1
|
Panghal A, Flora SJS. Nano-based approaches for the treatment of neuro-immunological disorders: a special emphasis on multiple sclerosis. DISCOVER NANO 2024; 19:171. [PMID: 39466516 PMCID: PMC11519283 DOI: 10.1186/s11671-024-04135-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024]
Abstract
Multiple sclerosis (MS) is a neuroimmunological disorder which causes axonal damage, demyelination and paralysis. Although numerous therapeutics have been developed for the effective treatment of MS and a few have been approved in recent decades, complete remission and treatment of MS remain a matter of concern. Nanotechnology is a potential approach for manipulating the properties of materials at the molecular level to attain desired properties. This approach is effective in the treatment of several CNS disorders by enhancing drug delivery, bioavailability and efficacy. We have briefly discussed the neuroimmunological disorders with a particular emphasis on MS. We also explored nanoengineered drug delivery systems, describing several nano-formulations for the treatment of MS, challenges and future of nanotechnology.
Collapse
Affiliation(s)
- Archna Panghal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-SAS Nagar, Mohali, 160102, India
| | - S J S Flora
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-SAS Nagar, Mohali, 160102, India.
- Era College of Pharmaceutical Sciences, Era Lucknow Medical University, Sarfarajgang, Lucknow, 226002, India.
| |
Collapse
|
2
|
Hedley KE, Gomez HM, Kecelioglu E, Carroll OR, Jobling P, Horvat JC, Tadros MA. Neonatal Chlamydia muridarum respiratory infection causes neuroinflammation within the brainstem during the early postnatal period. J Neuroinflammation 2024; 21:158. [PMID: 38879567 PMCID: PMC11179230 DOI: 10.1186/s12974-024-03150-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/10/2024] [Indexed: 06/19/2024] Open
Abstract
Respiratory infections are one of the most common causes of illness and morbidity in neonates worldwide. In the acute phase infections are known to cause wide-spread peripheral inflammation. However, the inflammatory consequences to the critical neural control centres for respiration have not been explored. Utilising a well characterised model of neonatal respiratory infection, we investigated acute responses within the medulla oblongata which contains key respiratory regions. Neonatal mice were intranasally inoculated within 24 h of birth, with either Chlamydia muridarum or sham-infected, and tissue collected on postnatal day 15, the peak of peripheral inflammation. A key finding of this study is that, while the periphery appeared to show no sex-specific effects of a neonatal respiratory infection, sex had a significant impact on the inflammatory response of the medulla oblongata. There was a distinct sex-specific response in the medulla coincident with peak of peripheral inflammation, with females demonstrating an upregulation of anti-inflammatory cytokines and males showing very few changes. Microglia also demonstrated sex-specificity with the morphology of females and males differing based upon the nuclei. Astrocytes showed limited changes during the acute response to neonatal infection. These data highlight the strong sex-specific impact of a respiratory infection can have on the medulla in the acute inflammatory phase.
Collapse
Affiliation(s)
- Kateleen E Hedley
- School of Biomedical Sciences & Pharmacy, The University of Newcastle Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Henry M Gomez
- School of Biomedical Sciences & Pharmacy, The University of Newcastle Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Eda Kecelioglu
- School of Biomedical Sciences & Pharmacy, The University of Newcastle Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Olivia R Carroll
- School of Biomedical Sciences & Pharmacy, The University of Newcastle Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Phillip Jobling
- School of Biomedical Sciences & Pharmacy, The University of Newcastle Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jay C Horvat
- School of Biomedical Sciences & Pharmacy, The University of Newcastle Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Melissa A Tadros
- School of Biomedical Sciences & Pharmacy, The University of Newcastle Callaghan, NSW, 2308, Australia.
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.
| |
Collapse
|
3
|
Shkundin A, Halaris A. IL-8 (CXCL8) Correlations with Psychoneuroimmunological Processes and Neuropsychiatric Conditions. J Pers Med 2024; 14:488. [PMID: 38793070 PMCID: PMC11122344 DOI: 10.3390/jpm14050488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Interleukin-8 (IL-8/CXCL8), an essential CXC chemokine, significantly influences psychoneuroimmunological processes and affects neurological and psychiatric health. It exerts a profound effect on immune cell activation and brain function, suggesting potential roles in both neuroprotection and neuroinflammation. IL-8 production is stimulated by several factors, including reactive oxygen species (ROS) known to promote inflammation and disease progression. Additionally, CXCL8 gene polymorphisms can alter IL-8 production, leading to potential differences in disease susceptibility, progression, and severity across populations. IL-8 levels vary among neuropsychiatric conditions, demonstrating sensitivity to psychosocial stressors and disease severity. IL-8 can be detected in blood circulation, cerebrospinal fluid (CSF), and urine, making it a promising candidate for a broad-spectrum biomarker. This review highlights the need for further research on the diverse effects of IL-8 and the associated implications for personalized medicine. A thorough understanding of its complex role could lead to the development of more effective and personalized treatment strategies for neuropsychiatric conditions.
Collapse
Affiliation(s)
| | - Angelos Halaris
- Department of Psychiatry and Behavioral Neurosciences, Loyola University Chicago Stritch School of Medicine, Loyola University Medical Center, Maywood, IL 60153, USA;
| |
Collapse
|
4
|
Deng D, Zhang T, Ma L, Zhao W, Huang S, Wang K, Shu S, Chen X. PD-L1/PD-1 pathway: a potential neuroimmune target for pain relief. Cell Biosci 2024; 14:51. [PMID: 38643205 PMCID: PMC11031890 DOI: 10.1186/s13578-024-01227-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 04/01/2024] [Indexed: 04/22/2024] Open
Abstract
Pain is a common symptom of many diseases with a high incidence rate. Clinically, drug treatment, as the main method to relieve pain at present, is often accompanied by different degrees of adverse reactions. Therefore, it is urgent to gain a profound understanding of the pain mechanisms in order to develop advantageous analgesic targets. The PD-L1/PD-1 pathway, an important inhibitory molecule in the immune system, has taken part in regulating neuroinflammation and immune response. Accumulating evidence indicates that the PD-L1/PD-1 pathway is aberrantly activated in various pain models. And blocking PD-L1/PD-1 pathway will aggravate pain behaviors. This review aims to summarize the emerging evidence on the role of the PD-L1/PD-1 pathway in alleviating pain and provide an overview of the mechanisms involved in pain resolution, including the regulation of macrophages, microglia, T cells, as well as nociceptor neurons. However, its underlying mechanism still needs to be further elucidated in the future. In conclusion, despite more deep researches are needed, these pioneering studies indicate that PD-L1/PD-1 may be a potential neuroimmune target for pain relief.
Collapse
Affiliation(s)
- Daling Deng
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Tianhao Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Lulin Ma
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Wenjing Zhao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Shiqian Huang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Kaixing Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Shaofang Shu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, China.
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| |
Collapse
|
5
|
Hedley KE, Cuskelly A, Callister RJ, Horvat JC, Hodgson DM, Tadros MA. The medulla oblongata shows a sex-specific inflammatory response to systemic neonatal lipopolysaccharide. J Neuroimmunol 2024; 389:578316. [PMID: 38394966 DOI: 10.1016/j.jneuroim.2024.578316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024]
Abstract
Early life inflammation has been linked to long-term modulation of behavioural outcomes due to the central nervous system, but it is now becoming apparent it is also linked to dysfunction of visceral physiology. The medulla oblongata contains a number of nuclei critical for homeostasis, therefore we utilised the well-established model of neonatal lipopolysaccharide (LPS) exposure to examine the immediate and long-term impacts of systemic inflammation on the medulla oblongata. Wistar rats were injected with LPS or saline on postnatal days 3 and 5, with tissues collected on postnatal days 7 or 90 in order to assess expression of inflammatory mediators and microglial morphology in autonomic regions of the medulla oblongata. We observed a distinct sex-specific response of all measured inflammatory mediators at both ages, as well as significant neonatal sex differences in inflammatory mediators within saline groups. At both ages, microglial morphology had significant changes in branch length and soma size in a sex-specific manner in response to LPS exposure. This data not only highlights the strong sex-specific response of neonates to LPS administration, but also the significant life-long impact on the medulla oblongata and the potential altered control of visceral organs.
Collapse
Affiliation(s)
- Kateleen E Hedley
- School of Biomedical Sciences & Pharmacy, University of Newcastle, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Annalisa Cuskelly
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; School of Psychological Sciences, University of Newcastle, NSW, Australia; School of Education, University of Newcastle, NSW, Australia
| | - Robert J Callister
- School of Biomedical Sciences & Pharmacy, University of Newcastle, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jay C Horvat
- School of Biomedical Sciences & Pharmacy, University of Newcastle, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Deborah M Hodgson
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; School of Psychological Sciences, University of Newcastle, NSW, Australia
| | - Melissa A Tadros
- School of Biomedical Sciences & Pharmacy, University of Newcastle, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.
| |
Collapse
|
6
|
Thakur V, Gonzalez MA, Parada M, Martinez RD, Chattopadhyay M. Role of Histone Deacetylase Inhibitor in Diabetic Painful Neuropathy. Mol Neurobiol 2024; 61:2283-2296. [PMID: 37875708 DOI: 10.1007/s12035-023-03701-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/06/2023] [Indexed: 10/26/2023]
Abstract
Diabetic painful neuropathy (DPN) is one of the most detrimental complications of diabetes. Alterations in neuroinflammatory mediators play significant roles in the development of DPN. Infiltration of the neutrophils and monocyte/macrophages contributes substantial role in the degenerative process of the distal sciatic nerve by forming neutrophil extracellular traps (NETs) under diabetic condition. Citrullination of histones due to increase in protein arginine deiminase (PAD) enzyme activity under hyperglycemia may promote NET formation, which can further increase the cytokine production by activating macrophages and proliferation of neutrophils. This study reveals that the increase in histone deacetylases (HDAC) is crucial in DPN and inhibition of HDAC using HDAC inhibitor (HDACi) FK228 would suppress NETosis and alleviate diabetic nerve degeneration and pain. FK228, also known as romidepsin, is FDA approved for the treatment of cutaneous T-cell lymphoma yet the molecular mechanisms of this drug are not completely understood in DPN. In this study, type 2 diabetic (T2D) mice with pain were treated with HDACi, FK228 1 mg/kg; I.P. 2 × /week for 3 weeks. The results demonstrate that FK228 treatment can alleviate thermal hyperalgesia and mechanical allodynia significantly along with changes in the expression of HDACs in the dorsal root ganglia (DRG) and spinal cord dorsal horn neurons of diabetic animals. The results also indicate that FK228 treatment can alter the expression of neutrophil elastase (NE), extracellular or cell free DNA (cfDNA), citrullinated histone-3 (CitH3), PADI4, growth-associated protein (GAP)-43, and glucose transporter (GLUT)-4. Overall, this study suggests that FK228 could amend the expression of nerve regeneration markers and inflammatory mediators in diabetic animals and may offer an alternative treatment approach for DPN.
Collapse
Affiliation(s)
- Vikram Thakur
- Department of Molecular and Translational Medicine, Center of Emphasis in Diabetes and Metabolism, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Mayra A Gonzalez
- Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Maria Parada
- Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Robert D Martinez
- Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Munmun Chattopadhyay
- Department of Molecular and Translational Medicine, Center of Emphasis in Diabetes and Metabolism, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA.
- Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA.
- Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA.
| |
Collapse
|
7
|
Arantes ALF, Carvalho MC, Brandão ML, Prado WA, Crippa JADS, Lovick TA, Genaro K. Antinociceptive action of cannabidiol on thermal sensitivity and post-operative pain in male and female rats. Behav Brain Res 2024; 459:114793. [PMID: 38048909 DOI: 10.1016/j.bbr.2023.114793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 12/06/2023]
Abstract
This study investigated the antinociceptive potential of cannabidiol (CBD) in male and female Wistar rats. The assessment and analysis included tail withdrawal to thermal stimulation (tail flick test) and mechanical allodynia induced by plantar incision injury (von Frey test). CBD reduced acute thermal sensitivity in uninjured animals and post-operative mechanical allodynia in males and females. In the tail flick test, CBD 30 mg/kg i.p. was required to induce antinociception in males. During the proestrus phase, females did not show a statistically significant antinociceptive response to CBD treatment despite a noticeable trend. In contrast, in a separate group of rats tested during the late diestrus phase, antinociception varied with CBD dosage and time. In the post-operative pain model, CBD at 3 mg/kg decreased mechanical allodynia in males. Similarly, this dose reduced allodynia in females during proestrus. However, in females during late diestrus, the lower dose of CBD (0.3 mg/kg) reduced mechanical allodynia, although the latency to onset of the effect was slower (90 min). The effectiveness of a 10-fold lower dose of CBD during the late diestrus stage in females suggests that ovarian hormones can influence the action of CBD. While CBD has potential for alleviating pain in humans, personalized dosing regimens may need to be developed to treat pain in women.
Collapse
Affiliation(s)
- Ana Luisa Ferreira Arantes
- Institute of Neurosciences and Behavior and Laboratory of Neuropsychopharmacology of Faculty of Philosophy, Sciences and Letters of University of São Paulo, Ribeirao Preto, SP 14040-900, Brazil
| | - Milene Cristina Carvalho
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, SP 14040-900, Brazil; Institute of Neurosciences and Behavior and Laboratory of Neuropsychopharmacology of Faculty of Philosophy, Sciences and Letters of University of São Paulo, Ribeirao Preto, SP 14040-900, Brazil
| | - Marcus Lira Brandão
- Institute of Neurosciences and Behavior and Laboratory of Neuropsychopharmacology of Faculty of Philosophy, Sciences and Letters of University of São Paulo, Ribeirao Preto, SP 14040-900, Brazil
| | - Wiliam Alves Prado
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, SP 14040-900, Brazil
| | - José Alexandre de Souza Crippa
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, SP 14040-900, Brazil; National Institute of Science and Technology for Translational Medicine, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (INCT-TM, CNPq), Brasília, DF 71605-001, Brazil
| | - Thelma Anderson Lovick
- Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Karina Genaro
- Department of Anesthesiology, School of Medicine, University of California, Irvine, CA 92617, USA.
| |
Collapse
|
8
|
Giunta S, Xia S, Pelliccioni G, Olivieri F. Autonomic nervous system imbalance during aging contributes to impair endogenous anti-inflammaging strategies. GeroScience 2024; 46:113-127. [PMID: 37821752 PMCID: PMC10828245 DOI: 10.1007/s11357-023-00947-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/13/2023] [Indexed: 10/13/2023] Open
Abstract
Inflammaging refers to the age-related low grade, sterile, chronic, systemic, and long-lasting subclinical, proinflammatory status, currently recognized as the main risk factor for development and progression of the most common age-related diseases (ARDs). Extensive investigations were focused on a plethora of proinflammatory stimuli that can fuel inflammaging, underestimating and partly neglecting important endogenous anti-inflammaging mechanisms that could play a crucial role in such age-related proinflammatory state. Studies on autonomic nervous system (ANS) functions during aging highlighted an imbalance toward an overactive sympathetic nervous system (SNS) tone, promoting proinflammatory conditions, and a diminished parasympathetic nervous system (PNS) activity, playing anti-inflammatory effects mediated by the so called cholinergic anti-inflammatory pathway (CAP). At the molecular level, CAP is characterized by signals communicated via the vagus nerve (with the possible involvement of the splenic nerves) through acetylcholine release to downregulate the inflammatory actions of macrophages, key players of inflammaging. Notably, decreased vagal function and increased burden of activated/senescent macrophages (macrophaging) probably precede the development of several age-related risk factors and diseases, while increased vagal function and reduced macrophaging could be associated with relevant reduction of risk profiles. Hypothalamic-pituitary-adrenal axis (HPA axis) is another pathway related to ANS promoting some anti-inflammatory response mainly through increased cortisol levels. In this perspective review, we highlighted that CAP and HPA, representing broadly "anti-inflammaging" mechanisms, have a reduced efficacy and lose effectiveness in aged people, a phenomenon that could contribute to fuel inflammaging. In this framework, strategies aimed to re-balance PNS/SNS activities could be explored to modulate systemic inflammaging especially at an early subclinical stage, thus increasing the chances to reach the extreme limit of human lifespan in healthy status.
Collapse
Affiliation(s)
- Sergio Giunta
- Casa Di Cura Prof. Nobili (Gruppo Garofalo (GHC)), Castiglione Dei Pepoli, Bologna, Italy
| | - Shijin Xia
- Department of Geriatrics, Shanghai Institute of Geriatrics, Huadong Hospital, Fudan University, Shanghai, China
| | | | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica Delle Marche, Via Tronto 10/A, 60126, Ancona, Italy.
- Clinical Laboratory and Molecular Diagnostic, IRCCS INRCA, Ancona, Italy.
| |
Collapse
|
9
|
Zirpoli GR, Farhad K, Klein MC, Downs S, Klein MM, Oaklander AL. Initial validation of the Mass. General Neuropathy Exam Tool (MAGNET) for evaluation of distal small-fiber neuropathy. Muscle Nerve 2024; 69:185-198. [PMID: 38112169 PMCID: PMC10842781 DOI: 10.1002/mus.28013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/14/2023] [Accepted: 11/19/2023] [Indexed: 12/20/2023]
Abstract
INTRODUCTION/AIMS Diagnosis of small-fiber neuropathy (SFN) is hampered by its subjective symptoms and signs. Confirmatory testing is insufficiently available and expensive, so predictive examinations have value. However, few support the 2020 SFN consensus-case-definition requirements or were validated for non-diabetes neuropathies. Thus we developed the Massachusetts General Hospital Neuropathy Exam Tool (MAGNET) and measured diagnostic performance in 160 symptomatic patients evaluated for length-dependent SFN from any cause and 37 healthy volunteers. METHODS We compared prevalences of abnormalities (vital signs, pupil responses, lower-limb appearance, pin, light touch, vibration and position sensitivity, great-toe strength, muscle stretch reflexes), and validated diagnostic performance against objective SFN tests: lower-leg skin-biopsy epidermal neurite densities and autonomic function testing (AFT). Sensitivity/specificity, feasibility, test-retest and inter-rater reliability, and convergence with the Utah Early Neuropathy Scale were calculated. RESULTS Patients' ages averaged 48.5 ± 14.7 years and 70.6% were female. Causes of neuropathy varied, remaining unknown in 59.5%. Among the 46 with abnormal skin biopsies, the most prevalent abnormality was reduced pin sharpness at the toes (71.7%). Inter-rater reliability, test-retest reliability, and convergent validity excelled (range = 91.3-95.6%). Receiver operating characteristics comparing all symptomatic patients versus healthy controls indicated that a MAGNET threshold score of 14 maximized predictive accuracy for skin biopsies (0.74) and a 30 cut-off maximized accuracy for predicting AFT (0.60). Analyzing patients with any abnormal neuropathy-test results identified areas-under-the-curves of 0.87-0.89 for predicting a diagnostic result, accuracy = 0.80-0.89, and Youden's index = 0.62. Overall, MAGNET was 80%-85% accurate for stratifying patients with abnormal versus normal neuropathy test results. DISCUSSION MAGNET quickly generates research-quality metrics during clinical examinations.
Collapse
Affiliation(s)
- Gary R. Zirpoli
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Khosro Farhad
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Madeleine C. Klein
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sean Downs
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Max M. Klein
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Anne Louise Oaklander
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology (Neuropathology), Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
10
|
Boahen A, Hu D, Adams MJ, Nicholls PK, Greene WK, Ma B. Bidirectional crosstalk between the peripheral nervous system and lymphoid tissues/organs. Front Immunol 2023; 14:1254054. [PMID: 37767094 PMCID: PMC10520967 DOI: 10.3389/fimmu.2023.1254054] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
The central nervous system (CNS) influences the immune system generally by regulating the systemic concentration of humoral substances (e.g., cortisol and epinephrine), whereas the peripheral nervous system (PNS) communicates specifically with the immune system according to local interactions/connections. An imbalance between the components of the PNS might contribute to pathogenesis and the further development of certain diseases. In this review, we have explored the "thread" (hardwiring) of the connections between the immune system (e.g., primary/secondary/tertiary lymphoid tissues/organs) and PNS (e.g., sensory, sympathetic, parasympathetic, and enteric nervous systems (ENS)) in health and disease in vitro and in vivo. Neuroimmune cell units provide an anatomical and physiological basis for bidirectional crosstalk between the PNS and the immune system in peripheral tissues, including lymphoid tissues and organs. These neuroimmune interactions/modulation studies might greatly contribute to a better understanding of the mechanisms through which the PNS possibly affects cellular and humoral-mediated immune responses or vice versa in health and diseases. Physical, chemical, pharmacological, and other manipulations of these neuroimmune interactions should bring about the development of practical therapeutic applications for certain neurological, neuroimmunological, infectious, inflammatory, and immunological disorders/diseases.
Collapse
Affiliation(s)
- Angela Boahen
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Seri-Kembangan, Selangor, Malaysia
| | - Dailun Hu
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Murray J. Adams
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
| | - Philip K. Nicholls
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
| | - Wayne K. Greene
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
| | - Bin Ma
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
11
|
Cruz B, Borgonetti V, Bajo M, Roberto M. Sex-dependent factors of alcohol and neuroimmune mechanisms. Neurobiol Stress 2023; 26:100562. [PMID: 37601537 PMCID: PMC10432974 DOI: 10.1016/j.ynstr.2023.100562] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/25/2023] [Accepted: 08/02/2023] [Indexed: 08/22/2023] Open
Abstract
Excessive alcohol use disrupts neuroimmune signaling across various cell types, including neurons, microglia, and astrocytes. The present review focuses on recent, albeit limited, evidence of sex differences in biological factors that mediate neuroimmune responses to alcohol and underlying neuroimmune systems that may influence alcohol drinking behaviors. Females are more vulnerable than males to the neurotoxic and negative consequences of chronic alcohol drinking, reflected by elevations of pro-inflammatory cytokines and inflammatory mediators. Differences in cytokine, microglial, astrocytic, genomic, and transcriptomic evidence suggest females are more reactive than males to neuroinflammatory changes after chronic alcohol exposure. The growing body of evidence supports that innate immune factors modulate synaptic transmission, providing a mechanistic framework to examine sex differences across neurocircuitry. Targeting neuroimmune signaling may be a viable strategy for treating AUD, but more research is needed to understand sex-specific differences in alcohol drinking and neuroimmune mechanisms.
Collapse
Affiliation(s)
- Bryan Cruz
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA, 92073
| | - Vittoria Borgonetti
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA, 92073
| | - Michal Bajo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA, 92073
| | - Marisa Roberto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA, 92073
| |
Collapse
|
12
|
Bao X, Xie L. Targeting purinergic pathway to enhance radiotherapy-induced immunogenic cancer cell death. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:222. [PMID: 35836249 PMCID: PMC9284706 DOI: 10.1186/s13046-022-02430-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/02/2022] [Indexed: 01/09/2023]
Abstract
Emerging evidence has demonstrated that radiotherapy (RT) can not only cause direct damage to cancer cells but also lead to immunogenic cell death (ICD), which involves the activation of host antitumor immune response in tumor immune microenvironment (TIME). RT-induced ICD comprises the release of damage-associated molecular patterns (DAMPs) from dying cancer cells that result in the activation of tumor-specific immunity to elicit long-term antitumor efficacy in both original and abscopal tumor sites. Adenosine triphosphate (ATP), as an important DAMP released by irradiated cancer cells and an essential factor within purinergic pathway, can be further hydrolyzed to adenosine (ADO) by two key ectonucleotidases, CD39 and CD73, to further modulate the antitumor immunity in TIME through purinergic signaling via the interaction to its specific receptors such as adenosine 2A receptor (A2AR) and A2BR widely expressed on the surface of the components in TIME, including cancer cells and many immune effector cells. In this review, we first introduced key components in purinergic pathway including ATP, ADO, their receptors, and essential ectonucleotidases. Then we reviewed the regulation of ATP and ADO levels and their main mechanisms by which they promote tumor growth and broadly suppress antitumor immunity through inhibiting the pro-inflammatory response of dendritic cells, cytotoxic T lymphocytes, and natural killer cells, while improving the anti-inflammatory response of regulatory T cells, macrophages, and myeloid-derived suppressor cells in TIME, especially after irradiation. Finally, we presented an overview of dozens of promising therapeutics including pharmacological antagonists and specific antibodies targeting ADO receptors and ectonucleotidases CD39 or CD73 investigated in the clinic for cancer treatment, especially focusing on the preclinical studies and clinical trials being explored for blocking the purinergic signaling to enhance RT as a combination antitumor therapeutic strategy, which has a robust potential to be translated to the clinic in the future.
Collapse
Affiliation(s)
- Xuhui Bao
- Institute of Therapeutic Cancer Vaccines, Fudan University Pudong Medical Center, 2800 Gongwei Rd, Shanghai, China. .,Department of Oncology, Fudan University Pudong Medical Center, Shanghai, China. .,Department of Pathology, Duke University Medical Center, Durham, NC, USA.
| | - Liyi Xie
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Rd, Shanghai, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
13
|
Huston P. A Sedentary and Unhealthy Lifestyle Fuels Chronic Disease Progression by Changing Interstitial Cell Behaviour: A Network Analysis. Front Physiol 2022; 13:904107. [PMID: 35874511 PMCID: PMC9304814 DOI: 10.3389/fphys.2022.904107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Managing chronic diseases, such as heart disease, stroke, diabetes, chronic lung disease and Alzheimer’s disease, account for a large proportion of health care spending, yet they remain in the top causes of premature mortality and are preventable. It is currently accepted that an unhealthy lifestyle fosters a state of chronic low-grade inflammation that is linked to chronic disease progression. Although this is known to be related to inflammatory cytokines, how an unhealthy lifestyle causes cytokine release and how that in turn leads to chronic disease progression are not well known. This article presents a theory that an unhealthy lifestyle fosters chronic disease by changing interstitial cell behavior and is supported by a six-level hierarchical network analysis. The top three networks include the macroenvironment, social and cultural factors, and lifestyle itself. The fourth network includes the immune, autonomic and neuroendocrine systems and how they interact with lifestyle factors and with each other. The fifth network identifies the effects these systems have on the microenvironment and two types of interstitial cells: macrophages and fibroblasts. Depending on their behaviour, these cells can either help maintain and restore normal function or foster chronic disease progression. When macrophages and fibroblasts dysregulate, it leads to chronic low-grade inflammation, fibrosis, and eventually damage to parenchymal (organ-specific) cells. The sixth network considers how macrophages change phenotype. Thus, a pathway is identified through this hierarchical network to reveal how external factors and lifestyle affect interstitial cell behaviour. This theory can be tested and it needs to be tested because, if correct, it has profound implications. Not only does this theory explain how chronic low-grade inflammation causes chronic disease progression, it also provides insight into salutogenesis, or the process by which health is maintained and restored. Understanding low-grade inflammation as a stalled healing process offers a new strategy for chronic disease management. Rather than treating each chronic disease separately by a focus on parenchymal pathology, a salutogenic strategy of optimizing interstitial health could prevent and mitigate multiple chronic diseases simultaneously.
Collapse
Affiliation(s)
- Patricia Huston
- Department of Family Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Institut du Savoir Montfort (Research), University of Ottawa, Ottawa, ON, Canada
- *Correspondence: Patricia Huston, , orcid.org/0000-0002-2927-1176
| |
Collapse
|
14
|
The cholinergic anti-inflammatory pathway in humans: State-of-the-art review and future directions. Neurosci Biobehav Rev 2022; 136:104622. [PMID: 35300992 DOI: 10.1016/j.neubiorev.2022.104622] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/04/2022] [Accepted: 03/11/2022] [Indexed: 12/14/2022]
Abstract
The parasympathetic nervous system modulates inflammation through efferent vagus nerve signaling. Tracey (2002) termed this process as the cholinergic anti-inflammatory pathway (CAP). Interest in the potential practical use of this immune-modulatory process is increasing alongside increasing appreciation for the role of systemic inflammation in the etiology of somatic and psychological disease. A diverse literature exists providing expansive correlational evidence and some preliminary experimental evidence of the CAP in humans. However, so far this literature has not been well integrated and critically evaluated. This review describes the current state-of-the-art of research into vagus nerve driven parasympathetic control of inflammation in humans. Substantial limitations and gaps in the literature are identified, and promising directions for future research are highlighted.
Collapse
|
15
|
Szöllősi AG, Oláh A, Lisztes E, Griger Z, Tóth BI. Pruritus: A Sensory Symptom Generated in Cutaneous Immuno-Neuronal Crosstalk. Front Pharmacol 2022; 13:745658. [PMID: 35321329 PMCID: PMC8937025 DOI: 10.3389/fphar.2022.745658] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 02/07/2022] [Indexed: 12/21/2022] Open
Abstract
Pruritus or itch generated in the skin is one of the most widespread symptoms associated with various dermatological and systemic (immunological) conditions. Although many details about the molecular mechanisms of the development of both acute and chronic itch were uncovered in the last 2 decades, our understanding is still incomplete and the clinical management of pruritic conditions is one of the biggest challenges in daily dermatological practice. Recent research revealed molecular interactions between pruriceptive sensory neurons and surrounding cutaneous cell types including keratinocytes, as well as resident and transient cells of innate and adaptive immunity. Especially in inflammatory conditions, these cutaneous cells can produce various mediators, which can contribute to the excitation of pruriceptive sensory fibers resulting in itch sensation. There also exists significant communication in the opposite direction: sensory neurons can release mediators that maintain an inflamed, pruritic tissue-environment. In this review, we summarize the current knowledge about the sensory transduction of pruritus detailing the local intercellular interactions that generate itch. We especially emphasize the role of various pruritic mediators in the bidirectional crosstalk between cutaneous non-neuronal cells and sensory fibers. We also list various dermatoses and immunological conditions associated with itch, and discuss the potential immune-neuronal interactions promoting the development of pruritus in the particular diseases. These data may unveil putative new targets for antipruritic pharmacological interventions.
Collapse
Affiliation(s)
- Attila Gábor Szöllősi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Oláh
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Erika Lisztes
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Griger
- Division of Clinical Immunology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Balázs István Tóth
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- *Correspondence: Balázs István Tóth,
| |
Collapse
|
16
|
Expression of the Antimicrobial Peptide Piscidin 1 and Neuropeptides in Fish Gill and Skin: A Potential Participation in Neuro-Immune Interaction. Mar Drugs 2022; 20:md20020145. [PMID: 35200674 PMCID: PMC8879440 DOI: 10.3390/md20020145] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Antimicrobial peptides (AMPs) are found widespread in nature and possess antimicrobial and immunomodulatory activities. Due to their multifunctional properties, these peptides are a focus of growing body of interest and have been characterized in several fish species. Due to their similarities in amino-acid composition and amphipathic design, it has been suggested that neuropeptides may be directly involved in the innate immune response against pathogen intruders. In this review, we report the molecular characterization of the fish-specific AMP piscidin1, the production of an antibody raised against this peptide and the immunohistochemical identification of this peptide and enkephalins in the neuroepithelial cells (NECs) in the gill of several teleost fish species living in different habitats. In spite of the abundant literature on Piscidin1, the biological role of this peptide in fish visceral organs remains poorly explored, as well as the role of the neuropeptides in neuroimmune interaction in fish. The NECs, by their role as sensors of hypoxia changes in the external environments, in combination with their endocrine nature and secretion of immunomodulatory substances would influence various types of immune cells that contain piscidin, such as mast cells and eosinophils, both showing interaction with the nervous system. The discovery of piscidins in the gill and skin, their diversity and their role in the regulation of immune response will lead to better selection of these immunomodulatory molecules as drug targets to retain antimicrobial barrier function and for aquaculture therapy in the future.
Collapse
|
17
|
Harjacek M. Immunopathophysiology of Juvenile Spondyloarthritis (jSpA): The "Out of the Box" View on Epigenetics, Neuroendocrine Pathways and Role of the Macrophage Migration Inhibitory Factor (MIF). Front Med (Lausanne) 2021; 8:700982. [PMID: 34692718 PMCID: PMC8526544 DOI: 10.3389/fmed.2021.700982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/06/2021] [Indexed: 12/11/2022] Open
Abstract
Juvenile spondyloarthritis (jSpA) is a an umbrella term for heterogeneous group of related seronegative inflammatory disorders sharing common symptoms. Although it mainly affects children and adolescents, it often remains active during adulthood. Genetic and environmental factors are involved in its occurrence, although the exact underlying immunopathophysiology remains incompletely elucidated. Accumulated evidence suggests that, in affected patients, subclinical gut inflammation caused by intestinal dysbiosis, is pivotal to the future development of synovial-entheseal complex inflammation. While the predominant role of IL17/23 axis, TNF-α, and IL-7 in the pathophysiology of SpA, including jSpA, is firmly established, the role of the cytokine macrophage migration inhibitory factor (MIF) is generally overlooked. The purpose of this review is to discuss and emphasize the role of epigenetics, neuroendocrine pathways and the hypothalamic-pituitary (HPA) axis, and to propose a novel hypothesis of the role of decreased NLRP3 gene expression and possibly MIF in the early phases of jSpA development. The decreased NLRP3 gene expression in the latter, due to hypomethylation of promotor site, is (one of) the cause for inflammasome malfunction leading to gut dysbiosis observed in patients with early jSpA. In addition, we highlight the role of MIF in the complex innate, adaptive cellular and main effector cytokine network, Finally, since treatment of advanced bone pathology in SpA remains an unmet clinical need, I suggest possible new drug targets with the aim to ultimately improve treatment efficacy and long-term outcome of jSpA patients.
Collapse
Affiliation(s)
- Miroslav Harjacek
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
18
|
The Toxicity of Wiped Dust and Airborne Microbes in Individual Classrooms Increase the Risk of Teachers' Work-Related Symptoms: A Cross-Sectional Study. Pathogens 2021; 10:pathogens10111360. [PMID: 34832514 PMCID: PMC8624243 DOI: 10.3390/pathogens10111360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 12/23/2022] Open
Abstract
Background: The causes and pathophysiological mechanisms of building-related symptoms (BRS) remain open. Objective: We aimed to investigate the association between teachers’ individual work-related symptoms and intrinsic in vitro toxicity in classrooms. This is a further analysis of a previously published dataset. Methods: Teachers from 15 Finnish schools in Helsinki responded to the symptom survey. The boar sperm motility inhibition assay, a sensitive indicator of mitochondrial dysfunction, was used to measure the toxicity of wiped dust and cultured microbial fallout samples collected from the teachers’ classrooms. Results: 231 teachers whose classroom toxicity data had been collected responded to the questionnaire. Logistic regression analysis adjusted for age, gender, smoking, and atopy showed that classroom dust intrinsic toxicity was statistically significantly associated with the following 12 symptoms reported by teachers (adjusted ORs in parentheses): nose stuffiness (4.1), runny nose (6.9), hoarseness (6.4), globus sensation (9.0), throat mucus (7.6), throat itching (4.4), shortness of breath (12.2), dry cough (4.7), wet eyes (12.7), hypersensitivity to sound (7.9), difficulty falling asleep (7.6), and increased need for sleep (7.7). Toxicity of cultured microbes was found to be associated with nine symptoms (adjusted ORs in parentheses): headache (2.3), nose stuffiness (2.2), nose dryness (2.2), mouth dryness (2.8), hoarseness (2.2), sore throat (2.8), throat mucus (2.3), eye discharge (10.2), and increased need for sleep (3.5). Conclusions: The toxicity of classroom dust and airborne microbes in boar sperm motility inhibition assay significantly increased teachers’ risk of work-related respiratory and ocular symptoms. Potential pathophysiological mechanisms of BRS are discussed.
Collapse
|
19
|
Macrophage as a Peripheral Pain Regulator. Cells 2021; 10:cells10081881. [PMID: 34440650 PMCID: PMC8392675 DOI: 10.3390/cells10081881] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 12/30/2022] Open
Abstract
A neuroimmune crosstalk is involved in somatic and visceral pathological pain including inflammatory and neuropathic components. Apart from microglia essential for spinal and supraspinal pain processing, the interaction of bone marrow-derived infiltrating macrophages and/or tissue-resident macrophages with the primary afferent neurons regulates pain signals in the peripheral tissue. Recent studies have uncovered previously unknown characteristics of tissue-resident macrophages, such as their origins and association with regulation of pain signals. Peripheral nerve macrophages and intestinal resident macrophages, in addition to adult monocyte-derived infiltrating macrophages, secrete a variety of mediators, such as tumor necrosis factor-α, interleukin (IL)-1β, IL-6, high mobility group box 1 and bone morphogenic protein 2 (BMP2), that regulate the excitability of the primary afferents. Neuron-derived mediators including neuropeptides, ATP and macrophage-colony stimulating factor regulate the activity or polarization of diverse macrophages. Thus, macrophages have multitasks in homeostatic conditions and participate in somatic and visceral pathological pain by interacting with neurons.
Collapse
|