1
|
DeOliveira CC, Crane BR. A structural decryption of cryptochromes. Front Chem 2024; 12:1436322. [PMID: 39220829 PMCID: PMC11362059 DOI: 10.3389/fchem.2024.1436322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Cryptochromes (CRYs), which are signaling proteins related to DNA photolyases, play pivotal roles in sensory responses throughout biology, including growth and development, metabolic regulation, circadian rhythm entrainment and geomagnetic field sensing. This review explores the evolutionary relationships and functional diversity of cryptochromes from the perspective of their molecular structures. In general, CRY biological activities derive from their core structural architecture, which is based on a Photolyase Homology Region (PHR) and a more variable and functionally specific Cryptochrome C-terminal Extension (CCE). The α/β and α-helical domains within the PHR bind FAD, modulate redox reactive residues, accommodate antenna cofactors, recognize small molecules and provide conformationally responsive interaction surfaces for a range of partners. CCEs add structural complexity and divergence, and in doing so, influence photoreceptor reactivity and tailor function. Primary and secondary pockets within the PHR bind myriad moieties and collaborate with the CCEs to tune recognition properties and propagate chemical changes to downstream partners. For some CRYs, changes in homo and hetero-oligomerization couple to light-induced conformational changes, for others, changes in posttranslational modifications couple to cascades of protein interactions with partners and effectors. The structural exploration of cryptochromes underscores how a broad family of signaling proteins with close relationship to light-dependent enzymes achieves a wide range of activities through conservation of key structural and chemical properties upon which function-specific features are elaborated.
Collapse
Affiliation(s)
| | - Brian R. Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
2
|
Fatima A, Kataria S, Jain M, Prajapati R, Mahawar L. Synchrotron tomography of magnetoprimed soybean plant root system architecture grown in arsenic-polluted soil. FRONTIERS IN PLANT SCIENCE 2024; 15:1391846. [PMID: 39015294 PMCID: PMC11249557 DOI: 10.3389/fpls.2024.1391846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/30/2024] [Indexed: 07/18/2024]
Abstract
The present study evaluated the repercussions of magnetopriming on the root system architecture of soybean plants subjected to arsenic toxicity using synchrotron radiation source based micro-computed tomography (SR-µCT). This will be used evey where as abbreviation for the technique for three-dimensional imaging. Seeds of soybean were exposed to the static magnetic field (SMF) of strength (200 mT) for 1h prior to sowing. Magnetoprimed and non-primed seeds were grown for 1 month in a soil-sand mixture containing four different levels of sodium arsenate (0, 5, 10, and 50 mg As kg-1 soil). The results showed that arsenic adversely affects the root growth in non-primed plants by reducing their root length, root biomass, root hair, size and number of root nodules, where the damaging effect of As was observed maximum at higher concentrations (10 and 50 mg As kg-1 soil). However, a significant improvement in root morphology was detected in magnetoprimed plants where SMF pretreatment enhanced the root length, root biomass, pore diameter of cortical cells, root hair formation, lateral roots branching, and size of root nodules and girth of primary roots. Qualitative analysis of x-ray micro-CT images showed that arsenic toxicity damaged the epidermal and cortical layers of the root as well as reduced the pore diameter of the cortical cells. However, the diameter of cortical cells pores in magnetoprimed plants was observed higher as compared to plants emerged from non-primed seeds at all level of As toxicity. Thus, the study suggested that magnetopriming has the potential to attenuate the toxic effect of As and could be employed as a pre-sowing treatment to reduce the phytotoxic effects of metal ions in plants by improving root architecture and root tolerance index. This study is the very first exploration of the potential benefits of magnetopriming in mitigating the toxicity of metals (As) in plant roots utilizing the micro-CT technique.
Collapse
Affiliation(s)
- Anis Fatima
- Technical Physics Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Sunita Kataria
- School of Biochemistry, Devi AhilyaVishwavidyalaya, Indore, MP, India
- Department of Plant Physiology, Faculty of Agrobiology and Food Resource, Slovak University of Agriculture, Nitra, Slovakia
| | - Meeta Jain
- School of Biochemistry, Devi AhilyaVishwavidyalaya, Indore, MP, India
| | | | - Lovely Mahawar
- Department of Plant Physiology, Faculty of Agrobiology and Food Resource, Slovak University of Agriculture, Nitra, Slovakia
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| |
Collapse
|
3
|
Ricker B, Castellanos Franco EA, de los Campos G, Pelled G, Gilad AA. A conserved phenylalanine motif among teleost fish provides insight for improving electromagnetic perception. Open Biol 2024; 14:240092. [PMID: 39043226 PMCID: PMC11265860 DOI: 10.1098/rsob.240092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/25/2024] Open
Abstract
Magnetoreceptive biology as a field remains relatively obscure; compared with the breadth of species believed to sense magnetic fields, it remains under-studied. Here, we present grounds for the expansion of magnetoreception studies among teleosts. We begin with the electromagnetic perceptive gene (EPG) from Kryptopterus vitreolus and expand to identify 72 teleosts with homologous proteins containing a conserved three-phenylalanine (3F) motif. Phylogenetic analysis provides insight as to how EPG may have evolved over time and indicates that certain clades may have experienced a loss of function driven by different fitness pressures. One potential factor is water type with freshwater fish significantly more likely to possess the functional motif version (FFF), and saltwater fish to have the non-functional variant (FXF). It was also revealed that when the 3F motif from the homologue of Brachyhypopomus gauderio (B.g.) is inserted into EPG-EPG(B.g.)-the response (as indicated by increased intracellular calcium) is faster. This indicates that EPG has the potential to be engineered to improve upon its response and increase its utility to be used as a controller for specific outcomes.
Collapse
Affiliation(s)
- Brianna Ricker
- Department of Chemical Engineering and Materials Sciences, Michigan State University, East Lansing, MI, USA
| | | | - Gustavo de los Campos
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Statistics and Probability, Michigan State University, East Lansing, MI, USA
| | - Galit Pelled
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, USA
- Department of Radiology, Michigan State University, East Lansing, MI, USA
| | - Assaf A. Gilad
- Department of Chemical Engineering and Materials Sciences, Michigan State University, East Lansing, MI, USA
- Department of Radiology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
4
|
Ricker B, Castellanos Franco EA, de los Campos G, Pelled G, Gilad AA. A conserved phenylalanine motif among Teleost fish provides insight for improving electromagnetic perception. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.588096. [PMID: 38617371 PMCID: PMC11014636 DOI: 10.1101/2024.04.04.588096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Magnetoreceptive biology as a field remains relatively obscure; compared to the breadth of species believed to sense magnetic fields, it remains under-studied. Here, we present grounds for the expansion of magnetoreception studies among Teleosts. We begin with the electromagnetic perceptive gene (EPG) from Kryptopterus vitreolus and expand to identify 72 Teleosts with homologous proteins containing a conserved three-phenylalanine (3F) motif. Phylogenetic analysis provides insight as to how EPG may have evolved over time, and indicates that certain clades may have experienced a loss of function driven by different fitness pressures. One potential factor is water type with freshwater fish significantly more likely to possess the functional motif version (FFF), and saltwater fish to have the non-functional variant (FXF). It was also revealed that when the 3F motif from the homolog of Brachyhypopomus gauderio (B.g.) is inserted into EPG - EPG(B.g.) - the response (as indicated by increased intracellular calcium) is faster. This indicates that EPG has the potential to be engineered to improve upon its response and increase its utility to be used as a controller for specific outcomes.
Collapse
Affiliation(s)
- Brianna Ricker
- Department of Chemical Engineering and Materials Sciences, Michigan State University, East Lansing MI, USA
| | | | - Gustavo de los Campos
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing MI, USA
- Department of Statistics and Probability, Michigan State University, East Lansing MI, USA
| | - Galit Pelled
- Department of Mechanical Engineering, Michigan State University, East Lansing MI, USA
- Department of Radiology, Michigan State University, East Lansing, MI, USA
| | - Assaf A. Gilad
- Department of Chemical Engineering and Materials Sciences, Michigan State University, East Lansing MI, USA
- Department of Radiology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
5
|
Aguida B, Babo J, Baouz S, Jourdan N, Procopio M, El-Esawi MA, Engle D, Mills S, Wenkel S, Huck A, Berg-Sørensen K, Kampranis SC, Link J, Ahmad M. 'Seeing' the electromagnetic spectrum: spotlight on the cryptochrome photocycle. FRONTIERS IN PLANT SCIENCE 2024; 15:1340304. [PMID: 38495372 PMCID: PMC10940379 DOI: 10.3389/fpls.2024.1340304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/12/2024] [Indexed: 03/19/2024]
Abstract
Cryptochromes are widely dispersed flavoprotein photoreceptors that regulate numerous developmental responses to light in plants, as well as to stress and entrainment of the circadian clock in animals and humans. All cryptochromes are closely related to an ancient family of light-absorbing flavoenzymes known as photolyases, which use light as an energy source for DNA repair but themselves have no light sensing role. Here we review the means by which plant cryptochromes acquired a light sensing function. This transition involved subtle changes within the flavin binding pocket which gave rise to a visual photocycle consisting of light-inducible and dark-reversible flavin redox state transitions. In this photocycle, light first triggers flavin reduction from an initial dark-adapted resting state (FADox). The reduced state is the biologically active or 'lit' state, correlating with biological activity. Subsequently, the photoreduced flavin reoxidises back to the dark adapted or 'resting' state. Because the rate of reoxidation determines the lifetime of the signaling state, it significantly modulates biological activity. As a consequence of this redox photocycle Crys respond to both the wavelength and the intensity of light, but are in addition regulated by factors such as temperature, oxygen concentration, and cellular metabolites that alter rates of flavin reoxidation even independently of light. Mechanistically, flavin reduction is correlated with conformational change in the protein, which is thought to mediate biological activity through interaction with biological signaling partners. In addition, a second, entirely independent signaling mechanism arises from the cryptochrome photocycle in the form of reactive oxygen species (ROS). These are synthesized during flavin reoxidation, are known mediators of biotic and abiotic stress responses, and have been linked to Cry biological activity in plants and animals. Additional special properties arising from the cryptochrome photocycle include responsivity to electromagnetic fields and their applications in optogenetics. Finally, innovations in methodology such as the use of Nitrogen Vacancy (NV) diamond centers to follow cryptochrome magnetic field sensitivity in vivo are discussed, as well as the potential for a whole new technology of 'magneto-genetics' for future applications in synthetic biology and medicine.
Collapse
Affiliation(s)
- Blanche Aguida
- Unite Mixed de Recherche (UMR) Centre Nationale de la Recherche Scientifique (CNRS) 8256 (B2A), Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, Paris, France
| | - Jonathan Babo
- Unite Mixed de Recherche (UMR) Centre Nationale de la Recherche Scientifique (CNRS) 8256 (B2A), Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, Paris, France
| | - Soria Baouz
- Unite Mixed de Recherche (UMR) Centre Nationale de la Recherche Scientifique (CNRS) 8256 (B2A), Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, Paris, France
| | - Nathalie Jourdan
- Unite Mixed de Recherche (UMR) Centre Nationale de la Recherche Scientifique (CNRS) 8256 (B2A), Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, Paris, France
| | - Maria Procopio
- Department of Biophysics, Faculty of Arts and Sciences, Johns Hopkins University, Baltimore, MD, United States
| | | | - Dorothy Engle
- Biology Department, Xavier University, Cincinnati, OH, United States
| | - Stephen Mills
- Chemistry Department, Xavier University, Cincinnati, OH, United States
| | - Stephan Wenkel
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Alexander Huck
- DTU Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Sotirios C. Kampranis
- Biochemical Engineering Group, Plant Biochemistry Section, Department of Plant and Environment Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Justin Link
- Physics and Engineering Department, Cincinnati, OH, United States
| | - Margaret Ahmad
- Unite Mixed de Recherche (UMR) Centre Nationale de la Recherche Scientifique (CNRS) 8256 (B2A), Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, Paris, France
- Biology Department, Xavier University, Cincinnati, OH, United States
| |
Collapse
|
6
|
Thoradit T, Thongyoo K, Kamoltheptawin K, Tunprasert L, El-Esawi MA, Aguida B, Jourdan N, Buddhachat K, Pooam M. Cryptochrome and quantum biology: unraveling the mysteries of plant magnetoreception. FRONTIERS IN PLANT SCIENCE 2023; 14:1266357. [PMID: 37860259 PMCID: PMC10583551 DOI: 10.3389/fpls.2023.1266357] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/14/2023] [Indexed: 10/21/2023]
Abstract
Magnetoreception, the remarkable ability of organisms to perceive and respond to Earth's magnetic field, has captivated scientists for decades, particularly within the field of quantum biology. In the plant science, the exploration of the complicated interplay between quantum phenomena and classical biology in the context of plant magnetoreception has emerged as an attractive area of research. This comprehensive review investigates into three prominent theoretical models: the Radical Pair Mechanism (RPM), the Level Crossing Mechanism (LCM), and the Magnetite-based MagR theory in plants. While examining the advantages, limitations, and challenges associated with each model, this review places a particular weight on the RPM, highlighting its well-established role of cryptochromes and in-vivo experiments on light-independent plant magnetoreception. However, alternative mechanisms such as the LCM and the MagR theory are objectively presented as convincing perspectives that permit further investigation. To shed light on these theoretical frameworks, this review proposes experimental approaches including cutting-edge experimental techniques. By integrating these approaches, a comprehensive understanding of the complex mechanisms driving plant magnetoreception can be achieved, lending support to the fundamental principle in the RPM. In conclusion, this review provides a panoramic overview of plant magnetoreception, highlighting the exciting potential of quantum biology in unraveling the mysteries of magnetoreception. As researchers embark on this captivating scientific journey, the doors to deciphering the diverse mechanisms of magnetoreception in plants stand wide open, offering a profound exploration of nature's adaptations to environmental cues.
Collapse
Affiliation(s)
- Thawatchai Thoradit
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | - Kanjana Thongyoo
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | | | - Lalin Tunprasert
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand
- State Key Laboratory for Mechanical Behavior of Materials, School of Material Science and Engineering, Xi’an Jiaotong University, Xi’an, China
| | | | - Blanche Aguida
- UMR CNRS 8256 Adaptation biologique et vieillissement (B2A), Institute of Biology Paris Seine, Sorbonne Université, Paris, France
| | - Nathalie Jourdan
- UMR CNRS 8256 Adaptation biologique et vieillissement (B2A), Institute of Biology Paris Seine, Sorbonne Université, Paris, France
| | - Kittisak Buddhachat
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | - Marootpong Pooam
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
7
|
Dhiman SK, Wu F, Galland P. Effects of weak static magnetic fields on the development of seedlings of Arabidopsis thaliana. PROTOPLASMA 2023; 260:767-786. [PMID: 36129584 DOI: 10.1007/s00709-022-01811-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
To study magnetoreception of Arabidopsis thaliana, we analysed several developmental responses including cryptochrome-independent seed germination and the phytochrome- and cryptochrome-dependent hypocotyl elongation and photo-accumulation of anthocyanins and chlorophylls in weak static magnetic fields ranging from near null to 122 μT. A field of 50 μT accelerated seed germination by about 20 h relative to samples maintained in a near-null field. The double mutant, cry1cry2, lacking cryptochromes 1 and 2 displayed the same magnetic field-induced germination acceleration under blue light as the wild-type strain. Magnetic field-induced germination acceleration was masked in the presence of exogenous sucrose. Stimulus-response curves for hypocotyl elongation in a range between near-null to 122 μT indicated maxima near 9 and 60 μT for the wild-type strain as well as mutant cry1cry2. The photo-accumulation of anthocyanins and chlorophylls could be effectively modulated by magnetic fields in the presence of low-irradiance red and blue light, respectively. The findings indicate that Arabidopsis thaliana possesses light-independent mechanisms of magnetic field reception, which remain presently unidentified. Our results are in better agreement with predictions of the level crossing mechanism (LCM) of magnetoreception rather than those of the cryptochrome-associated radical-pair mechanism (RPM).
Collapse
Affiliation(s)
- Sunil Kumar Dhiman
- Kirori Mal College, Delhi University (North Campus), Delhi, 110007, India.
| | - Fan Wu
- Faculty of Biology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35032, Marburg, Germany
| | - Paul Galland
- Faculty of Biology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35032, Marburg, Germany
| |
Collapse
|
8
|
Effects of Ultra-Weak Fractal Electromagnetic Signals on Malassezia furfur. Int J Mol Sci 2023; 24:ijms24044099. [PMID: 36835509 PMCID: PMC9964618 DOI: 10.3390/ijms24044099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/30/2023] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
Malassezia spp. are dimorphic, lipophilic fungi that are part of the normal human cutaneous commensal microbiome. However, under adverse conditions, these fungi can be involved in various cutaneous diseases. In this study, we analysed the effect of ultra-weak fractal electromagnetic (uwf-EMF) field exposure (12.6 nT covering 0.5 to 20 kHz) on the growth dynamics and invasiveness of M. furfur. The ability to modulate inflammation and innate immunity in normal human keratinocytes was also investigated. Using a microbiological assay, it was possible to demonstrate that, under the influence of uwf-EMF, the invasiveness of M. furfur was drastically reduced (d = 2.456, p < 0.001), while at the same time, its growth dynamic after 72 h having been in contact with HaCaT cells both without (d = 0.211, p = 0.390) and with (d = 0.118, p = 0.438) uwf-EM exposure, were hardly affected. Real-time PCR analysis demonstrated that a uwf-EMF exposure is able to modulate human-β-defensin-2 (hBD-2) in treated keratinocytes and at the same time reduce the expression of proinflammatory cytokines in human keratinocytes. The findings suggest that the underlying principle of action is hormetic in nature and that this method might be an adjunctive therapeutic tool to modulate the inflammatory properties of Malassezia in related cutaneous diseases. The underlying principle of action becomes understandable by means of quantum electrodynamics (QED). Given that living systems consist mainly of water and within the framework of QED, this water, as a biphasic system, provides the basis for electromagnetic coupling. The oscillatory properties of water dipoles modulated by weak electromagnetic stimuli not only affect biochemical processes, but also pave the way for a more general understanding of the observed nonthermal effects in biota.
Collapse
|
9
|
Enhanced Algal Biomass Production in a Novel Electromagnetic Photobioreactor (E-PBR). Curr Microbiol 2022; 79:395. [DOI: 10.1007/s00284-022-03100-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 10/22/2022] [Indexed: 11/11/2022]
|
10
|
Ronniger M, Aguida B, Stacke C, Chen Y, Ehnert S, Erdmann N, Eschenburg G, Falldorf K, Pooam M, Wing A, Ahmad M. A Novel Method to Achieve Precision and Reproducibility in Exposure Parameters for Low-Frequency Pulsed Magnetic Fields in Human Cell Cultures. Bioengineering (Basel) 2022; 9:bioengineering9100595. [PMID: 36290562 PMCID: PMC9598188 DOI: 10.3390/bioengineering9100595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
The effects of extremely low-frequency electromagnetic field (ELF-MF) exposure on living systems have been widely studied at the fundamental level and also claimed as beneficial for the treatment of diseases for over 50 years. However, the underlying mechanisms and cellular targets of ELF-MF exposure remain poorly understood and the field has been plagued with controversy stemming from an endemic lack of reproducibility of published findings. To address this problem, we here demonstrate a technically simple and reproducible EMF exposure protocol to achieve a standardized experimental approach which can be readily adopted in any lab. As an assay system, we chose a commercially available inflammatory model human cell line; its response to magnetic fields involves changes in gene expression which can be monitored by a simple colorimetric reporter gene assay. The cells were seeded and cultured in microplates and inserted into a custom-built, semi-automated incubation and exposure system which accurately controls the incubation (temperature, humidity, CO2) and magnetic-field exposure conditions. A specific alternating magnetic field (<1.0% spatial variance) including far-field reduction provided defined exposure conditions at the position of each well of the microplate. To avoid artifacts, all environmental and magnetic-field exposure parameters were logged in real time throughout the duration of the experiment. Under these extensively controlled conditions, the effect of the magnetic field on the cell cultures as assayed by the standardized operating procedure was highly reproducible between experiments. As we could fully define the characteristics (frequency, intensity, duration) of the pulsed magnetic field signals at the position of the sample well, we were, for the first time, able to accurately determine the effect of changing single ELF-MF parameters such as signal shape, frequency, intensity and duty cycle on the biological response. One signal in particular (10 Hz, 50% duty cycle, rectangular, bipolar, 39.6μT) provided a significant reduction in cytokine reporter gene expression by 37% in our model cell culture line. In sum, the accuracy, environmental control and data-logging capacity of the semi-automated exposure system should greatly facilitate research into fundamental cellular response mechanisms and achieve the consistency necessary to bring ELF-MF/PEMF research results into the scientific mainstream.
Collapse
Affiliation(s)
- Michael Ronniger
- Sachtleben GmbH, 20251 Hamburg, Germany
- Correspondence: (M.R.); (M.A.); Tel.: +49-408-060-961-25 (M.R.); +33-014-427-2916 (M.A.)
| | - Blanche Aguida
- Photobiology Research Group, Sorbonne Université CNRS, 75005 Paris, France
| | | | - Yangmengfan Chen
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Sabrina Ehnert
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | | | | | | | - Marootpong Pooam
- Siegfried Weller Institute for Trauma Research, Department of Trauma and Reconstructive Surgery, BG Unfallklinik Tübingen, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | | | - Margaret Ahmad
- Photobiology Research Group, Sorbonne Université CNRS, 75005 Paris, France
- Correspondence: (M.R.); (M.A.); Tel.: +49-408-060-961-25 (M.R.); +33-014-427-2916 (M.A.)
| |
Collapse
|
11
|
Levitt BB, Lai HC, Manville AM. Effects of non-ionizing electromagnetic fields on flora and fauna, Part 2 impacts: how species interact with natural and man-made EMF. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:327-406. [PMID: 34243228 DOI: 10.1515/reveh-2021-0050] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/26/2021] [Indexed: 06/13/2023]
Abstract
Ambient levels of nonionizing electromagnetic fields (EMF) have risen sharply in the last five decades to become a ubiquitous, continuous, biologically active environmental pollutant, even in rural and remote areas. Many species of flora and fauna, because of unique physiologies and habitats, are sensitive to exogenous EMF in ways that surpass human reactivity. This can lead to complex endogenous reactions that are highly variable, largely unseen, and a possible contributing factor in species extinctions, sometimes localized. Non-human magnetoreception mechanisms are explored. Numerous studies across all frequencies and taxa indicate that current low-level anthropogenic EMF can have myriad adverse and synergistic effects, including on orientation and migration, food finding, reproduction, mating, nest and den building, territorial maintenance and defense, and on vitality, longevity and survivorship itself. Effects have been observed in mammals such as bats, cervids, cetaceans, and pinnipeds among others, and on birds, insects, amphibians, reptiles, microbes and many species of flora. Cyto- and geno-toxic effects have long been observed in laboratory research on animal models that can be extrapolated to wildlife. Unusual multi-system mechanisms can come into play with non-human species - including in aquatic environments - that rely on the Earth's natural geomagnetic fields for critical life-sustaining information. Part 2 of this 3-part series includes four online supplement tables of effects seen in animals from both ELF and RFR at vanishingly low intensities. Taken as a whole, this indicates enough information to raise concerns about ambient exposures to nonionizing radiation at ecosystem levels. Wildlife loss is often unseen and undocumented until tipping points are reached. It is time to recognize ambient EMF as a novel form of pollution and develop rules at regulatory agencies that designate air as 'habitat' so EMF can be regulated like other pollutants. Long-term chronic low-level EMF exposure standards, which do not now exist, should be set accordingly for wildlife, and environmental laws should be strictly enforced - a subject explored in Part 3.
Collapse
Affiliation(s)
| | - Henry C Lai
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Albert M Manville
- Advanced Academic Programs, Krieger School of Arts and Sciences, Environmental Sciences and Policy, Johns Hopkins University, Washington DC Campus, USA
| |
Collapse
|
12
|
Saletnik B, Saletnik A, Słysz E, Zaguła G, Bajcar M, Puchalska-Sarna A, Puchalski C. The Static Magnetic Field Regulates the Structure, Biochemical Activity, and Gene Expression of Plants. Molecules 2022; 27:molecules27185823. [PMID: 36144557 PMCID: PMC9506020 DOI: 10.3390/molecules27185823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 01/09/2023] Open
Abstract
The purpose of this paper is to review the scientific results and summarise the emerging topic of the effects of statistic magnetic field on the structure, biochemical activity, and gene expression of plants. The literature on the subject reports a wide range of possibilities regarding the use of the magnetic field to modify the properties of plant cells. MFs have a significant impact on the photosynthesis efficiency of the biomass and vigour accumulation indexes. Treating plants with SMFs accelerates the formation and accumulation of reactive oxygen species. At the same time, the influence of MFs causes the high activity of antioxidant enzymes, which reduces oxidative stress. SMFs have a strong influence on the shape of the cell and the structure of the cell membrane, thus increasing their permeability and influencing the various activities of the metabolic pathways. The use of magnetic treatments on plants causes a higher content of proteins, carbohydrates, soluble and reducing sugars, and in some cases, lipids and fatty acid composition and influences the uptake of macro- and microelements and different levels of gene expression. In this study, the effect of MFs was considered as a combination of MF intensity and time exposure, for different varieties and plant species. The following article shows the wide-ranging possibilities of applying magnetic fields to the dynamics of changes in the life processes and structures of plants. Thus far, the magnetic field is not widely used in agricultural practice. The current knowledge about the influence of MFs on plant cells is still insufficient. It is, therefore, necessary to carry out detailed research for a more in-depth understanding of the possibilities of modifying the properties of plant cells and achieving the desired effects by means of a magnetic field.
Collapse
Affiliation(s)
- Bogdan Saletnik
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Science, Rzeszow University, Ćwiklińskiej 2D, 35-601 Rzeszow, Poland
- Correspondence:
| | - Aneta Saletnik
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Science, Rzeszow University, Ćwiklińskiej 2D, 35-601 Rzeszow, Poland
| | - Ewelina Słysz
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Science, Rzeszow University, Ćwiklińskiej 2D, 35-601 Rzeszow, Poland
| | - Grzegorz Zaguła
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Science, Rzeszow University, Ćwiklińskiej 2D, 35-601 Rzeszow, Poland
| | - Marcin Bajcar
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Science, Rzeszow University, Ćwiklińskiej 2D, 35-601 Rzeszow, Poland
| | - Anna Puchalska-Sarna
- Laboratory of Physiotherapy in Developmental Disorders, Institute of Health Sciences, College of Medical Sciences, Rzeszow University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszow, Poland
| | - Czesław Puchalski
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Science, Rzeszow University, Ćwiklińskiej 2D, 35-601 Rzeszow, Poland
| |
Collapse
|
13
|
Jiang X, Yang Y, Feng S, Hu Y, Cao M, Luo J. Reactive effects of pre-sowing magnetic field exposure on morphological characteristics and antioxidant ability of Brassica juncea in phytoextraction. CHEMOSPHERE 2022; 303:135046. [PMID: 35618056 DOI: 10.1016/j.chemosphere.2022.135046] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
As magnetic fields constantly act on living and biochemical processes, it is reasonable to hypothesize that magnetic field treatment of plant seeds would enhance the uptake capacity of non-essential elements. To verify this hypothesis, seeds of Brassica juncea were treated with 50, 100, 150, 200, and 400 mT fields, and the dry weight, Cd uptake capacity, ferritin content, antioxidant enzyme activity, and phytoremediation effects of the plant were compared at the end of the experiment. Relative to the control, low- and moderate-intensity fields (50-200 mT) enhanced the dry weight of plant leaves by 15.1%, 24.5%, 35.8%, and 49.1%, respectively, whereas the high-intensity field (400 mT) decreased the biomass yield by 18.9%. The content of Cd in the above-ground tissues of B. juncea enhanced with the increasing field intensity, accompanied by an increase in oxidative damage. The activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX) increased with exposure to low (50 and 100 mT) and moderate (150 and 200 mT) intensities, followed by a reduction at a high intensity (400 mT). Catalase activity (CAT) and ferritin content exhibited an increasing trend with increasing intensity. The Cd decontamination index of B. juncea increased with the increasing magnetic field intensity until it reached a peak at 150 mT, after which the values remained constant. Considering the phytoremediation effect and energy consumption, 150 mT was the optimal scheme for magnetic-field-assisted phytoremediation using B. juncea. This study suggests that a suitable magnetic field can be regarded as an ecologically friendly physical trigger to improve the phytoextraction effect of B. juncea.
Collapse
Affiliation(s)
- Xingchao Jiang
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Yongchao Yang
- China-Copper Resources Corporation, Kunming, Yunnan, 650051, China
| | - Siyao Feng
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Yuwei Hu
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Min Cao
- University of Leicester, University Road, Leicester, LE1 7RH, United Kingdom
| | - Jie Luo
- College of Resources and Environment, Yangtze University, Wuhan, China.
| |
Collapse
|
14
|
Zadeh-Haghighi H, Simon C. Magnetic field effects in biology from the perspective of the radical pair mechanism. J R Soc Interface 2022; 19:20220325. [PMID: 35919980 PMCID: PMC9346374 DOI: 10.1098/rsif.2022.0325] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/14/2022] [Indexed: 04/07/2023] Open
Abstract
Hundreds of studies have found that weak magnetic fields can significantly influence various biological systems. However, the underlying mechanisms behind these phenomena remain elusive. Remarkably, the magnetic energies implicated in these effects are much smaller than thermal energies. Here, we review these observations, and we suggest an explanation based on the radical pair mechanism, which involves the quantum dynamics of the electron and nuclear spins of transient radical molecules. While the radical pair mechanism has been studied in detail in the context of avian magnetoreception, the studies reviewed here show that magnetosensitivity is widespread throughout biology. We review magnetic field effects on various physiological functions, discussing static, hypomagnetic and oscillating magnetic fields, as well as isotope effects. We then review the radical pair mechanism as a potential unifying model for the described magnetic field effects, and we discuss plausible candidate molecules for the radical pairs. We review recent studies proposing that the radical pair mechanism provides explanations for isotope effects in xenon anaesthesia and lithium treatment of hyperactivity, magnetic field effects on the circadian clock, and hypomagnetic field effects on neurogenesis and microtubule assembly. We conclude by discussing future lines of investigation in this exciting new area of quantum biology.
Collapse
Affiliation(s)
- Hadi Zadeh-Haghighi
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Christoph Simon
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
15
|
Kashash Y, Smarsh G, Zilkha N, Yovel Y, Kimchi T. Alone, in the dark: The extraordinary neuroethology of the solitary blind mole rat. eLife 2022; 11:78295. [PMID: 35674717 PMCID: PMC9177142 DOI: 10.7554/elife.78295] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
On the social scale, the blind mole rat (BMR; Spalax ehrenbergi) is an extreme. It is exceedingly solitary, territorial, and aggressive. BMRs reside underground, in self-excavated tunnels that they rarely leave. They possess specialized sensory systems for social communication and navigation, which allow them to cope with the harsh environmental conditions underground. This review aims to present the blind mole rat as an ideal, novel neuroethological model for studying aggressive and solitary behaviors. We discuss the BMR's unique behavioral phenotype, particularly in the context of 'anti-social' behaviors, and review the available literature regarding its specialized sensory adaptations to the social and physical habitat. To date, the neurobiology of the blind mole rat remains mostly unknown and holds a promising avenue for scientific discovery. Unraveling the neural basis of the BMR's behavior, in comparison to that of social rodents, can shed important light on the underlying mechanisms of psychiatric disorders in humans, in which similar behaviors are displayed.
Collapse
Affiliation(s)
- Yael Kashash
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Grace Smarsh
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.,School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Noga Zilkha
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yossi Yovel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tali Kimchi
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
16
|
Raman Characterization of Fungal DHN and DOPA Melanin Biosynthesis Pathways. J Fungi (Basel) 2021; 7:jof7100841. [PMID: 34682262 PMCID: PMC8540899 DOI: 10.3390/jof7100841] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/02/2021] [Accepted: 10/03/2021] [Indexed: 12/16/2022] Open
Abstract
Fungal melanins represent a resource for important breakthroughs in industry and medicine, but the characterization of their composition, synthesis, and structure is not well understood. Raman spectroscopy is a powerful tool for the elucidation of molecular composition and structure. In this work, we characterize the Raman spectra of wild-type Aspergillus fumigatus and Cryptococcus neoformans and their melanin biosynthetic mutants and provide a rough “map” of the DHN (A. fumigatus) and DOPA (C. neoformans) melanin biosynthetic pathways. We compare this map to the Raman spectral data of Aspergillus nidulans wild-type and melanin biosynthetic mutants obtained from a previous study. We find that the fully polymerized A. nidulans melanin cannot be classified according to the DOPA pathway; nor can it be solely classified according to the DHN pathway, consistent with mutational analysis and chemical inhibition studies. Our approach points the way forward for an increased understanding of, and methodology for, investigating fungal melanins.
Collapse
|
17
|
Sarraf M, Deamici KM, Taimourya H, Islam M, Kataria S, Raipuria RK, Abdi G, Brestic M. Effect of Magnetopriming on Photosynthetic Performance of Plants. Int J Mol Sci 2021; 22:ijms22179353. [PMID: 34502258 PMCID: PMC8431099 DOI: 10.3390/ijms22179353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/16/2022] Open
Abstract
Magnetopriming has emerged as a promising seed-priming method, improving seed vigor, plant performance and productivity under both normal and stressed conditions. Various recent reports have demonstrated that improved photosynthesis can lead to higher biomass accumulation and overall crop yield. The major focus of the present review is magnetopriming-based, improved growth parameters, which ultimately favor increased photosynthetic performance. The plants originating from magnetoprimed seeds showed increased plant height, leaf area, fresh weight, thick midrib and minor veins. Similarly, chlorophyll and carotenoid contents, efficiency of PSII, quantum yield of electron transport, stomatal conductance, and activities of carbonic anhydrase (CA), Rubisco and PEP-carboxylase enzymes are enhanced with magnetopriming of the seeds. In addition, a higher fluorescence yield at the J-I-P phase in polyphasic chlorophyll a fluorescence (OJIP) transient curves was observed in plants originating from magnetoprimed seeds. Here, we have presented an overview of available studies supporting the magnetopriming-based improvement of various parameters determining the photosynthetic performance of crop plants, which consequently increases crop yield. Additionally, we suggest the need for more in-depth molecular analysis in the future to shed light upon hidden regulatory mechanisms involved in magnetopriming-based, improved photosynthetic performance.
Collapse
Affiliation(s)
- Mohammad Sarraf
- Department of Horticulture Science, Shiraz Branch, Islamic Azad University, Shiraz 71987-74731, Iran;
| | | | - Houda Taimourya
- Department of Horticulture, Horticol Complex of Agadir (CHA), Agronomy and Veterinary Institute Hassan II, Agadir 80000, Morocco;
| | - Monirul Islam
- Department of Sustainable Crop Production, Università Cattolica Del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy;
| | - Sunita Kataria
- School of Biochemistry, Devi Ahilya Vishwavidyalaya, Khandwa Road, Indore 452001, India
- Correspondence: (S.K.); (M.B.)
| | | | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr 7516913817, Iran;
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Tr. A. Hlinku 2, 949 01 Nitra, Slovakia
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic
- Correspondence: (S.K.); (M.B.)
| |
Collapse
|
18
|
Erdmann W, Kmita H, Kosicki JZ, Kaczmarek Ł. How the Geomagnetic Field Influences Life on Earth - An Integrated Approach to Geomagnetobiology. ORIGINS LIFE EVOL B 2021; 51:231-257. [PMID: 34363564 DOI: 10.1007/s11084-021-09612-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/12/2021] [Indexed: 11/25/2022]
Abstract
Earth is one of the inner planets of the Solar System, but - unlike the others - it has an oxidising atmosphere, relatively stable temperature, and a constant geomagnetic field (GMF). The GMF does not only protect life on Earth against the solar wind and cosmic rays, but it also shields the atmosphere itself, thus creating relatively stable environmental conditions. What is more, the GMF could have influenced the origins of life: organisms from archaea to plants and animals may have been using the GMF as a source of spatial information since the very beginning. Although the GMF is constant, it does undergo various changes, some of which, e.g. a reversal of the poles, weaken the field significantly or even lead to its short-term disappearance. This may result in considerable climatic changes and an increased frequency of mutations caused by the solar wind and cosmic radiation. This review analyses data on the influence of the GMF on different aspects of life and it also presents current knowledge in the area. In conclusion, the GMF has a positive impact on living organisms, whereas a diminishing or disappearing GMF negatively affects living organisms. The influence of the GMF may also be an important factor determining both survival of terrestrial organisms outside Earth and the emergence of life on other planets.
Collapse
Affiliation(s)
- Weronika Erdmann
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| | - Hanna Kmita
- Department of Bioenergetics, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Jakub Z Kosicki
- Department of Avian Biology and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Łukasz Kaczmarek
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| |
Collapse
|
19
|
Fatima A, Kataria S, Agrawal AK, Singh B, Kashyap Y, Jain M, Brestic M, Allakhverdiev SI, Rastogi A. Use of Synchrotron Phase-Sensitive Imaging for the Investigation of Magnetopriming and Solar UV-Exclusion Impact on Soybean ( Glycine max) Leaves. Cells 2021; 10:1725. [PMID: 34359895 PMCID: PMC8307725 DOI: 10.3390/cells10071725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 01/08/2023] Open
Abstract
The combined response of exclusion of solar ultraviolet radiation (UV-A+B and UV-B) and static magnetic field (SMF) pre-treatment of 200 mT for 1 h were studied on soybean (Glycine max) leaves using synchrotron imaging. The seeds of soybean with and without SMF pre-treatment were sown in nursery bags kept in iron meshes where UV-A+B (280-400 nm) and UV-B (280-315 nm) from solar radiation were filtered through a polyester filters. Two controls were planned, one with polythene filter controls (FC)- which allows all the UV (280-400 nm); the other control had no filter used (open control-OC). Midrib regions of the intact third trifoliate leaves were imaged using the phase-contrast imaging technique at BL-4, Indus-2 synchrotron radiation source. The solar UV exclusion results suggest that ambient UV caused a reduction in leaf growth which ultimately reduced the photosynthesis in soybean seedlings, while SMF treatment caused enhancement of leaf growth along with photosynthesis even under the presence of ambient UV-B stress. The width of midrib and second-order veins, length of the second-order veins, leaf vein density, and the density of third-order veins obtained from the quantitative image analysis showed an enhancement in the leaves of plants that emerged from SMF pre-treated seeds as compared to untreated ones grown in open control and filter control conditions (in the presence of ambient UV stress). SMF pre-treated seeds along with UV-A+B and UV-B exclusion also showed significant enhancements in leaf parameters as compared to the UV excluded untreated leaves. Our results suggested that SMF-pretreatment of seeds diminishes the ambient UV-induced adverse effects on soybean.
Collapse
Affiliation(s)
- Anis Fatima
- Technical Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; (A.K.A.); (B.S.); (Y.K.)
| | - Sunita Kataria
- School of Biochemistry, Devi Ahilya Vishwavidyalaya, Khandwa Road, Indore 452001, India;
| | - Ashish Kumar Agrawal
- Technical Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; (A.K.A.); (B.S.); (Y.K.)
| | - Balwant Singh
- Technical Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; (A.K.A.); (B.S.); (Y.K.)
| | - Yogesh Kashyap
- Technical Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; (A.K.A.); (B.S.); (Y.K.)
| | - Meeta Jain
- School of Biochemistry, Devi Ahilya Vishwavidyalaya, Khandwa Road, Indore 452001, India;
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, 94976 Nitra, Slovakia
| | - Suleyman I. Allakhverdiev
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya St. 35, 127276 Moscow, Russia;
| | - Anshu Rastogi
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Piątkowska 94, 60-649 Poznan, Poland;
- Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, 7500 AE Enschede, The Netherlands
| |
Collapse
|
20
|
Shabrangy A, Ghatak A, Zhang S, Priller A, Chaturvedi P, Weckwerth W. Magnetic Field Induced Changes in the Shoot and Root Proteome of Barley ( Hordeum vulgare L.). FRONTIERS IN PLANT SCIENCE 2021; 12:622795. [PMID: 33708230 PMCID: PMC7940674 DOI: 10.3389/fpls.2021.622795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/13/2021] [Indexed: 05/04/2023]
Abstract
The geomagnetic field (GMF) has been present since the beginning of plant evolution. Recently, some researchers have focused their efforts on employing magnetic fields (MFs) higher than GMF to improve the seed germination, growth, and harvest of agriculturally important crop plants, as the use of MFs is an inexpensive and environment-friendly technique. In this study, we have employed different treatments of MF at 7 mT (milliTesla) at different time points of exposure, including 1, 3, and 6 h. The extended exposure was followed by five consecutive days at 6 h per day in barley seeds. The results showed a positive impact of MF on growth characteristics for 5-day-old seedlings, including seed germination rate, root and shoot length, and biomass weight. Furthermore, ~5 days of delay of flowering in pre-treated plants was also observed. We used a shotgun proteomics approach to identify changes in the protein signatures of root and shoot tissues under MF effects. In total, we have identified 2,896 proteins. Thirty-eight proteins in the shoot and 15 proteins in the root showed significant changes under the MF effect. Proteins involved in primary metabolic pathways were increased in contrast to proteins with a metal ion binding function, proteins that contain iron ions in their structure, and proteins involved in electron transfer chain, which were all decreased significantly in the treated tissues. The upregulated proteins' overall biological processes included carbohydrate metabolic process, oxidation-reduction process, and cell redox homeostasis, while down-regulated processes included translation and protein refolding. In general, shoot response was more affected by MF effect than root tissue, leading to the identification of 41 shoot specific proteins. This study provides an initial insight into the proteome regulation response to MF during barley's seedling stage.
Collapse
Affiliation(s)
- Azita Shabrangy
- Molecular Systems Biology Lab, Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- Azita Shabrangy
| | - Arindam Ghatak
- Molecular Systems Biology Lab, Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Shuang Zhang
- Molecular Systems Biology Lab, Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Alfred Priller
- VERA Laboratory, Isotope Physics, Faculty of Physics, University of Vienna, Vienna, Austria
| | - Palak Chaturvedi
- Molecular Systems Biology Lab, Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Wolfram Weckwerth
- Molecular Systems Biology Lab, Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center, University of Vienna, Vienna, Austria
- *Correspondence: Wolfram Weckwerth
| |
Collapse
|
21
|
Hansson Mild K, Johnsson A, Hardell L. Robotic Lawn Mower: A New Source for Domestic Magnetic Field Exposure. Bioelectromagnetics 2020; 42:95-99. [PMID: 33616985 DOI: 10.1002/bem.22313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/11/2020] [Accepted: 11/18/2020] [Indexed: 11/07/2022]
Affiliation(s)
| | - Anders Johnsson
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Lennart Hardell
- The Environment and Cancer Research Foundation, Örebro, Sweden
| |
Collapse
|
22
|
Sarraf M, Kataria S, Taimourya H, Santos LO, Menegatti RD, Jain M, Ihtisham M, Liu S. Magnetic Field (MF) Applications in Plants: An Overview. PLANTS 2020; 9:plants9091139. [PMID: 32899332 PMCID: PMC7570196 DOI: 10.3390/plants9091139] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/27/2020] [Accepted: 08/30/2020] [Indexed: 01/21/2023]
Abstract
Crop yield can be raised by establishment of adequate plant stand using seeds with high germination ratio and vigor. Various pre-sowing treatments are adopted to achieve this objective. One of these approaches is the exposure of seeds to a low-to-medium level magnetic field (MF), in pulsed and continuous modes, as they have shown positive results in a number of crop seeds. On the basis of the sensitivity of plants to MF, different types of MF have been used for magnetopriming studies, such as weak static homogeneous magnetic fields (0–100 μT, including GMF), strong homogeneous magnetic fields (milliTesla to Tesla), and extremely low frequency (ELF) magnetic fields of low-to-moderate (several hundred μT) magnetic flux densities. The agronomic application of MFs in plants has shown potential in altering conventional plant production systems; increasing mean germination rates, and root and shoot growth; having high productivity; increasing photosynthetic pigment content; and intensifying cell division, as well as water and nutrient uptake. Furthermore, different studies suggest that MFs prevent the large injuries produced/inflicted by diseases and pests on agricultural crops and other economically important plants and assist in reducing the oxidative damage in plants caused by stress situations. An improved understanding of the interactions between the MF and the plant responses could revolutionize crop production through increased resistance to disease and stress conditions, as well as the superiority of nutrient and water utilization, resulting in the improvement of crop yield. In this review, we summarize the potential applications of MF and the key processes involved in agronomic applications. Furthermore, in order to ensure both the safe usage and acceptance of this new opportunity, the adverse effects are also discussed.
Collapse
Affiliation(s)
- Mohammad Sarraf
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China;
- Department of Horticulture Science, Shiraz Branch, Islamic Azad University, Shiraz 71987-74731, Iran
| | - Sunita Kataria
- School of Biochemistry, Devi Ahilya Vishwavidyalaya, Indore 452001, India; (S.K.); (M.J.)
| | - Houda Taimourya
- Department of Horticulture, Horticol complex of Agadir (CHA), Agronomy and Veterinary Institute Hassan II, Agadir 80000, Morocco;
| | - Lucielen Oliveira Santos
- Laboratory of Biotechnology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande-RS 96203-900, Brazil;
| | - Renata Diane Menegatti
- Department of Botany, Institute of Biology, Federal University of Pelotas, Rio Grande-RS 96203-900, Brazil;
| | - Meeta Jain
- School of Biochemistry, Devi Ahilya Vishwavidyalaya, Indore 452001, India; (S.K.); (M.J.)
| | - Muhammad Ihtisham
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China;
- College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (M.I.); (S.L.); Tel.: +86-139-8064-5789 (S.L.)
| | - Shiliang Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China;
- Correspondence: (M.I.); (S.L.); Tel.: +86-139-8064-5789 (S.L.)
| |
Collapse
|
23
|
Kornarzyński K, Sujak A, Czernel G, Wiącek D. Effect of Fe 3O 4 nanoparticles on germination of seeds and concentration of elements in Helianthus annuus L. under constant magnetic field. Sci Rep 2020; 10:8068. [PMID: 32415165 PMCID: PMC7228974 DOI: 10.1038/s41598-020-64849-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 04/22/2020] [Indexed: 11/21/2022] Open
Abstract
The aim of the study was to investigate the effect of the Fe3O4 nanoparticles (Fe-NPs) on the germination of sunflower seeds, early growth of seedlings and the concentration of selected elements in seedlings. The influence of constant magnetic fields in systems with and without Fe-NPs was investigated. Experiments were done on seeds subjected to germination under constant magnetic field (0 (control), 5, 25 and 120 mT) for 7 days in the presence of solution containing 0, 50 or 500 ppm Fe-NPs. No significant effect of Fe-NPs and the magnetic field on germination of seeds and the growth of seedlings has been demonstrated. In most cases, a decrease in germination parameters was observed. For the majority of samples the relative decrease in the concentrations of elements was demonstrated mainly for samples without Fe-NPs. Interestingly, a significant decrease in the concentrations of trivalent (including iron - Fe) and toxic elements in samples containing Fe-NPs in relation to control samples was observed. The authors suggest that in this case the binding (adsorption) of these elements in the roots and seeds of the sunflower by Fe-NPs took place. This explains the lower iron content in seedlings than in seeds prior to sowing.
Collapse
Affiliation(s)
- Krzysztof Kornarzyński
- Department of Biophysics, University of Life Sciences in Lublin, Akademicka 13, 20-933, Lublin, Poland
| | - Agnieszka Sujak
- Department of Biophysics, University of Life Sciences in Lublin, Akademicka 13, 20-933, Lublin, Poland.
| | - Grzegorz Czernel
- Department of Biophysics, University of Life Sciences in Lublin, Akademicka 13, 20-933, Lublin, Poland
| | - Dariusz Wiącek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland
| |
Collapse
|
24
|
Han Z, Strycker BD, Commer B, Wang K, Shaw BD, Scully MO, Sokolov AV. Molecular origin of the Raman signal from Aspergillus nidulans conidia and observation of fluorescence vibrational structure at room temperature. Sci Rep 2020; 10:5428. [PMID: 32214112 PMCID: PMC7096407 DOI: 10.1038/s41598-020-62112-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/03/2020] [Indexed: 11/24/2022] Open
Abstract
Successful approaches to identification and/or biological characterization of fungal specimens through Raman spectroscopy may require the determination of the molecular origin of the Raman response as well as its separation from the background fluorescence. The presence of fluorescence can interfere with Raman detection and is virtually impossible to avoid. Fluorescence leads to a multiplicity of problems: one is noise, while another is “fake” spectral structure that can easily be confused for spontaneous Raman peaks. One solution for these problems is Shifted Excitation Raman Difference Spectroscopy (SERDS), in which a tunable light source generates two spectra with different excitation frequencies in order to eliminate fluorescence from the measured signal. We combine a SERDS technique with genetic breeding of mutant populations and demonstrate that the Raman signal from Aspergillus nidulans conidia originates in pigment molecules within the cell wall. In addition, we observe unambiguous vibrational fine-structure in the fluorescence response at room temperature. We hypothesize that the vibrational fine-structure in the fluorescence results from the formation of flexible, long-lived molecular cages in the bio-polymer matrix of the cell wall that partially shield target molecules from the immediate environment and also constrain their degrees of freedom.
Collapse
Affiliation(s)
- Zehua Han
- Institute for Quantum Science and Engineering, Texas A&M University, College Station, Texas, USA.
| | - Benjamin D Strycker
- Institute for Quantum Science and Engineering, Texas A&M University, College Station, Texas, USA. .,Baylor University, Waco, Texas, USA.
| | - Blake Commer
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, USA
| | - Kai Wang
- Institute for Quantum Science and Engineering, Texas A&M University, College Station, Texas, USA
| | - Brian D Shaw
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, USA
| | - Marlan O Scully
- Institute for Quantum Science and Engineering, Texas A&M University, College Station, Texas, USA.,Baylor University, Waco, Texas, USA
| | - Alexei V Sokolov
- Institute for Quantum Science and Engineering, Texas A&M University, College Station, Texas, USA. .,Baylor University, Waco, Texas, USA.
| |
Collapse
|
25
|
Islam M, Maffei ME, Vigani G. The Geomagnetic Field Is a Contributing Factor for an Efficient Iron Uptake in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:325. [PMID: 32373135 PMCID: PMC7186349 DOI: 10.3389/fpls.2020.00325] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/05/2020] [Indexed: 05/20/2023]
Abstract
The Earth's magnetic field, defined as the geomagnetic field (GMF), is an unavoidable environmental factor for all living organisms. Variation in the GMF intensity was found to affect the content of some nutrients and their associated channels and transporters in Arabidopsis thaliana. In this work, we observed that reduction of the GMF to near null magnetic field (NNMF) affects the accumulation of metals in plant tissues, mainly iron (Fe) and zinc (Zn) content, while the content of others metals such as copper (Cu) and manganese (Mn) is not affected. Accordingly, Fe uptake genes were induced in the roots of NNMF-exposed plants and the root Fe reductase activity was affected by transferring GMF-exposed plant to NNMF condition. Under Fe deficiency, NNMF-exposed plants displayed a limitation in the activation of Fe-deficiency induced genes. Such an effect was associated with the strong accumulation of Zn and Cu observed under NNMF conditions. Overall, our results provide evidence on the important role of the GMF on the iron uptake efficiency of plants.
Collapse
|
26
|
Islam M, Maffei ME, Vigani G. The Geomagnetic Field Is a Contributing Factor for an Efficient Iron Uptake in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020. [PMID: 32373135 DOI: 10.3389/2ffpls.2020.00325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The Earth's magnetic field, defined as the geomagnetic field (GMF), is an unavoidable environmental factor for all living organisms. Variation in the GMF intensity was found to affect the content of some nutrients and their associated channels and transporters in Arabidopsis thaliana. In this work, we observed that reduction of the GMF to near null magnetic field (NNMF) affects the accumulation of metals in plant tissues, mainly iron (Fe) and zinc (Zn) content, while the content of others metals such as copper (Cu) and manganese (Mn) is not affected. Accordingly, Fe uptake genes were induced in the roots of NNMF-exposed plants and the root Fe reductase activity was affected by transferring GMF-exposed plant to NNMF condition. Under Fe deficiency, NNMF-exposed plants displayed a limitation in the activation of Fe-deficiency induced genes. Such an effect was associated with the strong accumulation of Zn and Cu observed under NNMF conditions. Overall, our results provide evidence on the important role of the GMF on the iron uptake efficiency of plants.
Collapse
Affiliation(s)
- Monirul Islam
- Department of Life Sciences and Systems Biology, Innovation Centre, University of Turin, Turin, Italy
| | - Massimo E Maffei
- Department of Life Sciences and Systems Biology, Innovation Centre, University of Turin, Turin, Italy
| | - Gianpiero Vigani
- Department of Life Sciences and Systems Biology, Innovation Centre, University of Turin, Turin, Italy
| |
Collapse
|
27
|
Radhakrishnan R. Magnetic field regulates plant functions, growth and enhances tolerance against environmental stresses. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:1107-1119. [PMID: 31564775 PMCID: PMC6745571 DOI: 10.1007/s12298-019-00699-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/04/2019] [Accepted: 08/01/2019] [Indexed: 05/20/2023]
Abstract
Global climatic fluctuations and the increasing population have been responsible for the decline in the crop productivity. The chemical fertilizers, pesticides, and suitable genetic resources are commonly used for improving the crop yield. Magnetic field (MF) therapy for plants and animals has been found to be an effective and emerging tool to control diseases and increase tolerance against the adverse environment. Very limited studies have been attempted to determine the role of MF on plant tolerance against various stress conditions. This review aims to highlight the mitigating effect of MF on plants against abiotic and biotic stresses. MF interacts with seeds and plants and accelerates metabolism, which leads to an improved germination. The primary and secondary metabolites, enzyme activities, uptake of nutrient and water are reprogrammed to stimulate the plant growth and yield under favorable conditions. During adverse conditions of abiotic stress such as drought, salt, heavy metal contamination in soil, MF mitigates the stress effects by increasing antioxidants and reducing oxidative stress in plants. The stunted plant growth under different light and temperature conditions can be overcome by the exposure to MF. An MF treatment lowers the disease index of plants due to the modulation of calcium signaling, and proline and polyamines pathways. This review explores the basic and recent information about the impact of MF on plant survival against the adverse environment and emphasizes that thorough research is required to elucidate the mechanism of its interaction to protect the plants from biotic and abiotic stresses.
Collapse
Affiliation(s)
- Ramalingam Radhakrishnan
- Department of Microbiology, Karpagam Academy of Higher Education, Coimbatore, Tamilnadu 641 021 India
| |
Collapse
|
28
|
Luo J, He W, Xing X, Wu J, Gu XWS. The phytoremediation efficiency of Eucalyptus globulus treated by static magnetic fields before sowing. CHEMOSPHERE 2019; 226:891-897. [PMID: 31509918 DOI: 10.1016/j.chemosphere.2019.03.192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/14/2019] [Accepted: 03/31/2019] [Indexed: 06/10/2023]
Abstract
Eucalyptus globulus pre-treated by static magnetic fields of 30, 60, 120, 150 and 400 mT (mT) before sowing were used in a 45-day experiment to remediate soil containing Cd, Hg, Pb, Zn, Cr and Cu. The influence of magnetic fields on its remediation efficiency was evaluated. Magnetic fields with strength of 30, 60, 120 and 150 mT increased the biomass yield of the species by 3.1, 19.4, 48.1 and 60.9%, respectively, while 400 mT decreased the yield by 16.7%. Comparing with the control exposed only to the earth's geomagnetic field, all plants pre-treated by static magnetic field had significantly higher metal concentrations with the highest values achieved in the field of 400 mT. Higher transpiration rate of the plants along with exposure to static magnetic fields induced lower soil moisture content and was beneficial to environmental control because it could reduce the leachate during the phytoremediation process. Among all static magnetic field treatments, 150 mT was the best to improve the phytoremediation and alleviate the environmental risk, which shortened the time to purify Cd, Pb and Cu by 27.8-73.2%, 27.3-74.7% and 2.5-50.6%, respectively and intercepted 31.6-86.1% of the leachate. Therefore, static magnetic field with appropriate intensity is a suitable candidate to improve phytoremediation efficiency through enhancing the biomass production, toxin uptake and leachate interception.
Collapse
Affiliation(s)
- Jie Luo
- College of Resources and Environment, Yangtze University, 111 University Road, Wuhan, China.
| | - Wenxiang He
- College of Resources and Environment, Yangtze University, 111 University Road, Wuhan, China
| | - Xinli Xing
- China University of Geosciences, 388 Lumo Road, Wuhan, 430074, China
| | - Jian Wu
- China University of Geosciences, 388 Lumo Road, Wuhan, 430074, China
| | - X W Sophie Gu
- The University of Melbourne, Grattan StreetParkville, Melbourne, VIC 3010, Victoria, Australia
| |
Collapse
|
29
|
Kataria S, Baghel L, Jain M, Guruprasad K. Magnetopriming regulates antioxidant defense system in soybean against salt stress. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101090] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Bukhari SA, Farah N, Mustafa G, Mahmood S, Naqvi SAR. Magneto-Priming Improved Nutraceutical Potential and Antimicrobial Activity of Momordica charantia L. Without Affecting Nutritive Value. Appl Biochem Biotechnol 2019; 188:878-892. [PMID: 30729394 DOI: 10.1007/s12010-019-02955-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/11/2019] [Indexed: 01/09/2023]
Abstract
The need for some economic strategies for increased growth and nutraceuticals of medicinal plants is well acknowledged now. It was hypothesized that external magnetic field treatment (MFT) of seeds affecting internal magnet of cells may affect growth and metabolism. In this study, seeds were subjected to pre-sowing magnetic field (50 mT at 5 mm for 5 s). At vegetative stage, the leaf growth, chlorophyll content, catalase (CAT), peroxidase (POD), amino acids, proteins, flavonoids, soluble sugars, total soluble phenolics, carotenoids, anthocyanins, phenolic profile (HPLC based), and antimicrobial activity of leaves (in terms of the minimum inhibitory concentration against Staphylococcus aureus and Pseudomonas aeruginosa) were studied. Yield was evaluated for nutritive components in fruit (peel+pulp) and peel. MFT improved germination percentage, growth, leaf chlorophyll, antimicrobial activity, peel amino acids, phenolics, and POD with negligible effect on fruit nutritive value. Moreover, photosynthetic pigments and cinnamic acid exhibited direct correlation with antimicrobial potential against both pathogens. However, sinapic acid showed positive correlation against Staphylococcus aureus only. Cinnamic acid, coumaric acid, syringic acid, and quercetin were in direct correlation against Pseudomonas aeruginosa; it was directly correlated with total flavonoids too. In conclusion, magnetic field can be used to manipulate plant cell metabolism promising improvement of growth, antimicrobial activity, and phenolics of interest.
Collapse
Affiliation(s)
- Shazia Anwer Bukhari
- Department of Biochemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Nabila Farah
- Department of Biochemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Ghulam Mustafa
- Department of Biochemistry, Government College University, Faisalabad, 38000, Pakistan.
| | - Saqib Mahmood
- Department of Botany, Government College University, Faisalabad, 38000, Pakistan
| | - Syed Ali Raza Naqvi
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan
| |
Collapse
|
31
|
Wang J, Ma H, Wang S. Application of Ultrasound, Microwaves, and Magnetic Fields Techniques in the Germination of Cereals. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2019. [DOI: 10.3136/fstr.25.489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Jianfei Wang
- Biological and Chemical Engineering Institute, Anhui Polytechnic University
| | - Hui Ma
- Biological and Chemical Engineering Institute, Anhui Polytechnic University
| | - Shunmin Wang
- Biological and Chemical Engineering Institute, Anhui Polytechnic University
| |
Collapse
|
32
|
Muthert LWF, Izzo LG, van Zanten M, Aronne G. Root Tropisms: Investigations on Earth and in Space to Unravel Plant Growth Direction. FRONTIERS IN PLANT SCIENCE 2019; 10:1807. [PMID: 32153599 PMCID: PMC7047216 DOI: 10.3389/fpls.2019.01807] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/24/2019] [Indexed: 05/12/2023]
Abstract
Root tropisms are important responses of plants, allowing them to adapt their growth direction. Research on plant tropisms is indispensable for future space programs that envisage plant-based life support systems for long-term missions and planet colonization. Root tropisms encompass responses toward or away from different environmental stimuli, with an underexplored level of mechanistic divergence. Research into signaling events that coordinate tropistic responses is complicated by the consistent coincidence of various environmental stimuli, often interacting via shared signaling mechanisms. On Earth the major determinant of root growth direction is the gravitational vector, acting through gravitropism and overruling most other tropistic responses to environmental stimuli. Critical advancements in the understanding of root tropisms have been achieved nullifying the gravitropic dominance with experiments performed in the microgravity environment. In this review, we summarize current knowledge on root tropisms to different environmental stimuli. We highlight that the term tropism must be used with care, because it can be easily confused with a change in root growth direction due to asymmetrical damage to the root, as can occur in apparent chemotropism, electrotropism, and magnetotropism. Clearly, the use of Arabidopsis thaliana as a model for tropism research contributed much to our understanding of the underlying regulatory processes and signaling events. However, pronounced differences in tropisms exist among species, and we argue that these should be further investigated to get a more comprehensive view of the signaling pathways and sensors. Finally, we point out that the Cholodny-Went theory of asymmetric auxin distribution remains to be the central and unifying tropistic mechanism after 100 years. Nevertheless, it becomes increasingly clear that the theory is not applicable to all root tropistic responses, and we propose further research to unravel commonalities and differences in the molecular and physiological processes orchestrating root tropisms.
Collapse
Affiliation(s)
| | - Luigi Gennaro Izzo
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- *Correspondence: Luigi Gennaro Izzo,
| | - Martijn van Zanten
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, Utrecht, Netherlands
| | - Giovanna Aronne
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
33
|
Agliassa C, Maffei ME. Reduction of geomagnetic field (GMF) to near null magnetic field (NNMF) affects some Arabidopsis thaliana clock genes amplitude in a light independent manner. JOURNAL OF PLANT PHYSIOLOGY 2019; 232:23-26. [PMID: 30530200 DOI: 10.1016/j.jplph.2018.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 05/20/2023]
Abstract
Plant endogenous clock consists of self-sustained interlocked transcriptional/translational feedback loops whose oscillation regulates many circadian processes, including gene expression. Its free running rhythm can be entrained by external cues, which can influence all clock parameters. Among external cues, the geomagnetic field (GMF) has been demonstrated to influence plant growth and development. We evaluated the quantitative expression (qRT-PCR) of three clock genes (LHY, GI and PRR7) in time-course experiments under either continuous darkness (CD) or long days (LD) conditions in Arabidopsis thaliana seedlings exposed to GMF (∼40 μT) and Near Null Magnetic Field (NNMF; ∼40 nT) conditions. Under both LD and CD conditions, reduction of GMF to NNMF prompted a significant increase of the gene expression of LHY and PRR7, whereas an opposite trend was found for GI gene expression. Exposure of Arabidopsis to NNMF altered clock gene amplitude, regardless the presence of light, by reinforcing the morning loop. Our data are consistent with the existence of a plant magnetoreceptor that affects the Arabidopsis endogenous clock.
Collapse
Affiliation(s)
- Chiara Agliassa
- Plant Physiology Unit, Dept. Life Sciences and Systems Biology, University of Turin, Via Quarello 15/A, 10135 Turin, Italy
| | - Massimo E Maffei
- Plant Physiology Unit, Dept. Life Sciences and Systems Biology, University of Turin, Via Quarello 15/A, 10135 Turin, Italy.
| |
Collapse
|
34
|
Narayana R, Fliegmann J, Paponov I, Maffei ME. Reduction of geomagnetic field (GMF) to near null magnetic field (NNMF) affects Arabidopsis thaliana root mineral nutrition. LIFE SCIENCES IN SPACE RESEARCH 2018; 19:43-50. [PMID: 30482280 DOI: 10.1016/j.lssr.2018.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 05/20/2023]
Abstract
The Earth magnetic field (or geomagnetic field, GMF) is a natural component of our planet and variations of the GMF are perceived by plants with a still uncharacterized magnetoreceptor. The purpose of this work was to assess the effect of near null magnetic field (NNMF, ∼40 nT) on Arabidopsis thaliana Col0 root ion modulation. A time-course (from 10 min to 96 h) exposure of Arabidopsis to NNMF was compared to GMF and the content of some cations (NH4+, K+, Ca2+ and Mg2+) and anions (Cl-, SO4=, NO3- and PO4=) was evaluated by capillary electrophoresis. The expression of several cation and anion channel- and transporter-related genes was assessed by gene microarray. A few minutes after exposure to NNMF, Arabidopsis roots responded with a significant change in the content and gene expression of all nutrient ions under study, indicating the presence of a plant magnetoreceptor that responds immediately to MF variations by modulating channels, transporters and genes involved in mineral nutrition. The response of Arabidopsis to reduced MF was a general reduction of plant ion uptake and transport. Our data suggest the importance to understand the nature and function of the plant magnetoreceptor for future space programs involving plant growth in environments with a reduced MF.
Collapse
Affiliation(s)
- Ravishankar Narayana
- Department of Entomology, Penn State University, W249 Millennium Science Complex, University Park, PA 16802, USA
| | - Judith Fliegmann
- ZMBP Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Ivan Paponov
- Norwegian Institute of Bioeconomy Research, Dept. of Fruit and Vegetables, Ås, Norway
| | - Massimo E Maffei
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy.
| |
Collapse
|
35
|
Makinistian L, Muehsam DJ, Bersani F, Belyaev I. Some recommendations for experimental work in magnetobiology, revisited. Bioelectromagnetics 2018; 39:556-564. [DOI: 10.1002/bem.22144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/03/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Leonardo Makinistian
- Department of Physics and Instituto de Física Aplicada (INFAP); Universidad Nacional de San Luis-CONICET; San Luis Argentina
- Department of Radiobiology; Cancer Research Institute, Biomedical Research Center; Slovak Academy of Science; Bratislava Slovakia
| | - David J. Muehsam
- National Institute of Biostructures and Biosystems; Bologna Italy
| | - Ferdinando Bersani
- National Institute of Biostructures and Biosystems; Bologna Italy
- DIFA Department of Physics and Astronomy; University of Bologna; Bologna Italy
| | - Igor Belyaev
- Department of Radiobiology; Cancer Research Institute, Biomedical Research Center; Slovak Academy of Science; Bratislava Slovakia
- Laboratory of Radiobiology; Prokhorov General Physics Institute; Russian Academy of Science; Moscow Russia
| |
Collapse
|
36
|
Bahadir A, Beyaz R, Yildiz M. Effect of magnetic field on in vitro seedling growth and shoot regeneration from cotyledon node explants of Lathyrus chrysanthus boiss. Bioelectromagnetics 2018; 39:547-555. [PMID: 30260490 DOI: 10.1002/bem.22139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/16/2018] [Indexed: 11/11/2022]
Abstract
The stimulatory effects on germination of seeds and growth of plants of static magnetic field (MF) pre-treatments depending on MF intensity, exposure time periods, signal form, flux density, and source frequencies on plants are reported. Seed germination frequency is low due to dormancy in Lathyrus chrysanthus Boiss. from Fabaceae family, consisting of 187 taxa. Tissue culture protocol for this plant has already been optimized. This plant is also used as a model for developing alternative methods to overcome dormancy. This study was conducted to determine the effects of MF on in vitro seed germination, seedling growth, and shoot regeneration capacity of cotyledon node explants in Lathyrus chrysanthus Boiss. to obtain healthy seedlings in large quantities. The seeds of an ecotype (Diyarbakir) were subjected to 125 mT MF strength for different exposure time periods (0-untreated, 24, 48, and 72 h). Sterilized seeds were germinated on growth basal medium in Magenta vessels. Seed germination and seedling growth percentages were recorded after 7 and 14 days of culture initiation, whereas seedling and root lengths were noted 28 days after culture initiation. At the end of the culture, shoot regeneration percentage, shoot number per explant, highest shoot height per explant, and total shoot number per petri dish were recorded. According to the results, it could be concluded that MF treatment could clearly be used to improve germination by breaking dormancy not only in Lathyrus chrysanthus Boiss. but also other plant species. Bioelectromagnetics. 39:547-555, 2018.© 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Anzel Bahadir
- Faculty of Medicine, Department of Biophysics, Duzce University, Duzce, Turkey
| | - Ramazan Beyaz
- Faculty of Agriculture, Department of Soil Science and Plant Nutrition, Ahi Evran University, Kırşehir, Turkey
| | - Mustafa Yildiz
- Faculty of Agriculture, Department of Field Crops, Ankara University, Ankara, Turkey
| |
Collapse
|
37
|
Effect of Electromagnetic Stimulation of Amaranth Seeds of Different Initial Moisture on the Germination Parameters and Photosynthetic Pigments Content. Sci Rep 2018; 8:14023. [PMID: 30232352 PMCID: PMC6145884 DOI: 10.1038/s41598-018-32305-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 09/05/2018] [Indexed: 11/09/2022] Open
Abstract
The influence of stimulation with He-Ne laser light, alternating magnetic field and the combination of these factors on germination parameters of amaranth seeds and on the chlorophyll and carotenoid content in seedlings was investigated. During the stimulation the amaranth seeds had a different initial moisture content. From the germination characteristics of the seeds as the function of humidity, three maxima and one minimum value of the germination parameters (the relative germination capacity NK REL, the relative maximum germination rate SK MAX REL and the maximum germination index WK MAX) were obtained. In the majority of cases, the extremities coincided with the changes in the chlorophyll and carotenoid content in the seedlings. The presented research is innovative in the field of seed biology since no similar studies have been conducted before. It is difficult to interpret the results referring to the literature on this subject. The results can be explained as follows: the observed effect must be related to the stages of the water uptake by the seeds. The three stages of the water uptake associated with the seed germination process coincide with the maximum values in the germination parameters and with the change in the photosynthetic pigment content in seedlings.
Collapse
|
38
|
Agliassa C, Narayana R, Christie JM, Maffei ME. Geomagnetic field impacts on cryptochrome and phytochrome signaling. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 185:32-40. [DOI: 10.1016/j.jphotobiol.2018.05.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/21/2018] [Accepted: 05/25/2018] [Indexed: 11/15/2022]
|
39
|
Shokrollahi S, Ghanati F, Sajedi RH, Sharifi M. Possible role of iron containing proteins in physiological responses of soybean to static magnetic field. JOURNAL OF PLANT PHYSIOLOGY 2018; 226:163-171. [PMID: 29778670 DOI: 10.1016/j.jplph.2018.04.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 06/08/2023]
Abstract
Iron is a component of many proteins that have crucial roles in plant growth and development, such as ferritin and catalase. Iron also, as a ferromagnetic element, is assumed to be influenced by a static magnetic field (SMF). In the present study, we examined the relationship between ferrous content and gene expression and activity of ferritin and catalase in soybean plants under the influence of 0, 20, and 30 mT SMF for 5 day, 5 h each. Exposure to 20 mT decreased gene expression of Fe transporter, ferrous and H2O2 contents and gene expression, content and activity of ferritin and catalase. Opposite responses were observed under 30 mT treatments. The results suggest that SMF triggered a signaling pathway that is mediated by iron. The structure and activity of purified ferritin and apoferritin from horse spleen, and catalase from bovine liver proteins under SMF were evaluated as well. Secondary structure of proteins were not influenced by SMF (evidenced by far-UV circular dichroism), whereas their tertiary structure, size, and activity were altered (shown by fluorescence spectroscopy and dynamic light-scattering). From these results, it is likely that the number of iron atoms is involved in the nature of influence of SMF on protein structure.
Collapse
Affiliation(s)
- Sanaz Shokrollahi
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Faezeh Ghanati
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Reza H Sajedi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mohsen Sharifi
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
40
|
Zeng Z, Wei J, Liu Y, Zhang W, Mabe T. Magnetoreception of Photoactivated Cryptochrome 1 in Electrochemistry and Electron Transfer. ACS OMEGA 2018; 3:4752-4759. [PMID: 31458694 PMCID: PMC6641772 DOI: 10.1021/acsomega.8b00645] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 04/23/2018] [Indexed: 06/10/2023]
Abstract
Cryptochromes are flavoproteins whose photochemistry is important for crucial functions associated with phototropism and circadian clocks. In this report, we, for the first time, observed a magnetic response of the cryptochrome 1 (CRY1) immobilized at a gold electrode with illumination of blue light. These results present the magnetic field-enhanced photoinduced electron transfer of CRY1 to the electrode by voltammetry, exhibiting magnetic responsive rate constant and electrical current changes. A mechanism of the electron transfer, which involves photoinduced radicals in the CRY, is sensitive to the weak magnetic field; and the long-lived free radical FAD•- is responsible for the detected electrochemical Faradaic current. As a photoreceptor, the finding of a 5.7% rate constant change in electron transfer corresponding to a 50 μT magnetic field may be meaningful in regulation of magnetic field signaling and circadian clock function under an electromagnetic field.
Collapse
|
41
|
Agliassa C, Narayana R, Bertea CM, Rodgers CT, Maffei ME. Reduction of the geomagnetic field delays Arabidopsis thaliana flowering time through downregulation of flowering-related genes. Bioelectromagnetics 2018; 39:361-374. [PMID: 29709075 PMCID: PMC6032911 DOI: 10.1002/bem.22123] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/23/2018] [Indexed: 12/29/2022]
Abstract
Variations in magnetic field (MF) intensity are known to induce plant morphological and gene expression changes. In Arabidopsis thaliana Col‐0, near‐null magnetic field (NNMF, i.e., <100 nT MF) causes a delay in the transition to flowering, but the expression of genes involved in this response has been poorly studied. Here, we showed a time‐course quantitative analysis of the expression of both leaf (including clock genes, photoperiod pathway, GA20ox, SVP, and vernalization pathway) and floral meristem (including GA2ox, SOC1, AGL24, LFY, AP1, FD, and FLC) genes involved in the transition to flowering in A. thaliana under NNMF. NNMF induced a delayed flowering time and a significant reduction of leaf area index and flowering stem length, with respect to controls under geomagnetic field. Generation experiments (F1‐ and F2‐NNMF) showed retention of flowering delay. The quantitative expression (qPCR) of some A. thaliana genes expressed in leaves and floral meristem was studied during transition to flowering. In leaves and flowering meristem, NNMF caused an early downregulation of clock, photoperiod, gibberellin, and vernalization pathways and a later downregulation of TSF, AP1, and FLC. In the floral meristem, the downregulation of AP1, AGL24, FT, and FLC in early phases of floral development was accompanied by a downregulation of the gibberellin pathway. The progressive upregulation of AGL24 and AP1 was also correlated to the delayed flowering by NNMF. The flowering delay is associated with the strong downregulation of FT, FLC, and GA20ox in the floral meristem and FT, TSF, FLC, and GA20ox in leaves. Bioelectromagnetics. 39:361–374, 2018. © 2018 The Authors. Bioelectromagnetics Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Chiara Agliassa
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | | | - Cinzia M Bertea
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Christopher T Rodgers
- The Wolfson Brain Imaging Centre, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Massimo E Maffei
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| |
Collapse
|
42
|
Torres J, Socorro A, Hincapié E. Effect of homogeneous static magnetic treatment on the adsorption capacity in maize seeds (Zea mays L.). Bioelectromagnetics 2018; 39:343-351. [PMID: 29638006 DOI: 10.1002/bem.22120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 02/14/2018] [Indexed: 11/06/2022]
Abstract
In order to analyze the treatment of seeds with homogeneous static magnetic field on the water adsorption process, an experimental-theoretical study of hygroscopic equilibrium in maize seeds (Zea mays L. cv. ICAV305) was carried out. Four treatments with magnetic induction of 80.0, 120.0, 160.0, and 200.0 mT were applied for 10 min, and there was a control group without treatment. The doses were selected because they showed a decrease in mean germination time. Treated seeds were subjected to an environment with a stable temperature of 30.0 °C ± 0.1 °C and atmospheres of different relative humidity (h), using eight salt solutions saturated with water activity between 0.216 and 0.970. Curves were adjusted using the D'Arcy-Watt and modified Oswin models. It was found that the magnetic treatment of seeds affects adsorption, and the 200 mT-10 min one was the most significant in affecting the mechanisms of adsorption of water, and increasing the number of adsorption sites connected to weak binds with D'Arcy-Watt's adjustment. Using the Oswin model for simulation, we verified that the magnetic stimulus affected the enthalpy of adsorption and the mechanism of incorporation of water vapor molecules to the structure of seminal cover. These results show that the magnetic pre-treatment of seeds has an effect on a seed's specific biophysical and physiological processes in the early stages of germination. Bioelectromagnetics. 39:343-351, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Javier Torres
- Research Group on Electromagnetic Fields Environment and Public Health, Universidad de Caldas, Manizales, Colombia
| | - Alfredo Socorro
- Institute of Fundamental Research in Tropical Agriculture "Alexander de Humboldt" (INIFAT), Habana, Cuba
| | - Eduard Hincapié
- Research Group on Electromagnetic Fields Environment and Public Health, Universidad de Caldas, Manizales, Colombia.,Universidad Tecnológica de Pereira, Pereira, Colombia
| |
Collapse
|
43
|
Bulak P, Lata L, Plak A, Wiącek D, Strobel W, Walkiewicz A, Pietruszewski S, Bieganowski A. Electromagnetic field pretreatment of Sinapis alba seeds improved cadmium phytoextraction. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2018; 20:338-342. [PMID: 29584465 DOI: 10.1080/15226514.2017.1381943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
It was hypothesized that electromagnetic field (EMF) pretreatment of white mustard (Sinapis alba L.) seeds could increase the accumulation of non-essential, pollutant heavy metals such as cadmium (Cd) in shoots. Seeds of white mustard were treated with either 60 or 120 mT of alternating EMF (50 Hz) for 1 minute and then grown in a Petri dish in the presence of Cd, in comparison to the control (seeds grown without EMF pretreatment). Biomass production and content of calcium (Ca) and Cd in seedling shoots were measured. The Cd content in shoots from the EMF-treated seeds was higher in both variants than in the control (by 73% and 78%, respectively; p < 0.05). In plants treated with 60 mT, the Ca content was slightly, but significantly, lower (3%) than in the control. EMF stimulation did not affect the biomass production. The results have shown potential benefits of this physical seed pretreatment method in the context of cadmium phytoextraction, but more research is needed.
Collapse
Affiliation(s)
- Piotr Bulak
- a Department of Natural Environment Biogeochemistry , Institute of Agrophysics, Polish Academy of Sciences , Doświadczalna, Lublin , Poland
| | - Lesia Lata
- b Department of Soil Science and Protection , Maria Curie Sklodowska University , Kraśnicka av. 2CD, Lublin , Poland
| | - Andrzej Plak
- c Department of Applied Physics , Faculty of Physic, University of Life Sciences , Akademicka, Lublin , Poland
| | - Dariusz Wiącek
- a Department of Natural Environment Biogeochemistry , Institute of Agrophysics, Polish Academy of Sciences , Doświadczalna, Lublin , Poland
| | - Wacław Strobel
- a Department of Natural Environment Biogeochemistry , Institute of Agrophysics, Polish Academy of Sciences , Doświadczalna, Lublin , Poland
- d Institute of Technology and Life Sciences , Al. Hrabska, Falenty, Raszyn , Poland
| | - Anna Walkiewicz
- a Department of Natural Environment Biogeochemistry , Institute of Agrophysics, Polish Academy of Sciences , Doświadczalna, Lublin , Poland
| | - Stanisław Pietruszewski
- c Department of Applied Physics , Faculty of Physic, University of Life Sciences , Akademicka, Lublin , Poland
| | - Andrzej Bieganowski
- a Department of Natural Environment Biogeochemistry , Institute of Agrophysics, Polish Academy of Sciences , Doświadczalna, Lublin , Poland
| |
Collapse
|
44
|
Abstract
Weak magnetic and electromagnetic fields affect physiological processes in animals, plants, and microorganisms. Ion cyclotron resonance (ICR) is discussed as one of the sensitive mechanisms, which enable perception of the geomagnetic field and its orientation. Numerous biological effects are observed involving several small ions, showing windows of predicted frequencies and intensities. The pioneering work of Guiliano Preparata and Emilio Del Giudice using quantum electrodynamics showed that spontaneously originating coherent regions in water facilitate ICR effects at incoherent water phase boundaries. Here we examine the ICR response of the calcium ion (Ca2+), crucial for many life processes. We use an aqueous solution containing the biologically ubiquitous membrane lipid L-α-phosphatidylcholine that serves as a biomimetic proxy for dynamic light scattering (DLS) and nonlinear dielectric spectroscopy (NLDS) measurements. One notable result is that this system approaches a new equilibrium upon addition of calcium by means of the oscillatory Belousov-Zhabotinsky chemical reaction, oscillations are significantly reduced under Ca2+ ICR application. Secondly an "oscillator" of calcium ions appears to be able to itself couple coherently and predictably to large-scale coherent regions in water. This system appears able to regulate ion fluxes in response to very weak environmental electromagnetic fields.
Collapse
|
45
|
Erland LAE, Saxena PK, Murch SJ. Melatonin in plant signalling and behaviour. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:58-69. [PMID: 32291021 DOI: 10.1071/fp16384] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/29/2017] [Indexed: 05/23/2023]
Abstract
Melatonin is an indoleamine neurotransmitter that has recently become well established as an important multi-functional signalling molecule in plants. These signals have been found to induce several important physiological responses that may be interpreted as behaviours. The diverse processes in which melatonin has been implicated in plants have expanded far beyond the traditional roles for which it has been implicated in mammals, which include sleep, tropisms and reproduction. These functions, however, appear to also be important melatonin mediated processes in plants, though the mechanisms underlying these functions have yet to be fully elucidated. Mediation or redirection of plant physiological processes induced by melatonin can be summarised as a series of behaviours including, among others: herbivore defence, avoidance of undesirable circumstances or attraction to opportune conditions, problem solving and response to environmental stimulus. As the mechanisms of melatonin action are elucidated, its involvement in plant growth, development and behaviour is likely to expand beyond the aspects discussed in this review and hold promise for applications in diverse fundamental and applied plant sciences including conservation, cryopreservation, morphogenesis, industrial agriculture and natural health products.
Collapse
Affiliation(s)
- Lauren A E Erland
- Gosling Research Institute for Plant Preservation, Department of Plant Agriculture, University of Guelph, 50 Stone Road E, Guelph, Ontario, N1G 2W1, Canada
| | - Praveen K Saxena
- Gosling Research Institute for Plant Preservation, Department of Plant Agriculture, University of Guelph, 50 Stone Road E, Guelph, Ontario, N1G 2W1, Canada
| | - Susan J Murch
- Chemistry, University of British Columbia, Okanagan, Kelowna, British Columbia, V1V 1V7, Canada
| |
Collapse
|
46
|
Erdmann W, Idzikowski B, Kowalski W, Szymański B, Kosicki JZ, Kaczmarek Ł. Can the tardigrade Hypsibius dujardini survive in the absence of the geomagnetic field? PLoS One 2017; 12:e0183380. [PMID: 28886031 PMCID: PMC5590818 DOI: 10.1371/journal.pone.0183380] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/03/2017] [Indexed: 12/31/2022] Open
Abstract
Earth's geomagnetic field has undergone critical changes in the past. Studies on the influence of the magnetic field on Earth’s organisms are crucial for the understanding of evolution of life on Earth and astrobiological considerations. Numerous studies conducted both on plants and animals confirmed the significant influence of the geomagnetic field on the metabolism of living organisms. Water bears (Tardigrada), which are a mong the most resistant animals due to their cryptobiotic abilities, show significant resistance to a number of environmental stressors, but the influence of the geomagnetic field on their fitness has not been addressed before. In our studies, we used eutardigrade Hypsibius dujardini to analyse whether isolation from the geomagnetic field had an effect on mortality. We found that Hypsibius dujardini specimens demonstrated relatively high mortality during anhydrobiosis, also in control groups exposed to the normal geomagnetic field. Moreover, similar mortality was observed in anhydrobiotic specimens isolated from the geomagnetic field. However, a significant difference was noted between tardigrade survival and the moment of their isolation from the geomagnetic field. In particular, tardigrade mortality substantially increased in absence of a magnetic field during the process of entering anhydrobiosis and returning to active life. Our results suggest that these processes rely on complex metabolic processes that are critically influenced by the geomagnetic field.
Collapse
Affiliation(s)
- Weronika Erdmann
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University, Poznań, Umultowska 89, Poznań, Poland
| | - Bogdan Idzikowski
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego17, Poznań, Poland
| | - Wojciech Kowalski
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego17, Poznań, Poland
| | - Bogdan Szymański
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego17, Poznań, Poland
| | - Jakub Z. Kosicki
- Department of Avian Biology and Ecology, Faculty of Biology, Adam Mickiewicz University, Poznań, Umultowska 89, Poznań, Poland
- * E-mail:
| | - Łukasz Kaczmarek
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University, Poznań, Umultowska 89, Poznań, Poland
| |
Collapse
|
47
|
Lucia U, Grisolia G, Ponzetto A, Silvagno F. An engineering thermodynamic approach to select the electromagnetic wave effective on cell growth. J Theor Biol 2017; 429:181-189. [DOI: 10.1016/j.jtbi.2017.06.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 06/20/2017] [Accepted: 06/22/2017] [Indexed: 12/19/2022]
|
48
|
Letuta UG, Berdinskiy VL. Magnetosensitivity of bacteria E. coli: Magnetic isotope and magnetic field effects. Bioelectromagnetics 2017; 38:581-591. [PMID: 28782834 DOI: 10.1002/bem.22073] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 07/09/2017] [Indexed: 11/12/2022]
Abstract
The biological effects of a 25 Mg nuclear spin and weak magnetic fields have been found and studied by using bacterial cells of Escherichia coli (E. coli) grown on standard M9 nutrient media with different isotopes of magnesium: 24 Mg, 25 Mg, 26 Mg, and a natural mixture of Mg isotopes. Among these isotopes only 25 Mg has a nuclear spin I = 5/2 and nuclear magnetic moment which have been known to affect enzymatic processes in vitro due to hyperfine interactions with uncoupled electrons of substrates. Other non-magnetic magnesium isotopes, 24 Mg and 26 Mg, have neither a nuclear spin (I = 0) nor a nuclear magnetic moment. Bacterial cells grown on 25 Mg-media and enriched with this isotope manifest a higher growth rate and colony-forming units (CFU) compared with cells grown on media containing nonmagnetic 24 Mg and 26 Mg isotopes. Magnetic field dependencies of CFU cells enriched with different magnesium isotopes have been obtained. The observed isotope-dependent differences are explained by intracellular enzymatic ion-radical reactions which are magnetic field and nuclear spin sensitive. Enzymatic synthesis of ATP is considered as the most probable magnetosensitive biochemical process in vivo as far as effectiveness of ATP production is concerned; it determines the viability of cells and was shown in vitro as a nuclear spin-dependent reaction. Bioelectromagnetics. 38:581-591, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
|
49
|
Affiliation(s)
- A. R. Liboff
- Department of Physics, Oakland University, Rochester Hills, MI, USA
| | - C. Poggi
- Studio Ingegneria Claudio Poggi, Genoa, Italy
| | - P. Pratesi
- Studio Ingegneria Claudio Poggi, Genoa, Italy
| |
Collapse
|
50
|
Gagliano M, Grimonprez M, Depczynski M, Renton M. Tuned in: plant roots use sound to locate water. Oecologia 2017; 184:151-160. [PMID: 28382479 DOI: 10.1007/s00442-017-3862-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/31/2017] [Indexed: 01/29/2023]
Abstract
Because water is essential to life, organisms have evolved a wide range of strategies to cope with water limitations, including actively searching for their preferred moisture levels to avoid dehydration. Plants use moisture gradients to direct their roots through the soil once a water source is detected, but how they first detect the source is unknown. We used the model plant Pisum sativum to investigate the mechanism by which roots sense and locate water. We found that roots were able to locate a water source by sensing the vibrations generated by water moving inside pipes, even in the absence of substrate moisture. When both moisture and acoustic cues were available, roots preferentially used moisture in the soil over acoustic vibrations, suggesting that acoustic gradients enable roots to broadly detect a water source at a distance, while moisture gradients help them to reach their target more accurately. Our results also showed that the presence of noise affected the abilities of roots to perceive and respond correctly to the surrounding soundscape. These findings highlight the urgent need to better understand the ecological role of sound and the consequences of acoustic pollution for plant as well as animal populations.
Collapse
Affiliation(s)
- Monica Gagliano
- Centre for Evolutionary Biology, School of Animal Biology, University of Western Australia, Crawley, WA, 6009, Australia.
| | - Mavra Grimonprez
- Centre for Evolutionary Biology, School of Animal Biology, University of Western Australia, Crawley, WA, 6009, Australia
| | - Martial Depczynski
- Australian Institute of Marine Science, Crawley, WA, 6009, Australia
- Oceans Institute, University of Western Australia, Crawley, WA, Australia
| | - Michael Renton
- School of Plant Biology, University of Western Australia, Crawley, WA, 6009, Australia
| |
Collapse
|