo P Pauls
- School of Engineering and Built Environment, Griffith University, Southport, QLD, Australia.,Innovative Cardiovascular Engineering and Technology Laboratory, Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Geoff D Tansley
- School of Engineering and Built Environment, Griffith University, Southport, QLD, Australia
| | - Friederike Feldmann
- Biorheology Research Laboratory, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Antony P McNamee
- Biorheology Research Laboratory, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
46
|
McNamee AP, Fitzpatrick T, Tansley GD, Simmonds MJ. Sublethal Supraphysiological Shear Stress Alters Erythrocyte Dynamics in Subsequent Low-Shear Flows. Biophys J 2020; 119:2179-2189. [PMID: 33130119 DOI: 10.1016/j.bpj.2020.10.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/24/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
Blood is a non-Newtonian, shear-thinning fluid owing to the physical properties and behaviors of red blood cells (RBCs). Under increased shear flow, pre-existing clusters of cells disaggregate, orientate with flow, and deform. These essential processes enhance fluidity of blood, although accumulating evidence suggests that sublethal blood trauma-induced by supraphysiological shear exposure-paradoxically increases the deformability of RBCs when examined under low-shear conditions, despite obvious decrement of cellular deformation at moderate-to-higher shear stresses. Some propose that rather than actual enhancement of cell mechanics, these observations are "pseudoimprovements" and possibly reflect altered flow and/or cell orientation, leading to methodological artifacts, although direct evidence is lacking. This study thus sought to explore RBC mechanical responses in shear flow using purpose-built laser diffractometry in tandem with direct optical visualization to address this problem. Freshly collected RBCs were exposed to a mechanical stimulus known to drastically alter cell deformability (i.e., prior shear exposure (PSE) to 100 Pa × 300 s). Samples were subsequently transferred to a custom-built slit-flow chamber that combined laser diffractometry with direct cell visualization. Cell suspensions were sheared in a stepwise manner (between 0.3 and 5.0 Pa), with each step being maintained for 15 s. Deformability and cell orientation indices were recorded for small-scatter Fraunhofer diffraction patterns and also visualized RBCs. PSE RBCs had significantly decreased visualized and laser-derived deformability at any given shear stress ≥1 Pa. Novel, to our knowledge, observations demonstrated that PSE RBCs had increased heterogeneity of direct visualized orientation with flow vector at any shear, which may be due to greater vorticity and thus instability in 5-Pa flow compared with unsheared control. These findings indicate that shear exposure and stress-strain history can alter subsequent RBC behavior in physiologically relevant low-shear flows. These findings may yield insight into microvascular disorders in recipients of mechanical circulatory support and individuals with hematological diseases that alter physical properties of blood.
Collapse
Affiliation(s)
- Antony P McNamee
- Biorheology Research Laboratory, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia.
| | - Tom Fitzpatrick
- School of Environment and Science, Griffith University, Gold Coast, Queensland, Australia
| | - Geoff D Tansley
- School of Engineering and Built Environment, Griffith University, Gold Coast, Queensland, Australia
| | - Michael J Simmonds
- Biorheology Research Laboratory, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
47
|
Characterization of anisotropic turbulence behavior in pulsatile blood flow. Biomech Model Mechanobiol 2020; 20:491-506. [PMID: 33090334 PMCID: PMC7979666 DOI: 10.1007/s10237-020-01396-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 10/07/2020] [Indexed: 11/10/2022]
Abstract
Turbulent-like hemodynamics with prominent cycle-to-cycle flow variations have received increased attention as a potential stimulus for cardiovascular diseases. These turbulent conditions are typically evaluated in a statistical sense from single scalars extracted from ensemble-averaged tensors (such as the Reynolds stress tensor), limiting the amount of information that can be used for physical interpretations and quality assessments of numerical models. In this study, barycentric anisotropy invariant mapping was used to demonstrate an efficient and comprehensive approach to characterize turbulence-related tensor fields in patient-specific cardiovascular flows, obtained from scale-resolving large eddy simulations. These techniques were also used to analyze some common modeling compromises as well as MRI turbulence measurements through an idealized constriction. The proposed method found explicit sites of elevated turbulence anisotropy, including a broad but time-varying spectrum of characteristics over the flow deceleration phase, which was different for both the steady inflow and Reynolds-averaged Navier–Stokes modeling assumptions. Qualitatively, the MRI results showed overall expected post-stenotic turbulence characteristics, however, also with apparent regions of unrealizable or conceivably physically unrealistic conditions, including the highest turbulence intensity ranges. These findings suggest that more detailed studies of MRI-measured turbulence fields are needed, which hopefully can be assisted by more comprehensive evaluation tools such as the once described herein.
Collapse
|
48
|
Puentener P, Schuck M, Kolar JW. CFD Assisted Evaluation of In Vitro Experiments on Bearingless Blood Pumps. IEEE Trans Biomed Eng 2020; 68:1370-1378. [PMID: 33048670 DOI: 10.1109/tbme.2020.3030316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE This paper presents a comparative study of computational fluid dynamics (CFD) simulations and in vitro hemolysis examinations of a bearingless centrifugal blood pump. The outcomes of the in vitro study are analyzed with the help of CFD hemolysis models. METHODS Several pump prototypes were manufactured and tested. Each model was implemented in a CFD framework and simulated with different Eulerian hemolysis models. The outcomes are compared to experimental data. The model achieving the highest correlation is used to explain the in vitro outcomes in detail. RESULTS It is shown that a double-stage model achieves the best correlation. The sensitivity of the simulation is considerably lower than that of in vitro tests. The CFD model reveals that most of the cell destruction is caused in the radial gap of the pump. Further critical regions are the bottom volume and the shroud clearance gap. Only 0.5% of the priming volume is subject to overcritical shear stress. CONCLUSION Cell compatibility can be improved by increasing the radial gap, lowering the shroud and hub clearance gaps, and increasing the fillet radius of the inlet nozzle. CFD models can be used to examine the cell damage effects and help to further improve the pump design. SIGNIFICANCE This paper compares different Eulerian CFD hemolysis models, parameter sets, and equivalent shear stresses to several in vitro hemolysis tests. The sensitivity of the models is compared to that of in vitro studies. It is shown that CFD simulations have their limitations but can help with interpreting the outcomes of in vitro studies.
Collapse
|
49
|
Fukaya A, Shiraishi Y, Inoue Y, Yamada A, Sahara G, Kudo T, Aizawa Y, Yambe T. Development and accuracy evaluation of a degree of occlusion visualization system for roller pumps used in cardiopulmonary bypass. J Artif Organs 2020; 24:27-35. [PMID: 32930908 DOI: 10.1007/s10047-020-01211-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/13/2020] [Indexed: 11/25/2022]
Abstract
In roller pumps used for cardiopulmonary bypass (CPB), the degree of blockage within the tube resulting from compression of the tube by the rollers, or the degree of occlusion, is closely related to hemolysis, with both tight occlusive and non-occlusive degrees promoting hemolysis. There are as yet no international standards regarding methods of adjusting occlusiveness, and the amount of mechanical stress exerted upon blood remains unknown. To prevent hemolysis during CPB using roller pumps, there is a need to clarify and quantitatively assess the mechanical stress of the occlusiveness of the roller pump. In this study, we have developed a degree of occlusion quantification system which constructs the flow channel shape within an occluded tube from red optical density images, and we have verified the validity of this system. Utilizing a linear actuator, an acrylic roller and raceway, a solution colored with simulated blood powder, and a 3/8-inch vinyl chloride tube, this system uses a camera to capture red optical density images within an occluded tube and constructs the tube flow channel shape using a formula manipulation system. To verify the accuracy of this system, we compared the thickness of a cross-section of the flow channel constructed with the degree of occlusion quantification system with the thickness of a cross-section of silicone cured under the same occlusion conditions. Our experiments indicated that for areas with a small tube gap, this system can construct highly accurate three-dimensional shapes and obtain quantitative indicators assessing the degree of occlusion.
Collapse
Affiliation(s)
- Aoi Fukaya
- Graduate School of Biomedical Engineering, Tohoku University, Miyagi, Japan.
- Department of Clinical Engineering, Faculty of Science and Technology, Tohoku Bunka Gakuen University, Miyagi, Japan.
- Department of Medical Engineering and Cardiology, Institute of Development, Aging and Cancer, Tohoku University, Seiryo-machi 4-1, Aoba-ku, Sendai, 980-8575, Japan.
| | - Yasuyuki Shiraishi
- Institute of Development, Aging and Cancer, Tohoku University, Miyagi, Japan.
| | - Yusuke Inoue
- Institute of Development, Aging and Cancer, Tohoku University, Miyagi, Japan
- Advanced Medical Engineering Research Center, Asahikawa Medical University, Hokkaido, Japan
| | - Akihiko Yamada
- Institute of Development, Aging and Cancer, Tohoku University, Miyagi, Japan
| | - Genta Sahara
- Graduate School of Biomedical Engineering, Tohoku University, Miyagi, Japan
| | - Takemi Kudo
- Department of Clinical Engineering, Faculty of Science and Technology, Tohoku Bunka Gakuen University, Miyagi, Japan
| | - Yasuhiro Aizawa
- Department of Clinical Engineering, Faculty of Science and Technology, Tohoku Bunka Gakuen University, Miyagi, Japan
| | - Tomoyuki Yambe
- Graduate School of Biomedical Engineering, Tohoku University, Miyagi, Japan
- Institute of Development, Aging and Cancer, Tohoku University, Miyagi, Japan
| |
Collapse
|
50
|
Razizadeh M, Nikfar M, Paul R, Liu Y. Coarse-Grained Modeling of Pore Dynamics on the Red Blood Cell Membrane under Large Deformations. Biophys J 2020; 119:471-482. [PMID: 32645292 PMCID: PMC7399477 DOI: 10.1016/j.bpj.2020.06.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/22/2020] [Accepted: 06/16/2020] [Indexed: 12/17/2022] Open
Abstract
Transient pore formation on the membrane of red blood cells (RBCs) under high mechanical tensions is of great importance in many biomedical applications, such as RBC damage (hemolysis) and mechanoporation-based drug delivery. The dynamic process of pore formation, growth, and resealing is hard to visualize in experiments. We developed a mesoscale coarse-grained model to study the characteristics of transient pores on a patch of the lipid bilayer that is strengthened by an elastic meshwork representing the cytoskeleton. Unsteady molecular dynamics was used to study the pore formation and reseal at high strain rates close to the physiological ranges. The critical strain for pore formation, pore characteristics, and cytoskeleton effects were studied. Results show that the presence of the cytoskeleton increases the critical strain of pore formation and confines the pore growth. Moreover, the pore recovery process under negative strain rates (compression) is analyzed. Simulations show that pores can remain open for a long time during the high-speed tank-treading induced stretching and compression process that a patch of the RBC membrane usually experiences under high shear flow. Furthermore, complex loading conditions can affect the pore characteristics and result in denser pores. Finally, the effects of strain rate on pore formation are analyzed. Higher rate stretching of membrane patch can result in a significant increase in the critical areal strain and density of pores. Such a model reveals the dynamic molecular process of RBC damage in biomedical devices and mechanoporation that, to our knowledge, has not been reported before.
Collapse
Affiliation(s)
- Meghdad Razizadeh
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania
| | - Mehdi Nikfar
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania
| | - Ratul Paul
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania
| | - Yaling Liu
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania; Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania.
| |
Collapse
|