1
|
Qin Y, Dong X, Dong H, Wang X, Ye T, Wang Q, Duan J, Yu M, Zhang T, Du N, Shen S, Piao F, Guo Z. γ-aminobutyric acid contributes to a novel long-distance signaling in figleaf gourd rootstock-induced cold tolerance of grafted cucumber seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109168. [PMID: 39366198 DOI: 10.1016/j.plaphy.2024.109168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/15/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024]
Abstract
Long-distance signals play a vital role in plant stress response. γ-aminobutyric acid (GABA) has been proposed to be a signal and protects crops against diverse stresses. However, whether GABA acts as a long-distance signal to plant response to stresses remains unknown. Here, we found that the GABA content in cucurbita rootstocks, especially figleaf gourd, was significantly higher than that in cucumber. Figleaf gourd rootstock obviously enhanced cold tolerance and GABA accumulation in roots, xylem sap and leaves of grafting cucumber seedlings. Conversely, GABA synthesis inhibitor 3-mercaptopropionic acid (3-MPA) irrigation was more effective than its foliar application in inhibiting grafting-induced cold tolerance. Moreover, fluorescence microscopy confirmed that GABA can be transported from root to shoot through the xylem when the roots of grafted seedlings were fed with fluorescein isothiocyatate-labeled GABA under normal and cold stress conditions. Importantly, 3-MPA irrigation attenuated grafting-induced cold tolerance, as revealed by a decline in the GABA accumulation, the transcripts of ICE1, CBF1 and COR47, the activities of the antioxidant enzymes, and an increase in stomatal aperture. Collectively, our findings strongly support that GABA functions as a novel long-distance signal in figleaf gourd rootstock-induced cold tolerance of grafted cucumber seedlings by modulating CBF-signalling pathways, antioxidant system and stomatal aperture, providing new evidence for long-distance signaling-mediated cold response of plants.
Collapse
Affiliation(s)
- Yanping Qin
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Xiaoxing Dong
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Han Dong
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Xiaojie Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Ting Ye
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Qiaonan Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Jingjing Duan
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Mingyao Yu
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Tao Zhang
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Nanshan Du
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Shunshan Shen
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Fengzhi Piao
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, PR China.
| | - Zhixin Guo
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, PR China.
| |
Collapse
|
2
|
Liao Y, Liu X, Xu N, Chen G, Qiao X, Gu Q, Wang Y, Sun J. Fine mapping and identification of ERF transcription factor ERF017 as a candidate gene for cold tolerance in pumpkin. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:230. [PMID: 39320412 DOI: 10.1007/s00122-024-04720-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/16/2024] [Indexed: 09/26/2024]
Abstract
KEY MESSAGE Two major QTLs for cold tolerance in pumpkin were localised, and CmoERF017 was identified as a key candidate gene within these QTLs via RNA-seq. Functional analysis revealed that CmoERF017 was a positive regulator of pumpkin in response to low-temperature stress. Low temperature is a key environmental factor that affects the protected cultivation of cucumber (Cucumis sativus L.) in winter, and the cold tolerance of cucumber/pumpkin-grafted seedlings depends on the rootstock. Pumpkin (Cucurbita spp.) has a well-developed root system, high resistance and wide adaptation, commonly used as rootstock for cucumber to improve the cold tolerance of grafted seedlings. This study used two high-generation inbred lines of Cucurbita moschata with significant differences in cold tolerance. We identified key candidate genes within the major cold tolerance QTL of rootstocks using QTL-seq and RNA-seq and investigated the function and molecular mechanisms of these genes in response to low-temperature stress. Results showed that QTL-seq located two cold tolerance QTLs, qCII-1 and qCII-2, while RNA-seq located 28 differentially expressed genes within these QTLs. CmoERF017 was finally identified as a key candidate gene. Functional validation results indicated that CmoERF017 is a positive regulator of pumpkin in response to low-temperature stress and affected root ABA synthesis and signalling by directly regulating the expression of SDR7 and ABI5. This study identified a key gene for low-temperature stress tolerance in rootstock pumpkin and clarified its role in the molecular mechanism of hormone-mediated plant cold tolerance. The study findings enrich the theoretical understanding of low-temperature stress tolerance in pumpkin and are valuable for the selection and breeding of cold-tolerant varieties of pumpkin used for rootstocks.
Collapse
Affiliation(s)
- Yarong Liao
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoying Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Na Xu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guangling Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinhui Qiao
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qinsheng Gu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Yu Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jin Sun
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
3
|
Pu D, Wen ZY, Sun JB, Zhang MX, Zhang F, Dong CJ. Unveiling the mechanism of source-sink rebalancing in cucumber-pumpkin heterografts: the buffering roles of rootstock cotyledon. PHYSIOLOGIA PLANTARUM 2024; 176:e14232. [PMID: 38450746 DOI: 10.1111/ppl.14232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 03/08/2024]
Abstract
Grafting onto pumpkin rootstock is widely applied in cucumber production to improve growth and yield, as well as to overcome soil-borne diseases and enhance resistance to abiotic stresses. In this study, we constructed the cucumber-pumpkin heterografts with the one-cotyledon grafting method, and examined the effects of heterografting on biomass allocation and sugar partitioning, with cucumber and pumpkin self-grafts used as control. Compared with cucumber self-grafts, heterografting onto pumpkin rootstock promoted photosynthesis in cucumber scion, and led to higher sucrose contents in the 1st true leaf (source) and newly emerged leaf (sink). Thereby, the scion part of heterografts accumulated more biomass than cucumber self-grafts. In contrast, when compared to pumpkin self-grafts, grafting with cucumber scion reduced root vigor and biomass but promoted cotyledon growth in pumpkin rootstock. The roots (sink) of heterografts contained less sucrose and hexoses, and showed reduced sucrose synthase (SuSy) and hexokinase (HXK) activities. However, the rootstock cotyledon (source) contained more sucrose and starch, and showed higher activities of HXK, cell-wall invertase (CWIN), and enzymes for starch synthesis and degradation. Furthermore, removal or shade of rootstock cotyledon led to reduced growth of root and scion. Silencing of CmoMEX1a gene in rootstock cotyledon inhibited maltose export and reduced root growth of heterografts. These results indicated that rootstock cotyledon, especially its starch content, played a buffering role in the growth regulation of cucumber-pumpkin heterografts. Taken together, our results provided a major contribution to our understanding of source-sink sugar partitioning and scion-rootstock growth balancing in cucumber-pumpkin heterografts.
Collapse
Affiliation(s)
- Dan Pu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zheng-Yang Wen
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing-Bo Sun
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Meng-Xia Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Feng Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chun-Juan Dong
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
He S, Li G, Zhang J, Ding Y, Wu H, Xie J, Wu H, Yang Z. The effect of environmental factors on the genetic differentiation of Cucurbita ficifolia populations based on whole-genome resequencing. BMC PLANT BIOLOGY 2023; 23:647. [PMID: 38102604 PMCID: PMC10722772 DOI: 10.1186/s12870-023-04602-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 11/10/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Cucurbita ficifolia is one of the squash species most resistant to fungal pathogens, and has especially high resistance to melon Fusarium wilt. This species is therefore an important germplasm resource for the breeding of squash and melon cultivars. RESULTS Whole-genome resequencing of 223 individuals from 32 populations in Yunnan Province, the main cucurbit production area in China, was performed and 3,855,120 single-nucleotide polymorphisms (SNPs) and 1,361,000 InDels were obtained. SNP analysis suggested that levels of genetic diversity in C. ficifolia were high, but that different populations showed no significant genetic differentiation or geographical structure, and that individual C. ficifolia plants with fruit rinds of a similar color did not form independent clusters. A Mantel test conducted in combination with geographical distance and environmental factors suggested that genetic distance was not correlated with geographical distance, but had a significant correlation with environmental distance. Further associations between the genetic data and five environmental factors were analyzed using whole-genome association analysis. SNPs associated with each environmental factor were investigated and genes 250 kb upstream and downstream from associated SNPs were annotated. Overall, 15 marker-trait-associated SNPs (MTAs) and 293 genes under environmental selection were identified. The identified genes were involved in cell membrane lipid metabolism, macromolecular complexes, catalytic activity and other related aspects. Ecological niche modeling was used to simulate the distribution of C. ficifolia across time, from the present and into the future. We found that the area suitable for C. ficifolia changed with the changing climate in different periods. CONCLUSIONS Resequencing of the C. ficifolia accessions has allowed identification of genetic markers, such as SNPs and InDels. The SNPs identified in this study suggest that environmental factors mediated the formation of the population structure of C. ficifolia in China. These SNPs and Indels might also contribute to the variation in important pathways of genes for important agronomic traits such as yield, disease resistance and stress tolerance. Moreover, the genome resequencing data and the genetic markers identified from 223 accessions provide insight into the genetic variation of the C. ficifolia germplasm and will facilitate a broad range of genetic studies.
Collapse
Affiliation(s)
- Shuilian He
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Gengyun Li
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Jing Zhang
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Yumei Ding
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Hongzhi Wu
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Junjun Xie
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Hang Wu
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Zhengan Yang
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
| |
Collapse
|
5
|
Feng Y, Zhao Y, Li G, Shi H. Reducing nitrate and tobacco-specific nitrosamine level in burley tobacco leaves through grafting on flue-cured tobacco rootstock. PLANT DIRECT 2023; 7:e536. [PMID: 37841064 PMCID: PMC10568975 DOI: 10.1002/pld3.536] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 08/31/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023]
Abstract
Nitrosation of pyridine alkaloids in tobacco generates tobacco-specific nitrosamines (TSNAs), which are notable toxicants in tobacco products and smoke. Burley tobacco, a chloroplast- and nitrogen (N)-deficient phenotype that accumulates high levels of nitrate-nitrogen (NO3-N) in its leaves, is particularly susceptible to TSNAs formation. In this study, reciprocal pot and field grafting experiments were conducted using burley tobacco Eyan No.1 and flue-cured tobacco K326 to investigate whether grafting burley tobacco scions on flue-cured tobacco rootstocks could enhance pigment biosynthesis and photosynthesis, while reducing the NO3-N level in burley tobacco leaves. Grafting burley tobacco scions on flue-cured tobacco rootstocks significantly increased the total pigment content, photosynthetic rate, biomass, nitrate reductase and glutamine synthetase activities, as well as ammonium-nitrogen (NH4-N), total soluble and reducing sugar, and soluble protein levels in burley tobacco leaves compared with burley tobacco self-rooting, while decreasing the NO3-N level and nitrate-N to total N ratio. Transcriptomic analysis revealed that grafting resulted in upregulated expression of genes involved in starch, sucrose, porphyrin, chlorophyll, and N metabolism, as well as carbon fixation and carotenoid biosynthesis. The findings suggest that grafting on high N use efficiency rootstock is an exceptionally promising means of decreasing NO3-N accumulation by improving photosynthesis and N metabolism in the scion, thereby reducing the levels of harmful TSNAs.
Collapse
Affiliation(s)
- Yuqing Feng
- National Tobacco Cultivation & Physiology & Biochemistry Research Center, Tobacco Harm Reduction Research Center of China TobaccoHenan Agricultural UniversityZhengzhouChina
| | - Yuanyuan Zhao
- National Tobacco Cultivation & Physiology & Biochemistry Research Center, Tobacco Harm Reduction Research Center of China TobaccoHenan Agricultural UniversityZhengzhouChina
| | - Geng Li
- National Tobacco Cultivation & Physiology & Biochemistry Research Center, Tobacco Harm Reduction Research Center of China TobaccoHenan Agricultural UniversityZhengzhouChina
| | - Hongzhi Shi
- National Tobacco Cultivation & Physiology & Biochemistry Research Center, Tobacco Harm Reduction Research Center of China TobaccoHenan Agricultural UniversityZhengzhouChina
| |
Collapse
|
6
|
Gul T, Aslam MM, Khan AS, Iqbal T, Ullah F, Eldesoky GE, Aljuwayid AM, Akhtar MS. Phytotoxic responses of wheat to an imidazolium based ionic liquid in absence and presence of biochar. CHEMOSPHERE 2023; 322:138080. [PMID: 36781001 DOI: 10.1016/j.chemosphere.2023.138080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/21/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Research on ionic liquids (ILs) and biochars (BCs) is a novel site of scientific interest. An experiment was designed to assess the effect of 1-propanenitrile imidazolium trifluoro methane sulfonate ([C2NIM][CF3SO3]) ionic liquid (IL) and IL-BC combination on the wheat plant. Three working standards of the IL; 50, 250, 500 and 1000 mg/L, prepared in deionized water, were tested in the absence and presence of BC on wheat seedling. Results indicated significant decrease in seed germination (%), length, fresh weight, chlorophyll a, b and carotenoid contents of wheat seedlings at 250, 500 and 1000 mg/L of the IL. An admirable increase in phenolic and 2,2-diphenyl-1-picrylhydrazyl (DPPH) contents of wheat seedlings was noted at 250, 500 and 1000 mg/L of the IL. The application of BC significantly ameliorated the negative effects of IL on the selected parameters of wheat. It is inferred that the undesirable effects of the IL on wheat growth can be positively restored by addition of BC.
Collapse
Affiliation(s)
- Taza Gul
- Department of Botany, University of Science and Technology Bannu, Pakistan
| | | | - Amir Sada Khan
- Department of Chemistry, University of Science and Technology Bannu, Pakistan
| | - Tahir Iqbal
- Department of Botany, University of Science and Technology Bannu, Pakistan
| | - Faizan Ullah
- Department of Botany, University of Science and Technology Bannu, Pakistan
| | - Gaber E Eldesoky
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ahmed Muteb Aljuwayid
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Muhammad Saeed Akhtar
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 712-749, South Korea.
| |
Collapse
|
7
|
Zou J, Gong Z, Liu Z, Ren J, Feng H. Investigation of the Key Genes Associated with Anthocyanin Accumulation during Inner Leaf Reddening in Ornamental Kale ( Brassica oleracea L. var. acephala). Int J Mol Sci 2023; 24:ijms24032837. [PMID: 36769159 PMCID: PMC9917897 DOI: 10.3390/ijms24032837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Ornamental kale (Brassica oleracea L. var. acephala) is a popular decorative plant in late autumn and winter. However, only during low-temperature color-changed periods below rough 15 °C can the plant accumulate anthocyanins and exhibit a diverse array of foliar color patterns. In this study, we probed into the potential mechanism of inner leaf reddening in a red-leaf pure line of ornamental kale by physiological, metabolic, and transcriptomic analyses. Determination of anthocyanin contents in the uncolored new white leaves (S0), the light red leaves (S1) in the reddening period and the red leaves (S2) completing color change, and analysis of anthocyanin metabolites at stage S2, revealed that the coloring of red leaves was mainly attributed to the accumulation of cyanidins. We further used transcriptomic sequencing between the pairwise S0, S1, and S2 stages to identify 21 differentially expressed genes (DEGs) involved in anthocyanin biosynthesis, among which the expression level of 14 DEGs was positively correlated with anthocyanin accumulation, and 6 DEGs were negatively correlated with anthocyanin accumulation. A total of 89 co-expressed genes were screened out, from which three DEGs (BoCHI, Bo4CL3, and BoF3H) were identified as hub genes in co-expression DEGs network. BoDFR and BoCHI were the DEGs with the highest expressions at S2. Moreover, two co-expressed DEGs related to stress response (BoBBX17 and BoCOR47) also exhibited upregulated expressions and positive correlations with anthocyanin accumulation. A deep dive into the underlying regulatory network of anthocyanin accumulation comprising these six upregulated DEGs from S0 to S2 was performed via trend, correlation, and differentially co-expression analysis. This study uncovered the DEGs expression profiles associated with anthocyanin accumulation during ornamental kale inner leaf reddening, which provided a basis for further dissecting the molecular mechanisms of leaf color characteristic change in ornamental kale at low temperatures.
Collapse
Affiliation(s)
| | | | | | - Jie Ren
- Correspondence: (J.R.); (H.F.)
| | | |
Collapse
|
8
|
Sun J, Chen J, Si X, Liu W, Yuan M, Guo S, Wang Y. WRKY41/WRKY46-miR396b-5p-TPR module mediates abscisic acid-induced cold tolerance of grafted cucumber seedlings. FRONTIERS IN PLANT SCIENCE 2022; 13:1012439. [PMID: 36160963 PMCID: PMC9493262 DOI: 10.3389/fpls.2022.1012439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/23/2022] [Indexed: 06/01/2023]
Abstract
Grafting is one of the key agronomic measures to enhance the tolerance to environmental stresses in horticultural plants, but the specific molecular regulation mechanism in this tolerance largely remains unclear. Here, we found that cucumber grafted onto figleaf gourd rootstock increased cold tolerance through abscisic acid (ABA) activating WRKY41/WRKY46-miR396b-5p-TPR (tetratricopeptide repeat-like superfamily protein) module. Cucumber seedlings grafted onto figleaf gourd increased cold tolerance and induced the expression of miR396b-5p. Furthermore, overexpression of cucumber miR396b-5p in Arabidopsis improved cold tolerance. 5' RNA ligase-mediated rapid amplification of cDNA ends (5' RLM-RACE) and transient transformation experiments demonstrated that TPR was the target gene of miR396b-5p, while TPR overexpression plants were hypersensitive to cold stress. The yeast one-hybrid and dual-luciferase assays showed that both WRKY41 and WRKY46 bound to MIR396b-5p promoter to induce its expression. Furthermore, cold stress enhanced the content of ABA in the roots and leaves of figleaf gourd grafted cucumber seedlings. Exogenous application of ABA induced the expression of WRKY41 and WRKY46, and cold tolerance of grafted cucumber seedlings. However, figleaf gourd rootstock-induced cold tolerance was compromised when plants were pretreated with ABA biosynthesis inhibitor. Thus, ABA mediated figleaf gourd grafting-induced cold tolerance of cucumber seedlings through activating the WRKY41/WRKY46-miR396b-5p-TPR module.
Collapse
|
9
|
Lv C, Li F, Ai X, Bi H. H 2O 2 participates in ABA regulation of grafting-induced chilling tolerance in cucumber. PLANT CELL REPORTS 2022; 41:1115-1130. [PMID: 35260922 DOI: 10.1007/s00299-022-02841-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/01/2022] [Indexed: 05/20/2023]
Abstract
Rootstock provides more abscisic acid (ABA) content to scions to increase the chilling tolerance of seedlings. H2O2 is involved in ABA regulation of grafting-induced chilling tolerance of cucumber. Here we examined the role of ABA in the response of grafted cucumber to chilling stress. The data showed chilling induced an increase in leaf and root ABA content and there was a positive correlation between ABA content and the chilling tolerance of the varieties. The increase of ABA content and NCED mRNA abundance in the leaf of both Cs/Cs (self-root) and Cs/Cm (grafted with pumpkin as rootstock) showed a delay under aerial stress compared with those under whole plant and root-zone stress. Intriguingly, an increase in ABA in xylem was found under whole-plant and root-zone chilling stress but was not detected under aerial stress, implying the increases in ABA content in leaves were mainly from root ABA transportation. Compared to Cs/Cs, a higher ABA content and NCED mRNA abundance were observed in Cs/Cm, which showed that Cm could output more ABA than Cs. The removal of endogenous ABA decreased the difference in chilling tolerance induced by Cm, as evidenced by the observed similar oxidative stress levels and photosynthetic capacity between Cs/Cs and Cs/Cm after chilling stress. Moreover, we found that the H2O2 signal in grafted cucumber could respond to chilling stress earlier than the H2O2 signal in self-rooted cucumber. The inhibition of endogenous H2O2 decreased the chilling tolerance of grafted cucumber induced by ABA by reducing photosynthesis and the mRNA abundance of CBF1 and COR. Thus, our results indicate that H2O2, as the downstream signal, participated in the rootstock-induced chilling tolerance of grafted seedlings induced by ABA.
Collapse
Affiliation(s)
- Chunyu Lv
- State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Fude Li
- State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Xizhen Ai
- State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Huangai Bi
- State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
10
|
Mobile Messenger RNAs in Grafts of Salix matsudana Are Associated with Plant Rooting. FORESTS 2022. [DOI: 10.3390/f13020354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Messenger RNAs exchanged between scions and rootstocks of grafted plants seriously affect their traits performance. The study goals were to identify the long-distance mRNA transmission events in grafted willows using a transcriptome analysis and to reveal the possible effects on rooting traits. The results showed that the Salix matsudana variety 9901 has better rooting ability than YJ, which reasonably improved the rooting performance of the heterologous grafts 9901 (scion)/YJ (rootstock). A transcriptome analysis showed that 2948 differentially expressed genes (DEGs) were present in the rootstock of 9901/YJ grafted plants in comparison with YJ/YJ. Among them, 692 were identified as mRNAs moved from 9901 scion based on SNP analysis of two parents. They were mostly 1001–1500 bp, had 40–45% GC contents, or had expression abundance values less than 10. However, mRNAs over 4001 bp, having 50–55% GC contents, or having expression abundance values of 10–20 were preferentially transferred. Eight mRNAs subjected to long-distance trafficking were involved in the plant hormone pathways and may significantly promote the root growth of grafted plants. In summary, heterologous grafts of Salix matsudana could efficiently influence plant rooting of the mRNAs transport from scion to rootstock.
Collapse
|
11
|
Luan H, Niu C, Nie X, Li Y, Wei M. Transcriptome and Physiological Analysis of Rootstock Types and Silicon Affecting Cold Tolerance of Cucumber Seedlings. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030445. [PMID: 35161426 PMCID: PMC8838756 DOI: 10.3390/plants11030445] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 05/05/2023]
Abstract
Cucumbers grafted on rootstocks with different de-blooming capacity show varying levels of cold tolerance. The content of fruit bloom correlates with its silicon-metabolizing capacity, and rootstock grafting can alter not only the cold tolerance but also the silicon-metabolizing capacity of the scion. The molecular mechanisms responsible for resistance due to rootstocks and silicon and the pathway that affects cold tolerance, however, remain poorly understood. Therefore, we performed physiological and transcriptome analysis to clarify how rootstock types and silicon affect cold tolerance in cucumber seedlings. Then, we randomly selected eight differentially expressed genes (DEGs) for quantitative real time PCR (qRT-PCR) analysis to proof the reliability of the transcriptome data. The results showed that silicon can enhance the cold tolerance of cucumbers by boosting the phenylpropanoid metabolism, and rootstock grafting can boost the active oxygen scavenging ability and synthesis level of hormones in cucumbers and maintain the stability of the membrane structure to enhance cold tolerance. The difference in cold tolerance between the two rootstocks is because the cold-tolerant one has stronger metabolic and sharp signal transduction ability and can maintain the stability of photosynthesis, thereby contributing to the stability of the cellular system and enhancing tolerance to cold.
Collapse
Affiliation(s)
- Heng Luan
- College of Horticultural Science and Engineering, Shandong Agricultural University, Taian 271018, China; (H.L.); (C.N.); (X.N.); (Y.L.)
| | - Chenxu Niu
- College of Horticultural Science and Engineering, Shandong Agricultural University, Taian 271018, China; (H.L.); (C.N.); (X.N.); (Y.L.)
| | - Xinmiao Nie
- College of Horticultural Science and Engineering, Shandong Agricultural University, Taian 271018, China; (H.L.); (C.N.); (X.N.); (Y.L.)
| | - Yan Li
- College of Horticultural Science and Engineering, Shandong Agricultural University, Taian 271018, China; (H.L.); (C.N.); (X.N.); (Y.L.)
- Scientific Observing and Experimental Station of Environment Controlled Agricultural Engineering in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Taian 271018, China
- State Key Laboratory of Crop Biology, Taian 271018, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Taian 271018, China
| | - Min Wei
- College of Horticultural Science and Engineering, Shandong Agricultural University, Taian 271018, China; (H.L.); (C.N.); (X.N.); (Y.L.)
- Scientific Observing and Experimental Station of Environment Controlled Agricultural Engineering in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Taian 271018, China
- State Key Laboratory of Crop Biology, Taian 271018, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Taian 271018, China
- Correspondence: ; Tel.: +86-0538-824-6296
| |
Collapse
|
12
|
Padilla YG, Gisbert-Mullor R, López-Serrano L, López-Galarza S, Calatayud Á. Grafting Enhances Pepper Water Stress Tolerance by Improving Photosynthesis and Antioxidant Defense Systems. Antioxidants (Basel) 2021; 10:antiox10040576. [PMID: 33918024 PMCID: PMC8069515 DOI: 10.3390/antiox10040576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/25/2021] [Accepted: 04/06/2021] [Indexed: 11/24/2022] Open
Abstract
Currently, limited water supply is a major problem in many parts of the world. Grafting peppers onto adequate rootstocks is a sustainable technique used to cope with water scarcity in plants. For 1 month, this work compared grafted peppers by employing two rootstocks (H92 and H90), with different sensitivities to water stress, and ungrafted plants in biomass, photosynthesis, and antioxidant response terms to identify physiological–antioxidant pathways of water stress tolerance. Water stress significantly stunted growth in all the plant types, although tolerant grafted plants (variety grafted onto H92, Var/H92) had higher leaf area and fresh weight values. Var/H92 showed photosynthesis and stomata conductance maintenance, compared to sensitive grafted plants (Var/H90) and ungrafted plants under water stress, linked with greater instantaneous water use efficiency. The antioxidant system was effective in removing reactive oxygen species (ROS) that could damage photosynthesis; a significant positive and negative linear correlation was observed between the rate of CO2 uptake and ascorbic acid (AsA)/total AsA (AsAt) and proline, respectively. Moreover, in Var/H92 under water stress, both higher proline and ascorbate concentration were observed. Consequently, less membrane lipid peroxidation was quantified in Var/H92.
Collapse
Affiliation(s)
- Yaiza Gara Padilla
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias, Departamento de Horticultura, CV-315, Km 10,7, Moncada, 46113 Valencia, Spain; (Y.G.P.); (L.L.-S.)
| | - Ramón Gisbert-Mullor
- Departamento de Producción Vegetal, CVER, Universitat Politècnica de València, Camí de Vera s/n, 46022 Valencia, Spain; (R.G.-M.); (S.L.-G.)
| | - Lidia López-Serrano
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias, Departamento de Horticultura, CV-315, Km 10,7, Moncada, 46113 Valencia, Spain; (Y.G.P.); (L.L.-S.)
| | - Salvador López-Galarza
- Departamento de Producción Vegetal, CVER, Universitat Politècnica de València, Camí de Vera s/n, 46022 Valencia, Spain; (R.G.-M.); (S.L.-G.)
| | - Ángeles Calatayud
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias, Departamento de Horticultura, CV-315, Km 10,7, Moncada, 46113 Valencia, Spain; (Y.G.P.); (L.L.-S.)
- Correspondence:
| |
Collapse
|
13
|
Hu W, Di Q, Zhang J, Liu J, Shi X. Response of grafting tobacco to low potassium stress. BMC PLANT BIOLOGY 2020; 20:286. [PMID: 32571243 PMCID: PMC7310080 DOI: 10.1186/s12870-020-02481-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND In the previous study, we investigated the alleviation effect of grafting on potassium uptake in roots and tobacco growth inhibition under low potassium stress. However, the effect of grafting on the low potassium stress perception and coping mechanism of tobacco at the whole plant level is not clear now. In order to clearly understand the impact of grafting on potassium deficit responding mechanism in tobacco, a mutual grafting experiment has been conducted in two varieties of tobacco ('Wufeng No.2' and 'Yunyan 87') in different K supply level (5 mmol L- 1 and 0.5 mmol L- 1 K). RESULTS The results show that compared with the self-rooted seedlings, grafting significantly increased the potassium content of the whole plant of Yunyan 87 (97.57 and 189.74% under normal potassium and low potassium conditions, respectively), and the increase in shoots was greater. The data of whole plant K content distribution and tobacco hypocotyls net K+ flux demonstrates that potassium stress makes plants more inclined to maintain K+ in the shoot rather than root. In addition, when K deficiency occurs, grafting could reduce the time required for downward net K+ flux in tobacco hypocotyl to decrease to stable levels. The results of net K+ flux in the roots indicated that K channel proteins and transporters play different roles in two rootstocks in terms of potassium tolerance. Transcription level analysis suggested that the increased circulating efficiency of K+ between the shoots and roots in tobacco constitutes one means to low potassium stress adaptation. CONCLUSIONS Grafting can activate more K+ channels in tobacco 'Yunyan 87', this means a more active K+ cycle, higher potassium content in shoot and faster response to low potassium stress signals in grafting tobacco. In addition, grafting can also change the K+ absorption mode of tobacco root from being dominated by HATS to being jointly responsible by HATS and LATS, greatly improving the ability of K+ transmembrane transportation on root surface under low potassium stress. These are undoubtedly the reasons why grafting tobacco performs better in coping with low potassium stress.
Collapse
Affiliation(s)
- Wei Hu
- College of Resources and Environment, Southwest University, Chongqing, 400716 China
- Vegetable and Flower Institute of Chongqing Academy of Agricultural Sciences, Chongqing, 401329 China
| | - Qing Di
- Vegetable and Flower Institute of Chongqing Academy of Agricultural Sciences, Chongqing, 401329 China
| | - Jie Zhang
- Nanchang Institute of Technology, Nanchang, 330099 China
| | - Jia Liu
- Soil and Fertilizer & Resources and Environment Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200 China
| | - Xiaojun Shi
- College of Resources and Environment, Southwest University, Chongqing, 400716 China
| |
Collapse
|
14
|
Fullana-Pericàs M, Conesa MÀ, Pérez-Alfocea F, Galmés J. The influence of grafting on crops' photosynthetic performance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 295:110250. [PMID: 32534620 DOI: 10.1016/j.plantsci.2019.110250] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/22/2019] [Accepted: 08/30/2019] [Indexed: 05/16/2023]
Abstract
In a near scenario of climate change where stress-derived limitations on crops' yield by affecting plant gas-exchange are expected, grafting may become a cheap and easy technique to improve crops photosynthetic performance and water-use efficiency. Inconsistent data of the effect of rootstocks over gas-exchange can be found in literature, being necessary an integrative analysis of the effect of grafting over photosynthetic parameters. With this aim, we present a compilation of the effect of graft on the net CO2 assimilation rate (AN) and other photosynthetic parameters across different species with agronomic interest. No differences were observed in any photosynthetic parameter between non-grafted and self-grafted plants under non-stress conditions. However, differences were found depending on the used rootstock, particularly for the intrinsic water-use efficiency (WUEi). We observed that variations in AN induced by rootstocks were related to changes in both diffusive and biochemical parameters. Under drought or salt stress, different photosynthetic performances were observed depending on the rootstock, although the high variability among studies promted to remarkable results. Overall, we observed that grafting can be a useful technique to improve plant photosynthetic performance, and therefore, crop yield and WUE, and that the rootstock selection for a target environment is determinant for the variations in photosynthesis.
Collapse
Affiliation(s)
- Mateu Fullana-Pericàs
- Research Group on Plant Biology under Mediterranean Conditions-INAGEA, Universitat de les Illes Balears, Balearic Islands, Spain
| | - Miquel À Conesa
- Research Group on Plant Biology under Mediterranean Conditions-INAGEA, Universitat de les Illes Balears, Balearic Islands, Spain
| | - Francisco Pérez-Alfocea
- Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Department of Plant Nutrition, Campus Universitario de Espinardo, E-30100, Murcia, Spain
| | - Jeroni Galmés
- Research Group on Plant Biology under Mediterranean Conditions-INAGEA, Universitat de les Illes Balears, Balearic Islands, Spain.
| |
Collapse
|
15
|
Xiao X, Lv J, Xie J, Feng Z, Ma N, Li J, Yu J, Calderón-Urrea A. Transcriptome Analysis Reveals the Different Response to Toxic Stress in Rootstock Grafted and Non-Grafted Cucumber Seedlings. Int J Mol Sci 2020; 21:ijms21030774. [PMID: 31991638 PMCID: PMC7037640 DOI: 10.3390/ijms21030774] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 11/20/2022] Open
Abstract
Autotoxicity of root exudates is one of the main reasons for consecutive monoculture problem (CMP) in cucumber under greenhouse cultivation. Rootstock grafting may improve the tolerance of cucumber plants to autotoxic stress. To verify the enhanced tolerance to autotoxic stress and illuminate relevant molecular mechanism, a transcriptomic comparative analysis was performed between rootstock grafted (RG) and non-grafted (NG) cucumber plants by a simulation of exogenous cinnamic acid (CA). The present study confirmed that relatively stable plant growth, biomass accumulation, chlorophyll content, and photosynthesis was observed in RG than NG under CA stress. We identified 3647 and 2691 differentially expressed genes (DEGs) in NG and RG cucumber plants when compared to respective control, and gene expression patterns of RNA-seq was confirmed by qRT-PCR. Functional annotations revealed that DEGs response to CA stress were enriched in pathways of plant hormone signal transduction, MAPK signaling pathway, phenylalanine metabolism, and plant-pathogen interaction. Interestingly, the significantly enriched pathway of photosynthesis-related, carbon and nitrogen metabolism only identified in NG, and most of DEGs were down-regulated. However, most of photosynthesis, Calvin cycle, glycolysis, TCA cycle, and nitrogen metabolism-related DEGs exhibited not or slightly down-regulated in RG. In addition, several stress-related transcription factor families of AP2/ERF, bHLH, bZIP, MYB. and NAC were uniquely triggered in the grafted cucumbers. Overall, the results of this study suggest that rootstock grafting improve the tolerance of cucumber plants to autotoxic stress by mediating down-regulation of photosynthesis, carbon, and nitrogen metabolism-related DEGs and activating the function of stress-related transcription factor. The transcriptome dataset provides an extensive sequence resource for further studies of autotoxic mechanism at molecular level.
Collapse
Affiliation(s)
- Xuemei Xiao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (X.X.); (J.L.); (Z.F.); (N.M.)
| | - Jian Lv
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (X.X.); (J.L.); (Z.F.); (N.M.)
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (X.X.); (J.L.); (Z.F.); (N.M.)
| | - Zhi Feng
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (X.X.); (J.L.); (Z.F.); (N.M.)
| | - Ning Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (X.X.); (J.L.); (Z.F.); (N.M.)
| | - Ju Li
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (X.X.); (J.L.); (Z.F.); (N.M.)
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (X.X.); (J.L.); (Z.F.); (N.M.)
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- Correspondence: ; Tel.: +86-0931-7632188
| | - Alejandro Calderón-Urrea
- College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China;
- Department of Biology, College of Science and Mathematics, California State University, Fresno, CA 97340, USA
| |
Collapse
|
16
|
Xu Y, Yuan Y, Du N, Wang Y, Shu S, Sun J, Guo S. Proteomic analysis of heat stress resistance of cucumber leaves when grafted onto Momordica rootstock. HORTICULTURE RESEARCH 2018; 5:53. [PMID: 30302257 PMCID: PMC6165847 DOI: 10.1038/s41438-018-0060-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 05/09/2018] [Accepted: 05/21/2018] [Indexed: 05/22/2023]
Abstract
Various biotic and abiotic stresses threaten the cultivation of future agricultural crops. Among these stresses, heat stress is a major abiotic stress that substantially reduces agricultural productivity. Many strategies to enhance heat stress tolerance of crops have been developed, among which is grafting. Here, we show that Momordica-grafted cucumber scions have intrinsically enhanced chlorophyll content, leaf area, and net photosynthetic rate under heat stress compared to plants grafted onto cucumber rootstock. To investigate the mechanisms by which Momordica rootstock enhanced cucumber scions heat stress tolerance, comparative proteomic analysis of cucumber leaves in response to rootstock-grafting and/or heat stress was conducted. Seventy-seven differentially accumulated proteins involved in diverse biological processes were identified by two-dimensional electrophoresis (2-DE) in conjunction with matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry (MALDI-TOF/TOF MS). The following four main categories of proteins were involved: photosynthesis (42.8%), energy and metabolism (18.2%), defense response (14.3%), and protein and nucleic acid biosynthesis (11.7%). Proteomic analysis revealed that scions grafted onto Momordica rootstocks upregulated more proteins involved in photosynthesis compared to scions grafted onto cucumber rootstocks under heat stress and indicated enhanced photosynthetic capacity when seedlings were exposed to heat stress. Furthermore, the expression of photosynthesis-related genes in plants grafted onto Momordica rootstocks significantly increased in response to heat stress. In addition, increased high-temperature tolerance of plants grafted onto Momordica rootstock was associated with the accumulation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and oxygen-evolving enhancer protein 1 (OEE1). Taken together, the data indicated that Momordica rootstock might alleviate growth inhibition caused by heat stress by improving photosynthesis, providing valuable insight into enhancing heat stress tolerance in the global warming epoch.
Collapse
Affiliation(s)
- Ye Xu
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yinghui Yuan
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Nanshan Du
- Department of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Yu Wang
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Sheng Shu
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Suqian Academy of Protected Horticulture, Nanjing Agricultural University, Suqian, China
| | - Jin Sun
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Suqian Academy of Protected Horticulture, Nanjing Agricultural University, Suqian, China
| | - Shirong Guo
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Suqian Academy of Protected Horticulture, Nanjing Agricultural University, Suqian, China
| |
Collapse
|
17
|
Xu D, Yuan H, Tong Y, Zhao L, Qiu L, Guo W, Shen C, Liu H, Yan D, Zheng B. Comparative Proteomic Analysis of the Graft Unions in Hickory ( Carya cathayensis) Provides Insights into Response Mechanisms to Grafting Process. FRONTIERS IN PLANT SCIENCE 2017; 8:676. [PMID: 28496455 PMCID: PMC5406401 DOI: 10.3389/fpls.2017.00676] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 04/12/2017] [Indexed: 05/18/2023]
Abstract
Hickory (Carya cathayensis), a tree with high nutritional and economic value, is widely cultivated in China. Grafting greatly reduces the juvenile phase length and makes the large scale cultivation of hickory possible. To reveal the response mechanisms of this species to grafting, we employed a proteomics-based approach to identify differentially expressed proteins in the graft unions during the grafting process. Our study identified 3723 proteins, of which 2518 were quantified. A total of 710 differentially expressed proteins (DEPs) were quantified and these were involved in various molecular functional and biological processes. Among these DEPs, 341 were up-regulated and 369 were down-regulated at 7 days after grafting compared with the control. Four auxin-related proteins were down-regulated, which was in agreement with the transcription levels of their encoding genes. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the 'Flavonoid biosynthesis' pathway and 'starch and sucrose metabolism' were both significantly up-regulated. Interestingly, five flavonoid biosynthesis-related proteins, a flavanone 3-hyfroxylase, a cinnamate 4-hydroxylase, a dihydroflavonol-4-reductase, a chalcone synthase, and a chalcone isomerase, were significantly up-regulated. Further experiments verified a significant increase in the total flavonoid contents in scions, which suggests that graft union formation may activate flavonoid biosynthesis to increase the content of a series of downstream secondary metabolites. This comprehensive analysis provides fundamental information on the candidate proteins and secondary metabolism pathways involved in the grafting process for hickory.
Collapse
Affiliation(s)
- Dongbin Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F UniversityLinan, China
- Center for Cultivation of Subtropical Forest Resources, Zhejiang A&F UniversityLinan, China
| | - Huwei Yuan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F UniversityLinan, China
- Center for Cultivation of Subtropical Forest Resources, Zhejiang A&F UniversityLinan, China
| | - Yafei Tong
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F UniversityLinan, China
- Center for Cultivation of Subtropical Forest Resources, Zhejiang A&F UniversityLinan, China
| | - Liang Zhao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F UniversityLinan, China
- Center for Cultivation of Subtropical Forest Resources, Zhejiang A&F UniversityLinan, China
| | - Lingling Qiu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F UniversityLinan, China
- Center for Cultivation of Subtropical Forest Resources, Zhejiang A&F UniversityLinan, China
| | - Wenbin Guo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F UniversityLinan, China
- Center for Cultivation of Subtropical Forest Resources, Zhejiang A&F UniversityLinan, China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
| | - Hongjia Liu
- Crop and Nuclear Technology Institute, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Daoliang Yan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F UniversityLinan, China
- Center for Cultivation of Subtropical Forest Resources, Zhejiang A&F UniversityLinan, China
- *Correspondence: Bingsong Zheng, Daoliang Yan,
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F UniversityLinan, China
- Center for Cultivation of Subtropical Forest Resources, Zhejiang A&F UniversityLinan, China
- *Correspondence: Bingsong Zheng, Daoliang Yan,
| |
Collapse
|
18
|
Xu J, Zhang M, Liu G, Yang X, Hou X. Comparative transcriptome profiling of chilling stress responsiveness in grafted watermelon seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 109:561-570. [PMID: 27837724 DOI: 10.1016/j.plaphy.2016.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 11/03/2016] [Accepted: 11/03/2016] [Indexed: 05/03/2023]
Abstract
Rootstock grafting may improve the resistance of watermelon plants to low temperatures. However, information regarding the molecular responses of rootstock grafted plants to chilling stress is limited. To elucidate the molecular mechanisms of chilling tolerance in grafted plants, the transcriptomic responses of grafted watermelon under chilling stress were analyzed using RNA-seq analysis. Sequencing data were used for digital gene expression (DGE) analysis to characterize the transcriptomic responses in grafted watermelon seedlings. A total of 702 differentially-expressed genes (DEGs) were found in rootstock grafted (RG) watermelon relative to self-grafted (SG) watermelon; among these genes, 522 genes were up-regulated and 180 were down-regulated. Additionally, 164 and 953 genes were found to specifically expressed in RG and SG seedlings under chilling stress, respectively. Functional annotations revealed that up-regulated DEGs are involved in protein processing, plant-pathogen interaction and the spliceosome, whereas down-regulated DEGs are associated with photosynthesis. Moreover, 13 DEGs were randomly selected for quantitative real time PCR (qRT-PCR) analysis. The expression profiles of these 13 DEGs were consistent with those detected by the DGE analysis, supporting the reliability of the DGE data. This work provides additional insight into the molecular basis of grafted watermelon responses to chilling stress.
Collapse
Affiliation(s)
- Jinhua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; Institute of Vegetable, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, Jiangsu, China
| | - Man Zhang
- Institute of Vegetable, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, Jiangsu, China
| | - Guang Liu
- Institute of Vegetable, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, Jiangsu, China
| | - Xingping Yang
- Institute of Vegetable, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, Jiangsu, China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| |
Collapse
|
19
|
Muneer S, Ko CH, Wei H, Chen Y, Jeong BR. Physiological and Proteomic Investigations to Study the Response of Tomato Graft Unions under Temperature Stress. PLoS One 2016; 11:e0157439. [PMID: 27310261 PMCID: PMC4911148 DOI: 10.1371/journal.pone.0157439] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 05/31/2016] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Grafting is an established practice for asexual propagation in horticultural and agricultural crops. The study on graft unions has become of interest for horticulturists using proteomic and genomic techniques to observe transfer of genetic material and signal transduction pathways from root to shoot and shoot to root. Another reason to study the graft unions was potentially to observe resistance against abiotic stresses. Using physiological and proteomic analyses, we investigated graft unions (rootstock and scions) of tomato genotypes exposed to standard-normal (23/23 and 25/18°C day/night) and high-low temperatures (30/15°C day/night). RESULTS Graft unions had varied responses to the diverse temperatures. High-low temperature, but not standard-normal temperature, induced the production of reactive oxygen species (ROS) in the form of H2O2 and O2-1 in rootstock and scions. However, the expression of many cell protection molecules was also induced, including antioxidant enzymes and their immunoblots, which also show an increase in their activities such as superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX). The graft interfaces thus actively defend against stress by modifying their physiological and proteomic responses to establish a new cellular homeostasis. As a result, many proteins for cellular defense were regulated in graft unions under diverse temperature, in addition to the regulation of photosynthetic proteins, ion binding/transport proteins, and protein synthesis. Moreover, biomass, hardness, and vascular transport activity were evaluated to investigate the basic connectivity between rootstock and scions. CONCLUSIONS Our study provides physiological evidence of the grafted plants' response to diverse temperature. Most notably, our study provides novel insight into the mechanisms used to adapt the diverse temperature in graft unions (rootstock/scion).
Collapse
Affiliation(s)
- Sowbiya Muneer
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 660–701, Korea
| | - Chung Ho Ko
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 660–701, Korea
| | - Hao Wei
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 660–701, Korea
| | - Yuze Chen
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 660–701, Korea
| | - Byoung Ryong Jeong
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 660–701, Korea
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 660–701, Korea
- Research Institute of Life Science, Gyeongsang National University, Jinju, 660–701, Korea
| |
Collapse
|
20
|
Sánchez-Rodríguez E, Romero L, Ruiz JM. Accumulation of free polyamines enhances the antioxidant response in fruits of grafted tomato plants under water stress. JOURNAL OF PLANT PHYSIOLOGY 2016; 190:72-8. [PMID: 26687637 DOI: 10.1016/j.jplph.2015.10.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 10/28/2015] [Accepted: 10/28/2015] [Indexed: 05/22/2023]
Abstract
Polyamines, small aliphatic polycations, have been suggested to play key roles in a number of biological processes. In this paper, attempts were made to investigate the possibility of improving antioxidant response of tomato fruits in relation with endogenous free polyamines content. We studied the reactive oxygen species and polyamines content, and antioxidant and polyamine-biosynthesis enzyme activities in fruits of ungrafted and grafted tomato plants under moderate water stress. We used a drought-tolerant cultivar (Zarina) and drought-sensitive cultivar (Josefina) to obtain reciprocal graft, selfgraft and ungraft plants. Fruits contained higher endogenous polyamine content during the course of the experiment relative to the control, coupled with higher arginine decarboxylase and spermine synthase activities in Zarina ungrafted and ZarxJos. In these cultivars, tomato fruits showed a lower reactive oxygen species generation and higher catalase and superoxide dismutase activities, suggesting that a higher content in polyamines (especially spermine) exerted a positive effect on antioxidant systems. All of these data suggest that spermine leads to more effective reactive oxygen species scavenging (less tissue damage) in tomato fruits, which may function collectively to enhance dehydration tolerance.
Collapse
Affiliation(s)
- E Sánchez-Rodríguez
- Department of Plant Physiology, Faculty of Sciences, University of Granada, E-18071 Granada, Spain.
| | - L Romero
- Department of Plant Physiology, Faculty of Sciences, University of Granada, E-18071 Granada, Spain
| | - J M Ruiz
- Department of Plant Physiology, Faculty of Sciences, University of Granada, E-18071 Granada, Spain
| |
Collapse
|
21
|
Zhang ZS, Liu MJ, Gao HY, Jin LQ, Li YT, Li QM, Ai XZ. Water Status Related Root-to-Shoot Communication Regulates the Chilling Tolerance of Shoot in Cucumber (Cucumis sativus L.) Plants. Sci Rep 2015; 5:13094. [PMID: 26471979 PMCID: PMC4607976 DOI: 10.1038/srep13094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/27/2015] [Indexed: 11/24/2022] Open
Abstract
Although root-to-shoot communication has been intensively investigated in plants under drought, few studies have examined root-to-shoot communication under chilling. Here we explored whether root-to-shoot communication contributes to the chilling-light tolerance of cucumber shoots and clarified the key signal involves in this communication. After leaf discs chilling-light treatment, the photoinhibitions of Photosystem I (PSI) and Photosystem II (PSII) were similar in leaf discs of two cucumber varieties (JY-3 and JC-4). When the whole plants, including roots, were chilled under light, the photosynthetic performances in JC-4 leaves decreased more seriously than that in JY-3 leaves. However, when the water status of leaves was maintained by warming roots or floating the attached leaves on water, the PSII activity and amount of PSI in the leaves of the two varieties were similar after chilling-light treatment. In addition, the differences of PSII activities and amount of PSI between the two varieties under whole plant chilling-light treatment were independent of ABA pretreatment. Above results indicate that (1) the better water status in leaves under chilling contributes to the higher chilling tolerance of JY-3; (2) the water status, rather than an ABA signal, dominates root-to-shoot communication under chilling and the chilling tolerance of cucumber shoot.
Collapse
Affiliation(s)
- Zi-Shan Zhang
- State Key Lab of Crop Biology, Tai’an, Shandong Province, China
- College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong Province, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong Province, China
| | - Mei-Jun Liu
- State Key Lab of Crop Biology, Tai’an, Shandong Province, China
- College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong Province, China
| | - Hui-Yuan Gao
- State Key Lab of Crop Biology, Tai’an, Shandong Province, China
- College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong Province, China
| | - Li-Qiao Jin
- State Key Lab of Crop Biology, Tai’an, Shandong Province, China
- College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong Province, China
| | - Yu-Ting Li
- State Key Lab of Crop Biology, Tai’an, Shandong Province, China
- College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong Province, China
| | - Qing-Ming Li
- State Key Lab of Crop Biology, Tai’an, Shandong Province, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong Province, China
| | - Xi-Zhen Ai
- State Key Lab of Crop Biology, Tai’an, Shandong Province, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong Province, China
| |
Collapse
|
22
|
Li H, Wang F, Chen XJ, Shi K, Xia XJ, Considine MJ, Yu JQ, Zhou YH. The sub/supra-optimal temperature-induced inhibition of photosynthesis and oxidative damage in cucumber leaves are alleviated by grafting onto figleaf gourd/luffa rootstocks. PHYSIOLOGIA PLANTARUM 2014; 152:571-84. [PMID: 24735050 DOI: 10.1111/ppl.12200] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 02/22/2014] [Accepted: 02/24/2014] [Indexed: 05/26/2023]
Abstract
Shoot-root communication is involved in plant stress responses, but its mechanism is largely unknown. To determine the role of roots in stress tolerance, cucumber (Cucumis sativus) shoots from plants with roots of their own or with figleaf gourd (Cucurbita ficifolia, a chilling-tolerant species) or luffa (Luffa cylindrica (L.) M. Roem., a heat-tolerant species) rootstocks were exposed to low (18/13°C), optimal (27/22°C) and high (36/31°C) temperatures, respectively. Grafting onto figleaf gourd and luffa rootstocks significantly alleviated chilling and heat-induced reductions, respectively, in biomass production and CO(2) assimilation capacity in the shoots, while levels of lipid peroxidation and protein oxidation were decreased. Figleaf gourd and luffa rootstocks upregulated a subset of stress-responsive genes involved in signal transduction (MAPK1 and RBOH), transcriptional regulation (MYB and MYC), protein protection (HSP45.9 and HSP70), the antioxidant response (Cu/Zn-SOD, cAPX and GR), and photosynthesis (RBCL, RBCS, RCA and FBPase) at low and high growth temperatures, respectively, and this was accompanied by increased activity of the encoded enzymes and reduced glutathione redox homeostasis in the leaves. Moreover, Heat Shock Protein 70 (HSP70) expression in cucumber leaves was strongly induced by the luffa rootstock at the high growth temperature but slightly induced by the figleaf gourd rootstock at low or high growth temperatures. These results indicate that rootstocks could induce significant changes in the transcripts of stress-responsive and defense-related genes, and the ROS scavenging activity via unknown signals, especially at stressful growth temperatures, and this is one of mechanisms involved in the grafting-induced stress tolerance.
Collapse
Affiliation(s)
- Hao Li
- Department of Horticulture, Zijin'gang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Endo T, Uebayashi N, Ishida S, Ikeuchi M, Sato F. Light energy allocation at PSII under field light conditions: how much energy is lost in NPQ-associated dissipation? PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 81:115-120. [PMID: 24726274 DOI: 10.1016/j.plaphy.2014.03.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 03/18/2014] [Indexed: 06/03/2023]
Abstract
In the field, plants are exposed to fluctuating light, where photosynthesis occurs under conditions far from a steady state. Excess energy dissipation associated with energy quenching of chlorophyll fluorescence (qE) functions as an efficient photo-protection mechanism in photosystem II. PsbS is an important regulator of qE, especially for the induction phase of qE. Beside the regulatory energy dissipation, some part of energy is lost through relaxation of excited chlorophyll molecules. To date, several models to quantify energy loss through these dissipative pathways in PSII have been proposed. In this short review, we compare and evaluate these models for PSII energy allocation when they are applied to non-steady state photosynthesis. As a case study, an investigation on energy allocation to qE-associated dissipation at PSII under non-steady state photosynthesis using PsbS-deficient rice transformants is introduced. Diurnal and seasonal changes in PSII energy allocation in rice under natural light are also presented. Future perspective of studies on PSII energy allocation is discussed.
Collapse
Affiliation(s)
- Tsuyoshi Endo
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan.
| | - Nozomu Uebayashi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Satoshi Ishida
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Masahiro Ikeuchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Fumihiko Sato
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
24
|
Trinchera A, Pandozy G, Rinaldi S, Crinò P, Temperini O, Rea E. Graft union formation in artichoke grafting onto wild and cultivated cardoon: an anatomical study. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:1569-78. [PMID: 23932643 DOI: 10.1016/j.jplph.2013.06.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 06/17/2013] [Accepted: 06/17/2013] [Indexed: 05/21/2023]
Abstract
In order to develop a non-chemical method such as grafting effective against well-known artichoke soil borne diseases, an anatomical study of union formation in artichoke grafted onto selected wild and cultivated cardoon rootstocks, both resistant to Verticillium wilt, was performed. The cardoon accessions Belgio (cultivated cardoon) and Sardo (wild cardoon) were selected as rootstocks for grafting combinations with the artichoke cv. Romolo. Grafting experiments were carried out in the autumn and spring. The anatomical investigation of grafting union formation was conducted by scanning electron microscopy (SEM) on the grafting portions at the 3rd, 6th, 10th, 12th day after grafting. For the autumn experiment only, SEM analysis was also performed at 30 d after grafting. A high affinity between artichoke scion and cardoon rootstocks was observed, with some genotype differences in healing time between the two bionts. SEM images of scion/rootstock longitudinal sections revealed the appearance of many interconnecting structures between the two grafting components just 3d after grafting, followed by a vascular rearrangement and a callus development during graft union formation. De novo formation of many plasmodesmata between scion and rootstock confirmed their high compatibility, particularly in the globe artichoke/wild cardoon combination. Moreover, the duration of the early-stage grafting process could be influenced not only by the scion/rootstock compatibility, but also by the seasonal conditions, being favored by lower temperatures and a reduced light/dark photoperiod.
Collapse
Affiliation(s)
- Alessandra Trinchera
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura - Centro di Ricerca per lo Studio delle Relazioni tra Pianta e Suolo, Via della Navicella 2, 00184 Roma, Italy.
| | | | | | | | | | | |
Collapse
|
25
|
Sánchez-Rodríguez E, Rubio-Wilhelmi MDM, Blasco B, Leyva R, Romero L, Ruiz JM. Antioxidant response resides in the shoot in reciprocal grafts of drought-tolerant and drought-sensitive cultivars in tomato under water stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 188-189:89-96. [PMID: 22525248 DOI: 10.1016/j.plantsci.2011.12.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 12/22/2011] [Accepted: 12/27/2011] [Indexed: 05/03/2023]
Abstract
Recently grafted plants have been used to induce resistance to different abiotic stresses. In our work, grafted plants of tomato cultivars differing in water stress tolerance (Zarina and Josefina) were grown under moderate stress, to test the roles of roots and shoots in production of foliar biomass and antioxidant response. Stress indicators and activities of selected enzymes related to antioxidant response were determined. Our results showed that when shoots are of the drought tolerant genotype Zarina, the changes in antioxidant enzyme activities were large and consistent. However, when shoots are of the drought-sensitive genotype Josefina, the antioxidant enzyme activities were more limited and the oxidative stress was evident. These results reflect that the technique of grafting using Zarina as scion can be useful and effective for improving the antioxidant response in tomato under water stress.
Collapse
Affiliation(s)
- Eva Sánchez-Rodríguez
- Department of Plant Physiology, Faculty of Science, University of Granada, 18071 Granada, Spain.
| | | | | | | | | | | |
Collapse
|
26
|
Yin H, Yan B, Sun J, Jia P, Zhang Z, Yan X, Chai J, Ren Z, Zheng G, Liu H. Graft-union development: a delicate process that involves cell-cell communication between scion and stock for local auxin accumulation. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:4219-32. [PMID: 22511803 PMCID: PMC3398452 DOI: 10.1093/jxb/ers109] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 03/15/2012] [Accepted: 03/19/2012] [Indexed: 05/18/2023]
Abstract
Grafting is an ancient cloning method that has been used widely for thousands of years in agricultural practices. Graft-union development is also an intricate process that involves substantial changes such as organ regeneration and genetic material exchange. However, the molecular mechanisms for graft-union development are still largely unknown. Here, a micrografting method that has been used widely in Arabidopsis was improved to adapt it a smooth procedure to facilitate sample analysis and to allow it to easily be applied to various dicotyledonous plants. The developmental stage of the graft union was characterized based on this method. Histological analysis suggested that the transport activities of vasculature were recovered at 3 days after grafting (dag) and that auxin modulated the vascular reconnection at 2 dag. Microarray data revealed a signal-exchange process between cells of the scion and stock at 1 dag, which re-established the communication network in the graft union. This process was concomitant with the clearing of cell debris, and both processes were initiated by a wound-induced programme. The results demonstrate the feasibility and potential power of investigating various plant developmental processes by this method, and represent a primary and significant step in interpretation of the molecular mechanisms underlying graft-union development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Heng Liu
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|