1
|
Zauchner D, Müller MZ, Horrer M, Bissig L, Zhao F, Fisch P, Lee SS, Zenobi-Wong M, Müller R, Qin XH. Synthetic biodegradable microporous hydrogels for in vitro 3D culture of functional human bone cell networks. Nat Commun 2024; 15:5027. [PMID: 38871693 PMCID: PMC11176307 DOI: 10.1038/s41467-024-49280-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/30/2024] [Indexed: 06/15/2024] Open
Abstract
Generating 3D bone cell networks in vitro that mimic the dynamic process during early bone formation remains challenging. Here, we report a synthetic biodegradable microporous hydrogel for efficient formation of 3D networks from human primary cells, analysis of cell-secreted extracellular matrix (ECM) and microfluidic integration. Using polymerization-induced phase separation, we demonstrate dynamic in situ formation of microporosity (5-20 µm) within matrix metalloproteinase-degradable polyethylene glycol hydrogels in the presence of living cells. Pore formation is triggered by thiol-Michael-addition crosslinking of a viscous precursor solution supplemented with hyaluronic acid and dextran. The resulting microporous architecture can be fine-tuned by adjusting the concentration and molecular weight of dextran. After encapsulation in microporous hydrogels, human mesenchymal stromal cells and osteoblasts spread rapidly and form 3D networks within 24 hours. We demonstrate that matrix degradability controls cell-matrix remodeling, osteogenic differentiation, and deposition of ECM proteins such as collagen. Finally, we report microfluidic integration and proof-of-concept osteogenic differentiation of 3D cell networks under perfusion on chip. Altogether, this work introduces a synthetic microporous hydrogel to efficiently differentiate 3D human bone cell networks, facilitating future in vitro studies on early bone development.
Collapse
Affiliation(s)
- Doris Zauchner
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | | | - Marion Horrer
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Leana Bissig
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Feihu Zhao
- Department of Biomedical Engineering and Zienkiewicz Centre for Computational Engineering, Swansea University, Swansea, UK
| | - Philipp Fisch
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Sung Sik Lee
- Institute of Biochemistry and Scientific Center of Optical and Electron Microscopy, ETH Zurich, Zurich, Switzerland
| | | | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Xiao-Hua Qin
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Drakoulas G, Gortsas T, Polyzos E, Tsinopoulos S, Pyl L, Polyzos D. An explainable machine learning-based probabilistic framework for the design of scaffolds in bone tissue engineering. Biomech Model Mechanobiol 2024; 23:987-1012. [PMID: 38416219 DOI: 10.1007/s10237-024-01817-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/01/2024] [Indexed: 02/29/2024]
Abstract
Recently, 3D-printed biodegradable scaffolds have shown great potential for bone repair in critical-size fractures. The differentiation of the cells on a scaffold is impacted among other factors by the surface deformation of the scaffold due to mechanical loading and the wall shear stresses imposed by the interstitial fluid flow. These factors are in turn significantly affected by the material properties, the geometry of the scaffold, as well as the loading and flow conditions. In this work, a numerical framework is proposed to study the influence of these factors on the expected osteochondral cell differentiation. The considered scaffold is rectangular with a 0/90 lay-down pattern and a four-layered strut made of polylactic acid with a 5% steel particle content. The distribution of the different types of cells on the scaffold surface is estimated through a scalar stimulus, calculated by using a mechanobioregulatory model. To reduce the simulation time for the computation of the stimulus, a probabilistic machine learning (ML)-based reduced-order model (ROM) is proposed. Then, a sensitivity analysis is performed using the Shapley additive explanations to examine the contribution of the various parameters to the framework stimulus predictions. In a final step, a multiobjective optimization procedure is implemented using genetic algorithms and the ROM, aiming to identify the material parameters and loading conditions that maximize the percentage of surface area populated by bone cells while minimizing the area corresponding to the other types of cells and the resorption condition. The results of the performed analysis highlight the potential of using ROMs for the scaffold design, by dramatically reducing the simulation time while enabling the efficient implementation of sensitivity analysis and optimization procedures.
Collapse
Affiliation(s)
- George Drakoulas
- Department of Mechanical Engineering and Aeronautics, University of Patras, 26504, Rio, Greece.
| | - Theodore Gortsas
- Department of Mechanical Engineering and Aeronautics, University of Patras, 26504, Rio, Greece.
- Department of Mechanical Engineering, University of Peloponnese, 26334, Patras, Greece.
| | - Efstratios Polyzos
- Department of Mechanics of Materials and Constructions, Vrije Universiteit Brussel (VUB), 1050, Brussels, Belgium
| | - Stephanos Tsinopoulos
- Department of Mechanical Engineering, University of Peloponnese, 26334, Patras, Greece
| | - Lincy Pyl
- Department of Mechanics of Materials and Constructions, Vrije Universiteit Brussel (VUB), 1050, Brussels, Belgium
| | - Demosthenes Polyzos
- Department of Mechanical Engineering and Aeronautics, University of Patras, 26504, Rio, Greece
| |
Collapse
|
3
|
Mostofinejad A, Romero DA, Brinson D, Marin-Araujo AE, Bazylak A, Waddell TK, Haykal S, Karoubi G, Amon CH. In silico model development and optimization of in vitro lung cell population growth. PLoS One 2024; 19:e0300902. [PMID: 38748626 PMCID: PMC11095723 DOI: 10.1371/journal.pone.0300902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/04/2024] [Indexed: 05/19/2024] Open
Abstract
Tissue engineering predominantly relies on trial and error in vitro and ex vivo experiments to develop protocols and bioreactors to generate functional tissues. As an alternative, in silico methods have the potential to significantly reduce the timelines and costs of experimental programs for tissue engineering. In this paper, we propose a methodology to formulate, select, calibrate, and test mathematical models to predict cell population growth as a function of the biochemical environment and to design optimal experimental protocols for model inference of in silico model parameters. We systematically combine methods from the experimental design, mathematical statistics, and optimization literature to develop unique and explainable mathematical models for cell population dynamics. The proposed methodology is applied to the development of this first published model for a population of the airway-relevant bronchio-alveolar epithelial (BEAS-2B) cell line as a function of the concentration of metabolic-related biochemical substrates. The resulting model is a system of ordinary differential equations that predict the temporal dynamics of BEAS-2B cell populations as a function of the initial seeded cell population and the glucose, oxygen, and lactate concentrations in the growth media, using seven parameters rigorously inferred from optimally designed in vitro experiments.
Collapse
Affiliation(s)
- Amirmahdi Mostofinejad
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - David A. Romero
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Dana Brinson
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Alba E. Marin-Araujo
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Latner Research Laboratories, Division of Thoracic Surgery, University Health Network, Toronto, Ontario, Canada
| | - Aimy Bazylak
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Thomas K. Waddell
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Latner Research Laboratories, Division of Thoracic Surgery, University Health Network, Toronto, Ontario, Canada
| | - Siba Haykal
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Division of Plastic Surgery, University Health Network, Toronto, Ontario, Canada
| | - Golnaz Karoubi
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Latner Research Laboratories, Division of Thoracic Surgery, University Health Network, Toronto, Ontario, Canada
| | - Cristina H. Amon
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Katti PD, Jasuja H. Current Advances in the Use of Tissue Engineering for Cancer Metastasis Therapeutics. Polymers (Basel) 2024; 16:617. [PMID: 38475301 PMCID: PMC10934711 DOI: 10.3390/polym16050617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Cancer is a leading cause of death worldwide and results in nearly 10 million deaths each year. The global economic burden of cancer from 2020 to 2050 is estimated to be USD 25.2 trillion. The spread of cancer to distant organs through metastasis is the leading cause of death due to cancer. However, as of today, there is no cure for metastasis. Tissue engineering is a promising field for regenerative medicine that is likely to be able to provide rehabilitation procedures to patients who have undergone surgeries, such as mastectomy and other reconstructive procedures. Another important use of tissue engineering has emerged recently that involves the development of realistic and robust in vitro models of cancer metastasis, to aid in drug discovery and new metastasis therapeutics, as well as evaluate cancer biology at metastasis. This review covers the current studies in developing tissue-engineered metastasis structures. This article reports recent developments in in vitro models for breast, prostate, colon, and pancreatic cancer. The review also identifies challenges and opportunities in the use of tissue engineering toward new, clinically relevant therapies that aim to reduce the cancer burden.
Collapse
|
5
|
Manescu (Paltanea) V, Paltanea G, Antoniac A, Gruionu LG, Robu A, Vasilescu M, Laptoiu SA, Bita AI, Popa GM, Cocosila AL, Silviu V, Porumb A. Mechanical and Computational Fluid Dynamic Models for Magnesium-Based Implants. MATERIALS (BASEL, SWITZERLAND) 2024; 17:830. [PMID: 38399081 PMCID: PMC10890492 DOI: 10.3390/ma17040830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/26/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024]
Abstract
Today, mechanical properties and fluid flow dynamic analysis are considered to be two of the most important steps in implant design for bone tissue engineering. The mechanical behavior is characterized by Young's modulus, which must have a value close to that of the human bone, while from the fluid dynamics point of view, the implant permeability and wall shear stress are two parameters directly linked to cell growth, adhesion, and proliferation. In this study, we proposed two simple geometries with a three-dimensional pore network dedicated to a manufacturing route based on a titanium wire waving procedure used as an intermediary step for Mg-based implant fabrication. Implant deformation under different static loads, von Mises stresses, and safety factors were investigated using finite element analysis. The implant permeability was computed based on Darcy's law following computational fluid dynamic simulations and, based on the pressure drop, was numerically estimated. It was concluded that both models exhibited a permeability close to the human trabecular bone and reduced wall shear stresses within the biological range. As a general finding, the proposed geometries could be useful in orthopedics for bone defect treatment based on numerical analyses because they mimic the trabecular bone properties.
Collapse
Affiliation(s)
- Veronica Manescu (Paltanea)
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (V.M.); (A.R.); (M.V.); (S.A.L.)
- Faculty of Electrical Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania;
| | - Gheorghe Paltanea
- Faculty of Electrical Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania;
| | - Aurora Antoniac
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (V.M.); (A.R.); (M.V.); (S.A.L.)
| | - Lucian Gheorghe Gruionu
- Faculty of Mechanics, University of Craiova, 13 Alexandru Ioan Cuza, RO-200585 Craiova, Romania;
| | - Alina Robu
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (V.M.); (A.R.); (M.V.); (S.A.L.)
| | - Marius Vasilescu
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (V.M.); (A.R.); (M.V.); (S.A.L.)
| | - Stefan Alexandru Laptoiu
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (V.M.); (A.R.); (M.V.); (S.A.L.)
| | - Ana Iulia Bita
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (V.M.); (A.R.); (M.V.); (S.A.L.)
| | - Georgiana Maria Popa
- Department of Surgical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, RO-410073 Oradea, Romania; (G.M.P.); (A.L.C.); (V.S.)
| | - Andreea Liliana Cocosila
- Department of Surgical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, RO-410073 Oradea, Romania; (G.M.P.); (A.L.C.); (V.S.)
| | - Vlad Silviu
- Department of Surgical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, RO-410073 Oradea, Romania; (G.M.P.); (A.L.C.); (V.S.)
| | - Anca Porumb
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, RO-410073 Oradea, Romania;
| |
Collapse
|
6
|
Fernández‐Colino A, Kiessling F, Slabu I, De Laporte L, Akhyari P, Nagel SK, Stingl J, Reese S, Jockenhoevel S. Lifelike Transformative Materials for Biohybrid Implants: Inspired by Nature, Driven by Technology. Adv Healthc Mater 2023; 12:e2300991. [PMID: 37290055 PMCID: PMC11469152 DOI: 10.1002/adhm.202300991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/25/2023] [Indexed: 06/10/2023]
Abstract
Today's living world is enriched with a myriad of natural biological designs, shaped by billions of years of evolution. Unraveling the construction rules of living organisms offers the potential to create new materials and systems for biomedicine. From the close examination of living organisms, several concepts emerge: hierarchy, pattern repetition, adaptation, and irreducible complexity. All these aspects must be tackled to develop transformative materials with lifelike behavior. This perspective article highlights recent progress in the development of transformative biohybrid systems for applications in the fields of tissue regeneration and biomedicine. Advances in computational simulations and data-driven predictions are also discussed. These tools enable the virtual high-throughput screening of implant design and performance before committing to fabrication, thus reducing the development time and cost of biomimetic and biohybrid constructs. The ongoing progress of imaging methods also constitutes an essential part of this matter in order to validate the computation models and enable longitudinal monitoring. Finally, the current challenges of lifelike biohybrid materials, including reproducibility, ethical considerations, and translation, are discussed. Advances in the development of lifelike materials will open new biomedical horizons, where perhaps what is currently envisioned as science fiction will become a science-driven reality in the future.
Collapse
Affiliation(s)
- Alicia Fernández‐Colino
- Department of Biohybrid & Medical Textiles (BioTex)AME‐Institute of Applied Medical EngineeringHelmholtz InstituteRWTH Aachen UniversityForckenbeckstraße 5552074AachenGermany
| | - Fabian Kiessling
- Institute for Experimental Molecular ImagingFaculty of MedicineRWTH Aachen UniversityForckenbeckstraße 5552074AachenGermany
| | - Ioana Slabu
- Institute of Applied Medical EngineeringHelmholtz InstituteMedical FacultyRWTH Aachen UniversityPauwelsstraße 2052074AachenGermany
| | - Laura De Laporte
- DWI – Leibniz‐Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
- Institute of Technical and Macromolecular Chemistry (ITMC)RWTH Aachen UniversityWorringerweg 252074AachenGermany
- Advanced Materials for Biomedicine (AMB)Institute of Applied Medical Engineering (AME)University Hospital RWTH AachenCenter for Biohybrid Medical Systems (CMBS)Forckenbeckstraße 5552074AachenGermany
| | - Payam Akhyari
- Clinic for Cardiac SurgeryUniversity Hospital RWTH AachenPauwelsstraße 3052074AachenGermany
| | - Saskia K. Nagel
- Applied Ethics GroupRWTH Aachen UniversityTheaterplatz 1452062AachenGermany
| | - Julia Stingl
- Institute of Clinical PharmacologyUniversity Hospital RWTH AachenWendlingweg 252074AachenGermany
| | - Stefanie Reese
- Institute of Applied MechanicsRWTH Aachen UniversityMies‐van‐der‐Rohe‐Str. 152074AachenGermany
| | - Stefan Jockenhoevel
- Department of Biohybrid & Medical Textiles (BioTex)AME‐Institute of Applied Medical EngineeringHelmholtz InstituteRWTH Aachen UniversityForckenbeckstraße 5552074AachenGermany
| |
Collapse
|
7
|
de Wildt BWM, Zhao F, Lauwers I, van Rietbergen B, Ito K, Hofmann S. Characterization of three-dimensional bone-like tissue growth and organization under influence of directional fluid flow. Biotechnol Bioeng 2023. [PMID: 37148472 DOI: 10.1002/bit.28418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 02/04/2023] [Accepted: 04/25/2023] [Indexed: 05/08/2023]
Abstract
The transition in the field of bone tissue engineering from bone regeneration to in vitro models has come with the challenge of recreating a dense and anisotropic bone-like extracellular matrix (ECM). Although the mechanism by which bone ECM gains its structure is not fully understood, mechanical loading and curvature have been identified as potential contributors. Here, guided by computational simulations, we evaluated cell and bone-like tissue growth and organization in a concave channel with and without directional fluid flow stimulation. Human mesenchymal stromal cells were seeded on donut-shaped silk fibroin scaffolds and osteogenically stimulated for 42 days statically or in a flow perfusion bioreactor. After 14, 28, and 42 days, constructs were investigated for cell and tissue growth and organization. As a result, directional fluid flow was able to improve organic tissue growth but not organization. Cells tended to orient in the tangential direction of the channel, possibly attributed to its curvature. Based on our results, we suggest that organic ECM production but not anisotropy can be stimulated through the application of fluid flow. With this study, an initial attempt in three-dimensions was made to improve the resemblance of in vitro produced bone-like ECM to the physiological bone ECM.
Collapse
Affiliation(s)
- Bregje W M de Wildt
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Feihu Zhao
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Biomedical Engineering, Zienkiewicz Centre for Computational Engineering, Faculty of Science and Engineering, Swansea University, Swansea, UK
| | - Iris Lauwers
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Bert van Rietbergen
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Sandra Hofmann
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
8
|
Yamada S, Yassin MA, Torelli F, Hansmann J, Green JBA, Schwarz T, Mustafa K. Unique osteogenic profile of bone marrow stem cells stimulated in perfusion bioreactor is Rho-ROCK-mediated contractility dependent. Bioeng Transl Med 2023; 8:e10509. [PMID: 37206242 PMCID: PMC10189446 DOI: 10.1002/btm2.10509] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 03/19/2023] Open
Abstract
The fate determination of bone marrow mesenchymal stem/stromal cells (BMSC) is tightly regulated by mechanical cues, including fluid shear stress. Knowledge of mechanobiology in 2D culture has allowed researchers in bone tissue engineering to develop 3D dynamic culture systems with the potential for clinical translation in which the fate and growth of BMSC are mechanically controlled. However, due to the complexity of 3D dynamic cell culture compared to the 2D counterpart, the mechanisms of cell regulation in the dynamic environment remain relatively undescribed. In the present study, we analyzed the cytoskeletal modulation and osteogenic profiles of BMSC under fluid stimuli in a 3D culture condition using a perfusion bioreactor. BMSC subjected to fluid shear stress (mean 1.56 mPa) showed increased actomyosin contractility, accompanied by the upregulation of mechanoreceptors, focal adhesions, and Rho GTPase-mediated signaling molecules. Osteogenic gene expression profiling revealed that fluid shear stress promoted the expression of osteogenic markers differently from chemically induced osteogenesis. Osteogenic marker mRNA expression, type 1 collagen formation, ALP activity, and mineralization were promoted in the dynamic condition, even in the absence of chemical supplementation. The inhibition of cell contractility under flow by Rhosin chloride, Y27632, MLCK inhibitor peptide-18, or Blebbistatin revealed that actomyosin contractility was required for maintaining the proliferative status and mechanically induced osteogenic differentiation in the dynamic culture. The study highlights the cytoskeletal response and unique osteogenic profile of BMSC in this type of dynamic cell culture, stepping toward the clinical translation of mechanically stimulated BMCS for bone regeneration.
Collapse
Affiliation(s)
- Shuntaro Yamada
- Center of Translational Oral Research (TOR)‐Tissue Engineering Group, Department of Clinical Dentistry, Faculty of MedicineUniversity of BergenNorway
| | - Mohammed A. Yassin
- Center of Translational Oral Research (TOR)‐Tissue Engineering Group, Department of Clinical Dentistry, Faculty of MedicineUniversity of BergenNorway
| | - Francesco Torelli
- Center of Translational Oral Research (TOR)‐Tissue Engineering Group, Department of Clinical Dentistry, Faculty of MedicineUniversity of BergenNorway
| | - Jan Hansmann
- Translational Center Regenerative TherapiesFraunhofer Institute for Silicate Research ISCWürzburgGermany
- Chair of Tissue Engineering and Regenerative MedicineUniversity Hospital WürzburgWürzburgGermany
- Department of Electrical EngineeringUniversity of Applied Sciences Würzburg‐SchweinfurtSchweinfurtGermany
| | - Jeremy B. A. Green
- Centre for Craniofacial & Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial SciencesKing's College LondonUK
| | - Thomas Schwarz
- Translational Center Regenerative TherapiesFraunhofer Institute for Silicate Research ISCWürzburgGermany
| | - Kamal Mustafa
- Center of Translational Oral Research (TOR)‐Tissue Engineering Group, Department of Clinical Dentistry, Faculty of MedicineUniversity of BergenNorway
| |
Collapse
|
9
|
Efficient calculation of fluid-induced wall shear stress within tissue engineering scaffolds by an empirical model. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2023. [DOI: 10.1016/j.medntd.2023.100223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
|
10
|
Akerkouch L, Jasuja H, Katti K, Katti D, Le T. The Influence of Fluid Shear Stress on Bone and Cancer Cells Proliferation and Distribution. Ann Biomed Eng 2023; 51:1199-1215. [PMID: 36593306 DOI: 10.1007/s10439-022-03123-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 12/25/2022] [Indexed: 01/04/2023]
Abstract
We investigated the potential correlation between the fluid shear stress and the proliferation of bone prostate cancer cells on the surface of nanoclay-based scaffolds in a perfusion bioreactor. Human mesenchymal stem cells (hMSCs) were seeded on the scaffolds to initiate bone growth. After 23 days, prostate cancer cells (MDAPCa2b) were cultured on top of the osteogenically differentiated hMSCs. The scaffolds were separated into two groups subjected to two distinct conditions: (i) static (no flow); and (ii) dynamic (with flow) conditions to recapitulate bone metastasis of prostate cancer. Based on measured data, Computational Fluid Dynamics (CFD) models were constructed to determine the velocity and shear stress distributions on the scaffold surface. Our experimental results show distinct differences in the growth pattern of hMSCs and MDAPCa2b cells between the static and dynamic conditions. Our computational results further suggest that the dynamic flow leads to drastic change in cell morphology and tumorous distribution. Our work points to a strong correlation between tumor growth and local interstitial flows in bones.
Collapse
Affiliation(s)
- Lahcen Akerkouch
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND, USA
| | - Haneesh Jasuja
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND, USA
| | - Kalpana Katti
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND, USA
| | - Dinesh Katti
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND, USA
| | - Trung Le
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND, USA.
| |
Collapse
|
11
|
Omar AM, Hassan MH, Daskalakis E, Ates G, Bright CJ, Xu Z, Powell EJ, Mirihanage W, Bartolo PJDS. Geometry-Based Computational Fluid Dynamic Model for Predicting the Biological Behavior of Bone Tissue Engineering Scaffolds. J Funct Biomater 2022; 13:104. [PMID: 35997442 PMCID: PMC9397055 DOI: 10.3390/jfb13030104] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 02/05/2023] Open
Abstract
The use of biocompatible and biodegradable porous scaffolds produced via additive manufacturing is one of the most common approaches in tissue engineering. The geometric design of tissue engineering scaffolds (e.g., pore size, pore shape, and pore distribution) has a significant impact on their biological behavior. Fluid flow dynamics are important for understanding blood flow through a porous structure, as they determine the transport of nutrients and oxygen to cells and the flushing of toxic waste. The aim of this study is to investigate the impact of the scaffold architecture, pore size and distribution on its biological performance using Computational Fluid Dynamics (CFD). Different blood flow velocities (BFV) induce wall shear stresses (WSS) on cells. WSS values above 30 mPa are detrimental to their growth. In this study, two scaffold designs were considered: rectangular scaffolds with uniform square pores (300, 350, and 450 µm), and anatomically designed circular scaffolds with a bone-like structure and pore size gradient (476-979 µm). The anatomically designed scaffolds provided the best fluid flow conditions, suggesting a 24.21% improvement in the biological performance compared to the rectangular scaffolds. The numerical observations are aligned with those of previously reported biological studies.
Collapse
Affiliation(s)
- Abdalla M. Omar
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK; (M.H.H.); (E.D.); (G.A.); (C.J.B.); (Z.X.); (E.J.P.)
| | - Mohamed H. Hassan
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK; (M.H.H.); (E.D.); (G.A.); (C.J.B.); (Z.X.); (E.J.P.)
| | - Evangelos Daskalakis
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK; (M.H.H.); (E.D.); (G.A.); (C.J.B.); (Z.X.); (E.J.P.)
| | - Gokhan Ates
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK; (M.H.H.); (E.D.); (G.A.); (C.J.B.); (Z.X.); (E.J.P.)
| | - Charlie J. Bright
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK; (M.H.H.); (E.D.); (G.A.); (C.J.B.); (Z.X.); (E.J.P.)
| | - Zhanyan Xu
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK; (M.H.H.); (E.D.); (G.A.); (C.J.B.); (Z.X.); (E.J.P.)
| | - Emily J. Powell
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK; (M.H.H.); (E.D.); (G.A.); (C.J.B.); (Z.X.); (E.J.P.)
| | - Wajira Mirihanage
- Department of Materials, The University of Manchester, Manchester M13 9PL, UK;
| | - Paulo J. D. S. Bartolo
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK; (M.H.H.); (E.D.); (G.A.); (C.J.B.); (Z.X.); (E.J.P.)
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
12
|
Post JN, Loerakker S, Merks R, Carlier A. Implementing computational modeling in tissue engineering: where disciplines meet. Tissue Eng Part A 2022; 28:542-554. [PMID: 35345902 DOI: 10.1089/ten.tea.2021.0215] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In recent years, the mathematical and computational sciences have developed novel methodologies and insights that can aid in designing advanced bioreactors, microfluidic set-ups or organ-on-chip devices, in optimizing culture conditions, or predicting long-term behavior of engineered tissues in vivo. In this review, we introduce the concept of computational models and how they can be integrated in an interdisciplinary workflow for Tissue Engineering and Regenerative Medicine (TERM). We specifically aim this review of general concepts and examples at experimental scientists with little or no computational modeling experience. We also describe the contribution of computational models in understanding TERM processes and in advancing the TERM field by providing novel insights.
Collapse
Affiliation(s)
- Janine Nicole Post
- University of Twente, 3230, Tissue Regeneration, Enschede, Overijssel, Netherlands;
| | - Sandra Loerakker
- Eindhoven University of Technology, 3169, Department of Biomedical Engineering, Eindhoven, Noord-Brabant, Netherlands.,Eindhoven University of Technology, 3169, Institute for Complex Molecular Systems, Eindhoven, Noord-Brabant, Netherlands;
| | - Roeland Merks
- Leiden University, 4496, Institute for Biology Leiden and Mathematical Institute, Leiden, Zuid-Holland, Netherlands;
| | - Aurélie Carlier
- Maastricht University, 5211, MERLN Institute for Technology-Inspired Regenerative Medicine, Universiteitssingel 40, 6229 ER Maastricht, Maastricht, Netherlands, 6200 MD;
| |
Collapse
|
13
|
Yamada S, Yassin MA, Schwarz T, Mustafa K, Hansmann J. Optimization and Validation of a Custom-Designed Perfusion Bioreactor for Bone Tissue Engineering: Flow Assessment and Optimal Culture Environmental Conditions. Front Bioeng Biotechnol 2022; 10:811942. [PMID: 35402393 PMCID: PMC8990132 DOI: 10.3389/fbioe.2022.811942] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/07/2022] [Indexed: 11/29/2022] Open
Abstract
Various perfusion bioreactor systems have been designed to improve cell culture with three-dimensional porous scaffolds, and there is some evidence that fluid force improves the osteogenic commitment of the progenitors. However, because of the unique design concept and operational configuration of each study, the experimental setups of perfusion bioreactor systems are not always compatible with other systems. To reconcile results from different systems, the thorough optimization and validation of experimental configuration are required in each system. In this study, optimal experimental conditions for a perfusion bioreactor were explored in three steps. First, an in silico modeling was performed using a scaffold geometry obtained by microCT and an expedient geometry parameterized with porosity and permeability to assess the accuracy of calculated fluid shear stress and computational time. Then, environmental factors for cell culture were optimized, including the volume of the medium, bubble suppression, and medium evaporation. Further, by combining the findings, it was possible to determine the optimal flow rate at which cell growth was supported while osteogenic differentiation was triggered. Here, we demonstrated that fluid shear stress up to 15 mPa was sufficient to induce osteogenesis, but cell growth was severely impacted by the volume of perfused medium, the presence of air bubbles, and medium evaporation, all of which are common concerns in perfusion bioreactor systems. This study emphasizes the necessity of optimization of experimental variables, which may often be underreported or overlooked, and indicates steps which can be taken to address issues common to perfusion bioreactors for bone tissue engineering.
Collapse
Affiliation(s)
- Shuntaro Yamada
- Centre of Translational Oral Research, Tissue Engineering Group, Department of Clinical Dentistry, University of Bergen, Bergen, Norway
- *Correspondence: Shuntaro Yamada, ; Jan Hansmann,
| | - Mohammed A. Yassin
- Centre of Translational Oral Research, Tissue Engineering Group, Department of Clinical Dentistry, University of Bergen, Bergen, Norway
| | - Thomas Schwarz
- Translational Centre Regenerative Therapies, Fraunhofer Institute for Silicate Research ISC, Würzburg, Germany
| | - Kamal Mustafa
- Centre of Translational Oral Research, Tissue Engineering Group, Department of Clinical Dentistry, University of Bergen, Bergen, Norway
| | - Jan Hansmann
- Translational Centre Regenerative Therapies, Fraunhofer Institute for Silicate Research ISC, Würzburg, Germany
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
- Department Electrical Engineering, University of Applied Sciences Würzburg-Schweinfurt, Würzburg, Germany
- *Correspondence: Shuntaro Yamada, ; Jan Hansmann,
| |
Collapse
|
14
|
Bomkamp C, Skaalure SC, Fernando GF, Ben‐Arye T, Swartz EW, Specht EA. Scaffolding Biomaterials for 3D Cultivated Meat: Prospects and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102908. [PMID: 34786874 PMCID: PMC8787436 DOI: 10.1002/advs.202102908] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/12/2021] [Indexed: 05/03/2023]
Abstract
Cultivating meat from stem cells rather than by raising animals is a promising solution to concerns about the negative externalities of meat production. For cultivated meat to fully mimic conventional meat's organoleptic and nutritional properties, innovations in scaffolding technology are required. Many scaffolding technologies are already developed for use in biomedical tissue engineering. However, cultivated meat production comes with a unique set of constraints related to the scale and cost of production as well as the necessary attributes of the final product, such as texture and food safety. This review discusses the properties of vertebrate skeletal muscle that will need to be replicated in a successful product and the current state of scaffolding innovation within the cultivated meat industry, highlighting promising scaffold materials and techniques that can be applied to cultivated meat development. Recommendations are provided for future research into scaffolds capable of supporting the growth of high-quality meat while minimizing production costs. Although the development of appropriate scaffolds for cultivated meat is challenging, it is also tractable and provides novel opportunities to customize meat properties.
Collapse
Affiliation(s)
- Claire Bomkamp
- The Good Food Institute1380 Monroe St. NW #229WashingtonDC20010USA
| | | | | | - Tom Ben‐Arye
- The Good Food Institute1380 Monroe St. NW #229WashingtonDC20010USA
| | - Elliot W. Swartz
- The Good Food Institute1380 Monroe St. NW #229WashingtonDC20010USA
| | | |
Collapse
|
15
|
Pires T, Dunlop JWC, Fernandes PR, Castro APG. Challenges in computational fluid dynamics applications for bone tissue engineering. Proc Math Phys Eng Sci 2022; 478:20210607. [PMID: 35153613 PMCID: PMC8791047 DOI: 10.1098/rspa.2021.0607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/13/2021] [Indexed: 12/21/2022] Open
Abstract
Bone injuries or defects that require invasive surgical treatment are a serious clinical issue, particularly when it comes to treatment success and effectiveness. Accordingly, bone tissue engineering (BTE) has been researching the use of computational fluid dynamics (CFD) analysis tools to assist in designing optimal scaffolds that better promote bone growth and repair. This paper aims to offer a comprehensive review of recent studies that use CFD analysis in BTE. The mechanical and fluidic properties of a given scaffold are coupled to each other via the scaffold architecture, meaning an optimization of one may negatively affect the other. For example, designs that improve scaffold permeability normally result in a decreased average wall shear stress. Linked with these findings, it appears there are very few studies in this area that state a specific application for their scaffolds and those that do are focused on in vitro bioreactor environments. Finally, this review also demonstrates a scarcity of studies that combine CFD with optimization methods to improve scaffold design. This highlights an important direction of research for the development of the next generation of BTE scaffolds.
Collapse
Affiliation(s)
- Tiago Pires
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - John W C Dunlop
- MorphoPhysics Group, Department of the Chemistry and Physics of Materials, University of Salzburg, Salzburg, Austria
| | | | - André P G Castro
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
16
|
Guarnera D, Iberite F, Piazzoni M, Gerges I, Santaniello T, Vannozzi L, Lenardi C, Ricotti L. Effects of the 3D Geometry Reconstruction on the Estimation of 3D Porous Scaffold Permeability . ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:4403-4407. [PMID: 34892196 DOI: 10.1109/embc46164.2021.9629664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
3D scaffolds for tissue engineering typically need to adopt a dynamic culture to foster cell distribution and survival throughout the scaffold. It is, therefore, crucial to know fluids' behavior inside the scaffold architecture, especially for complex porous ones. Here we report a comparison between simulated and measured permeability of a porous 3D scaffold, focusing on different modeling parameters. The scaffold features were extracted by microcomputed tomography (µCT) and representative volume elements were used for the computational fluid-dynamic analyses. The objective was to investigate the sensitivity of the model to the degree of detail of the µCT image and the elements of the mesh. These findings highlight the pros and cons of the modeling strategy adopted and the importance of such parameters in analyzing fluid behavior in 3D scaffolds.
Collapse
|
17
|
Zhao F, Xiong Y, Ito K, van Rietbergen B, Hofmann S. Porous Geometry Guided Micro-mechanical Environment Within Scaffolds for Cell Mechanobiology Study in Bone Tissue Engineering. Front Bioeng Biotechnol 2021; 9:736489. [PMID: 34595161 PMCID: PMC8476750 DOI: 10.3389/fbioe.2021.736489] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/27/2021] [Indexed: 12/15/2022] Open
Abstract
Mechanobiology research is for understanding the role of mechanics in cell physiology and pathology. It will have implications for studying bone physiology and pathology and to guide the strategy for regenerating both the structural and functional features of bone. Mechanobiological studies in vitro apply a dynamic micro-mechanical environment to cells via bioreactors. Porous scaffolds are commonly used for housing the cells in a three-dimensional (3D) culturing environment. Such scaffolds usually have different pore geometries (e.g. with different pore shapes, pore dimensions and porosities). These pore geometries can affect the internal micro-mechanical environment that the cells experience when loaded in the bioreactor. Therefore, to adjust the applied micro-mechanical environment on cells, researchers can tune either the applied load and/or the design of the scaffold pore geometries. This review will provide information on how the micro-mechanical environment (e.g. fluid-induced wall shear stress and mechanical strain) is affected by various scaffold pore geometries within different bioreactors. It shall allow researchers to estimate/quantify the micro-mechanical environment according to the already known pore geometry information, or to find a suitable pore geometry according to the desirable micro-mechanical environment to be applied. Finally, as future work, artificial intelligent - assisted techniques, which can achieve an automatic design of solid porous scaffold geometry for tuning/optimising the micro-mechanical environment are suggested.
Collapse
Affiliation(s)
- Feihu Zhao
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
- Zienkiewicz Centre for Computational Engineering, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom
| | - Yi Xiong
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen, China
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| | - Bert van Rietbergen
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Sandra Hofmann
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
18
|
Ramaraju H, Pithadia K, Crotts SJ, Flanagan CL, Green GE, Hollister SJ. Evaluating Directional Dependency of Selective Laser Sintered Patient Specific Biodegradable Devices to Improve Predictive Modeling and Design Verification. Ann Biomed Eng 2021; 49:2579-2589. [PMID: 34291387 PMCID: PMC11334193 DOI: 10.1007/s10439-021-02835-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/12/2021] [Indexed: 01/01/2023]
Abstract
Additive manufacturing, or 3D printing, of the bioresorbable polymer [Formula: see text]-polycaprolactone (PCL) is an emerging tissue engineering solution addressing patient specific anatomies. Predictively modeling the mechanical behavior of 3D printed parts comprised of PCL improves the ability to develop patient specific devices that meet design requirements while reducing the testing of extraneous design variants and development time for emergency devices. Predicting mechanical behavior of 3D-printed devices is limited by the variability of effective material moduli that are determined in part by the 3D printing manufacturing process. Powder fusion methods, specifically laser sintering, are known to produce parts with internal porosity ultimately impacting the mechanical performance of printed devices. This study investigates the role of print direction and part size on the material and structural properties of laser sintered PCL parts. Solid PCL cylinders were printed in the XY (perpendicular to laser) and Z direction (parallel to laser), scanned using microcomputed tomography, and mechanically tested under compression. Compositional, structural, and functional properties of the printed parts were evaluated with differential scanning calorimetry, gel permeation chromatography, microcomputed tomography, and mechanical testing. Computational models of printed and scanned cylinders were fit to experimental data to derive effective moduli. Effective moduli were used to predict the mechanical behavior of splints used for emergency repair of severe tracheobronchomalacia. Laser sintering did not cause significant differences in polymer material properties compared to unmanufactured powder. Effective moduli (Eeff) were greater for larger part sizes (p < 0.01) and for parts oriented in the XY direction compared to the Z direction (p < 0.001). These dependencies were congruent with the differences in void volumes associated with the print direction (p < 0.01) and part size (p < 0.01). Finite element models of splint parallel compression tests utilizing the Eeff dependent on print direction and size agreed with experimental closed compression tests of splints. Evaluating the microstructural properties of printed parts and selecting effective moduli for finite element models based on manufacturing parameters allows accurate prediction of device performance. These findings allow testing of a greater number of device design variants in silico to accomodate patient specific anatomies towards providing higher quality parts while lowering overall time and costs of manufacturing and testing.
Collapse
Affiliation(s)
- Harsha Ramaraju
- Department of Biomedical Engineering and Center for 3D Medical Fabrication (3DMedFab), Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Biomedical Engineering, Georgia Institute of Technology, Tissue Engineering and Mechanics Group and the Center for 3D Medical Fabrication, 313 Ferst Drive, Atlanta, GA, 30332, USA.
| | - Kishan Pithadia
- Department of Biomedical Engineering and Center for 3D Medical Fabrication (3DMedFab), Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Sarah J Crotts
- Department of Biomedical Engineering and Center for 3D Medical Fabrication (3DMedFab), Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Colleen L Flanagan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Glenn E Green
- Department of Otolaryngology Head and Neck Surgery, Division of Pediatric Otolaryngology, University of Michigan Health System, Ann Arbor, MI, 48104, USA
| | - Scott J Hollister
- Department of Biomedical Engineering and Center for 3D Medical Fabrication (3DMedFab), Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
19
|
Wu C, Entezari A, Zheng K, Fang J, Zreiqat H, Steven GP, Swain MV, Li Q. A machine learning-based multiscale model to predict bone formation in scaffolds. NATURE COMPUTATIONAL SCIENCE 2021; 1:532-541. [PMID: 38217252 DOI: 10.1038/s43588-021-00115-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/19/2021] [Indexed: 01/15/2024]
Abstract
Computational modeling methods combined with non-invasive imaging technologies have exhibited great potential and unique opportunities to model new bone formation in scaffold tissue engineering, offering an effective alternate and viable complement to laborious and time-consuming in vivo studies. However, existing numerical approaches are still highly demanding computationally in such multiscale problems. To tackle this challenge, we propose a machine learning (ML)-based approach to predict bone ingrowth outcomes in bulk tissue scaffolds. The proposed in silico procedure is developed by correlating with a dedicated longitudinal (12-month) animal study on scaffold treatment of a major segmental defect in sheep tibia. Comparison of the ML-based time-dependent prediction of bone ingrowth with the conventional multilevel finite element (FE2) model demonstrates satisfactory accuracy and efficiency. The ML-based modeling approach provides an effective means for predicting in vivo bone tissue regeneration in a subject-specific scaffolding system.
Collapse
Affiliation(s)
- Chi Wu
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, New South Wales, Australia
| | - Ali Entezari
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales, Australia
| | - Keke Zheng
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, New South Wales, Australia
| | - Jianguang Fang
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Hala Zreiqat
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales, Australia
| | - Grant P Steven
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, New South Wales, Australia
| | - Michael V Swain
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, New South Wales, Australia
| | - Qing Li
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
20
|
唐 辉, 伍 津. [Application advances in the computational fluid dynamics in tissue engineering]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2021; 35:776-780. [PMID: 34142507 PMCID: PMC8218176 DOI: 10.7507/1002-1892.202012098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/05/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To review the advances in the computational fluid dynamics (CFD) in tissue engineering. METHODS The latest research of CFD applied to tissue engineering were extensively retrieved and analyzed, the optimization of bioreactor design and the simulation of fluid dynamics and cell growth kinetics during tissue regeneration in vitro were mainly reviewed. RESULTS The simulation and predictive capabilities of CFD can provide important guidance for the optimization of bioreactor design, and the cultivation of engineering tissue. The accuracy of model prediction results can be further improved by combining with experimental research. CONCLUSION As a new and effective research tool, CFD has its unique advantages in the application of tissue engineering. However, a more comprehensive and accurate simulation of the whole process of tissue regeneration still needs further studies.
Collapse
Affiliation(s)
- 辉 唐
- 陆军军医大学大坪医院皮肤科(重庆 400042)Department of Dermatology, Daping Hospital, Army Medical University, Chongqing, 400042, P.R.China
| | - 津津 伍
- 陆军军医大学大坪医院皮肤科(重庆 400042)Department of Dermatology, Daping Hospital, Army Medical University, Chongqing, 400042, P.R.China
| |
Collapse
|
21
|
Digital Twins for Tissue Culture Techniques—Concepts, Expectations, and State of the Art. Processes (Basel) 2021. [DOI: 10.3390/pr9030447] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Techniques to provide in vitro tissue culture have undergone significant changes during the last decades, and current applications involve interactions of cells and organoids, three-dimensional cell co-cultures, and organ/body-on-chip tools. Efficient computer-aided and mathematical model-based methods are required for efficient and knowledge-driven characterization, optimization, and routine manufacturing of tissue culture systems. As an alternative to purely experimental-driven research, the usage of comprehensive mathematical models as a virtual in silico representation of the tissue culture, namely a digital twin, can be advantageous. Digital twins include the mechanistic of the biological system in the form of diverse mathematical models, which describe the interaction between tissue culture techniques and cell growth, metabolism, and the quality of the tissue. In this review, current concepts, expectations, and the state of the art of digital twins for tissue culture concepts will be highlighted. In general, DT’s can be applied along the full process chain and along the product life cycle. Due to the complexity, the focus of this review will be especially on the design, characterization, and operation of the tissue culture techniques.
Collapse
|
22
|
Liu B, Han S, Modarres-Sadeghi Y, Lynch ME. Multiphysics simulation of a compression-perfusion combined bioreactor to predict the mechanical microenvironment during bone metastatic breast cancer loading experiments. Biotechnol Bioeng 2021; 118:1779-1792. [PMID: 33491767 DOI: 10.1002/bit.27692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 01/15/2021] [Accepted: 01/22/2021] [Indexed: 01/12/2023]
Abstract
Incurable breast cancer bone metastasis causes widespread bone loss, resulting in fragility, pain, increased fracture risk, and ultimately increased patient mortality. Increased mechanical signals in the skeleton are anabolic and protect against bone loss, and they may also do so during osteolytic bone metastasis. Skeletal mechanical signals include interdependent tissue deformations and interstitial fluid flow, but how metastatic tumor cells respond to each of these individual signals remains underinvestigated, a barrier to translation to the clinic. To delineate their respective roles, we report computed estimates of the internal mechanical field of a bone mimetic scaffold undergoing combinations of high and low compression and perfusion using multiphysics simulations. Simulations were conducted in advance of multimodal loading bioreactor experiments with bone metastatic breast cancer cells to ensure that mechanical stimuli occurring internally were physiological and anabolic. Our results show that mechanical stimuli throughout the scaffold were within the anabolic range of bone cells in all loading configurations, were homogenously distributed throughout, and that combined high magnitude compression and perfusion synergized to produce the largest wall shear stresses within the scaffold. These simulations, when combined with experiments, will shed light on how increased mechanical loading in the skeleton may confer anti-tumorigenic effects during metastasis.
Collapse
Affiliation(s)
- Boyuan Liu
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, Massachusetts, USA
| | - Suyue Han
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, Massachusetts, USA
| | - Yahya Modarres-Sadeghi
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, Massachusetts, USA
| | - Maureen E Lynch
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, Massachusetts, USA.,Department of Mechanical Engineering, University of Colorado, Boulder, Colorado, USA
| |
Collapse
|
23
|
Chen H, Liu Y, Wang C, Zhang A, Chen B, Han Q, Wang J. Design and properties of biomimetic irregular scaffolds for bone tissue engineering. Comput Biol Med 2021; 130:104241. [PMID: 33529844 DOI: 10.1016/j.compbiomed.2021.104241] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 10/22/2022]
Abstract
The treatment of sizeable segmental bone defects remains a challenge encountered by surgeons. In addition to bone transplantation, porous scaffolds have become a common option. Although the mechanical and biological properties of porous scaffold have recently been the subject of intense research, pore irregularity as a critical characteristic has been poorly explored. Therefore, this study aimed to design an irregular biomimetic scaffold for use in bone tissue engineering applications. The irregular scaffold was based on the Voronoi tessellation method for similarity with the primary histomorphological indexes of bone (porosity, trabecular thickness, cortical bone thickness, and surface to volume ratio). Moreover, a new gradient method was adopted, in which porosity was maintained constant, and the strut diameter was changed to generate a gradient in the irregular scaffold. The permeability and stress concentration characteristics of the irregular scaffold were compared against three conventional scaffolds (the octet, body-centered cubic, pillar body-centered cubic). The results illustrated that the microstructure of the irregular scaffold could be controlled similarly to that of the cortical/cancellous bone unit. Simultaneously, a broad range of permeability was identified for the irregular scaffold, and gradient irregular scaffolds performed better in terms of both permeability and stress distribution than regular scaffolds. This study describes a novel method for the design of irregular scaffolds, which have good controllability and excellent permeability.
Collapse
Affiliation(s)
- Hao Chen
- Department of Orthopedics, Second Hospital of Jilin University, Changchun, 130000, Jilin Province, China
| | - Yang Liu
- Department of Orthopedics, Second Hospital of Jilin University, Changchun, 130000, Jilin Province, China
| | - Chenyu Wang
- Department of Plastic and Cosmetic Surgery, First Hospital of Jilin University, Changchun, 130000, Jilin Province, China
| | - Aobo Zhang
- Department of Orthopedics, Second Hospital of Jilin University, Changchun, 130000, Jilin Province, China
| | - Bingpeng Chen
- Department of Orthopedics, Second Hospital of Jilin University, Changchun, 130000, Jilin Province, China
| | - Qing Han
- Department of Orthopedics, Second Hospital of Jilin University, Changchun, 130000, Jilin Province, China.
| | - Jincheng Wang
- Department of Orthopedics, Second Hospital of Jilin University, Changchun, 130000, Jilin Province, China.
| |
Collapse
|
24
|
Wu C, Fang J, Entezari A, Sun G, Swain MV, Xu Y, Steven GP, Li Q. A time-dependent mechanobiology-based topology optimization to enhance bone growth in tissue scaffolds. J Biomech 2021; 117:110233. [PMID: 33601086 DOI: 10.1016/j.jbiomech.2021.110233] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 10/05/2020] [Accepted: 01/03/2021] [Indexed: 12/21/2022]
Abstract
Scaffold-based bone tissue engineering has been extensively developed as a potential means to treatment of large bone defects. To enhance the biomechanical performance of porous tissue scaffolds, computational design techniques have gained growing popularity attributable to their compelling efficiency and strong predictive features compared with time-consuming trial-and-error experiments. Nevertheless, the mechanical stimulus necessary for bone regeneration, which characterizes dynamic nature due to continuous variation in the bone-scaffold construct system as a result of bone-ingrowth and scaffold biodegradation, is often neglected. Thus, this study proposes a time-dependent mechanobiology-based topology optimization framework for design of tissue scaffolds, thereby developing an ongoing favorable microenvironment and ensuring a long-term outcome for bone regeneration. For the first time, a level-set based topology optimization algorithm and a time-dependent shape derivative are developed to optimize the scaffold architecture. In this study, a large bone defect in a simulated 2D femur model and a partial defect in a 3D femur model are considered to demonstrate the effectiveness of the proposed design method. The results are compared with those obtained from stiffness-based topology optimization, time-independent design and typical scaffold constructs, showing significant advantages in continuing bone ingrowth outcomes.
Collapse
Affiliation(s)
- Chi Wu
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jianguang Fang
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Ali Entezari
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Guangyong Sun
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Michael V Swain
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Yanan Xu
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Grant P Steven
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Qing Li
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
25
|
Prochor P, Gryko A. Numerical Analysis of the Influence of Porosity and Pore Geometry on Functionality of Scaffolds Designated for Orthopedic Regenerative Medicine. MATERIALS 2020; 14:ma14010109. [PMID: 33383866 PMCID: PMC7796183 DOI: 10.3390/ma14010109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Scaffolds are vital for orthopedic regenerative medicine. Therefore, comprehensive studies evaluating their functionality with consideration of variable parameters are needed. The research aim was to evaluate pore geometry and scaffold porosity influence on first, cell culture efficiency in a perfusion bioreactor and second, osteogenic cell diffusion after its implantation. METHODS For the studies, five pore geometries were selected (triangular prism with a rounded and a flat profile, cube, octagonal prism, sphere) and seven porosities (up to 80%), on the basis of which 70 models were created for finite element analyses. First, scaffolds were placed inside a flow channel to estimate growth medium velocity and wall shear stress. Secondly, scaffolds were placed in a bone to evaluate osteogenic cell diffusion. RESULTS In terms of fluid minimal velocity (0.005 m/s) and maximal wall shear stress (100 mPa), only cubic and octagonal pores with 30% porosity and spherical pores with 20% porosity fulfilled the requirements. Spherical pores had the highest osteogenic cell diffusion efficiency for porosities up to 30%. For higher porosities, the octagonal prism's pores gave the best results up to 80%, where no differences were noted. CONCLUSIONS The data obtained allows for the appropriate selection of pore geometry and scaffold porosity for orthopedic regenerative medicine.
Collapse
|
26
|
Zhao F, Lacroix D, Ito K, van Rietbergen B, Hofmann S. Changes in scaffold porosity during bone tissue engineering in perfusion bioreactors considerably affect cellular mechanical stimulation for mineralization. Bone Rep 2020; 12:100265. [PMID: 32613033 PMCID: PMC7315008 DOI: 10.1016/j.bonr.2020.100265] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/24/2020] [Accepted: 04/02/2020] [Indexed: 11/24/2022] Open
Abstract
Bone tissue engineering (BTE) experiments in vitro have shown that fluid-induced wall shear stress (WSS) can stimulate cells to produce mineralized extracellular matrix (ECM). The application of WSS on seeded cells can be achieved through bioreactors that perfuse medium through porous scaffolds. In BTE experiments in vitro, commonly a constant flow rate is used. Previous studies have found that tissue growth within the scaffold will result in an increase of the WSS over time. To keep the WSS in a reported optimal range of 10–30 mPa, the applied external flow rate can be decreased over time. To investigate what reduction of the external flow rate during culturing is needed to keep the WSS in the optimal range, we here conducted a computational study, which simulated the formation of ECM, and in which we investigated the effect of constant fluid flow and different fluid flow reduction scenarios on the WSS. It was found that for both constant and reduced fluid flow scenarios, the WSS did not exceed a critical value, which was set to 60 mPa. However, the constant flow velocity resulted in a reduction of the cell/ECM surface being exposed to a WSS in the optimal range from 50% at the start of culture to 18.6% at day 21. Reducing the fluid flow over time could avoid much of this effect, leaving the WSS in the optimal range for 40.9% of the surface at 21 days. Therefore, for achieving more mineralized tissue, the conventional manner of loading the perfusion bioreactors (i.e. constant flow rate/velocity) should be changed to a decreasing flow over time in BTE experiments. This study provides an in silico tool for finding the best fluid flow reduction strategy.
Collapse
Affiliation(s)
- Feihu Zhao
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5600 MB Eindhoven, the Netherlands
- Zienkiewicz Centre for Computational Engineering (ZCCE), College of Engineering, Swansea University, SA1 8EN Swansea, United Kingdom
| | - Damien Lacroix
- INSIGNEO Institute for in silico Medicine, Department of Mechanical Engineering, University of Sheffield, S1 3JD Sheffield, United Kingdom
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5600 MB Eindhoven, the Netherlands
| | - Bert van Rietbergen
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB, Eindhoven, the Netherlands
- Corresponding authors at: Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, the Netherlands.
| | - Sandra Hofmann
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5600 MB Eindhoven, the Netherlands
- Corresponding authors at: Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, the Netherlands.
| |
Collapse
|
27
|
Zhao F, van Rietbergen B, Ito K, Hofmann S. Fluid flow-induced cell stimulation in bone tissue engineering changes due to interstitial tissue formation in vitro. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2020; 36:e3342. [PMID: 32323478 PMCID: PMC7388075 DOI: 10.1002/cnm.3342] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 04/07/2020] [Accepted: 04/13/2020] [Indexed: 06/01/2023]
Abstract
In tissue engineering experiments in vitro, bioreactors have been used for applying wall shear stress (WSS) on cells to regulate cellular activities. To determine the loading conditions within bioreactors and to design tissue engineering products, in silico models are used. Previous in silico studies in bone tissue engineering (BTE) focused on quantifying the WSS on cells and the influence on appositional tissue growth. However, many BTE experiments also show interstitial tissue formation (i.e., tissue infiltrated in the pores rather than growing on the struts - appositional growth), which has not been considered in previous in silico studies. We hereby used a multiscale fluid-solid interaction model to quantify the WSS and mechanical strain on cells with interstitial tissue formation, taken from a reported BTE experiment. The WSS showed a high variation among different interstitial tissue morphologies. This is different to the situation under appositional tissue growth. It is found that a 35% filling of the pores results (by mineralised bone tissue) when the average WSS increases from 1.530 (day 0) to 5.735 mPa (day 28). Furthermore, the mechanical strain on cells caused by the fluid flow was extremely low (at the level of 10-14 -10-15 ), comparing to the threshold in a previous mechanobiological theory of osteogenesis (eg, 10-2 ). The output from this study offers a significant insight of the WSS changes during interstitial tissue growth under a constant perfusion flow rate in a BTE experiment. It has paved the way for optimising the local micro-fluidic environment for interstitial tissue mineralisation.
Collapse
Affiliation(s)
- Feihu Zhao
- Orthopaedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
- Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhovenThe Netherlands
- Zienkiewicz Centre for Computational Engineering (ZCCE), College of EngineeringSwansea UniversitySwanseaUnited Kingdom
| | - Bert van Rietbergen
- Orthopaedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
- Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhovenThe Netherlands
| | - Sandra Hofmann
- Orthopaedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
- Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhovenThe Netherlands
| |
Collapse
|
28
|
Melke J, Zhao F, Ito K, Hofmann S. Orbital seeding of mesenchymal stromal cells increases osteogenic differentiation and bone-like tissue formation. J Orthop Res 2020; 38:1228-1237. [PMID: 31922286 PMCID: PMC7317919 DOI: 10.1002/jor.24583] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 12/12/2019] [Indexed: 02/04/2023]
Abstract
In bone tissue engineering (TE), an efficient seeding and homogenous distribution of cells is needed to avoid cell loss and damage as well as to facilitate tissue development. Dynamic seeding methods seem to be superior to the static ones because they tend to result in a more homogeneous cell distribution by using kinetic forces. However, most dynamic seeding techniques are elaborate or require special equipment and its influence on the final bone tissue-engineered construct is not clear. In this study, we applied a simple, dynamic seeding method using an orbital shaker to seed human bone marrow-derived mesenchymal stromal cells (hBMSCs) on silk fibroin scaffolds. Significantly higher cell numbers with a more homogenous cell distribution, increased osteogenic differentiation, and mineral deposition were observed using the dynamic approach both for 4 and 6 hours as compared to the static seeding method. The positive influence of dynamic seeding could be attributed to both cell density and distribution but also nutrient supply during seeding and shear stresses (0.0-3.0 mPa) as determined by computational simulations. The influence of relevant mechanical stimuli during seeding should be investigated in the future, especially regarding the importance of mechanical cues for bone TE applications. Our results highlight the importance of adequate choice of seeding method and its impact on developing tissue-engineered constructs. The application of this simple seeding technique is not only recommended for bone TE but can also be used for seeding similar porous scaffolds with hBMSCs in other TE fields.
Collapse
Affiliation(s)
- Johanna Melke
- Orthopaedic BiomechanicsDepartment of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands,Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhovenThe Netherlands
| | - Feihu Zhao
- Orthopaedic BiomechanicsDepartment of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands,Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhovenThe Netherlands
| | - Keita Ito
- Orthopaedic BiomechanicsDepartment of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands,Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhovenThe Netherlands
| | - Sandra Hofmann
- Orthopaedic BiomechanicsDepartment of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands,Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhovenThe Netherlands
| |
Collapse
|