1
|
Guo Z, Yuan M, Chai J. Mini review advantages and limitations of lytic phages compared with chemical antibiotics to combat bacterial infections. Heliyon 2024; 10:e34849. [PMID: 39148970 PMCID: PMC11324966 DOI: 10.1016/j.heliyon.2024.e34849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024] Open
Abstract
The overuse of antibiotics has caused the emergence of antibiotic-resistant strains, such as multidrug-resistant, extensively drug-resistant, and pandrug-resistant bacteria. The treatment of infections caused by such strains has become a formidable challenge. In the post-antibiotic era, phage therapy is an attractive solution for this problem and some successful phase 1 and 2 studies have demonstrated the efficacy and safety of phage therapy over the last decade. It is a form of evolutionary medicine, phages exhibit immunomodulatory and anti-inflammatory properties. However, phage therapy is limited by factors, such as the narrow spectrum of host strains, the special pharmacokinetics and pharmacodynamics in vivo, immune responses, and the development of phage resistance. The aim of this minireview was to compare the potencies of lytic phages and chemical antibiotics to treat bacterial infections. The advantages of phage therapy has fewer side effects, self-replication, evolution, bacterial biofilms eradication, immunomodulatory and anti-inflammatory properties compared with chemical antibiotics. Meanwhile, the disadvantages of phage therapy include the narrow spectrum of available host strains, the special pharmacokinetics and pharmacodynamics in vivo, immune responses, and phage resistance hurdles. Recently, some researchers continue to make efforts to overcome these limitations of phage therapy. Phage therapy will be a welcome addition to the gamut of options available for treating antibiotic-resistant bacterial infections. We focus on the advantages and limitations of phage therapy with the intention of exploiting the advantages and overcoming the limitations.
Collapse
Affiliation(s)
- Zhimin Guo
- Department of Laboratory Medicine, Infectious Diseases and Pathogen Biology Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Mengyao Yuan
- Department of Laboratory Medicine, Infectious Diseases and Pathogen Biology Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Jiannan Chai
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, 130021, China
| |
Collapse
|
2
|
Qi H, Zhu D, Wang X, Wu J. Meta-analysis of the accuracy of the serum procalcitonin diagnostic test for osteomyelitis in children. BMC Musculoskelet Disord 2024; 25:578. [PMID: 39048958 PMCID: PMC11267785 DOI: 10.1186/s12891-024-07716-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/19/2024] [Indexed: 07/27/2024] Open
Abstract
OBJECTIVE This study sought to assess the sensitivity, specificity, and predictive utility of serum procalcitonin (PCT) in the diagnosis of pediatric osteomyelitis. METHODS A systematic computer-based search was conducted for eligible literature focusing on PCT for the diagnosis of osteomyelitis in children. Records were manually screened according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. Statistical analysis was performed using Review Manager software 5.3, Meta-disc software1.4, STATA 12.0, and R 3.4 software. RESULT A total of 5 investigations were included. Of these, 148 children with osteomyelitis were tested for bacterial cultures in PCT. For PCT in the diagnosis of pediatric osteomyelitis, diagnostic meta-analysis revealed a pooled sensitivity and specificity of 0.58 (95% confidence interval (CI): 0.49 to 0.68) and 0.92 (95% CI: 0.90 to 0.93) respectively. The PCT had the greatest area under the curve (AUC) at 0.80 for the diagnosis of osteomyelitis in children. The Deeks' regression test for asymmetry results indicated that there was no publication bias when evaluating publication bias (P = 0.90). CONCUSION This study provided a comprehensive review of the literature on the use of PCT in pediatric osteomyelitis diagnosis. PCT may be used as a biomarker for osteomyelitis diagnosis; however, its sensitivity was low. It still needs to be validated by a large sample study.
Collapse
Affiliation(s)
- Han Qi
- Department of Emergency Surgery, The Second People's Hospital of Lianyungang, Lianyungang, China
| | - Dongsheng Zhu
- Department of Pediatric Orthopedics, The First People's Hospital of Lianyungang, Lianyungang, 222000, China.
| | - Xiaodong Wang
- Department of Orthopedics, Children's Hospital of Soochow University, Suzhou, China
| | - Jian Wu
- Department of Pediatric, Xiangcheng District People's Hospital, Suzhou, Jiangsu Province, 215000, China.
| |
Collapse
|
3
|
Young J, Lee SW, Shariyate MJ, Cronin A, Wixted JJ, Nazarian A, Rowley CF, Rodriguez EK. Bacteriophage therapy and current delivery strategies for orthopedic infections: A SCOPING review. J Infect 2024; 88:106125. [PMID: 38373574 DOI: 10.1016/j.jinf.2024.106125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024]
Abstract
OBJECTIVES Interest in phages as adjunctive therapy to treat difficult infections has grown in the last decade. However, phage dosing and delivery for orthopedic infections have not been systematically summarized. METHODS Following PRISMA-ScR guidelines, we conducted a SCOPING review through September 1st, 2023, of MEDLINE, Embase, Web of Science Core Collection, and Cochrane Central. RESULTS In total, 77 studies were included, of which 19 (24.7%) were in vitro studies, 17 (22.1%) were animal studies, and 41 (53.2%) were studies in humans. A total of 137 contemporary patients receiving phage therapy are described. CONCLUSIONS Direct phage delivery remains the most studied form of phage therapy, notably in prosthetic joint infections, osteomyelitis, and diabetic foot ulcers. Available evidence describing phage therapy in humans suggests favorable outcomes for orthopedic infections, though this evidence is composed largely of low-level descriptive studies. Several phage delivery devices have been described, though a lack of comparative and in-human evidence limits their therapeutic application. Limitations to the use of phage therapy for orthopedic infections that need to be overcome include a lack of understanding related to optimal dosing and phage pharmacokinetics, bacterial heterogeneity in an infection episode, and phage therapy toxicity.
Collapse
Affiliation(s)
- Jason Young
- Harvard Combined Orthopedic Residency Program, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| | | | - Mohammad J Shariyate
- Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | - John J Wixted
- Harvard Medical School, Boston, MA, USA; Carl J. Shapiro Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Ara Nazarian
- Musculoskeletal Translational Innovation Initiative, Carl J. Shapiro Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA; Carl J. Shapiro Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Orthopedic Surgery, Yerevan State Medical University, Yerevan, Armenia
| | - Christopher F Rowley
- Division of Infectious Diseases, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA; Harvard School of Public Health, Boston, MA, USA
| | - Edward K Rodriguez
- Harvard Medical School, Boston, MA, USA; Carl J. Shapiro Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
4
|
Ferry T. A Review of Phage Therapy for Bone and Joint Infections. Methods Mol Biol 2024; 2734:207-235. [PMID: 38066372 DOI: 10.1007/978-1-0716-3523-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
There is a strong rationale for using phages in patients with bone and joint infections (BJIs). Indeed, specific phages can infect and replicate in bacterial pathogens and have also demonstrated their activity in vitro against biofilm produced by different bacteria. However, there is a high variability of the different clinical forms of BJI, and their management is complex and frequently includes surgery followed by the administration of antibiotics. Regardless of the availability of active phages, optimal ways of phage administration in patients with BJIs are unknown. Otherwise, all BJIs are not relevant for phage therapy. Except for diabetic foot infection, a BJI with bone exposure is potentially not a relevant indication for phage therapy. On the counterpart, prosthetic joint infections in patients for whom a multidisciplinary expert team judges a conservative approach as the best option to keep the patient's function seem to be a relevant indication with the hypothesis that phage therapy could increase the rate of infection control. The ESCMID Study Group for Non-traditional Antibacterial Therapy (ESGNTA) was created in 2022. One century after the first use of phages as a therapy, the phage therapy 2.0 era, with the possibility to evaluate personalized phage therapy in modern medicine and orthopedic surgery, is just open.
Collapse
Affiliation(s)
- Tristan Ferry
- Service de Maladies Infectieuses et Tropicales, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France.
- Université Claude Bernard Lyon 1, Villeurbanne, France.
- Centre de Références des IOA Complexes de Lyon, CRIOAc Lyon, Lyon, France.
- StaPath team, Centre International de Recherche en Infectiologie, CIRI, Inserm U1111, CNRS UMR5308, ENS de Lyon, UCBL1, Lyon, France.
- Education and Clinical Officer of the ESCMID Study Group for Non-traditional Antibacterial Therapy (ESGNTA), Basel, Switzerland.
| |
Collapse
|
5
|
Zurabov F, Petrova M, Zurabov A, Gurkova M, Polyakov P, Cheboksarov D, Chernevskaya E, Yuryev M, Popova V, Kuzovlev A, Yakovlev A, Grechko A. Adaptive Phage Therapy for the Prevention of Recurrent Nosocomial Pneumonia: Novel Protocol Description and Case Series. Antibiotics (Basel) 2023; 12:1734. [PMID: 38136768 PMCID: PMC10741035 DOI: 10.3390/antibiotics12121734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Nowadays there is a growing interest worldwide in using bacteriophages for therapeutic purposes to combat antibiotic-resistant bacterial strains, driven by the increasing ineffectiveness of drugs against bacterial infections. Despite this fact, no novel commercially available therapeutic phage products have been developed in the last two decades, as it is extremely difficult to register them under the current legal regulations. This paper presents a description of the interaction between a bacteriophage manufacturer and a clinical institution, the specificity of which is the selection of bacteriophages not for an individual patient, but for the entire spectrum of bacteria circulating in the intensive care unit with continuous clinical and microbiological monitoring of efficacy. The study presents the description of three clinical cases of patients who received bacteriophage complex via inhalation for 28 days according to the protocol without antibiotic use throughout the period. No adverse effects were observed and the elimination of multidrug-resistant microorganisms from the bronchoalveolar lavage contents was detected in all patients. A decrease in such inflammatory markers as C-reactive protein (CRP) and procalcitonin was also noted. The obtained results demonstrate the potential of an adaptive phage therapy protocol in intensive care units for reducing the amount of antibiotics used and preserving their efficacy.
Collapse
Affiliation(s)
- Fedor Zurabov
- Research and Production Center “MicroMir”, 107031 Moscow, Russia; (A.Z.); (M.G.); (V.P.)
| | - Marina Petrova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 10703 Moscow, Russia; (M.P.); (P.P.); (D.C.); (E.C.); (M.Y.); (A.K.); (A.Y.); (A.G.)
| | - Alexander Zurabov
- Research and Production Center “MicroMir”, 107031 Moscow, Russia; (A.Z.); (M.G.); (V.P.)
| | - Marina Gurkova
- Research and Production Center “MicroMir”, 107031 Moscow, Russia; (A.Z.); (M.G.); (V.P.)
| | - Petr Polyakov
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 10703 Moscow, Russia; (M.P.); (P.P.); (D.C.); (E.C.); (M.Y.); (A.K.); (A.Y.); (A.G.)
| | - Dmitriy Cheboksarov
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 10703 Moscow, Russia; (M.P.); (P.P.); (D.C.); (E.C.); (M.Y.); (A.K.); (A.Y.); (A.G.)
| | - Ekaterina Chernevskaya
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 10703 Moscow, Russia; (M.P.); (P.P.); (D.C.); (E.C.); (M.Y.); (A.K.); (A.Y.); (A.G.)
| | - Mikhail Yuryev
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 10703 Moscow, Russia; (M.P.); (P.P.); (D.C.); (E.C.); (M.Y.); (A.K.); (A.Y.); (A.G.)
| | - Valentina Popova
- Research and Production Center “MicroMir”, 107031 Moscow, Russia; (A.Z.); (M.G.); (V.P.)
| | - Artem Kuzovlev
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 10703 Moscow, Russia; (M.P.); (P.P.); (D.C.); (E.C.); (M.Y.); (A.K.); (A.Y.); (A.G.)
| | - Alexey Yakovlev
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 10703 Moscow, Russia; (M.P.); (P.P.); (D.C.); (E.C.); (M.Y.); (A.K.); (A.Y.); (A.G.)
| | - Andrey Grechko
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 10703 Moscow, Russia; (M.P.); (P.P.); (D.C.); (E.C.); (M.Y.); (A.K.); (A.Y.); (A.G.)
| |
Collapse
|
6
|
Bosco K, Lynch S, Sandaradura I, Khatami A. Therapeutic Phage Monitoring: A Review. Clin Infect Dis 2023; 77:S384-S394. [PMID: 37932121 DOI: 10.1093/cid/ciad497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
With the global rise in antimicrobial resistance, there has been a renewed interest in the application of therapeutic phages to treat bacterial infections. Therapeutic phage monitoring (TPM) is proposed as an essential element of phage therapy (PT) protocols to generate data and fill knowledge gaps regarding the in vivo efficacy of therapeutic phages, patients' immune responses to PT, and the wider ecological effects of PT. By monitoring phage concentrations in blood and tissues, together with immune responses and possible ecological changes during PT, TPM may enable the optimization of dosing and the implementation of precision medicine approaches. Furthermore, TPM can validate diagnostic surrogates of efficacy, direct research efforts, and establish quality assurance indicators for therapeutic phage products. Thus, TPM holds great potential for enhancing our understanding of the multidirectional phage-bacteria-host interactions and advancing "best practice" PT, ultimately improving patient care.
Collapse
Affiliation(s)
- Kiran Bosco
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Stephanie Lynch
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Indy Sandaradura
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Department of Infectious Diseases and Microbiology, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Ameneh Khatami
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Department of Infectious Diseases and Microbiology, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| |
Collapse
|
7
|
Diallo K, Dublanchet A. A Century of Clinical Use of Phages: A Literature Review. Antibiotics (Basel) 2023; 12:751. [PMID: 37107113 PMCID: PMC10135294 DOI: 10.3390/antibiotics12040751] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Growing antibiotic resistance and the broken antibiotic market have renewed interest in the use of phages, a century-old therapy that fell into oblivion in the West after two decades of promising results. This literature review with a particular focus on French literature aims to complement current scientific databases with medical and non-medical publications on the clinical use of phages. While several cases of successful treatment with phages have been reported, prospective randomized clinical trials are needed to confirm the efficacy of this therapy.
Collapse
Affiliation(s)
- Kevin Diallo
- Department of Infective and Tropical Diseases and Internal Medicine, University Hospital of la Reunion, 97448 Saint-Pierre, France
| | - Alain Dublanchet
- Independent Researcher, 2465 Rue Céline Robert, 94300 Vincennes, France
| |
Collapse
|
8
|
Zurabov FM, Chernevskaya EA, Beloborodova NV, Zurabov AY, Petrova MV, Yadgarov MY, Popova VM, Fatuev OE, Zakharchenko VE, Gurkova MM, Sorokina EA, Glazunov EA, Kochetova TA, Uskevich VV, Kuzovlev AN, Grechko AV. Bacteriophage Cocktails in the Post-COVID Rehabilitation. Viruses 2022; 14:v14122614. [PMID: 36560618 PMCID: PMC9783051 DOI: 10.3390/v14122614] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/08/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Increasing evidence suggests that gut dysbiosis is associated with coronavirus disease 2019 (COVID-19) infection and may persist long after disease resolution. The excessive use of antimicrobials in patients with COVID-19 can lead to additional destruction of the microbiota, as well as to the growth and spread of antimicrobial resistance. The problem of bacterial resistance to antibiotics encourages the search for alternative methods of limiting bacterial growth and restoring the normal balance of the microbiota in the human body. Bacteriophages are promising candidates as potential regulators of the microbiota. In the present study, two complex phage cocktails targeting multiple bacterial species were used in the rehabilitation of thirty patients after COVID-19, and the effectiveness of the bacteriophages against the clinical strain of Klebsiella pneumoniae was evaluated for the first time using real-time visualization on a 3D Cell Explorer microscope. Application of phage cocktails for two weeks showed safety and the absence of adverse effects. An almost threefold statistically significant decrease in the anaerobic imbalance ratio, together with an erythrocyte sedimentation rate (ESR), was detected. This work will serve as a starting point for a broader and more detailed study of the use of phages and their effects on the microbiome.
Collapse
Affiliation(s)
- Fedor M. Zurabov
- Research and Production Center “MicroMir”, 5/23 Nizhny Kiselny Lane, bldg 1, 107031 Moscow, Russia
- Correspondence:
| | - Ekaterina A. Chernevskaya
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 25 Petrovka Str., 2 bldg, 10703 Moscow, Russia
| | - Natalia V. Beloborodova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 25 Petrovka Str., 2 bldg, 10703 Moscow, Russia
| | - Alexander Yu. Zurabov
- Research and Production Center “MicroMir”, 5/23 Nizhny Kiselny Lane, bldg 1, 107031 Moscow, Russia
| | - Marina V. Petrova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 25 Petrovka Str., 2 bldg, 10703 Moscow, Russia
| | - Mikhail Ya. Yadgarov
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 25 Petrovka Str., 2 bldg, 10703 Moscow, Russia
| | - Valentina M. Popova
- Research and Production Center “MicroMir”, 5/23 Nizhny Kiselny Lane, bldg 1, 107031 Moscow, Russia
| | - Oleg E. Fatuev
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 25 Petrovka Str., 2 bldg, 10703 Moscow, Russia
| | - Vladislav E. Zakharchenko
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 25 Petrovka Str., 2 bldg, 10703 Moscow, Russia
| | - Marina M. Gurkova
- Research and Production Center “MicroMir”, 5/23 Nizhny Kiselny Lane, bldg 1, 107031 Moscow, Russia
| | - Ekaterina A. Sorokina
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 25 Petrovka Str., 2 bldg, 10703 Moscow, Russia
| | - Egor A. Glazunov
- Research and Production Center “MicroMir”, 5/23 Nizhny Kiselny Lane, bldg 1, 107031 Moscow, Russia
| | - Tatiana A. Kochetova
- Research and Production Center “MicroMir”, 5/23 Nizhny Kiselny Lane, bldg 1, 107031 Moscow, Russia
| | - Victoria V. Uskevich
- Research and Production Center “MicroMir”, 5/23 Nizhny Kiselny Lane, bldg 1, 107031 Moscow, Russia
| | - Artem N. Kuzovlev
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 25 Petrovka Str., 2 bldg, 10703 Moscow, Russia
| | - Andrey V. Grechko
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 25 Petrovka Str., 2 bldg, 10703 Moscow, Russia
| |
Collapse
|
9
|
Perspectives on using bacteriophages in biogerontology research and interventions. Chem Biol Interact 2022; 366:110098. [PMID: 35995258 DOI: 10.1016/j.cbi.2022.110098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/25/2022] [Accepted: 08/07/2022] [Indexed: 11/23/2022]
Abstract
With the development of materials engineering, gerontology-related research on new tools for diagnostic and therapeutic applications, including precision and personalised medicine, has expanded significantly. Using nanotechnology, drugs can be precisely delivered to organs, tissues, cells, and cell organelles, thereby enhancing their therapeutic effects. Here, we discuss the possible use of bacteriophages as nanocarriers that can improve the safety, efficiency, and sensitivity of conventional medical therapies. Phages are a new class of targeted-delivery vectors, which can carry high concentrations of cargo and protect other nontargeted cells from the senescent cell killing effects of senolytics. Bacteriophages can also be subjected to chemical and/or genetic modifications that would acquire novel properties and improve their ability to detect senescent cells and deliver senolytics. Phage research in experimental biogerontology will also develop strategies to efficiently deliver senolytics, target senescent cells, activate extrinsic apoptosis pathways in senescent cells, trigger immune cells to recognise senescent cells, induce autophagy, promote cell and tissue regeneration, inhibit senescence-associated secretory phenotype (SASP) by senomorphic activity, stimulate the properties of mild stress-inducing hormetic agents and hormetins, and modulate the gut microbiome.
Collapse
|
10
|
Venturini C, Petrovic Fabijan A, Fajardo Lubian A, Barbirz S, Iredell J. Biological foundations of successful bacteriophage therapy. EMBO Mol Med 2022; 14:e12435. [PMID: 35620963 PMCID: PMC9260219 DOI: 10.15252/emmm.202012435] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 12/20/2022] Open
Abstract
Bacteriophages (phages) are selective viral predators of bacteria. Abundant and ubiquitous in nature, phages can be used to treat bacterial infections (phage therapy), including refractory infections and those resistant to antibiotics. However, despite an abundance of anecdotal evidence of efficacy, significant hurdles remain before routine implementation of phage therapy into medical practice, including a dearth of robust clinical trial data. Phage-bacterium interactions are complex and diverse, characterized by co-evolution trajectories that are significantly influenced by the environments in which they occur (mammalian body sites, water, soil, etc.). An understanding of the molecular mechanisms underpinning these dynamics is essential for successful clinical translation. This review aims to cover key aspects of bacterium-phage interactions that affect bacterial killing by describing the most relevant published literature and detailing the current knowledge gaps most likely to influence therapeutic success.
Collapse
Affiliation(s)
- Carola Venturini
- Centre for Infectious Diseases and MicrobiologyWestmead Institute for Medical ResearchWestmeadNSWAustralia
- Faculty of ScienceSydney School of Veterinary ScienceThe University of SydneySydneyNSWAustralia
| | - Aleksandra Petrovic Fabijan
- Centre for Infectious Diseases and MicrobiologyWestmead Institute for Medical ResearchWestmeadNSWAustralia
- Faculty of Health and MedicineSchool of MedicineSydney Medical SchoolThe University of SydneySydneyNSWAustralia
| | - Alicia Fajardo Lubian
- Centre for Infectious Diseases and MicrobiologyWestmead Institute for Medical ResearchWestmeadNSWAustralia
- Faculty of Health and MedicineSchool of MedicineSydney Medical SchoolThe University of SydneySydneyNSWAustralia
| | - Stefanie Barbirz
- Department of MedicineScience FacultyMSB Medical School BerlinBerlinGermany
| | - Jonathan Iredell
- Centre for Infectious Diseases and MicrobiologyWestmead Institute for Medical ResearchWestmeadNSWAustralia
- Faculty of Health and MedicineSchool of MedicineSydney Medical SchoolThe University of SydneySydneyNSWAustralia
- Westmead HospitalWestern Sydney Local Health DistrictWestmeadNSWAustralia
| |
Collapse
|
11
|
Żaczek M, Górski A, Weber-Dąbrowska B, Letkiewicz S, Fortuna W, Rogóż P, Pasternak E, Międzybrodzki R. A Thorough Synthesis of Phage Therapy Unit Activity in Poland-Its History, Milestones and International Recognition. Viruses 2022; 14:1170. [PMID: 35746642 PMCID: PMC9227841 DOI: 10.3390/v14061170] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/17/2022] [Accepted: 05/26/2022] [Indexed: 01/27/2023] Open
Abstract
The year 2020 marked 15 years of the Phage Therapy Unit in Poland, the inception of which took place just one year after Poland's accession to the European Union (2004). At first sight, it is hard to find any connection between these two events, but in fact joining the European Union entailed the need to adapt the regulatory provisions concerning experimental treatment in humans to those that were in force in the European Union. These changes were a solid foundation for the first phage therapy center in the European Union to start its activity. As the number of centers conducting phage therapy in Europe and in the world constantly and rapidly grows, we want to grasp the opportunity to take a closer look at the over 15-year operation of our site by analyzing its origins, legal aspects at the local and international levels and the impressive number and diversity of cases that have been investigated and treated during this time. This article is a continuation of our work published in 2020 summarizing a 100-year history of the development of phage research in Poland.
Collapse
Affiliation(s)
- Maciej Żaczek
- Bacteriophage Laboratory, Department of Phage Therapy, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (A.G.); (B.W.-D.); (E.P.); (R.M.)
| | - Andrzej Górski
- Bacteriophage Laboratory, Department of Phage Therapy, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (A.G.); (B.W.-D.); (E.P.); (R.M.)
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (S.L.); (W.F.); (P.R.)
- Infant Jesus Teaching Hospital, Medical University of Warsaw, 02-005 Warsaw, Poland
| | - Beata Weber-Dąbrowska
- Bacteriophage Laboratory, Department of Phage Therapy, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (A.G.); (B.W.-D.); (E.P.); (R.M.)
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (S.L.); (W.F.); (P.R.)
| | - Sławomir Letkiewicz
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (S.L.); (W.F.); (P.R.)
- Department of Health Sciences, Jan Długosz University in Częstochowa, 42-200 Częstochowa, Poland
| | - Wojciech Fortuna
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (S.L.); (W.F.); (P.R.)
- Department of Neurosurgery, Wrocław Medical University, 50-556 Wrocław, Poland
| | - Paweł Rogóż
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (S.L.); (W.F.); (P.R.)
| | - Edyta Pasternak
- Bacteriophage Laboratory, Department of Phage Therapy, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (A.G.); (B.W.-D.); (E.P.); (R.M.)
- Bioethics Committee, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
| | - Ryszard Międzybrodzki
- Bacteriophage Laboratory, Department of Phage Therapy, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (A.G.); (B.W.-D.); (E.P.); (R.M.)
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (S.L.); (W.F.); (P.R.)
- Department of Clinical Immunology, Medical University of Warsaw, 02-006 Warsaw, Poland
| |
Collapse
|
12
|
Abstract
Increasing antimicrobial resistance and medical device-related infections have led to a renewed interest in phage therapy as an alternative or adjunct to conventional antimicrobials. Expanded access and compassionate use cases have risen exponentially but have varied widely in approach, methodology, and clinical situations in which phage therapy might be considered. Large gaps in knowledge contribute to heterogeneity in approach and lack of consensus in many important clinical areas. The Antibacterial Resistance Leadership Group (ARLG) has convened a panel of experts in phage therapy, clinical microbiology, infectious diseases, and pharmacology, who worked with regulatory experts and a funding agency to identify questions based on a clinical framework and divided them into three themes: potential clinical situations in which phage therapy might be considered, laboratory testing, and pharmacokinetic considerations. Suggestions are provided as answers to a series of questions intended to inform clinicians considering experimental phage therapy for patients in their clinical practices.
Collapse
|
13
|
Khan A, Joshi H. Simple Two-step, High Yield Protocol for Isolation and Amplification of Bacteriophages Against Methicillin-resistant Staphylococcus Aureus (MRSA). Curr Protoc 2022; 2:e395. [PMID: 35259286 DOI: 10.1002/cpz1.395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bacteriophages are bacteria-targeting viruses that may prove useful as therapeutic agents against multidrug-resistant bacterial strains. Though phage therapy is a century-old concept, there is very limited progress on its therapeutic application due to the rapid expansion of antibiotics portfolios in the last few decades. However, the emergence of multidrug-resistant organisms has brought our attention back to bacteriophages. The first step towards developing effective phage therapy against multidrug-resistant bacteria is isolation, amplification, and purification of specific bacteriophages. There are many reported protocols for isolating host-specific bacteriophages from the environment. However, most of them are complex, multistep, low-yielding, resource-intensive protocols, requiring elaborate laboratory setup. We have demonstrated a simple two-step, high-yielding protocol for isolating and amplifying bacteriophages against methicillin-resistant Staphylococcus aureus (MRSA). We have shown that mixing various environmental samples (i.e., sample pooling) and phage amplification at two different temperatures significantly enhance the yield of MRSA phages. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Preparation of water sample filtrate for isolation of bacteriophages Basic Protocol 2: Bacterial strain and culture conditions Basic Protocol 3: Native bacteriophage count in water sample filtrate Basic Protocol 4: Isolation and enrichment of MRSA-specific bacteriophages Basic Protocol 5: Quantification of bacteriophages by drop cast method Basic Protocol 6: Effect of incubation temperature and heat shock on bacteriophage yield.
Collapse
Affiliation(s)
- Atif Khan
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, BARC Facilities, Kalpakkam, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - Hiren Joshi
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, BARC Facilities, Kalpakkam, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| |
Collapse
|
14
|
Khan A, Rao TS, Joshi HM. Phage therapy in the Covid-19 era: Advantages over antibiotics. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100115. [PMID: 35187507 PMCID: PMC8847111 DOI: 10.1016/j.crmicr.2022.100115] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Today, the entire world is battling to contain the spread of COVID-19. Massive efforts are being made to find a therapeutic solution in the shortest possible time. However, the research community is becoming increasingly concerned about taking a shortsighted strategy without contemplating the long-term consequences. For example, It has been reported that only 8.4% of total COVID-19 patients develop a secondary bacterial infection. In comparison, 74.6% of them are administered with antibiotics as prophylactic treatment. We contend that overuse of broad-spectrum antibiotics increases the likelihood of AMR development and negatively affects the patient's recovery due to the prevalence of the "gut-lung axis.". Consequently, the use of antibiotics to treat COVID-19 patients must be rationalized, or an alternative treatment must be sought that does not risk contributing to AMR development and positively impacts the treatment outcomes. Phage therapy, a century-old concept, is one of the most promising approaches that can be adapted to serve this purpose. This review emphasizes the negative impact of excessive antibiotic use in COVID-19 treatment and provides an overview of how phage therapy can be used as an alternative treatment option. We have argued that targeted killing (narrow spectrum) and anti-inflammatory (which can target the primary cause of mortality in COVID-19) properties of phages can be an effective alternative to antibiotics.
Collapse
Affiliation(s)
- Atif Khan
- Water & Steam Chemistry Division, BARC Facilities, Kalpakkam, Tamil Nadu, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - T. Subba Rao
- Water & Steam Chemistry Division, BARC Facilities, Kalpakkam, Tamil Nadu, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Hiren M. Joshi
- Water & Steam Chemistry Division, BARC Facilities, Kalpakkam, Tamil Nadu, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| |
Collapse
|
15
|
Özal D, Arndt A, Thomé M. Bacteriophages and related endolysins for reduction of microorganisms in the human body - a systematic review. GMS HYGIENE AND INFECTION CONTROL 2022; 17:Doc01. [PMID: 35111563 PMCID: PMC8780682 DOI: 10.3205/dgkh000404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Background: In recent years, resistance to antibiotics has become a global threat, and alternatives to antibiotics have become an area of research. The main alternative methods are briefly described in this review. However, the main focus is bacteriophage-related therapy. Bacteriophages are viruses which, due to the production of the enzyme endolysin, are able to kill bacterial host cells. Bacteriophage therapies have a long tradition. Their potential to function as antibiotics lies in their bactericidal activity and specificity in killing bacteria without infecting or affecting eukaryotic cells. Objective: To systematically review the outcomes of bacteriophage therapy in patients with bacterial infections. Methods: The MEDLINE, EMBASE, Web of Science and CENTRAL databases were searched electronically using search terms referring to bacteriophages, endolysins and antimicrobial resistance. After the literature was screened for their titles and abstracts, full-text reviews considering inclusion/exclusion criteria were performed. Data concerning patients with bacterial infections, treatment with either bacteriophages or its enzyme endolysin and their outcomes were extracted and analysed. Results: Thirteen publications were identified that met all inclusion criteria. Data extraction shows that bacteriophages or endolysins have the potential to combat bacterial infections and significantly reduce inflammatory mediators. However, 3 out of 4 randomized controlled trials revealed that there was no significant difference between phage/endolysin treated patients and control group. Significant clinical improvements were seen in cohort and case studies. A few minor side effects were reported. Conclusions: Although there are countries in which bacteriophages are prescribed as an alternative to established antibiotics, this valuable experience has yet to be examined sufficiently in clinical trials conducted to modern standards. Despite improvements in symptoms shown in the reviewed clinical trials, the infection and the bacteria themselves were rarely completely eradicated. Therefore, no definite answer can be given as to effectiveness, and further clinical trials are necessary.
Collapse
Affiliation(s)
- Dilara Özal
- Kassel School of Medicine, University of Southampton, Southampton, UK,*To whom correspondence should be addressed: Dilara Özal, Kassel School of Medicine, University of Southampton, Southampton, UK, E-mail:
| | | | - Marcus Thomé
- Kassel School of Medicine, University of Southampton, Southampton, UK,Department of Microbiology, Klinikum Kassel, Kassel, Germany
| |
Collapse
|
16
|
Górski A, Borysowski J, Międzybrodzki R. The contribution of phage therapy to medical knowledge. J Glob Antimicrob Resist 2022; 28:238-240. [DOI: 10.1016/j.jgar.2022.01.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/23/2021] [Accepted: 01/20/2022] [Indexed: 10/19/2022] Open
|
17
|
Iszatt JJ, Larcombe AN, Chan HK, Stick SM, Garratt LW, Kicic A. Phage Therapy for Multi-Drug Resistant Respiratory Tract Infections. Viruses 2021; 13:v13091809. [PMID: 34578390 PMCID: PMC8472870 DOI: 10.3390/v13091809] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/30/2022] Open
Abstract
The emergence of multi-drug resistant (MDR) bacteria is recognised today as one of the greatest challenges to public health. As traditional antimicrobials are becoming ineffective and research into new antibiotics is diminishing, a number of alternative treatments for MDR bacteria have been receiving greater attention. Bacteriophage therapies are being revisited and present a promising opportunity to reduce the burden of bacterial infection in this post-antibiotic era. This review focuses on the current evidence supporting bacteriophage therapy against prevalent or emerging multi-drug resistant bacterial pathogens in respiratory medicine and the challenges ahead in preclinical data generation. Starting with efforts to improve delivery of bacteriophages to the lung surface, the current developments in animal models for relevant efficacy data on respiratory infections are discussed before finishing with a summary of findings from the select human trials performed to date.
Collapse
Affiliation(s)
- Joshua J. Iszatt
- Occupation, Environment and Safety, School of Population Health, Curtin University, Perth 6845, Australia; (J.J.I.); (A.N.L.)
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth 6009, Australia; (S.M.S.); (L.W.G.)
| | - Alexander N. Larcombe
- Occupation, Environment and Safety, School of Population Health, Curtin University, Perth 6845, Australia; (J.J.I.); (A.N.L.)
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth 6009, Australia; (S.M.S.); (L.W.G.)
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Sydney Pharmacy School, University of Sydney, Camperdown 2006, Australia;
| | - Stephen M. Stick
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth 6009, Australia; (S.M.S.); (L.W.G.)
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Perth 6009, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, Harry Perkins Institute of Medical Research, The University of Western Australia, Nedlands 6009, Australia
| | - Luke W. Garratt
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth 6009, Australia; (S.M.S.); (L.W.G.)
| | - Anthony Kicic
- Occupation, Environment and Safety, School of Population Health, Curtin University, Perth 6845, Australia; (J.J.I.); (A.N.L.)
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth 6009, Australia; (S.M.S.); (L.W.G.)
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Perth 6009, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, Harry Perkins Institute of Medical Research, The University of Western Australia, Nedlands 6009, Australia
- Correspondence:
| |
Collapse
|
18
|
Holger D, Kebriaei R, Morrisette T, Lev K, Alexander J, Rybak M. Clinical Pharmacology of Bacteriophage Therapy: A Focus on Multidrug-Resistant Pseudomonas aeruginosa Infections. Antibiotics (Basel) 2021; 10:556. [PMID: 34064648 PMCID: PMC8151982 DOI: 10.3390/antibiotics10050556] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 12/20/2022] Open
Abstract
Pseudomonas aeruginosa is one of the most common causes of healthcare-associated diseases and is among the top three priority pathogens listed by the World Health Organization (WHO). This Gram-negative pathogen is especially difficult to eradicate because it displays high intrinsic and acquired resistance to many antibiotics. In addition, growing concerns regarding the scarcity of antibiotics against multidrug-resistant (MDR) and extensively drug-resistant (XDR) P. aeruginosa infections necessitate alternative therapies. Bacteriophages, or phages, are viruses that target and infect bacterial cells, and they represent a promising candidate for combatting MDR infections. The aim of this review was to highlight the clinical pharmacology considerations of phage therapy, such as pharmacokinetics, formulation, and dosing, while addressing several challenges associated with phage therapeutics for MDR P. aeruginosa infections. Further studies assessing phage pharmacokinetics and pharmacodynamics will help to guide interested clinicians and phage researchers towards greater success with phage therapy for MDR P. aeruginosa infections.
Collapse
Affiliation(s)
- Dana Holger
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; (D.H.); (R.K.); (T.M.); (K.L.)
| | - Razieh Kebriaei
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; (D.H.); (R.K.); (T.M.); (K.L.)
| | - Taylor Morrisette
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; (D.H.); (R.K.); (T.M.); (K.L.)
| | - Katherine Lev
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; (D.H.); (R.K.); (T.M.); (K.L.)
| | - Jose Alexander
- Department of Microbiology, Virology and Immunology, AdventHealth Central Florida, Orlando, FL 32803, USA;
| | - Michael Rybak
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; (D.H.); (R.K.); (T.M.); (K.L.)
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Detroit Medical Center, Department of Pharmacy, Detroit, MI 48201, USA
| |
Collapse
|
19
|
Gut Microbiota and Liver Interaction through Immune System Cross-Talk: A Comprehensive Review at the Time of the SARS-CoV-2 Pandemic. J Clin Med 2020; 9:jcm9082488. [PMID: 32756323 PMCID: PMC7464500 DOI: 10.3390/jcm9082488] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023] Open
Abstract
Background and aims: The gut microbiota is a complex ecosystem containing bacteria, viruses, fungi, yeasts and other single-celled organisms. It is involved in the development and maintenance of both innate and systemic immunity of the body. Emerging evidence has shown its role in liver diseases through the immune system cross-talk. We review herein literature data regarding the triangular interaction between gut microbiota, immune system and liver in health and disease. Methods: We conducted a search on the main medical databases for original articles, reviews, meta-analyses, randomized clinical trials and case series using the following keywords and acronyms and their associations: gut microbiota, microbiome, gut virome, immunity, gastrointestinal-associated lymphoid tissue (GALT), non-alcoholic fatty liver disease (NAFLD), non-alcoholic steato-hepatitis (NASH), alcoholic liver disease, liver cirrhosis, hepatocellular carcinoma. Results: The gut microbiota consists of microorganisms that educate our systemic immunity through GALT and non-GALT interactions. The latter maintain health but are also involved in the pathophysiology and in the outcome of several liver diseases, particularly those with metabolic, toxic or immune-mediated etiology. In this context, gut virome has an emerging role in liver diseases and needs to be further investigated, especially due to the link reported between severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection and hepatic dysfunctions. Conclusions: Changes in gut microbiota composition and alterations in the immune system response are involved in the pathogenesis of metabolic and immune-mediated liver diseases.
Collapse
|
20
|
Xiong S, Liu X, Deng W, Zhou Z, Li Y, Tu Y, Chen L, Wang G, Fu B. Pharmacological Interventions for Bacterial Prostatitis. Front Pharmacol 2020; 11:504. [PMID: 32425775 PMCID: PMC7203426 DOI: 10.3389/fphar.2020.00504] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/31/2020] [Indexed: 12/16/2022] Open
Abstract
Prostatitis is a common urinary tract condition but bring innumerable trouble to clinicians in treatment, as well as great financial burden to patients and the society. Bacterial prostatitis (acute bacterial prostatitis plus chronic bacterial prostatitis) accounting for approximately 20% among all prostatitis have made the urological clinics complain about the genital and urinary systems all over the world. The international challenges of antibacterial treatment (emergence of multidrug-resistant bacteria, extended-spectrum beta-lactamase-producing bacteria, bacterial biofilms production and the shift in bacterial etiology) and the transformation of therapeutic strategy for classic therapy have attracted worldwide attention. To the best of our knowledge currently, there is not a single comprehensive review, which can completely elaborate these important topics and the corresponding treatment strategy in an effective way. This review summarizes the general treatment choices for bacterial prostatitis also provides the alternative pharmacological therapies for those patients resistant or intolerant to general treatment.
Collapse
Affiliation(s)
- Situ Xiong
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaoqiang Liu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Institute of Urology, Nanchang, China
| | - Wen Deng
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Institute of Urology, Nanchang, China
| | - Zhengtao Zhou
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Institute of Urology, Nanchang, China
| | - Yulei Li
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Institute of Urology, Nanchang, China
| | - Yechao Tu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Luyao Chen
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Gongxian Wang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Institute of Urology, Nanchang, China
| | - Bin Fu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Institute of Urology, Nanchang, China
| |
Collapse
|
21
|
Borysowski J, Przybylski M, Międzybrodzki R, Owczarek B, Górski A. The effects of bacteriophages on the expression of genes involved in antimicrobial immunity*. POSTEP HIG MED DOSW 2019. [DOI: 10.5604/01.3001.0013.4081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Introduction: Bacteriophages (viruses of bacteria) are used in the treatment of antibiotic‑resistant infections. Moreover, they are an important component of the mucosal microbiota. The objective of this study was to investigate the effects of T4 and A5/80 bacteriophages on the expression of genes involved in antimicrobial immunity, including Toll‑like receptors.
Material/Methods: The expression of genes was determined in the A549 cell line using RT2 Profiler PCR Array.
Results: Purified T4 and A5/80 phage preparations significantly affected the expression of 7 and 10 out of 84 examined genes, respectively.
Discussion: Our results are important for phage therapy of bacterial infections and provide novel insights into the role of phages from the mucosal microbiota. They may also lead to novel applications of phages as antiviral and immunomodulatory agents.
Collapse
Affiliation(s)
- Jan Borysowski
- Department of Clinical Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Maciej Przybylski
- Department of Medical Microbiology, Medical University of Warsaw, Poland
| | | | - Barbara Owczarek
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Andrzej Górski
- Department of Clinical Immunology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
22
|
Geng H, Zou W, Zhang M, Xu L, Liu F, Li X, Wang L, Xu Y. Evaluation of phage therapy in the treatment of Staphylococcus aureus-induced mastitis in mice. Folia Microbiol (Praha) 2019; 65:339-351. [PMID: 31256341 DOI: 10.1007/s12223-019-00729-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/17/2019] [Indexed: 01/10/2023]
Abstract
Mastitis in dairy cows is generally considered to be the most expensive disease for dairy farmers worldwide. The overuse of antibiotics is a major problem in the treatment of bovine mastitis, and bacteriophage therapy is expected to provide an alternative treatment. The primary aim of this study was to evaluate the efficacy of a phage cocktail against mastitis in a mouse model. First, a Staphylococcus aureus strain was isolated from milk samples taken from mastitis cows from dairy farms in Xinjiang, China, and it was designated as Sau-XJ-21. Next, two phages (designated as vBSM-A1 and vBSP-A2) with strong lytic activity against Sau-XJ-21 were isolated from mixed sewage samples collected from three cattle farms in Xinjiang. Phages vBSM-A1 and vBSP-A2 were identified as members of the Myoviridae and Podoviridae families, respectively. The two phages exhibited a wide range of hosts, especially phage vBSM-A1. To evaluate the effectiveness of the two phages in the treatment against mastitis, female lactating mice were used 10-14 days after giving births. The mice were divided into six groups; one group was kept as healthy control, while the remaining five groups were inoculated with the isolated S. aureus strain to induce mastitis. Four hours after bacterial inoculation, mice in these groups were injected with 25 μL phosphate buffer saline (negative control), ceftiofur sodium (positive control), or phage, either individually or as a cocktail. The mice were sacrificed 20 h later, and the mammary glands were removed and subjected to further analysis, including the quantitation of colony-forming units (CFU), plaque-forming units (PFU), and gross macroscopic as well as histopathology observation. Mice with induced mastitis exhibited significantly improved mastitic pathology and decreased bacterial counts after they had been given phage treatments, with the phage cocktail being more superior than either phage alone. Furthermore, the cocktail treatment also maintained the highest intramammary phage titer without spreading systemically. The effectiveness of the phage cocktail was comparable to that produced by ceftiofur sodium. According to the data obtained for the mouse model of mastitis, phage therapy could be considered as an innovative alternative to antibiotics for the treatment of bovine mastitis.
Collapse
Affiliation(s)
- Huijun Geng
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Wei Zou
- School of Life Science and Biotechnology, Liaoning Normal University, Dalian, 116029, People's Republic of China
| | - Meixia Zhang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Le Xu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Fanming Liu
- School of Life Science and Biotechnology, Liaoning Normal University, Dalian, 116029, People's Republic of China
| | - Xiaoyu Li
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Lili Wang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Yongping Xu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, People's Republic of China.
- Ministry of Education Center for Food Safety of Animal Origin, Dalian, 116600, People's Republic of China.
| |
Collapse
|
23
|
Effects of Staphylococcus aureus Bacteriophage K on Expression of Cytokines and Activation Markers by Human Dendritic Cells In Vitro. Viruses 2018; 10:v10110617. [PMID: 30413044 PMCID: PMC6266804 DOI: 10.3390/v10110617] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/03/2018] [Accepted: 11/06/2018] [Indexed: 01/21/2023] Open
Abstract
A potential concern with bacteriophage (phage) therapeutics is a host-versus-phage response in which the immune system may neutralize or destroy phage particles and thus impair therapeutic efficacy, or a strong inflammatory response to repeated phage exposure might endanger the patient. Current literature is discrepant with regard to the nature and magnitude of innate and adaptive immune response to phages. The purpose of this work was to study the potential effects of Staphylococcus aureus phage K on the activation of human monocyte-derived dendritic cells. Since phage K acquired from ATCC was isolated around 90 years ago, we first tested its activity against a panel of 36 diverse S. aureus clinical isolates from military patients and found that it was lytic against 30/36 (83%) of strains. Human monocyte-derived dendritic cells were used to test for an in vitro phage-specific inflammatory response. Repeated experiments demonstrated that phage K had little impact on the expression of pro- and anti-inflammatory cytokines, or on MHC-I/II and CD80/CD86 protein expression. Given that dendritic cells are potent antigen-presenting cells and messengers between the innate and the adaptive immune systems, our results suggest that phage K does not independently affect cellular immunity or has a very limited impact on it.
Collapse
|
24
|
Morozova VV, Vlassov VV, Tikunova NV. Applications of Bacteriophages in the Treatment of Localized Infections in Humans. Front Microbiol 2018; 9:1696. [PMID: 30116226 PMCID: PMC6083058 DOI: 10.3389/fmicb.2018.01696] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/09/2018] [Indexed: 12/22/2022] Open
Abstract
In the recent years, multidrug-resistant bacteria have become a global threat, and phage therapy may to be used as an alternative to antibiotics or, at least, as a supplementary approach to treatment of some bacterial infections. Here, we describe the results of bacteriophage application in clinical practice for the treatment of localized infections in wounds, burns, and trophic ulcers, including diabetic foot ulcers. This mini-review includes data from various studies available in English, as well as serial case reports published in Russian scientific literature (with, at least, abstracts accessible in English). Since, it would be impossible to describe all historical Russian publications; we focused on publications included clear data on dosage and rout of phage administration.
Collapse
Affiliation(s)
- Vera V. Morozova
- Laboratory of Molecular MicrobiologyInstitute of Chemical Biology and Fundamental Medicine (RAS), Novosibirsk, Russia
| | | | | |
Collapse
|
25
|
Górski A, Jończyk-Matysiak E, Międzybrodzki R, Weber-Dąbrowska B, Borysowski J. "Phage Transplantation in Allotransplantation": Possible Treatment in Graft-Versus-Host Disease? Front Immunol 2018; 9:941. [PMID: 29755481 PMCID: PMC5933259 DOI: 10.3389/fimmu.2018.00941] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/16/2018] [Indexed: 12/11/2022] Open
Abstract
Graft-versus-host disease, both acute and chronic (aGvHD, cGvHD) remains a major complication in patients undergoing hematopoietic cell transplantation (HCT) and a significant therapeutic challenge, as many patients do not respond adequately to presently available therapy. Increasing antimicrobial resistance has greatly revived interest in using bacterial viruses (phages) to combat antibiotic-resistant bacteria. In recent years, evidence has accumulated indicating that phages also have anti-inflammatory and immunomodulatory activities. This article suggests how these anti-bacterial and immunomodulatory activities of phages may be translated into a novel treatment of acute GvHD.
Collapse
Affiliation(s)
- Andrzej Górski
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences (HIIET PAS), Wrocław, Poland.,Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences (HIIET PAS), Wrocław, Poland.,Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, Warsaw, Poland
| | - Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences (HIIET PAS), Wrocław, Poland
| | - Ryszard Międzybrodzki
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences (HIIET PAS), Wrocław, Poland.,Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences (HIIET PAS), Wrocław, Poland.,Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, Warsaw, Poland
| | - Beata Weber-Dąbrowska
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences (HIIET PAS), Wrocław, Poland.,Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences (HIIET PAS), Wrocław, Poland
| | - Jan Borysowski
- Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
26
|
Xie Y, Wahab L, Gill JJ. Development and Validation of a Microtiter Plate-Based Assay for Determination of Bacteriophage Host Range and Virulence. Viruses 2018; 10:E189. [PMID: 29649135 PMCID: PMC5923483 DOI: 10.3390/v10040189] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/05/2018] [Accepted: 04/09/2018] [Indexed: 01/21/2023] Open
Abstract
Bacteriophages, which are the natural predators of bacteria, have re-emerged as an attractive alternative to combat antibiotic resistant bacteria. Phages are highly specific at the species and strain level and measurement of the phage host range plays an important role in utilizing the phage as antimicrobials. The most common method for phage host range determination has been to spot phage lysates on soft agar overlays and observe plaque formation. In this study, a liquid culture-based assay was developed in a 96-well microtiter plate format to measure the phage host range and virulence for a collection of 15 Salmonella phages against a panel of 20 Salmonella strains representing 11 serovars. This method was compared to a traditional spot method. The majority of the host range results from two methods were in agreement including in cases where a bacterial strain was insensitive to the phage. Each method produced a false-negative result in 19/300 (6%) of the measured phage-host combinations when compared to the other method. The spot method tended to indicate greater phage sensitivity than the microtiter assay even though direct comparisons of the response magnitude between the two methods is difficult since they operate on different mechanisms. The microtiter plate assay was able to provide data on both the phage host range and virulence in greater resolution in a high-throughput format.
Collapse
Affiliation(s)
- Yicheng Xie
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA.
| | - Laith Wahab
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA.
- Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA.
| | - Jason J Gill
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA.
- Center for Phage Technology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
27
|
Górski A, Jończyk‐Matysiak E, Łusiak‐Szelachowska M, Weber‐Dąbrowska B, Międzybrodzki R, Borysowski J. Therapeutic potential of phages in autoimmune liver diseases. Clin Exp Immunol 2018; 192:1-6. [PMID: 29266228 PMCID: PMC5842411 DOI: 10.1111/cei.13092] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 11/28/2017] [Accepted: 11/29/2017] [Indexed: 12/14/2022] Open
Abstract
Autoimmune liver disease (ALD) poses a difficult medical challenge, as there is a significant number of patients in whom current therapy offers questionable or no benefit, yet its side effects may be serious, including the development of malignancy. Bacterial viruses (phages) have been recognized increasingly as immunomodulators contributing to immune homeostasis and curbing inflammation. Accumulating data suggest that phages may be useful in immunotherapy of ALD. Phages have been shown to down-regulate the expression and/or production and activity of factors associated with hepatic injury [reactive oxygen species, Toll-like receptor (TLR)-4 activation, nuclear factor kappa B (NF-κB) activation, proinflammatory and procoagulant activities of platelets] and up-regulate the expression and/or production of factors demonstrated as playing a protective role [interleukin (IL)-10, IL-1 receptor antagonist].
Collapse
Affiliation(s)
- A. Górski
- Institute of Immunology and Experimental Therapy, Polish Academy of SciencesWroclawPoland
- Department of Clinical Immunology, the Medical University of WarsawWarsawPoland
| | - E. Jończyk‐Matysiak
- Institute of Immunology and Experimental Therapy, Polish Academy of SciencesWroclawPoland
| | - M. Łusiak‐Szelachowska
- Institute of Immunology and Experimental Therapy, Polish Academy of SciencesWroclawPoland
| | - B. Weber‐Dąbrowska
- Institute of Immunology and Experimental Therapy, Polish Academy of SciencesWroclawPoland
| | - R. Międzybrodzki
- Institute of Immunology and Experimental Therapy, Polish Academy of SciencesWroclawPoland
- Department of Clinical Immunology, the Medical University of WarsawWarsawPoland
| | - J. Borysowski
- Department of Clinical Immunology, the Medical University of WarsawWarsawPoland
| |
Collapse
|
28
|
Górski A, Jończyk-Matysiak E, Łusiak-Szelachowska M, Międzybrodzki R, Weber-Dąbrowska B, Borysowski J. Phage therapy in allergic disorders? Exp Biol Med (Maywood) 2018; 243:534-537. [PMID: 29359577 PMCID: PMC5882018 DOI: 10.1177/1535370218755658] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Allergic disorders pose a growing challenge to medicine and our society. Therefore, novel approaches to prevention and therapy are needed. Recent progress in studies on bacterial viruses (phages) has provided new data indicating that they have significant immunomodulating activities. We show how those activities could be translated into beneficial effects in allergic disorders and present initial clinical data that support this hope. Impact statement Allergic disorders pose a growing challenge to medicine and our society, so new approaches to prevention and therapy are urgently needed. Our article summarizes progress that has been recently made and presents a shift in our understanding of the immunobiological significance of bacterial viruses (phages). Currently, phages may be considered not only as mere "bacteria eaters" but also as regulators of immunity. The new understanding of phages as important factors in maintenance of immune homeostasis opens completely new perspectives for their use in controlling aberrant immune responses. It is likely that this new knowledge could be translated into novel means of immunotherapy of allergic disorders.
Collapse
Affiliation(s)
- Andrzej Górski
- Laboratory of Bacteriophages, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences (HIIET PAS), 53-114 Wrocław, Poland
- Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, 02-006 Warsaw, Poland
| | - Ewa Jończyk-Matysiak
- Laboratory of Bacteriophages, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences (HIIET PAS), 53-114 Wrocław, Poland
| | - Marzanna Łusiak-Szelachowska
- Laboratory of Bacteriophages, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences (HIIET PAS), 53-114 Wrocław, Poland
| | - Ryszard Międzybrodzki
- Laboratory of Bacteriophages, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences (HIIET PAS), 53-114 Wrocław, Poland
- Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, 02-006 Warsaw, Poland
| | - Beata Weber-Dąbrowska
- Laboratory of Bacteriophages, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences (HIIET PAS), 53-114 Wrocław, Poland
| | - Jan Borysowski
- Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, 02-006 Warsaw, Poland
| |
Collapse
|
29
|
Breyne K, Honaker RW, Hobbs Z, Richter M, Żaczek M, Spangler T, Steenbrugge J, Lu R, Kinkhabwala A, Marchon B, Meyer E, Mokres L. Efficacy and Safety of a Bovine-Associated Staphylococcus aureus Phage Cocktail in a Murine Model of Mastitis. Front Microbiol 2017; 8:2348. [PMID: 29234314 PMCID: PMC5712351 DOI: 10.3389/fmicb.2017.02348] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/15/2017] [Indexed: 12/31/2022] Open
Abstract
Overuse of antibiotics is a major problem in the treatment of bovine mastitis, and antibiotic treatment is frequently non-curative, thus alternative treatments are necessary. The primary aim of this study was to evaluate the efficacy of a purified phage cocktail for treatment of bovine Staphylococcus aureus mastitis in a well-defined mouse model. Candidate phages were selected based on their in vitro performance and subsequently processed into an optimally composed phage cocktail. The highest scoring phages were further tested for efficacy and resistance suppression in broth and raw milk, with and without supplemental IgG. As these in vitro results displayed significant decreases in CFU, the cocktail was purified for testing in vivo. Lactating mice were intramammarily inoculated with S. aureus N305 (ATCC 29740), a clinical bovine mastitis isolate commonly used for experimental infection of dairy cows. The phage cocktail was applied via the same route 4 h post-inoculation. Treated mammary glands were graded for gross pathological appearance and excised for bacterial and phage load quantification as well as histopathology. Observation of gross macroscopic and histopathological changes and CFU quantification demonstrated that the phage cocktail treatment significantly improved mastitis pathology and decreased bacterial counts. Phage PFU quantification indicated that the tested phage cocktail treatment was able to maintain high intramammary phage titers without spreading systemically. The in vivo results complement the in vitro data and support our concept of phage therapy as an innovative alternative or supplementation therapy to antibiotics for the treatment of bovine mastitis.
Collapse
Affiliation(s)
- Koen Breyne
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | | | | | | | | | - Taylor Spangler
- VDx Veterinary Diagnostics and Preclinical Research Services, Davis, CA, United States
| | - Jonas Steenbrugge
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Rebecca Lu
- EpiBiome, Inc., San Francisco, CA, United States
| | | | | | - Evelyne Meyer
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Lucia Mokres
- EpiBiome, Inc., San Francisco, CA, United States
| |
Collapse
|
30
|
Trend S, Fonceca AM, Ditcham WG, Kicic A, Cf A. The potential of phage therapy in cystic fibrosis: Essential human-bacterial-phage interactions and delivery considerations for use in Pseudomonas aeruginosa-infected airways. J Cyst Fibros 2017; 16:663-670. [PMID: 28720345 DOI: 10.1016/j.jcf.2017.06.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 01/21/2023]
Abstract
As antimicrobial-resistant microbes become increasingly common and a significant global issue, novel approaches to treating these infections particularly in those at high risk are required. This is evident in people with cystic fibrosis (CF), who suffer from chronic airway infection caused by antibiotic resistant bacteria, typically Pseudomonas aeruginosa. One option is bacteriophage (phage) therapy, which utilises the natural predation of phage viruses upon their host bacteria. This review summarises the essential and unique aspects of the phage-microbe-human lung interactions in CF that must be addressed to successfully develop and deliver phage to CF airways. The current evidence regarding phage biology, phage-bacterial interactions, potential airway immune responses to phages, previous use of phages in humans and method of phage delivery to the lung are also summarised.
Collapse
Affiliation(s)
- Stephanie Trend
- Telethon Kids Institute, University of Western Australia, Nedlands 6009, Western Australia, Australia; School of Paediatrics and Child Health, University of Western Australia, Nedlands 6009, Western Australia, Australia.
| | - Angela M Fonceca
- School of Paediatrics and Child Health, University of Western Australia, Nedlands 6009, Western Australia, Australia
| | - William G Ditcham
- School of Paediatrics and Child Health, University of Western Australia, Nedlands 6009, Western Australia, Australia
| | - Anthony Kicic
- Telethon Kids Institute, University of Western Australia, Nedlands 6009, Western Australia, Australia; School of Paediatrics and Child Health, University of Western Australia, Nedlands 6009, Western Australia, Australia; Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth 6001, Western Australia, Australia; Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia, Nedlands 6009, Western Australia, Australia; School of Public Health, Curtin University, Bentley 6102, Western Australia, Australia
| | - Arest Cf
- Telethon Kids Institute, University of Western Australia, Nedlands 6009, Western Australia, Australia; Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth 6001, Western Australia, Australia; Murdoch Childrens Research Institute, Parkville, 3052 Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Parkville, 3052 Melbourne, Victoria, Australia
| |
Collapse
|
31
|
Phage-Phagocyte Interactions and Their Implications for Phage Application as Therapeutics. Viruses 2017; 9:v9060150. [PMID: 28613272 PMCID: PMC5489797 DOI: 10.3390/v9060150] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/07/2017] [Accepted: 06/07/2017] [Indexed: 01/06/2023] Open
Abstract
Phagocytes are the main component of innate immunity. They remove pathogens and particles from organisms using their bactericidal tools in the form of both reactive oxygen species and degrading enzymes-contained in granules-that are potentially toxic proteins. Therefore, it is important to investigate the possible interactions between phages and immune cells and avoid any phage side effects on them. Recent progress in knowledge concerning the influence of phages on phagocytes is also important as such interactions may shape the immune response. In this review we have summarized the current knowledge on phage interactions with phagocytes described so far and their potential implications for phage therapy. The data suggesting that phage do not downregulate important phagocyte functions are especially relevant for the concept of phage therapy.
Collapse
|
32
|
Górski A, Dąbrowska K, Międzybrodzki R, Weber-Dąbrowska B, Łusiak-Szelachowska M, Jończyk-Matysiak E, Borysowski J. Phages and immunomodulation. Future Microbiol 2017; 12:905-914. [PMID: 28434234 DOI: 10.2217/fmb-2017-0049] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In the past years, the microbiome and its role in the pathophysiology of diseases have gained great interest. The progress of our knowledge in this field opens completely novel prospects for treating disorders, including those which are most challenging to medicine today. Of special interest are studies on the interactions of the microbiome with the immune system. Only recently has the presence of bacteriophages in the microbiome been highlighted, and their potential role in maintaining normal immunity has gained increasing attention. We summarize the available data pointing to the potential impact of phages in maintaining immunological homeostasis.
Collapse
Affiliation(s)
- Andrzej Górski
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences (HIIET PAS), Wrocław, Poland.,Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.,Department of Clinical Immunology, Transplantation Institute, The Medical University of Warsaw, Warsaw, Poland
| | - Krystyna Dąbrowska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences (HIIET PAS), Wrocław, Poland
| | - Ryszard Międzybrodzki
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences (HIIET PAS), Wrocław, Poland.,Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.,Department of Clinical Immunology, Transplantation Institute, The Medical University of Warsaw, Warsaw, Poland
| | - Beata Weber-Dąbrowska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences (HIIET PAS), Wrocław, Poland.,Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Marzanna Łusiak-Szelachowska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences (HIIET PAS), Wrocław, Poland
| | - Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences (HIIET PAS), Wrocław, Poland
| | - Jan Borysowski
- Department of Clinical Immunology, Transplantation Institute, The Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
33
|
Żaczek M, Łusiak-Szelachowska M, Jończyk-Matysiak E, Weber-Dąbrowska B, Międzybrodzki R, Owczarek B, Kopciuch A, Fortuna W, Rogóż P, Górski A. Antibody Production in Response to Staphylococcal MS-1 Phage Cocktail in Patients Undergoing Phage Therapy. Front Microbiol 2016; 7:1681. [PMID: 27822205 PMCID: PMC5075762 DOI: 10.3389/fmicb.2016.01681] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 10/07/2016] [Indexed: 01/12/2023] Open
Abstract
In this study, we investigated the humoral immune response (through the release of IgG, IgA, and IgM antiphage antibodies) to a staphylococcal phage cocktail in patients undergoing experimental phage therapy at the Phage Therapy Unit, Medical Center of the Ludwik Hirszfeld Institute of Immunology and Experimental Therapy in Wrocław, Poland. We also evaluated whether occurring antiphage antibodies had neutralizing properties toward applied phages (K rate). Among 20 examined patients receiving the MS-1 phage cocktail orally and/or locally, the majority did not show a noticeably higher level of antiphage antibodies in their sera during phage administration. Even in those individual cases with an increased immune response, mostly by induction of IgG and IgM, the presence of antiphage antibodies did not translate into unsatisfactory clinical results of phage therapy. On the other hand, a negative outcome of the treatment occurred in some patients who showed relatively weak production of antiphage antibodies before and during treatment. This may imply that possible induction of antiphage antibodies is not an obstacle to the implementation of phage therapy and support our assumption that the outcome of the phage treatment does not primarily depend on the appearance of antiphage antibodies in sera of patients during therapy. These conclusions are in line with our previous findings. The confirmation of this thesis is of great interest as regards the efficacy of phage therapy in humans.
Collapse
Affiliation(s)
- Maciej Żaczek
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of SciencesWrocław, Poland
| | - Marzanna Łusiak-Szelachowska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of SciencesWrocław, Poland
| | - Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of SciencesWrocław, Poland
| | - Beata Weber-Dąbrowska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of SciencesWrocław, Poland
- Phage Therapy Unit, Medical Center of the Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of SciencesWrocław, Poland
| | - Ryszard Międzybrodzki
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of SciencesWrocław, Poland
- Phage Therapy Unit, Medical Center of the Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of SciencesWrocław, Poland
- Department of Clinical Immunology, Transplantation Institute, Medical University of WarsawWarsaw, Poland
| | - Barbara Owczarek
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of SciencesWrocław, Poland
| | - Agnieszka Kopciuch
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of SciencesWrocław, Poland
| | - Wojciech Fortuna
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of SciencesWrocław, Poland
- Phage Therapy Unit, Medical Center of the Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of SciencesWrocław, Poland
| | - Paweł Rogóż
- Phage Therapy Unit, Medical Center of the Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of SciencesWrocław, Poland
| | - Andrzej Górski
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of SciencesWrocław, Poland
- Phage Therapy Unit, Medical Center of the Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of SciencesWrocław, Poland
- Department of Clinical Immunology, Transplantation Institute, Medical University of WarsawWarsaw, Poland
| |
Collapse
|
34
|
Górski A, Międzybrodzki R, Weber-Dąbrowska B, Fortuna W, Letkiewicz S, Rogóż P, Jończyk-Matysiak E, Dąbrowska K, Majewska J, Borysowski J. Phage Therapy: Combating Infections with Potential for Evolving from Merely a Treatment for Complications to Targeting Diseases. Front Microbiol 2016; 7:1515. [PMID: 27725811 PMCID: PMC5035766 DOI: 10.3389/fmicb.2016.01515] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/09/2016] [Indexed: 12/22/2022] Open
Abstract
Antimicrobial resistance is considered to be one of the greatest challenges of medicine and our civilization. Lack of progress in developing new anti-bacterial agents has greatly revived interest in using phage therapy to combat antibiotic-resistant infections. Although a number of clinical trials are underway and more are planned, the realistic perspective of registration of phage preparations and their entering the health market and significantly contributing to the current antimicrobial crisis is rather remote. Therefore, in addition to planning further clinical trials, our present approach of phage treatment carried out as experimental therapy (compassionate use) should be expanded to address the growing and urgent needs of increasing cohorts of patients for whom no alternative treatment is currently available. During the past 11 years of our phage therapy center’s operation, we have obtained relevant clinical and laboratory data which not only confirm the safety of the therapy but also provide important information shedding more light on many aspects of the therapy, contributing to its optimization and allowing for construction of the most appropriate clinical trials. New data on phage biology and interactions with the immune system suggest that in the future phage therapy may evolve from dealing with complications to targeting diseases. However, further studies are necessary to confirm this promising trend.
Collapse
Affiliation(s)
- Andrzej Górski
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, WroclawPoland; Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, WroclawPoland; Department of Clinical Immunology, Transplantation Institute, The Medical University of Warsaw, WarsawPoland
| | - Ryszard Międzybrodzki
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, WroclawPoland; Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, WroclawPoland; Department of Clinical Immunology, Transplantation Institute, The Medical University of Warsaw, WarsawPoland
| | - Beata Weber-Dąbrowska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, WroclawPoland; Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, WroclawPoland
| | - Wojciech Fortuna
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, WroclawPoland; Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, WroclawPoland
| | - Sławomir Letkiewicz
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, WroclawPoland; Katowice School of Economics, KatowicePoland
| | - Paweł Rogóż
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, WroclawPoland; Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, WroclawPoland
| | - Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw Poland
| | - Krystyna Dąbrowska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw Poland
| | - Joanna Majewska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw Poland
| | - Jan Borysowski
- Department of Clinical Immunology, Transplantation Institute, The Medical University of Warsaw, Warsaw Poland
| |
Collapse
|
35
|
Broecker F, Klumpp J, Moelling K. Long-term microbiota and virome in a Zürich patient after fecal transplantation against Clostridium difficile infection. Ann N Y Acad Sci 2016; 1372:29-41. [PMID: 27286042 DOI: 10.1111/nyas.13100] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 12/14/2022]
Abstract
Fecal microbiota transplantation (FMT) is an emerging therapeutic option for Clostridium difficile infections that are refractory to conventional treatment. FMT introduces fecal microbes into the patient's intestine that prevent the recurrence of C. difficile, leading to rapid expansion of bacteria characteristic of healthy microbiota. However, the long-term effects of FMT remain largely unknown. The C. difficile patient described in this paper revealed protracted microbiota adaptation processes from 6 to 42 months post-FMT. Ultimately, bacterial communities were donor similar, suggesting sustainable stool engraftment. Since little is known about the consequences of transmitted viruses during C. difficile infection, we also interrogated virome changes. Our approach allowed identification of about 10 phage types per sample that represented larger viral communities, and phages were found to be equally abundant in the cured patient and donor. The healthy microbiota appears to be characterized by low phage abundance. Although viruses were likely transferred, the patient established a virome distinct from the donor. Surprisingly, the patient had sequences of algal giant viruses (chloroviruses) that have not previously been reported for the human gut. Chloroviruses have not been associated with intestinal disease, but their presence in the oropharynx may influence cognitive abilities. The findings suggest that the virome is an important indicator of health or disease. A better understanding of the role of viruses in the gut ecosystem may uncover novel microbiota-modulating therapeutic strategies.
Collapse
Affiliation(s)
- Felix Broecker
- Max Planck Institute for Molecular Genetics, Berlin, Germany.,Institute for Medical Microbiology, University of Zürich, Zürich, Switzerland.,Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Jochen Klumpp
- Institute of Food, Nutrition, and Health, ETH Zürich, Zürich, Switzerland
| | - Karin Moelling
- Max Planck Institute for Molecular Genetics, Berlin, Germany.,Institute for Medical Microbiology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
36
|
The Effect of Bacteriophage Preparations on Intracellular Killing of Bacteria by Phagocytes. J Immunol Res 2015; 2015:482863. [PMID: 26783541 PMCID: PMC4689956 DOI: 10.1155/2015/482863] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 01/21/2023] Open
Abstract
Intracellular killing of bacteria is one of the fundamental mechanisms against invading pathogens. Impaired intracellular killing of bacteria by phagocytes may be the reason of chronic infections and may be caused by antibiotics or substances that can be produced by some bacteria. Therefore, it was of great practical importance to examine whether phage preparations may influence the process of phagocyte intracellular killing of bacteria. It may be important especially in the case of patients qualified for experimental phage therapy (approximately half of the patients with chronic bacterial infections have their immunity impaired). Our analysis included 51 patients with chronic Gram-negative and Gram-positive bacterial infections treated with phage preparations at the Phage Therapy Unit in Wroclaw. The aim of the study was to investigate the effect of experimental phage therapy on intracellular killing of bacteria by patients' peripheral blood monocytes and polymorphonuclear neutrophils. We observed that phage therapy does not reduce patients' phagocytes' ability to kill bacteria, and it does not affect the activity of phagocytes in patients with initially reduced ability to kill bacteria intracellularly. Our results suggest that experimental phage therapy has no significant adverse effects on the bactericidal properties of phagocytes, which confirms the safety of the therapy.
Collapse
|
37
|
Sarhan WA, Azzazy HME. Phage approved in food, why not as a therapeutic? Expert Rev Anti Infect Ther 2014; 13:91-101. [DOI: 10.1586/14787210.2015.990383] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
38
|
Application of microbiological quantitative methods for evaluation of changes in the amount of bacteria in patients with wounds and purulent fistulas subjected to phage therapy and for assessment of phage preparation effectiveness (in vitro studies). Adv Med Sci 2014; 58:257-64. [PMID: 24216162 DOI: 10.2478/ams-2013-0004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE Quantitative microbiological studies may provide important information required for successful phage therapy (PT), however methods for PT monitoring of purulent wounds and fistulas has never been reported before. Therefore our goal was to determine and apply microbiological quantitative methods (MQMs) for monitoring experimental PT. METHODS Samples from agar plates with growing bacteria were collected using dry and wet sterile compresses, or swabs. After shaking the sample in saline the amount of bacteria in suspension was determined. The method was standardized. The MQM using compress was applied for comparison of in vitro activity of phage preparations with other agents for wound rinsing. The usefulness of this swabbing method was tested in the Phage Therapy Unit for monitoring of experimental PT of patients with chronic wounds or purulent fistulas. RESULTS Minimum, maximum and standard deviation values used for standardization of the studied method showed that data repeatability was good; thus the method was used for quantitation of bacteria taken both from plates in vitro and patients samples. Effectiveness of phage preparations was compared to gentamicin in vitro. Phages were as effective as antibiotics in reducing the amount of bacteria on agar plates, and this effect was not only due to simple mechanical removal of bacteria, but dependent on their antibacterial activity. We have also observed that the results of bacteria quantitation may correlate with the local status of a wound/fistula in a particular stage of PT. CONCLUSION The standardized swabbing method of bacteria quantitation can be used for PT monitoring. Presented MQMs are simple and may help to monitor the therapy process and to decide on its duration, frequency and a kind of the phage applied. They can also be applied in other antibacterial treatment strategies.
Collapse
|
39
|
Wittebole X, De Roock S, Opal SM. A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence 2014; 5:226-35. [PMID: 23973944 PMCID: PMC3916379 DOI: 10.4161/viru.25991] [Citation(s) in RCA: 332] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 07/30/2013] [Accepted: 07/31/2013] [Indexed: 02/08/2023] Open
Abstract
The seemingly inexorable spread of antibiotic resistance genes among microbial pathogens now threatens the long-term viability of our current antimicrobial therapy to treat severe bacterial infections such as sepsis. Antibiotic resistance is reaching a crisis situation in some bacterial pathogens where few therapeutic alternatives remain and pan-resistant strains are becoming more prevalent. Non-antibiotic therapies to treat bacterial infections are now under serious consideration and one possible option is the therapeutic use of specific phage particles that target bacterial pathogens. Bacteriophage therapy has essentially been re-discovered by modern medicine after widespread use of phage therapy in the pre-antibiotic era lost favor, at least in Western countries, after the introduction of antibiotics. We review the current therapeutic rationale and clinical experience with phage therapy as a treatment for invasive bacterial infection as novel alternative to antimicrobial chemotherapy.
Collapse
Affiliation(s)
- Xavier Wittebole
- Critical Care Department; St Luc University Hospital; Université Catholique de Louvain; Brussels, Belgium
| | | | - Steven M Opal
- The Infectious Disease Division; Memorial Hospital of RI; Providence, RI USA
- The Alpert Medical School of Brown University; Providence, RI USA
| |
Collapse
|
40
|
Abstract
Although the natural hosts for bacteriophages are bacteria, a growing body of data shows that phages can also interact with some populations of mammalian cells, especially with cells of the immune system. In general, these interactions include two main aspects. The first is the phage immunogenicity, that is, the capacity of phages to induce specific immune responses, in particular the generation of specific antibodies against phage antigens. The other aspect includes the immunomodulatory activity of phages, that is, the nonspecific effects of phages on different functions of major populations of immune cells involved in both innate and adaptive immune responses. These functions include, among others, phagocytosis and the respiratory burst of phagocytic cells, the production of cytokines, and the generation of antibodies against nonphage antigens. The aim of this chapter is to discuss the interactions between phages and cells of the immune system, along with their implications for phage therapy. These topics are presented based on the results of experimental studies and unique data on immunomodulatory effects found in patients with bacterial infections treated with phage preparations.
Collapse
|
41
|
Międzybrodzki R, Borysowski J, Weber-Dąbrowska B, Fortuna W, Letkiewicz S, Szufnarowski K, Pawełczyk Z, Rogóż P, Kłak M, Wojtasik E, Górski A. Clinical aspects of phage therapy. Adv Virus Res 2012; 83:73-121. [PMID: 22748809 DOI: 10.1016/b978-0-12-394438-2.00003-7] [Citation(s) in RCA: 236] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Phage therapy (PT) is a unique method of treatment of bacterial infections using bacteriophages (phages)-viruses that specifically kill bacteria, including their antibiotic-resistant strains. Over the last decade a marked increase in interest in the therapeutic use of phages has been observed, which has resulted from a substantial rise in the prevalence of antibiotic resistance of bacteria, coupled with an inadequate number of new antibiotics. The first, and so far the only, center of PT in the European Union is the Phage Therapy Unit (PTU) established at the Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Wrocław, Poland in 2005. This center continues the rich tradition of PT in Poland, which dates from the early 1920s. The main objective of this chapter is to present a detailed retrospective analysis of the results of PT of 153 patients with a wide range of infections resistant to antibiotic therapy admitted for treatment at the PTU between January 2008 and December 2010. Analysis includes the evaluation of both the efficacy and the safety of PT. In general, data suggest that PT can provide good clinical results in a significant cohort of patients with otherwise untreatable chronic bacterial infections and is essentially well tolerated. In addition, the whole complex procedure employed to obtain and characterize therapeutic phage preparations, as well as ethical aspects of PT, is discussed.
Collapse
Affiliation(s)
- Ryszard Międzybrodzki
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Bacteriophage-based medical research provides the opportunity to develop targeted nanomedicines with heightened efficiency and safety profiles. Filamentous phages also can and have been formulated as targeted drug-delivery nanomedicines, and phage may also serve as promising alternatives/complements to antibiotics. Over the past decade the use of phage for both the prophylaxis and the treatment of bacterial infection, has gained special significance in view of a dramatic rise in the prevalence of antibiotic resistance bacterial strains. Two potential medical applications of phages are the treatment of bacterial infections and their use as immunizing agents in diagnosis and monitoring patients with immunodeficiencies. Recently, phages have been employed as gene-delivery vectors (phage nanomedicine), for nearly half a century as tools in genetic research, for about two decades as tools for the discovery of specific target-binding proteins and peptides, and for almost a decade as tools for vaccine development. As phage applications to human therapeutic development grow at an exponential rate, it will become essential to evaluate host immune responses to initial and repetitive challenges by therapeutic phage in order to develop phage therapies that offer suitable utility. This paper examines and discusses phage nanomedicine applications and the immunomodulatory effects of bacteriophage exposure and treatment modalities.
Collapse
|
43
|
Letkiewicz S, Międzybrodzki R, Kłak M, Jończyk E, Weber-Dąbrowska B, Górski A. The perspectives of the application of phage therapy in chronic bacterial prostatitis. ACTA ACUST UNITED AC 2010; 60:99-112. [DOI: 10.1111/j.1574-695x.2010.00723.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
44
|
Budynek P, Dabrowska K, Skaradziński G, Górski A. Bacteriophages and cancer. Arch Microbiol 2010; 192:315-20. [PMID: 20232198 DOI: 10.1007/s00203-010-0559-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 12/10/2009] [Accepted: 02/19/2010] [Indexed: 10/19/2022]
Abstract
Bacteriophages can be used effectively to cure bacterial infections. They are known to be active against bacteria but inactive against eukaryotic cells. Nevertheless, novel observations suggest that phages are not neutral for higher organisms. They can affect physiological and immunological processes which may be crucial to their expected positive effects in therapies. Bacteriophages are a very differentiated group of viruses and at least some of them can influence cancer processes. Phages may also affect the immunological system. In general, they activate the immunological response, for example cytokine secretion. They can also switch the tumor microenvironment to one advantageous for anticancer treatment. On the other hand, bacteriophages are used as a platform for foreign peptides that may induce anticancer effects. As bacterial debris can interfere with bacteriophage activity, phage purification is significant for the final effect of a phage preparation. In this review, results of the influence of bacteriophages on cancer processes are presented which have implications for the perspective application of phage therapy in patients with cancer and the general understanding of the role of bacteriophages in the human organism.
Collapse
Affiliation(s)
- Paulina Budynek
- Institute of Immunology and Experimental Therapy, Wroclaw, Poland.
| | | | | | | |
Collapse
|
45
|
Letkiewicz S, Miedzybrodzki R, Fortuna W, Weber-Dabrowska B, Górski A. Eradication of Enterococcus faecalis by phage therapy in chronic bacterial prostatitis--case report. Folia Microbiol (Praha) 2009; 54:457-61. [PMID: 19937220 DOI: 10.1007/s12223-009-0064-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 05/27/2009] [Indexed: 10/20/2022]
Abstract
The treatment of three patients suffering from chronic bacterial prostatitis who were qualified for an experimental phage therapy protocol managed at the Phage Therapy Unit in Wrocław is described. They had previously been treated unsuccessfully with long-term targeted antibiotics, autovaccines, and laser biostimulation. Rectal application of phage lysates targeted against Enterococcus faecalis cultured from the prostatic fluid gave encouraging results regarding bacterial eradication, abatement of clinical symptoms of prostatitis, and lack of early disease recurrence.
Collapse
Affiliation(s)
- S Letkiewicz
- Urological and Andrological Clinic UROGEN, 42-600, Tarnowskie Góry, Poland.
| | | | | | | | | |
Collapse
|