1
|
Wu C, Wu Y, Li F, Ding X, Yi S, Hang S, Ge F, Zhang M. Reducing the accumulation of cadmium and phenanthrene in rice by optimizing planting spacing: Role of low-abundance but core rhizobacterial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171856. [PMID: 38522531 DOI: 10.1016/j.scitotenv.2024.171856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
Optimizing planting spacing is a common agricultural practice for enhancing rice growth. However, its effect on the accumulation of cadmium (Cd) and phenanthrene (Phen) in soil-rice systems and the response mechanisms of rhizobacteria to co-contaminants remain unclear. This study found that reducing rice planting spacing to 5 cm and 10 cm significantly decreased the bioavailability of Cd (by 7.9 %-29.5 %) and Phen (by 12.9 %-47.6 %) in the rhizosphere soil by converting them into insoluble forms. The increased accumulation of Cd and Phen in roots and iron plaques (IPs) ultimately led to decreased Cd (by 32.2 %-39.9 %) and Phen (by 4.2 %-17.3 %) levels in brown rice, and also significantly affected the composition of rhizobacteria. Specifically, reducing rice planting spacing increased the abundance of low-abundance but core rhizobacteria in the rhizosphere soil and IPs, including Bacillus, Clostridium, Sphingomonas, Paenibacillus, and Leifsonia. These low-abundance but core rhizobacteria exhibited enhanced metabolic capacities for Cd and Phen, accompanied by increased abundances of Cd-resistance genes (e.g., czcC and czcB) and Phen-degradation genes (e.g., pahE4 and pahE1) within the rhizosphere soil and IPs. Reduced planting spacing had no noticeable impact on rice biomass. These findings provide new insights into the role of low-abundance but core rhizobacterial communities in Cd and Phen uptake by rice, highlighting the potential of reduced planting spacing as an eco-friendly strategy for ensuring the safety of rice production on contaminated paddy soils.
Collapse
Affiliation(s)
- Chen Wu
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan 411105, China; The Experimental Teaching Center in College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Yujun Wu
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan 411105, China; The Experimental Teaching Center in College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Feng Li
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan 411105, China; The Experimental Teaching Center in College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| | - Xiangxi Ding
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan 411105, China; The Experimental Teaching Center in College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Shengwei Yi
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan 411105, China; The Experimental Teaching Center in College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Sicheng Hang
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan 411105, China; The Experimental Teaching Center in College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Fei Ge
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan 411105, China; The Experimental Teaching Center in College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Ming Zhang
- Department of Environmental Engineering, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
2
|
Gupta R, Khan F, Alqahtani FM, Hashem M, Ahmad F. Plant Growth-Promoting Rhizobacteria (PGPR) Assisted Bioremediation of Heavy Metal Toxicity. Appl Biochem Biotechnol 2024; 196:2928-2956. [PMID: 37097400 DOI: 10.1007/s12010-023-04545-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 04/26/2023]
Abstract
Due to a variety of natural and anthropogenic processes, heavy metal toxicity of soil constitutes a substantial hazard to all living beings in the environment. The heavy metals alter the soil properties, which directly or indirectly influence the agriculture systems. Thus, plant growth-promoting rhizobacteria (PGPR)-assisted bioremediation is a promising, eco-friendly, and sustainable method for eradicating heavy metals. PGPR cleans up the heavy metal-contaminated environment using various approaches including efflux systems, siderophores and chelation, biotransformation, biosorption, bioaccumulation, precipitation, ACC deaminase activity, biodegradation, and biomineralization methods. These PGPRs have been found effective to bioremediate the heavy metal-contaminated soil through increased plant tolerance to metal stress, improved nutrient availability in soil, alteration of heavy metal pathways, and by producing some chemical compounds like siderophores and chelating ions. Many heavy metals are non-degradable; hence, another remediation approach with a broader scope of contamination removal is needed. This article also briefly emphasized the role of genetically modified PGPR strains which improve the soil's degradation rate of heavy metals. In this regard, genetic engineering, a molecular approach, could improve bioremediation efficiency and be helpful. Thus, the ability of PGPRs can aid in heavy metal bioremediation and promote a sustainable agricultural soil system.
Collapse
Affiliation(s)
- Rishil Gupta
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, U.P, India
| | - Faryad Khan
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, U.P, India
| | - Fatmah M Alqahtani
- Department of Biology, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Mohamed Hashem
- Department of Biology, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Faheem Ahmad
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, U.P, India.
| |
Collapse
|
3
|
Haque F, Diba F, Istiaq A, Siddique MA, Mou TJ, Hossain MA, Sultana M. Novel insights into the co-selection of metal-driven antibiotic resistance in bacteria: a study of arsenic and antibiotic co-exposure. Arch Microbiol 2024; 206:194. [PMID: 38538852 DOI: 10.1007/s00203-024-03873-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 04/16/2024]
Abstract
The simultaneous development of antibiotic resistance in bacteria due to metal exposure poses a significant threat to the environment and human health. This study explored how exposure to both arsenic and antibiotics affects the ability of an arsenite oxidizer, Achromobacter xylosoxidans CAW4, to transform arsenite and its antibiotic resistance patterns. The bacterium was isolated from arsenic-contaminated groundwater in the Chandpur district of Bangladesh. We determined the minimum inhibitory concentration (MIC) of arsenite, cefotaxime, and tetracycline for A. xylosoxidans CAW4, demonstrating a multidrug resistance (MDR) trait. Following this determination, we aimed to mimic an environment where A. xylosoxidans CAW4 was exposed to both arsenite and antibiotics. We enabled the strain to grow in sub-MIC concentrations of 1 mM arsenite, 40 µg/mL cefotaxime, and 20 µg/mL tetracycline. The expression dynamics of the arsenite oxidase (aioA) gene in the presence or absence of antibiotics were analyzed. The findings indicated that simultaneous exposure to arsenite and antibiotics adversely affected the bacteria's capacity to metabolize arsenic. However, when arsenite was present in antibiotics-containing media, it promoted bacterial growth. The study observed a global downregulation of the aioA gene in arsenic-antibiotic conditions, indicating the possibility of increased susceptibility through co-resistance across the entire bacterial population of the environment. This study interprets that bacterial arsenic-metabolizing ability can rescue the bacteria from antibiotic stress, further disseminating environmental cross-resistance. Therefore, the co-selection of metal-driven antibiotic resistance in bacteria highlights the need for effective measures to address this emerging threat to human health and the environment.
Collapse
Affiliation(s)
- Farhana Haque
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - Farzana Diba
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
- Institute of Tissue Banking and Biomaterial Research, Atomic Energy Research Establishment, Savar, Dhaka, 1349, Bangladesh
| | - Arif Istiaq
- Department of Stem Cell Biology, Faculty of Arts and Sciences, Kyushu University, Fukuoka, Japan
| | - Mohammad Anwar Siddique
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
- Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Taslin Jahan Mou
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - M Anwar Hossain
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
- Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Munawar Sultana
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh.
| |
Collapse
|
4
|
Xu Z, Zhao Y, Xu Z, Chen X, Zhang X, Chen Z, Ban Y. Arbuscular mycorrhizal fungi enhanced the drinking water treatment residue-based vertical flow constructed wetlands on the purification of arsenic-containing wastewater. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133241. [PMID: 38101009 DOI: 10.1016/j.jhazmat.2023.133241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/06/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023]
Abstract
Arsenic (As) is a toxic metalloid that poses a potential risk to the environment and human health. In this study, drinking water treatment residue (DWTR) and ceramsite-based vertical flow constructed wetlands (VFCWs) were built to purify As-containing wastewater. As a method of bioaugmentation, arbuscular mycorrhizal fungi (AMF) was inoculated to Pteris vittata roots to enhance the As removal of the VFCWs. The results showed that the As removal rates reached 87.82-94.29% (DWTR) and 33.28-58.66% (ceramsite). DWTR and P. vittata contributed 64.33-72.07% and 7.57-29% to the removal of As, while AMF inoculation intensified the As accumulation effect of P. vittata. Proteobacteria, the main As3+ oxidizing bacteria in the aquatic systems, dominated the microbial community, occupying 72.41 ± 7.76%. AMF inoculation increased As-related functional genes abundance in DWTR-based wetlands and provided a reliable means of arsenic resistance in wetlands. These findings indicated that the DWTR-based VFCWs with AMF inoculated P. vittata had a great purification effect on As-containing wastewater, providing a theoretical basis for the application of DWTR and AMF for As removal in constructed wetlands.
Collapse
Affiliation(s)
- Zhouying Xu
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Yuxiang Zhao
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Ziang Xu
- School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Xi Chen
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Xiangling Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environment Sciences, Czech University of Life Sciences Prague, Kamycka 129, 16521, Prague, Czech Republic
| | - Yihui Ban
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, Hubei, China.
| |
Collapse
|
5
|
Li D, Zhang X, Chen J, Li J. Toxicity factors to assess the ecological risk for soil microbial communities. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115867. [PMID: 38142592 DOI: 10.1016/j.ecoenv.2023.115867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
The toxicity factor (TF), a critical parameter within the potential ecological risk index (RI), is determined without accounting for microbial factors. It is considerable uncertainty exists concerning its validity for quantitatively assessing the influence of metal(loid)s on microorganisms. To evaluate the suitability of TF, we constructed microcosm experiments with varying RI levels (RI = 100, 200, 300, 500, and 700) by externally adding zinc (Zn), chromium (Cr), copper (Cu), lead (Pb), nickel (Ni), cadmium (Cd), and mercury (Hg) to uncontaminated soil (CK). Quantitative real-time PCR (qPCR) and high-throughput sequencing techniques were employed to measure the abundance and community of bacteria and fungi, and high-throughput qPCR was utilised to quantify functional genes associated with CNPS cycles. The results demonstrated that microbial diversity and function exhibited significant alterations (p < 0.05) in response to increasing RI levels, and the influences on microbial community structure, enzyme activity, and functional gene abundances were different due to the types of metal(loid)s treatments. At the same RI level, significant differences (p < 0.05) were discerned in microbial diversity and function across metal(loid) treatments, and these differences became more pronounced (p < 0.001) at higher levels. These findings suggest that TF may not be suitable for the quantitative assessment of microbial ecological risk. Therefore, we adjusted the TF by following three steps (1) determining the adjustment criteria, (2) deriving the initial TF, and (3) adjusting and optimizing the TF. Ultimately, the optimal adjusted TF was established as Zn = 1.5, Cr = 4.5, Cu = 6, Pb = 4.5, Ni = 5, Cd = 22, and Hg = 34. Our results provide a new reference for quantitatively assessing the ecological risks caused by metal(loid)s to microorganisms.
Collapse
Affiliation(s)
- Dale Li
- Institute of Loess Plateau, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xiujuan Zhang
- Institute of Loess Plateau, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Jianwen Chen
- Institute of Loess Plateau, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Junjian Li
- Institute of Loess Plateau, Shanxi University, Taiyuan, Shanxi 030006, China.
| |
Collapse
|
6
|
Kopf A, Bunk B, Riedel T, Schröttner P. The zoonotic pathogen Wohlfahrtiimonas chitiniclastica - current findings from a clinical and genomic perspective. BMC Microbiol 2024; 24:3. [PMID: 38172653 PMCID: PMC10763324 DOI: 10.1186/s12866-023-03139-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
The zoonotic pathogen Wohlfahrtiimonas chitiniclastica can cause several diseases in humans, including sepsis and bacteremia. Although the pathogenesis is not fully understood, the bacterium is thought to enter traumatic skin lesions via fly larvae, resulting in severe myiasis and/or wound contamination. Infections are typically associated with, but not limited to, infestation of an open wound by fly larvae, poor sanitary conditions, cardiovascular disease, substance abuse, and osteomyelitis. W. chitiniclastica is generally sensitive to a broad spectrum of antibiotics with the exception of fosfomycin. However, increasing drug resistance has been observed and its development should be monitored with caution. In this review, we summarize the currently available knowledge and evaluate it from both a clinical and a genomic perspective.
Collapse
Affiliation(s)
- Anna Kopf
- Clinic for Cardiology, Sana Heart Center, Leipziger Str. 50, 03048, Cottbus, Germany
- 2nd Medical Clinic for Hematology, Oncology, Pneumology and Nephrology, Carl-Thiem Hospital Cottbus gGmbH, Cottbus, Germany
| | - Boyke Bunk
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Inhoffenstrasse 7 B, 38124, Braunschweig, Germany
| | - Thomas Riedel
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Inhoffenstrasse 7 B, 38124, Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Percy Schröttner
- Institute for Medical Microbiology and Virology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
7
|
Sevak P, Pushkar B. Arsenic pollution cycle, toxicity and sustainable remediation technologies: A comprehensive review and bibliometric analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119504. [PMID: 37956515 DOI: 10.1016/j.jenvman.2023.119504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 10/11/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023]
Abstract
Arsenic pollution and its allied impacts on health are widely reported and have gained global attention in the last few decades. Although the natural distribution of arsenic is limited, anthropogenic activities have increased its mobility to distant locations, thereby increasing the number of people affected by arsenic pollution. Arsenic has a complex biogeochemical cycle which has a significant role in pollution. Therefore, this review paper has comprehensively analysed the biogeochemical cycle of arsenic which can dictate the occurrence of arsenic pollution. Considering the toxicity and nature of arsenic, the present work has also analysed the current status of arsenic pollution around the world. It is noted that the south of Asia, West-central Africa, west of Europe and Latin America are major hot spots of arsenic pollution. Bibliometric analysis was performed by using scopus database with specific search for keywords such as arsenic pollution, health hazards to obtain the relevant data. Scopus database was searched for the period of 20 years from year 2003-2023 and total of 1839 articles were finally selected for further analysis using VOS viewer. Bibliometric analysis of arsenic pollution and its health hazards has revealed that arsenic pollution is primarily caused by anthropogenic sources and the key sources of arsenic exposure are drinking water, sea food and agricultural produces. Arsenic pollution was found to be associated with severe health hazards such as cancer and other health issues. Thus considering the severity of the issue, few sustainable remediation technologies such as adsorption using microbes, biological waste material, nanomaterial, constructed wetland, phytoremediation and microorganism bioremediation are proposed for treating arsenic pollution. These approaches are environmentally friendly and highly sustainable, thus making them suitable for the current scenario of environmental crisis.
Collapse
Affiliation(s)
- Pooja Sevak
- Department of Biotechnology, University of Mumbai, Kalina, Santacruz (E), Mumbai, 400098, Maharashtra, India
| | - Bhupendra Pushkar
- Department of Biotechnology, University of Mumbai, Kalina, Santacruz (E), Mumbai, 400098, Maharashtra, India.
| |
Collapse
|
8
|
Salas-Orozco MF, Lorenzo-Leal AC, de Alba Montero I, Marín NP, Santana MAC, Bach H. Mechanism of escape from the antibacterial activity of metal-based nanoparticles in clinically relevant bacteria: A systematic review. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 55:102715. [PMID: 37907198 DOI: 10.1016/j.nano.2023.102715] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/05/2023] [Accepted: 10/05/2023] [Indexed: 11/02/2023]
Abstract
The emergency of antibiotic-resistant bacteria in severe infections is increasing, especially in nosocomial environments. The ESKAPE group is of special importance in the groups of multi-resistant bacteria due to its high capacity to generate resistance to antibiotics and bactericides. Therefore, metal-based nanomaterials are an attractive alternative to combat them because they have been demonstrated to damage biomolecules in the bacterial cells. However, there is a concern about bacteria developing resistance to NPs and their harmful effects due to environmental accumulation. Therefore, this systematic review aims to report the clinically relevant bacteria that have developed resistance to the NPs. According to the results of this systematic review, various mechanisms to counteract the antimicrobial activity of various NP types have been proposed. These mechanisms can be grouped into the following categories: production of extracellular compounds, metal efflux pumps, ROS response, genetic changes, DNA repair, adaptative morphogenesis, and changes in the plasma membrane.
Collapse
Affiliation(s)
- Marco Felipe Salas-Orozco
- Facultad de Estomatología, Doctorado en Ciencias Odontológicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.
| | - Ana Cecilia Lorenzo-Leal
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - Nuria Patiño Marín
- Facultad de Estomatología, Laboratorio de Investigación Clinica, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Miguel Angel Casillas Santana
- Maestría en Estomatología con Opcion Terminal en Ortodoncia, Facultad de Estomatología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Horacio Bach
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
9
|
Sher S, Ishaq MT, Bukhari DA, Rehman A. Identification of arsenic oxidizing genes fragment in Microbacterium sp. strain 1S1 and its cloning in E. coli (DH5 a). Saudi J Biol Sci 2023; 30:103846. [PMID: 38046866 PMCID: PMC10689279 DOI: 10.1016/j.sjbs.2023.103846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/09/2023] [Accepted: 10/19/2023] [Indexed: 12/05/2023] Open
Abstract
Microbacterium sp. strain 1S1, an arsenic-resistant bacterial strain, was isolated with 75 mM MIC against arsenite. Brownish precipitation with silver nitrate appeared, which confirmed its oxidizing ability against arsenite. The bacterial genomic DNA underwent Illumina and Nanopore sequencing, revealing a distinctive cluster of genes spanning 9.6 kb associated with arsenite oxidation. These genes were identified within an isolated bacterial strain. Notably, the smaller subunit (aioB) of the arsenite oxidizing gene at the chromosomal DNA locus (Prokka_01508) was pinpointed. This gene, aioB, is pivotal in arsenite oxidation, a process crucial for energy metabolism. Upon thorough sequencing analysis, only a singular megaplasmid was detected within the isolated bacterial strain. Strikingly, this megaplasmid did not harbor any genes responsible for arsenic resistance or detoxification. This intriguingly indicates that the bacterial strain relies on the arsenic oxidizing genes present for its efficient arsenic oxidation capability. This is especially true for Microbacterium sp. strain 1S1. Subsequently, a segment of genes linked to arsenic resistance was successfully cloned into E. coli (DH5a). The fragment of arsenic-resistant genes was cloned in E. coli (DH5a), further confirmed by the AgNO3 method. This genetically engineered E. coli (DH5a) can decontaminate arsenic-contaminated sites.
Collapse
Affiliation(s)
- Shahid Sher
- University Institute of Medical Laboratory Technology (UIMLT), Faculty of Allied Health Sciences (FAHS), The University of Lahore, Lahore, Pakistan
- School of Environment Florida Agricultural and Mechanical University, United States
| | - Muhammad Tahir Ishaq
- University Institute of Medical Laboratory Technology (UIMLT), Faculty of Allied Health Sciences (FAHS), The University of Lahore, Lahore, Pakistan
| | | | - Abdul Rehman
- Institute of Microbiology and Molecular Genetics, University of the Punjab, New Campus, Lahore 54590, Pakistan
| |
Collapse
|
10
|
Jing H, Yang W, Chen Y, Yang L, Zhou H, Yang Y, Zhao Z, Wu P, Zia-Ur-Rehman M. Exploring the mechanism of Cd uptake and translocation in rice: Future perspectives of rice safety. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165369. [PMID: 37433335 DOI: 10.1016/j.scitotenv.2023.165369] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/13/2023]
Abstract
Cadmium (Cd) contamination in rice fields has been recognized as a severe global agro-environmental issue. To reach the goal of controlling Cd risk, we must pay more attention and obtain an in-depth understanding of the environmental behavior, uptake and translocation of Cd in soil-rice systems. However, to date, these aspects still lack sufficient exploration and summary. Here, we critically reviewed (i) the processes and transfer proteins of Cd uptake/transport in the soil-rice system, (ii) a series of soil and other environmental factors affecting the bioavailability of Cd in paddies, and (iii) the latest advances in regard to remediation strategies while producing rice. We propose that the correlation between the bioavailability of Cd and environmental factors must be further explored to develop low Cd accumulation and efficient remediation strategies in the future. Second, the mechanism of Cd uptake in rice mediated by elevated CO2 also needs to be given more attention. Meanwhile, more scientific planting methods (direct seeding and intercropping) and suitable rice with low Cd accumulation are important measures to ensure the safety of rice consumption. In addition, the relevant Cd efflux transporters in rice have yet to be revealed, which will promote molecular breeding techniques to address the current Cd-contaminated soil-rice system. The potential for efficient, durable, and low-cost soil remediation technologies and foliar amendments to limit Cd uptake by rice needs to be examined in the future. Conventional breeding procedures combined with molecular marker techniques for screening rice varieties with low Cd accumulation could be a more practical approach to select for desirable agronomic traits with low risk.
Collapse
Affiliation(s)
- Haonan Jing
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Wentao Yang
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China.
| | - Yonglin Chen
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Liyu Yang
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Hang Zhou
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yang Yang
- College of Environment and Ecology, Hunan Agriculture University, Changsha 410128, China
| | - Zhenjie Zhao
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Pan Wu
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | | |
Collapse
|
11
|
Oleńska E, Małek W, Wójcik M, Szopa S, Swiecicka I, Aleksandrowicz O, Włostowski T, Zawadzka W, Sillen WMA, Vangronsveld J, Cholakova I, Langill T, Thijs S. Bacteria associated with Zn-hyperaccumulators Arabidopsis halleri and Arabidopsis arenosa from Zn-Pb-Cd waste heaps in Poland as promising tools for bioremediation. Sci Rep 2023; 13:12606. [PMID: 37537323 PMCID: PMC10400580 DOI: 10.1038/s41598-023-39852-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/01/2023] [Indexed: 08/05/2023] Open
Abstract
To identify metal adapted bacteria equipped with traits positively influencing the growth of two hyperaccumulator plant species Arabidopsis arenosa and Arabidopsis halleri, we isolated bacteria inhabiting rhizosphere and vegetative tissues (roots, basal and stem leaves) of plants growing on two old Zn-Pb-Cd waste heaps in Bolesław and Bukowno (S. Poland), and characterized their potential plant growth promoting (PGP) traits as well as determined metal concentrations in rhizosphere and plant tissues. To determine taxonomic position of 144 bacterial isolates, 16S rDNA Sanger sequencing was used. A metabolic characterization of isolated strains was performed in vitro using PGP tests. A. arenosa and A. halleri accumulate high amounts of Zn in their tissues, especially in stem leaves. Among in total 22 identified bacterial taxa, the highest level of the taxonomical diversity (H' = 2.01) was revealed in A. halleri basal leaf endophytes originating from Bukowno waste heap area. The 96, 98, 99, and 98% of investigated strains showed tolerant to Cd, Zn, Pb and Cu, respectively. Generally, higher percentages of bacteria could synthesize auxins, siderophores, and acetoin as well as could solubilize phosphate. Nine of waste heap origin bacterial strains were tolerant to toxic metals, showed in vitro PGP traits and are potential candidates for bioremediation.
Collapse
Affiliation(s)
- Ewa Oleńska
- Faculty of Biology, University of Bialystok, 1J Ciołkowski, 15-245, Bialystok, Poland.
| | - Wanda Małek
- Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka, 20-033, Lublin, Poland
| | - Małgorzata Wójcik
- Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka, 20-033, Lublin, Poland
| | - Sebastian Szopa
- SHIM-POL A.M. Borzymowski, 5 Lubomirski, 05-080, Izabelin, Poland
| | - Izabela Swiecicka
- Faculty of Biology, University of Bialystok, 1J Ciołkowski, 15-245, Bialystok, Poland
- Laboratory of Applied Microbiology, University of Bialystok, 1J Ciołkowski, 15-245, Bialystok, Poland
| | | | - Tadeusz Włostowski
- Faculty of Biology, University of Bialystok, 1J Ciołkowski, 15-245, Bialystok, Poland
| | - Weronika Zawadzka
- Faculty of Biology, University of Bialystok, 1J Ciołkowski, 15-245, Bialystok, Poland
| | - Wouter M A Sillen
- Faculty of Environmental Biology, Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Jaco Vangronsveld
- Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka, 20-033, Lublin, Poland
- Faculty of Environmental Biology, Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Iva Cholakova
- Faculty of Environmental Biology, Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Tori Langill
- Faculty of Environmental Biology, Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Sofie Thijs
- Faculty of Environmental Biology, Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| |
Collapse
|
12
|
Riseh RS, Vazvani MG, Hajabdollahi N, Thakur VK. Bioremediation of Heavy Metals by Rhizobacteria. Appl Biochem Biotechnol 2023; 195:4689-4711. [PMID: 36287331 PMCID: PMC10354140 DOI: 10.1007/s12010-022-04177-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 11/02/2022]
Abstract
Heavy elements accumulate rapidly in the soil due to industrial activities and the industrial revolution, which significantly impact the morphology, physiology, and yield of crops. Heavy metal contamination will eventually affect the plant tolerance threshold and cause changes in the plant genome and genetic structure. Changes in the plant genome lead to changes in encoded proteins and protein sequences. Consuming these mutated products can seriously affect human and animal health. Bioremediation is a process that can be applied to reduce the adverse effects of heavy metals in the soil. In this regard, bioremediation using plant growth-promoting rhizobacteria (PGPRs) as beneficial living agents can help to neutralize the negative interaction between the plant and the heavy metals. PGPRs suppress the adverse effects of heavy metals and the negative interaction of plant-heavy elements by different mechanisms such as biological adsorption and entrapment of heavy elements in extracellular capsules, reduction of metal ion concentration, and formation of complexes with metal ions inside the cell.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-E-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan, 7718897111 Iran
| | - Mozhgan Gholizadeh Vazvani
- Department of Plant Protection, Faculty of Agriculture, Vali-E-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan, 7718897111 Iran
| | - Najmeh Hajabdollahi
- Department of Plant Protection, Faculty of Agriculture, Vali-E-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan, 7718897111 Iran
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Edinburgh, EH9 3JG UK
- School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun, 248007 India
- Centre for Research and Development, Chandigarh University, Mohali, 140413 Punjab India
- Department of Biotechnology, Graphic Era Deemed to Be University, Dehradun, 248002 Uttarakhand India
| |
Collapse
|
13
|
Li C, Zong G, Chen X, Tan M, Gao W, Fu J, Zhang P, Wang B, Cao G. Bifunctional protein ArsR M contributes to arsenite methylation and resistance in Brevundimonas sp. M20. BMC Microbiol 2023; 23:134. [PMID: 37193944 PMCID: PMC10190100 DOI: 10.1186/s12866-023-02876-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/30/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND Arsenic (As) with various chemical forms, including inorganic arsenic and organic arsenic, is the most prevalent water and environmental toxin. This metalloid occurs worldwide and many of its forms, especially arsenite [As(III)], cause various diseases including cancer. Organification of arsenite is an effective way for organisms to cope with arsenic toxicity. Microbial communities are vital contributors to the global arsenic biocycle and represent a promising way to reduce arsenite toxicity. METHODS Brevundimonas sp. M20 with arsenite and roxarsone resistance was isolated from aquaculture sewage. The arsHRNBC cluster and the metRFHH operon of M20 were identified by sequencing. The gene encoding ArsR/methyltransferase fusion protein, arsRM, was amplified and expressed in Escherichia coli BL21 (DE3), and this strain showed resistance to arsenic in the present of 0.25-6 mM As(III), aresenate, or pentavalent roxarsone. The methylation activity and regulatory action of ArsRM were analyzed using Discovery Studio 2.0, and its functions were confirmed by methyltransferase activity analysis and electrophoretic mobility shift assays. RESULTS The minimum inhibitory concentration of the roxarsone resistant strain Brevundimonas sp. M20 to arsenite was 4.5 mM. A 3,011-bp arsenite resistance ars cluster arsHRNBC and a 5649-bp methionine biosynthesis met operon were found on the 3.315-Mb chromosome. Functional prediction analyses suggested that ArsRM is a difunctional protein with transcriptional regulation and methyltransferase activities. Expression of ArsRM in E. coli increased its arsenite resistance to 1.5 mM. The arsenite methylation activity of ArsRM and its ability to bind to its own gene promoter were confirmed. The As(III)-binding site (ABS) and S-adenosylmethionine-binding motif are responsible for the difunctional characteristic of ArsRM. CONCLUSIONS We conclude that ArsRM promotes arsenite methylation and is able to bind to its own promoter region to regulate transcription. This difunctional characteristic directly connects methionine and arsenic metabolism. Our findings contribute important new knowledge about microbial arsenic resistance and detoxification. Future work should further explore how ArsRM regulates the met operon and the ars cluster.
Collapse
Affiliation(s)
- Congcong Li
- Shandong Quancheng Test & Technology Limited Company, Ji'nan, 250101, China
| | - Gongli Zong
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250062, China
- NHC Key Laboratory of Biotechnology Drugs, Shandong Academy of Medical Sciences, Ji'nan, 250117, Shandong, China
| | - Xi Chen
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250062, China
- NHC Key Laboratory of Biotechnology Drugs, Shandong Academy of Medical Sciences, Ji'nan, 250117, Shandong, China
| | - Meixia Tan
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250062, China
- NHC Key Laboratory of Biotechnology Drugs, Shandong Academy of Medical Sciences, Ji'nan, 250117, Shandong, China
| | - Wenhui Gao
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250062, China
- NHC Key Laboratory of Biotechnology Drugs, Shandong Academy of Medical Sciences, Ji'nan, 250117, Shandong, China
| | - Jiafang Fu
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250062, China
- NHC Key Laboratory of Biotechnology Drugs, Shandong Academy of Medical Sciences, Ji'nan, 250117, Shandong, China
| | - Peipei Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250062, China
- NHC Key Laboratory of Biotechnology Drugs, Shandong Academy of Medical Sciences, Ji'nan, 250117, Shandong, China
| | - Bing Wang
- Shandong Quancheng Test & Technology Limited Company, Ji'nan, 250101, China.
| | - Guangxiang Cao
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250062, China.
- NHC Key Laboratory of Biotechnology Drugs, Shandong Academy of Medical Sciences, Ji'nan, 250117, Shandong, China.
| |
Collapse
|
14
|
Tumskiy R, Khlebtsov B, Tumskaia A, Evstigneeva S, Antoshkina E, Zakharevich A, Khlebtsov NG. Enhanced Antibacterial Activity of Novel Fluorescent Glutathione-Capped Ag Nanoclusters. Int J Mol Sci 2023; 24:ijms24098306. [PMID: 37176012 PMCID: PMC10179335 DOI: 10.3390/ijms24098306] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Ag nanomaterials are promising candidates for the discovery of next-generation antibiotics with a high antibacterial effect against multi-drug resistant strains. This paper reports a simple synthesis of novel water-soluble glutathione-capped silver nanoclusters (GSH-Ag NCs) with an enhanced antibacterial activity. According to thin layer chromatography (TLC), the synthesized GSH-Ag NCs are an individual fraction of the same composition without any impurities. According to matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) and energy dispersive X-ray (EDX) analyses, the silver core of the GSH-Ag NCs contains approximately 35 silver atoms, and the molecular weight of these nanoclusters is about 11 kDa. The fabricated silver nanoclusters have a reddish fluorescence (λex/λem = 509/645 nm), with a large Stokes shift (>130 nm), and ultra-small size (less than 2 nm) according to transmission electron microscopy (TEM) data and dynamic light scattering (DLS) analysis. The antibacterial activity and minimal inhibitory concentrations of the silver nanoclusters towards Escherichia coli, Staphylococcus aureus, Bacillus cereus and Enterobacter cloacae were evaluated using the agar well-diffusion method and resazurin metabolism assay. The antibacterial activity of chelated silver in the nanoclusters was found to be significantly higher compared to the activity of free silver ions. To explain the possible mechanisms underlying the antibacterial actions of the GSH-Ag nanoclusters, molecular docking was performed, and prospective bacterial targets were identified using AutoDock.
Collapse
Affiliation(s)
- Roman Tumskiy
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia
| | - Boris Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia
| | | | - Stella Evstigneeva
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia
| | - Evgeniya Antoshkina
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), 28 Vavilova Str, Bld.1, 119334 Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, 9 Institutskiy per., 141700 Dolgoprudny, Russia
| | | | - Nikolai G Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia
- Institute of Physics, Saratov State University, 410012 Saratov, Russia
| |
Collapse
|
15
|
Etesami H, Jeong BR, Raheb A. Arsenic (As) resistant bacteria with multiple plant growth-promoting traits: Potential to alleviate As toxicity and accumulation in rice. Microbiol Res 2023; 272:127391. [PMID: 37121023 DOI: 10.1016/j.micres.2023.127391] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 05/02/2023]
Abstract
A currently serious agronomic concern for paddy soils is arsenic (As) contamination. Paddy soils are mostly utilized for rice cultivation. Arsenite (As(III)) is prevalent in paddy soils, and its high mobility and toxicity make As uptake by rice substantially greater than that by other food crops. Globally, interest has increased towards using As-resistant plant growth-promoting bacteria (PGPB) to improve plant metal tolerance, promote plant growth, and immobilize As to prevent its uptake and accumulation in the edible parts of rice as much as possible. This review focuses on the As-resistant PGPB characteristics influencing rice growth and the mechanisms by which they function to alleviate As toxicity stress in rice plants. Several recent examples of mechanisms responsible for decreasing the availability of As to rice and coping with As stresses facilitated by the PGPB with multiple PGP traits (e.g., phosphate and silicate solubilization, the production of 1-aminocyclopropane-1-carboxylate deaminase, phytohormones, and siderophore, N2 fixation, sulfate reduction, the biosorption, bioaccumulation, methylation, and volatilization of As, and arsenite oxidation) are also reviewed. In addition, future research needs about the application of As-resistant PGPB with PGP traits to mitigate As accumulation in rice plants are described.
Collapse
Affiliation(s)
- Hassan Etesami
- Department of Soil Science, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran.
| | - Byoung Ryong Jeong
- Department of Horticulture, College of Agriculture & Life Sciences, Gyeongsang National University (GNU), Jinju 52828, South Korea
| | - Alireza Raheb
- Department of Soil Science, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran
| |
Collapse
|
16
|
Jiang H, Xu Q, Wang X, Shi L, Yang X, Sun J, Mei X. Preparation of Antibacterial, Arginine-Modified Ag Nanoclusters in the Hydrogel Used for Promoting Diabetic, Infected Wound Healing. ACS OMEGA 2023; 8:12653-12663. [PMID: 37065086 PMCID: PMC10099449 DOI: 10.1021/acsomega.2c07266] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Diabetic foot ulcers with complex healing wounds accompanied by bacterial infection are considered a significant clinical problem which are made worse by the lack of effective treatments. Traditional antibiotics and dressings have failed to address wound infection and healing, and multifunctional combination therapies are attractive for treating chronic wounds. In this study, arginine (Arg) was loaded onto the surface of silver nanoclusters and encapsulated in a hydrogel to achieve antibacterial, anti-inflammatory, angiogenic, and collagen deposition functions through the slow release of Arg combined with silver nanoclusters. In vitro studies indicated that Arg-Ag@H composites inhibited methicillin-resistant Staphylococcus aureus and Escherichia coli by 94 and 97%, respectively. The inhibition of bacterial biofilms reached 85%, and the migration ability of human venous endothelial cells (HUVECs) increased by 50%. In vitro studies showed that Arg-Ag@H composites increased the healing area of wounds by 26% and resulted in a 98% skin wound-healing rate. Safety studies confirmed the excellent biocompatibility of Arg-Ag@H. The results suggest that Arg-Ag@H offers new possibilities for treating chronic diabetic wounds.
Collapse
Affiliation(s)
- Housen Jiang
- Dalian
Medical University, Dalian 116044, Liaoning, China
- Department
of Hand and Foot Orthopedic Surgery, Weifang
People’s Hospital, Weifang 261042, Shandong, China
| | - Qin Xu
- Department
of Hand and Foot Orthopedic Surgery, Weifang
People’s Hospital, Weifang 261042, Shandong, China
| | - Xiaolin Wang
- Department
of Pathology, Weifang Hospital of Traditional
Chinese Medicine, Weifang 261042, Shandong, China
| | - Lin Shi
- Department
of Hand and Foot Orthopedic Surgery, Weifang
People’s Hospital, Weifang 261042, Shandong, China
| | - Xuedong Yang
- Department
of Hand and Foot Orthopedic Surgery, Weifang
People’s Hospital, Weifang 261042, Shandong, China
| | - Jianmin Sun
- Department
of Hand and Foot Orthopedic Surgery, Weifang
People’s Hospital, Weifang 261042, Shandong, China
| | - Xifan Mei
- Department
of Orthopedics, Third Affiliated Hospital
of Jinzhou Medical University, Jinzhou 121000, China
| |
Collapse
|
17
|
Wand ME, Sutton JM. Efflux-mediated tolerance to cationic biocides, a cause for concern? MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36748532 DOI: 10.1099/mic.0.001263] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
AbstractWith an increase in the number of isolates resistant to multiple antibiotics, infection control has become increasingly important to help combat the spread of multi-drug-resistant pathogens. An important component of this is through the use of disinfectants and antiseptics (biocides). Antibiotic resistance has been well studied in bacteria, but little is known about potential biocide resistance genes and there have been few reported outbreaks in hospitals resulting from a breakdown in biocide effectiveness. Development of increased tolerance to biocides has been thought to be more difficult due to the mode of action of biocides which affect multiple cellular targets compared with antibiotics. Very few genes which contribute towards increased biocide tolerance have been identified. However, the majority of those that have are components or regulators of different efflux pumps or genes which modulate membrane function/modification. This review will examine the role of efflux in increased tolerance towards biocides, focusing on cationic biocides and heavy metals against Gram-negative bacteria. As many efflux pumps which are upregulated by biocide presence also contribute towards an antimicrobial resistance phenotype, the role of these efflux pumps in cross-resistance to both other biocides and antibiotics will be explored.
Collapse
Affiliation(s)
- Matthew E Wand
- Technology Development Group, UK Health Security Agency, Research and Evaluation, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - J Mark Sutton
- Technology Development Group, UK Health Security Agency, Research and Evaluation, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| |
Collapse
|
18
|
Majewska M, Wdowiak-Wróbel S, Marek-Kozaczuk M, Nowak A, Tyśkiewicz R. Cadmium-resistant Chryseobacterium sp. DEMBc1 strain: characteristics and potential to assist phytoremediation and promote plant growth. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:83567-83579. [PMID: 35768711 DOI: 10.1007/s11356-022-21574-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
The effectiveness of phytoremediation is closely related to the various interactions between pollutants, soil particles, rhizosphere microorganisms, and plants. Therefore, the object of current study was a cadmium-tolerant bacterium isolated from the rye rhizosphere, with a high degree of genetic similarity to the genus Chryseobacterium. Chryseobacterium sp. DEMBc1 was able to grow with 36 different BiologGN2 carbon sources and show the adaptation to stress factors such as Cd (100 μg ml-1), low temperature (8 °C), and salinity (2% NaCl). Furthermore, it was shown that DEMBc1 had the characteristics of plant growth-promoting microorganisms: it was able to produce ammonia, indole acetic acid, 1-aminocyclopropane-1-carboxylic acid deaminase, and siderophores, as well as solubilize Ca3(PO4)3. After inoculation with DEMBc1, a significant decrease in the concentration of Cd was observed in the roots of Festuca ovina grown in Cd-polluted soil, compared to the non-inoculated Cd-polluted soil. It was also noticed that DEMBc1 produced a large amount of extracellular polymeric substances that were significantly higher than the cellular biomass. These polymers can form a barrier to reduce the translocation of Cd from the growth medium to the plant roots. According to the current study, DEMBc1 has a stabilizing potential and can decrease the mobility of Cd in the F. ovina rhizosphere, bioaccumulate metals in plant tissues, and effectively improve the bioavailability of nutrients, especially Fe, N, and P in a polluted environments.
Collapse
Affiliation(s)
- Małgorzata Majewska
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka St. 19, 20-033, Lublin, Poland.
| | - Sylwia Wdowiak-Wróbel
- Department of Genetic and Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka St. 19, 20-033, Lublin, Poland
| | - Monika Marek-Kozaczuk
- Department of Genetic and Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka St. 19, 20-033, Lublin, Poland
| | - Artur Nowak
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka St. 19, 20-033, Lublin, Poland
| | - Renata Tyśkiewicz
- Analytical Laboratory, Łukasiewicz Research Network - New Chemical Syntheses Institute, Tysiąclecia Państwa Polskiego Ave. 13a, 24-110, Puławy, Poland
| |
Collapse
|
19
|
Tian Q, Wang J, Cui L, Zeng W, Qiu G, Hu Q, Peng A, Zhang D, Shen L. Longitudinal physiological and transcriptomic analyses reveal the short term and long term response of Synechocystis sp. PCC6803 to cadmium stress. CHEMOSPHERE 2022; 303:134727. [PMID: 35513082 DOI: 10.1016/j.chemosphere.2022.134727] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Due to the bioaccumulation and non-biodegradability of cadmium, Cd can pose a serious threat to ecosystem even at low concentration. Microalgae is widely distributed photosynthetic organisms in nature, which is a promising heavy metal remover and an effective industrial sewage cleaner. However, there are few detailed reports on the short-term and long-term molecular mechanisms of microalgae under Cd stress. In this study, the adsorption behavior (growth curve, Cd removal efficiency, scanning electron microscope, Fourier transform infrared spectroscopy, and dynamic change of extracellular polymeric substances), cytotoxicity (photosynthetic pigment, MDA, GSH, H2O2, O2-) and stress response mechanism of microalgae were discussed under EC50. RNA-seq detected 1413 DEGs in 4 treatment groups. These genes were related to ribosome, nitrogen metabolism, sulfur transporter, and photosynthesis, and which been proved to be Cd-responsive DEGs. WGCNA (weighted gene co-expression network analysis) revealed two main gene expression patterns, short-term stress (381 genes) and long-term stress (364 genes). The enrichment analysis of DEGs showed that the expression of genes involved in N metabolism, sulfur transporter, and aminoacyl-tRNA biosynthesis were significantly up-regulated. This provided raw material for the synthesis of the important component (cysteine) of metal chelate protein, resistant metalloprotein and transporter (ABC transporter) in the initial stage, which was also the short-term response mechanism. Cd adsorption of the first 15 min was primary dependent on membrane transporter and beforehand accumulated EPS. Simultaneously, the up-regulated glutathione S-transferase (GSTs) family proteins played a role in the initial resistance to exogenous Cd. The damaged photosynthetic system was repaired at the later stage, the expressions of glycolysis and gluconeogenesis were up-regulated, to meet the energy and substances of physiological metabolic activities. The study is the first to provide detailed short-term and long-term genomic information on microalgae responding to Cd stress. Meanwhile, the key genes in this study can be used as potential targets for algae-mediated genetic engineering.
Collapse
Affiliation(s)
- Qinghua Tian
- School of Metallurgy and Environment, Central South University, Changsha, Hunan, 410083, China
| | - Junjun Wang
- School of Metallurgy and Environment, Central South University, Changsha, Hunan, 410083, China
| | - Linlin Cui
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China
| | - Weimin Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China
| | - Guanzhou Qiu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China
| | - Qi Hu
- Department of Bioinformatics Center, NEOMICS Institute, Shenzhen, Guangdong, 518118, China
| | - Anan Peng
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China
| | - Du Zhang
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China.
| | - Li Shen
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China.
| |
Collapse
|
20
|
Genomic Analysis Reveals Adaptation of Vibrio campbellii to the Hadal Ocean. Appl Environ Microbiol 2022; 88:e0057522. [PMID: 35916502 PMCID: PMC9397096 DOI: 10.1128/aem.00575-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The genus Vibrio is characterized by high metabolic flexibility and genome plasticity and is widely distributed in the ocean from euphotic layers to deep-sea environments. The relationship between genome features and environmental adaptation strategies of Vibrio has been extensively investigated in coastal environments, yet very little is known about their survival strategies in oligotrophic deep-sea. In this study, we compared genomes of five Vibrio campbellii strains isolated from the Mariana and Yap Trenches at different water depths, including two epipelagic strains and three hadopelagic strains, to identify genomic characteristics that facilitate survival in the deep sea. Genome streamlining is found in pelagic strains, such as smaller genome sizes, lower G+C contents, and higher gene densities, which might be caused by long-term residence in an oligotrophic environment. Phylogenetic results showed that these five Vibrio strains are clustered into two clades according to their collection depth. Indeed, hadopelagic isolates harbor more genes involved in amino acid metabolism and transport, cell wall/membrane/envelope biogenesis, and inorganic ion transport and metabolism through comparative genomics analysis. Specific macrolide export gene and more tellurite resistance genes present in hadopelagic strains by the annotation of antibiotic and metal resistance genes. In addition, several genes related to substrate degradation are enriched in hadopelagic strains, such as chitinase genes, neopullulanase genes, and biopolymer transporter genes. In contrast, epipelagic strains are unique in their capacity for assimilatory nitrate reduction. The genomic characteristics investigated here provide insights into how Vibrio adapts to the deep-sea environment through genomic evolution. IMPORTANCE With the development of deep-sea sampling technology, an increasing number of deep-sea Vibrio strains have been isolated, but the adaptation mechanism of these eutrophic Vibrio strains to the deep-sea environment is unclear. Here, our results show that the genome of pelagic Vibrio is streamlined to adapt to a long-term oligotrophic environment. Through a phylogenomic analysis, we find that genomic changes in marine Vibrio campbellii strains are related to water depth. Our data suggest that an increase in genes related to antibiotic resistance, degradation of macromolecular and refractory substrates, and utilization of rare ions is related to the adaptation of V. campbellii strains to adapt to hadal environments, and most of the increased genes were acquired by horizontal gene transfer. These findings may deepen our understanding of adaptation strategies of marine bacteria to the extreme environment in hadal zones.
Collapse
|
21
|
Bhardwaj A. Understanding the diversified microbial operon framework coupled to arsenic transformation and expulsion. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01198-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Susilo YB, Mattsby-Baltzer I, Arvidsson A, Husmark J. Significant and rapid reduction of free endotoxin using a dialkylcarbamoyl chloride-coated wound dressing. J Wound Care 2022; 31:502-509. [PMID: 35678791 DOI: 10.12968/jowc.2022.31.6.502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Endotoxin causes inflammation and can impair wound healing. Conventional methods that reduce bioburden in wounds by killing microorganisms using antibiotics, topical antimicrobials or antimicrobial dressings may induce endotoxin release from Gram-negative bacteria. Another approach is to reduce bioburden by adsorbing microorganisms, without killing them, using dialkylcarbamoyl chloride (DACC)-coated wound dressings. This study evaluated the endotoxin-binding ability of a DACC-coated wound dressing (Sorbact Compress, Abigo Medical AB, Sweden) in vitro, including its effect on the level of natural endotoxin released from Gram-negative bacteria. METHOD Different concentrations of purified Pseudomonas aeruginosa endotoxin and a DACC-coated dressing were incubated at 37°C for various durations. After incubation, the dressing was removed and endotoxin concentration in the solution was quantified using a Limulus amebocyte lysate (LAL) assay. The DACC-coated dressing was also incubated with Pseudomonas aeruginosa cells for one hour at 37°C. After incubation, the dressing and bacterial cells were removed and shed endotoxin remaining in the solution was quantified. RESULTS Overnight incubation of the DACC-coated wound dressing with various concentrations of purified Pseudomonas aeruginosa endotoxin (96-11000 EU/ml) consistently and significantly reduced levels of free endotoxin by 93-99% (p<0.0001). A significant endotoxin reduction of 39% (p<0.001) was observed after five minutes. The DACC-coated dressing incubated with clinically relevant Pseudomonas aeruginosa cells also reduced shed endotoxin by >99.95% (p<0.0001). CONCLUSION In this study, we showed that a DACC-coated wound dressing efficiently and rapidly binds both purified and shed endotoxin from Pseudomonas aeruginosa in vitro. This ability to remove both endotoxin and bacterial cells could promote the wound healing process.
Collapse
Affiliation(s)
| | - Inger Mattsby-Baltzer
- Department of Infectious Diseases/Clinical Bacteriology, University of Gothenburg, Guldhedsgatan 10, 413 46 Gothenburg, Sweden
| | - Anna Arvidsson
- ABIGO Medical AB, Ekonomivägen 5, SE-436 33, Askim, Sweden
| | | |
Collapse
|
23
|
Current knowledge on molecular mechanisms of microorganism-mediated bioremediation for arsenic contamination: A review. Microbiol Res 2022; 258:126990. [DOI: 10.1016/j.micres.2022.126990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 11/30/2022]
|
24
|
Zhai X, Cao W, Zhang Y, Ju P, Chen J, Duan J, Sun C. Study on the Bacterial Communities of the Biofilms on Titanium, Aluminum, and Copper Alloys at 5,772 m Undersea in Yap Trench. Front Microbiol 2022; 13:831984. [PMID: 35369519 PMCID: PMC8973411 DOI: 10.3389/fmicb.2022.831984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
Biofilms formed on metal surfaces strongly affect metallic instruments serving in marine environments. However, due to sampling difficulty, less has been known about the bacterial communities of the biofilm on metallic surfaces in hadal environments, so the failure process of these deep-sea metallic instruments influenced by microbial communities could be hardly predicted. In this research, seven alloys, including titanium, aluminum, and copper alloys, were exposed in Yap Trench hadal environment for 1 year. Thus, the communities of the biofilms formed on metallic surfaces at 5,772 m undersea in Yap Trench were initially reported in previous studies. Then, 16S rRNA gene sequencing was performed to visualize the in situ bacterial communities of the biofilms formed on titanium, aluminum, and copper alloys at 5,772 m undersea in Yap Trench. It was found that Proteobacteria was the dominant phylum in all samples, but distinct genera were discovered on various alloys. The titanium alloy provided a suitable substrate for a mutualistic symbiotic biofilm with abundant bacterial richness. Aluminum alloys without copper components showed the least bacterial richness and formed a cold-adapted and oligotrophic-adapted biofilm containing the genera Sulfurimonas and PS1 Clade, while copper-present alloys showed relatively high bacterial richness with copper-resistant or even copper-utilizing biofilms constituting the genera Stenotrophomonas, Burkholderia-Caballeronia-Paraburkholderia, and Achromobacter on the surfaces. Furthermore, among all the element components contained in alloys investigated in this research, copper element showed the strongest influences on the composition and function of microbial communities in the biofilms formed on various metallic surfaces.
Collapse
Affiliation(s)
- Xiaofan Zhai
- Key Laboratory of Marine Eco-Environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Wei Cao
- Key Laboratory of Marine Eco-Environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Yimeng Zhang
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Peng Ju
- Key Laboratory of Marine Eco-Environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- *Correspondence: Peng Ju,
| | - Juna Chen
- Navy Submarine Academy, Qingdao, China
- Juna Chen,
| | - Jizhou Duan
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Chengjun Sun
- Key Laboratory of Marine Eco-Environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- Chengjun Sun,
| |
Collapse
|
25
|
Rogiers T, Van Houdt R, Williamson A, Leys N, Boon N, Mijnendonckx K. Molecular Mechanisms Underlying Bacterial Uranium Resistance. Front Microbiol 2022; 13:822197. [PMID: 35359714 PMCID: PMC8963506 DOI: 10.3389/fmicb.2022.822197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/27/2022] [Indexed: 11/16/2022] Open
Abstract
Environmental uranium pollution due to industries producing naturally occurring radioactive material or nuclear accidents and releases is a global concern. Uranium is hazardous for ecosystems as well as for humans when accumulated through the food chain, through contaminated groundwater and potable water sources, or through inhalation. In particular, uranium pollution pressures microbial communities, which are essential for healthy ecosystems. In turn, microorganisms can influence the mobility and toxicity of uranium through processes like biosorption, bioreduction, biomineralization, and bioaccumulation. These processes were characterized by studying the interaction of different bacteria with uranium. However, most studies unraveling the underlying molecular mechanisms originate from the last decade. Molecular mechanisms help to understand how bacteria interact with radionuclides in the environment. Furthermore, knowledge on these underlying mechanisms could be exploited to improve bioremediation technologies. Here, we review the current knowledge on bacterial uranium resistance and how this could be used for bioremediation applications.
Collapse
Affiliation(s)
- Tom Rogiers
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
- Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | - Rob Van Houdt
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Adam Williamson
- Centre Etudes Nucléaires de Bordeaux Gradignan (CENBG), Bordeaux, France
| | - Natalie Leys
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | - Kristel Mijnendonckx
- Microbiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
- *Correspondence: Kristel Mijnendonckx,
| |
Collapse
|
26
|
Ranjbar S, Malcata FX. Is Genetic Engineering a Route to Enhance Microalgae-Mediated Bioremediation of Heavy Metal-Containing Effluents? Molecules 2022; 27:1473. [PMID: 35268582 PMCID: PMC8911655 DOI: 10.3390/molecules27051473] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/19/2022] Open
Abstract
Contamination of the biosphere by heavy metals has been rising, due to accelerated anthropogenic activities, and is nowadays, a matter of serious global concern. Removal of such inorganic pollutants from aquatic environments via biological processes has earned great popularity, for its cost-effectiveness and high efficiency, compared to conventional physicochemical methods. Among candidate organisms, microalgae offer several competitive advantages; phycoremediation has even been claimed as the next generation of wastewater treatment technologies. Furthermore, integration of microalgae-mediated wastewater treatment and bioenergy production adds favorably to the economic feasibility of the former process-with energy security coming along with environmental sustainability. However, poor biomass productivity under abiotic stress conditions has hindered the large-scale deployment of microalgae. Recent advances encompassing molecular tools for genome editing, together with the advent of multiomics technologies and computational approaches, have permitted the design of tailor-made microalgal cell factories, which encompass multiple beneficial traits, while circumventing those associated with the bioaccumulation of unfavorable chemicals. Previous studies unfolded several routes through which genetic engineering-mediated improvements appear feasible (encompassing sequestration/uptake capacity and specificity for heavy metals); they can be categorized as metal transportation, chelation, or biotransformation, with regulation of metal- and oxidative stress response, as well as cell surface engineering playing a crucial role therein. This review covers the state-of-the-art metal stress mitigation mechanisms prevalent in microalgae, and discusses putative and tested metabolic engineering approaches, aimed at further improvement of those biological processes. Finally, current research gaps and future prospects arising from use of transgenic microalgae for heavy metal phycoremediation are reviewed.
Collapse
Affiliation(s)
- Saeed Ranjbar
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal;
- Department of Chemical Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Francisco Xavier Malcata
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal;
- Department of Chemical Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| |
Collapse
|
27
|
Rao S, A S S, Jayaprakash GK, Swamy MM, K S, Kumar D. Plant seed extract assisted, eco-synthesized C-ZnO nanoparticles: Characterization, Chromium (VI) ion adsorption and kinetic studies. LUMINESCENCE 2022. [PMID: 35166440 DOI: 10.1002/bio.4213] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/20/2022] [Accepted: 02/11/2022] [Indexed: 11/09/2022]
Abstract
This report attempts to elucidate the potential of plant seed extract assisted synthesis of Graphite based zinc oxide nanoparticles (C-ZnO NPs) towards removal of chromium (VI) ions from the water samples. The Graphene-zinc oxide composites were characterised using TGA, XRD, FTIR and SEM. The C-ZnO nanocomposites have found to remove chromium from the sample through adsorption process. The sensitivity of chromium removal through adsorption is found to be in the range of 40-240 mg. The adsorption behaviour was found to be fitting with Langmuir isotherm model and the adsorption reaction follows pseudo second order kinetics.
Collapse
Affiliation(s)
- Srilatha Rao
- Department of Chemistry, Nitte Meenakshi Institute of Technology, Yelahanka, Bangalore, Karnataka, India
| | - Sowmyashree A S
- Department of Chemistry, Nitte Meenakshi Institute of Technology, Yelahanka, Bangalore, Karnataka, India
| | | | - M Mahadeva Swamy
- PG Department of Chemistry, JSS College of Arts, Commerce and Science, Mysuru, Karnataka, India
| | - Swamynathan K
- Department of Chemistry, Nitte Meenakshi Institute of Technology, Yelahanka, Bangalore, Karnataka, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| |
Collapse
|
28
|
Wang JF, Li WL, Ahmad I, He BY, Wang LL, He T, Wang FP, Xu ZM, Li QS. Biomineralization of Cd 2+ and inhibition on rhizobacterial Cd mobilization function by Bacillus Cereus to improve safety of maize grains. CHEMOSPHERE 2021; 283:131095. [PMID: 34144288 DOI: 10.1016/j.chemosphere.2021.131095] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
Reducing cadmium (Cd) bioavailability and rhizobacterial Cd mobilization functions in the rhizosphere via the inoculation of screened microbial inoculum is an environmental-friendly strategy to improve safety of crop grains. In this study, Bacillus Cereus, a model Cd resistant strain, was selected to explore its effects on Cd bioavailability and uptake, bacterial metabolic functions related to Cd mobilization. Results indicated that inoculation of Bacillus Cereus in maize roots of sand pot with water-soluble Cd (0.06-0.15 mg/kg) and soil pot with high Cd-contaminated soil (total Cd: 2.33 mg/kg; Cd extracted by NH4NO3: 38.6 μg/kg) could decrease water-soluble Cd ion concentration by 7.7-30.1% and Cd extracted with NH4NO3 solution by 7.8-22.5%, inducing Cd concentrations in maize grains reduced by 10.6-39.9% and 17.4-38.6%, respectively. Even for a single inoculation in soil, Cd concentration in maize grains still satisfy food safety requirements (Cd content: 0.1 mg/kg dry weight) due to its successful colonization on root surface of maize. Bacillus Cereus could enrich more plant growth promotion bacteria (PGPB) and down-regulate the expression of genes related to bacterial motility, membrane transports, carbon and nitrogen metabolism in the rhizosphere soil, decreasing Cd bioavailability in soil. Approximately 80% Cd2+ in media was transferred into intracellular, meanwhile Cd salts (sulfide and/or phosphate) were produced in Bacillus Cereus through biomineralization process. Overall, this study could provide a feasible method for improving safety of maize grains via the inoculation of Bacillus Cereus under Cd pollution.
Collapse
Affiliation(s)
- Jun-Feng Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Wan-Li Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Iftikhar Ahmad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Bao-Yan He
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Li-Li Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Tao He
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Fo-Peng Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Zhi-Min Xu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Qu-Sheng Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
29
|
Gupta AD, Gupta A, Reyes-Calderón A, Merupo VI, Kalita G, Herrera-Celis J, Chandra N, Sharma A, Ramirez JT, Arriaga LG, Oza G. Biological Synthesis of PbS, As 3S 4, HgS, CdS Nanoparticles using Pseudomonas aeruginosa and their Structural, Morphological, Photoluminescence as well as Whole Cell Protein Profiling Studies. J Fluoresc 2021; 31:1445-1459. [PMID: 34268653 DOI: 10.1007/s10895-021-02769-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/30/2021] [Indexed: 10/20/2022]
Abstract
Metal sulfide nanoparticles are semi-conductors that possess many applications in optics, optoelectronics and magnetic devices. There are physical and chemical methods for their synthesis but such methods involve toxic precursors as well as many obnoxious by-products. Hence, biological synthesis of metal sulfide nanoparticles are efficient enough to transform toxic metals to non-toxic ones. Pseudomonas aeruginosa, isolated from textile effluent and tolerant of high levels of heavy metals, was used for the green synthesis of metal sulfide (HgS, As3S4, CdS and PbS) nanoparticles. The optical, structural and morphological nature of metal sulfide nanoparticles was also determined. FTIR (Fourier Transform Infra-red) analysis showed spectral changes when P. aeruginosa was grown in medium containing heavy metals viz. Hg, As, Pb and Cd indicating that there are functional groups viz. carboxyl, hydroxyl, phosphate, amino and amide, that exists on the surface of the bacteria, thus facilitating binding of metals on its surface. The bacterial samples which were treated with different metals at different concentrations, were subjected to whole cell protein analysis using SDS-PAGE (Sodium dodecyl Sulphate- Polyacrylamide gel electrophoresis) and protein profiling. The total protein estimation revealed that there was an increase in the protein concentration in the presence of heavy metals and a significant change in the banding pattern was observed which showed induction of a set of proteins under heavy metal stress especially mercury.
Collapse
Affiliation(s)
- Annika Durve Gupta
- Department of Biotechnology, Birla College of Arts, Science and Commerce, Thane Dist, Kalyan, MS, India.
| | - Arvind Gupta
- Bioxia, H-7 Rajlakshmi complex khaler Bhiwandi Thane, Bhiwandi, India
| | - Almendra Reyes-Calderón
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio González Fracc. San Pablo, No. 500, 76130, Queretaro, Mexico
| | - Victor Ishrayelu Merupo
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Golap Kalita
- Department of Physical Science and Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Jośe Herrera-Celis
- Laboratorio Nacional de Micro Y Nanofluidica (LABMyN), Centro de Investigación y Desarrollo Tecnológico en Electroquímica (CIDETEQ), Queretaro, 76703, México
| | - Naresh Chandra
- Department of Biotechnology, Birla College of Arts, Science and Commerce, Thane Dist, Kalyan, MS, India
| | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio González Fracc. San Pablo, No. 500, 76130, Queretaro, Mexico
| | - Jose Tapia Ramirez
- Department of Genetics and Molecular Biology, Centro de Investigación Y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAVIPN), 0730, Mexico City, Mexico
| | - L G Arriaga
- Laboratorio Nacional de Micro Y Nanofluidica (LABMyN), Centro de Investigación y Desarrollo Tecnológico en Electroquímica (CIDETEQ), Queretaro, 76703, México
| | - Goldie Oza
- Laboratorio Nacional de Micro Y Nanofluidica (LABMyN), Centro de Investigación y Desarrollo Tecnológico en Electroquímica (CIDETEQ), Queretaro, 76703, México.
| |
Collapse
|
30
|
Alotaibi BS, Khan M, Shamim S. Unraveling the Underlying Heavy Metal Detoxification Mechanisms of Bacillus Species. Microorganisms 2021; 9:1628. [PMID: 34442707 PMCID: PMC8402239 DOI: 10.3390/microorganisms9081628] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 12/26/2022] Open
Abstract
The rise of anthropogenic activities has resulted in the increasing release of various contaminants into the environment, jeopardizing fragile ecosystems in the process. Heavy metals are one of the major pollutants that contribute to the escalating problem of environmental pollution, being primarily introduced in sensitive ecological habitats through industrial effluents, wastewater, as well as sewage of various industries. Where heavy metals like zinc, copper, manganese, and nickel serve key roles in regulating different biological processes in living systems, many heavy metals can be toxic even at low concentrations, such as mercury, arsenic, cadmium, chromium, and lead, and can accumulate in intricate food chains resulting in health concerns. Over the years, many physical and chemical methods of heavy metal removal have essentially been investigated, but their disadvantages like the generation of chemical waste, complex downstream processing, and the uneconomical cost of both methods, have rendered them inefficient,. Since then, microbial bioremediation, particularly the use of bacteria, has gained attention due to the feasibility and efficiency of using them in removing heavy metals from contaminated environments. Bacteria have several methods of processing heavy metals through general resistance mechanisms, biosorption, adsorption, and efflux mechanisms. Bacillus spp. are model Gram-positive bacteria that have been studied extensively for their biosorption abilities and molecular mechanisms that enable their survival as well as their ability to remove and detoxify heavy metals. This review aims to highlight the molecular methods of Bacillus spp. in removing various heavy metals ions from contaminated environments.
Collapse
Affiliation(s)
- Badriyah Shadid Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Maryam Khan
- Institute of Molecular Biology and Biotechnology (IMBB), Defence Road Campus, The University of Lahore, Lahore 55150, Pakistan;
| | - Saba Shamim
- Institute of Molecular Biology and Biotechnology (IMBB), Defence Road Campus, The University of Lahore, Lahore 55150, Pakistan;
| |
Collapse
|
31
|
Abstract
Although heavy metals are naturally found in the environment as components of the earth’s crust, environmental pollution by these toxic elements has increased since the industrial revolution. Some of them can be considered essential, since they play regulatory roles in different biological processes; but the role of other heavy metals in living tissues is not clear, and once ingested they can accumulate in the organism for long periods of time causing adverse health effects. To mitigate this problem, different methods have been used to remove heavy metals from water and soil, such as chelation-based processes. However, techniques like bioremediation are leaving these conventional methodologies in the background for being more effective and eco-friendlier. Recently, different research lines have been promoted, in which several organisms have been used for bioremediation approaches. Within this context, the extremophilic microorganisms represent one of the best tools for the treatment of contaminated sites due to the biochemical and molecular properties they show. Furthermore, since it is estimated that 5% of industrial effluents are saline and hypersaline, halophilic microorganisms have been suggested as good candidates for bioremediation and treatment of this kind of samples. These microorganisms, and specifically the haloarchaea group, are of interest to design strategies aiming the removal of polluting compounds due to the efficiency of their metabolism under extreme conditions and their significant tolerance to highly toxic compounds such as heavy metals, bromate, nitrite, chlorate, or perchlorate ions. However, there are still few trials that have proven the bioremediation of environments contaminated with heavy metals using these microorganisms. This review analyses scientific literature focused on metabolic capabilities of haloarchaea that may allow these microbes to tolerate and eliminate heavy metals from the media, paying special attention to cadmium. Thus, this work will shed light on potential uses of haloarchaea in bioremediation of soils and waters negatively affected by heavy metals, and more specifically by cadmium.
Collapse
|
32
|
Carrasco V, Amarelle V, Lagos-Moraga S, Quezada CP, Espinoza-González R, Faccio R, Fabiano E, Pérez-Donoso JM. Production of cadmium sulfide quantum dots by the lithobiontic Antarctic strain Pedobacter sp. UYP1 and their application as photosensitizer in solar cells. Microb Cell Fact 2021; 20:41. [PMID: 33568151 PMCID: PMC7876818 DOI: 10.1186/s12934-021-01531-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/27/2021] [Indexed: 02/07/2023] Open
Abstract
Background Microbes are present in almost every environment on Earth, even in those with extreme environmental conditions such as Antarctica, where rocks may represent the main refuge for life. Lithobiontic communities are composed of microorganisms capable of colonizing rocks and, as it is a not so well studied bacterial community, they may represent a very interesting source of diversity and functional traits with potential for biotechnological applications. In this work we analyzed the ability of Antarctic lithobiontic bacterium to synthesize cadmium sulfide quantum dots (CdS QDs) and their potential application in solar cells. Results A basaltic andesite rock sample was collected from Fildes Peninsula, King George Island, Antarctica, and processed in order to isolate lithobiontic bacterial strains. Out of the 11 selected isolates, strain UYP1, identified as Pedobacter, was chosen for further characterization and analysis due to its high cadmium tolerance. A protocol for the biosynthesis of CdS QDs was developed and optimized for this strain. After 20 and 80 min of synthesis, yellow-green and orange-red fluorescent emissions were observed under UV light, respectively. QDs were characterized through spectroscopic techniques, dynamic light scattering analysis, high-resolution transmission electron microscopy and energy dispersive x-ray spectroscopy. Nanostructures of 3.07 nm, composed of 51.1% cadmium and 48.9% sulfide were obtained and further used as photosensitizer material in solar cells. These solar cells were able to conduct electrons and displayed an open circuit voltage of 162 mV, a short circuit current density of 0.0110 mA cm−2, and had an efficiency of conversion up to 0.0016%, which is comparable with data previously reported for solar cells sensitized with biologically produced quantum dots. Conclusions We report a cheap, rapid and eco-friendly protocol for the production of CdS QDs by an Antarctic lithobiontic bacterium, Pedobacter, a genus that was not previously reported as a quantum dot producer. The application of the biosynthesized QDs as sensitizer material in solar cells was validated.
Collapse
Affiliation(s)
- V Carrasco
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biológicas, Universidad Andres Bello, Av. República 239, 8370146, Santiago, PC, Chile.,Biochemistry and Microbial Genomics Department, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, 11600, Montevideo, PC, Uruguay
| | - V Amarelle
- Biochemistry and Microbial Genomics Department, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, 11600, Montevideo, PC, Uruguay
| | - S Lagos-Moraga
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biológicas, Universidad Andres Bello, Av. República 239, 8370146, Santiago, PC, Chile
| | - C P Quezada
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biológicas, Universidad Andres Bello, Av. República 239, 8370146, Santiago, PC, Chile.,Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, General Gana 1702, 8370993, Santiago, PC, Chile
| | - R Espinoza-González
- Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile
| | - R Faccio
- Departamento de Experimentación y Teoría de la Estructura de la Materia y sus Aplicaciones, Facultad de Química, Universidad de la República, Av. Gral. Flores 2124, 11800, Montevideo, PC, Uruguay
| | - E Fabiano
- Biochemistry and Microbial Genomics Department, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, 11600, Montevideo, PC, Uruguay
| | - J M Pérez-Donoso
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biológicas, Universidad Andres Bello, Av. República 239, 8370146, Santiago, PC, Chile.
| |
Collapse
|
33
|
Massello FL, Donati E. Effect of heavy metal-induced stress on two extremophilic microbial communities from Caviahue-Copahue, Argentina. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115709. [PMID: 33010675 DOI: 10.1016/j.envpol.2020.115709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 09/03/2020] [Accepted: 09/19/2020] [Indexed: 06/11/2023]
Abstract
Metal pollution is a great concern worldwide and the development of new technologies for more sustainable extraction methods as well as for the remediation of polluted sites is essential. Extremophilic microorganisms are attractive for this purpose since they have poly-resistance mechanisms which make them versatile. In this work, we sampled an acidic river and a hot spring of Caviahue-Copahue volcanic environment. The indigenous microbial communities were exposed to five heavy metals (Cd, Co, Cu, Ni and Zn) in batch-cultures favouring different metabolisms of biotechnological interest. Remarkably, high tolerance values were reached in all the cultures, even though most of the metals studied were not present in the environmental sample. Particularly, outstanding tolerances were exhibited by acidophiles, which grew at concentrations as high as 400 mM of Zn and Ni. High-throughput amplicon sequencing of 16S rRNA gene was used to study the indigenous communities and the resistant consortia. We took three approaches for the analysis: phylotypes, OTUs and amplicon sequence variants (ASVs). Interestingly, similar conclusions were drawn in all three cases. Analysing the phylogenetic structure and functional potential of the adapted consortia, we found that the strongest selection was exerted by the culture media. Notably, there was a poor correlation between alpha diversity and metal stress; furthermore, metal stress did not seem to harm the functional potential of the consortia. All these results reveal a great adaptability and versatility. At the end, 25 metal-resistant extremophilic consortia with potential uses in bioremediation, bioleaching or biomonitoring processes were obtained.
Collapse
Affiliation(s)
- Francisco L Massello
- CINDEFI (CONICET, UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina.
| | - Edgardo Donati
- CINDEFI (CONICET, UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
34
|
Turner RJ, Huang LN, Viti C, Mengoni A. Metal-Resistance in Bacteria: Why Care? Genes (Basel) 2020; 11:E1470. [PMID: 33302493 PMCID: PMC7764034 DOI: 10.3390/genes11121470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 12/03/2020] [Indexed: 12/27/2022] Open
Abstract
Heavy metal resistance is more than the tolerance one has towards a particular music genera [...].
Collapse
Affiliation(s)
- Raymond J. Turner
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Li-Nan Huang
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China;
| | - Carlo Viti
- Laboratorio Genexpress, Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali, Università di Firenze, 50144 Florence, Italy;
| | - Alessio Mengoni
- Laboratorio di Genetica Microbica, Dipartimento di Biologia, Università di Firenze, 50019 Florence, Italy
| |
Collapse
|
35
|
Mello IS, Targanski S, Pietro-Souza W, Frutuoso Stachack FF, Terezo AJ, Soares MA. Endophytic bacteria stimulate mercury phytoremediation by modulating its bioaccumulation and volatilization. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110818. [PMID: 32590206 DOI: 10.1016/j.ecoenv.2020.110818] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 05/27/2023]
Abstract
The quantification, efficiency, and possible mechanisms of mercury phytoremediation by endophytic bacteria are poorly understood. Here we selected 8 out of 34 previously isolated endophytic bacterial strains with a broad resistance profile to metals and 11 antibiotics: Acinetobacter baumannii BacI43, Bacillus sp. BacI34, Enterobacter sp. BacI14, Klebsiella pneumoniae BacI20, Pantoea sp. BacI23, Pseudomonas sp. BacI7, Pseudomonas sp. BacI38, and Serratia marcescens BacI56. Except for Klebsiella pneumoniae BacI20, the other seven bacterial strains promoted maize growth on a mercury-contaminated substrate. Acinetobacter baumannii BacI43 and Bacillus sp. BacI34 increased total dry biomass by approximately 47%. The bacteria assisted mercury remediation by decreasing the metal amount in the substrate, possibly by promoting its volatilization. The plants inoculated with Serratia marcescens BacI56 and Pseudomonas sp. BacI38 increased mercury volatilization to 47.16% and 62.42%, respectively. Except for Bacillus sp. BacI34 and Pantoea sp. BacI23, the other six bacterial strains favored mercury bioaccumulation in plant tissues. Endophytic bacteria-assisted phytoremediation contributed to reduce the substrate toxicity assessed in different model organisms. The endophytic bacterial strains selected herein are potential candidates for assisted phytoremediation that shall help reduce environmental toxicity of mercury-contaminated soils.
Collapse
Affiliation(s)
- Ivani Souza Mello
- Laboratório de Biotecnologia e Ecologia Microbiana, Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Sabrina Targanski
- Laboratório de Biotecnologia e Ecologia Microbiana, Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - William Pietro-Souza
- Instituto Federal de Educação, Ciência e Tecnologia de Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | | | - Ailton Jose Terezo
- Central Analítica de Combustíveis, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Marcos Antônio Soares
- Laboratório de Biotecnologia e Ecologia Microbiana, Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil.
| |
Collapse
|
36
|
Zhong S, Chen Q, Hu J, Liu S, Qiao S, Ni J, Sun W. Vertical distribution of microbial communities and their response to metal(loid)s along the vadose zone-aquifer sediments. J Appl Microbiol 2020; 129:1657-1673. [PMID: 32533753 DOI: 10.1111/jam.14742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/20/2020] [Accepted: 06/03/2020] [Indexed: 01/30/2023]
Abstract
AIMS This study attempted to demonstrate the vertical shift in bacterial, archaeal and fungal communities along the vadose zone-aquifer sediments and their respective responses to environmental factors. METHODS AND RESULTS We collected samples from the vadose zone and three aquifer sediments along a 42·5 m bore of a typical agricultural land. The results showed that the bacterial community shifted greatly with depth. The classes of Actinobacteria (19·5%) and NC10 (11·0%) were abundant in the vadose zone while Alphaproteobacteria (22·3%) and Gammaproteobacteria (20·1%) were enriched in the aquifer. Archaeal and fungal communities were relatively more homogeneous with no significant trend as a function of depth. Process analyses further indicated that selection dominated in the bacterial community, whereas stochastic processes governed archaeal and fungal communities. Moreover environment-bacteria interaction analysis showed that metal(loid)s, especially alkali metal, had a closer correlation with the bacterial community than physicochemical variables. CONCLUSIONS Depth strongly affected bacterial rather than archaeal and fungal communities. Metal(loid)s prevailed over physicochemical variables in shaping the bacterial community in the vadose zone-aquifer continuum. SIGNIFICANCE AND IMPACT OF THE STUDY Our study provides a new perspective on the structure of microbial communities from the vadose zone to the deep aquifers.
Collapse
Affiliation(s)
- S Zhong
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, China
| | - Q Chen
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, China
| | - J Hu
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, China
| | - S Liu
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, China
| | - S Qiao
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, China
| | - J Ni
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, China
| | - W Sun
- State Key Lab Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, People's Republic of China
| |
Collapse
|
37
|
Orizola J, Ríos-Silva M, Muñoz-Villagrán C, Vargas E, Vásquez C, Arenas F. In vitro biosynthesis of Ag, Au and Te-containing nanostructures by Exiguobacterium cell-free extracts. BMC Biotechnol 2020; 20:29. [PMID: 32471409 PMCID: PMC7260758 DOI: 10.1186/s12896-020-00625-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/21/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The bacterial genus Exiguobacterium includes several species that inhabit environments with a wide range of temperature, salinity, and pH. This is why the microorganisms from this genus are known generically as polyextremophiles. Several environmental isolates have been explored and characterized for enzyme production as well as for bioremediation purposes. In this line, toxic metal(loid) reduction by these microorganisms represents an approach to decontaminate soluble metal ions via their transformation into less toxic, insoluble derivatives. Microbial-mediated metal(loid) reduction frequently results in the synthesis of nanoscale structures-nanostructures (NS) -. Thus, microorganisms could be used as an ecofriendly way to get NS. RESULTS We analyzed the tolerance of Exiguobacterium acetylicum MF03, E. aurantiacum MF06, and E. profundum MF08 to Silver (I), gold (III), and tellurium (IV) compounds. Specifically, we explored the ability of cell-free extracts from these bacteria to reduce these toxicants and synthesize NS in vitro, both in the presence or absence of oxygen. All isolates exhibited higher tolerance to these toxicants in anaerobiosis. While in the absence of oxygen they showed high tellurite- and silver-reducing activity at pH 9.0, whereas AuCl4- which was reduced at pH 7.0 in both conditions. Given these results, cell-free extracts were used to synthesize NS containing silver, gold or tellurium, characterizing their size, morphology and chemical composition. Silver and tellurium NS exhibited smaller size under anaerobiosis and their morphology was circular (silver NS), starred (tellurium NS) or amorphous (gold NS). CONCLUSIONS This nanostructure-synthesizing ability makes these isolates interesting candidates to get NS with biotechnological potential.
Collapse
Affiliation(s)
- Javier Orizola
- Laboratorio Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Mirtha Ríos-Silva
- Laboratorio Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,Departamento de Ciencias Nucleares, Comisión Chilena de Energía Nuclear, Santiago, Chile
| | - Claudia Muñoz-Villagrán
- Laboratorio Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Esteban Vargas
- Center for the Development of Nanoscience and Nanotechnology, Santiago, Chile
| | - Claudio Vásquez
- Laboratorio Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe Arenas
- Laboratorio Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
38
|
Wang X, Zhang X, Liu X, Huang Z, Niu S, Xu T, Zeng J, Li H, Wang T, Gao Y, Huang M, Cao L, Zhu Y. Physiological, biochemical and proteomic insight into integrated strategies of an endophytic bacterium Burkholderia cenocepacia strain YG-3 response to cadmium stress. Metallomics 2020; 11:1252-1264. [PMID: 31173023 DOI: 10.1039/c9mt00054b] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An endophytic bacterium YG-3 with high cadmium (Cd) resistance was isolated from poplar grown in a composite mine tailing. It was identified as Burkholderia cenocepacia based on genomic, physiological and biochemical analyses. The Cd removal rate by YG-3 could reach about 60.0% in Cd aqueous solution with high concentrations of both 100 and 500 mg L-1. Meanwhile, various absorption and adsorption strategies were found in the two different Cd concentrations. The global resistance mechanisms of YG-3 were investigated in several levels, i.e., physiological observation, such as scanning electron microscopy and transmission electron microscopy; biochemical detection for active compound production and infrared spectroscopy; label-free quantitative proteomic profile analysis. The results indicated that YG-3 possesses a complex mechanism to adapt to Cd stress: (1) binding of Cd to prevent it from entering the cell by the cell wall components, as well as secreted siderophores and exopolysaccharides; (2) intracellular sequestration of Cd by metalloproteins; (3) excretion of Cd from the cell by efflux pumps; (4) alleviation of Cd toxicity by antioxidants. Our results demonstrate that endophyte YG-3 is well adjusted to largely remove Cd and has potential to cooperate with its host to improve phytoremediation efficiency in heavy metal-contaminated sites.
Collapse
Affiliation(s)
- Xiang Wang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, Hunan, P. R. China.
| | - Xuan Zhang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, Hunan, P. R. China.
| | - Xuanming Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, Hunan, P. R. China.
| | | | - Shuqi Niu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, Hunan, P. R. China.
| | - Ting Xu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, Hunan, P. R. China.
| | - Jiarui Zeng
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, Hunan, P. R. China.
| | - Hui Li
- Hunan Academy of Forestry, Changsha 410000, Hunan, P. R. China
| | - Tengfei Wang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, Hunan, P. R. China.
| | - Yan Gao
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, Hunan, P. R. China.
| | - Mei Huang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, Hunan, P. R. China.
| | - Lidan Cao
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, Hunan, P. R. China.
| | - Yonghua Zhu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, Hunan, P. R. China.
| |
Collapse
|
39
|
Walter T, Klim J, Jurkowski M, Gawor J, Köhling I, Słodownik M, Zielenkiewicz U. Plasmidome of an environmental Acinetobacter lwoffii strain originating from a former gold and arsenic mine. Plasmid 2020; 110:102505. [PMID: 32380021 DOI: 10.1016/j.plasmid.2020.102505] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/20/2020] [Accepted: 04/12/2020] [Indexed: 02/08/2023]
Abstract
Emerging important Acinetobacter strains commonly accommodate a plethora of mobile elements including plasmids of different size. Plasmids, apart from encoding modules enabling their self-replication and/or transmission, can carry a diverse number of genes, allowing the host cell to survive in an environment that would otherwise be lethal or restrictive for growth. The present study characterizes the plasmidome generated from an arsenic-resistant strain named ZS207, classified as Acinetobacter lwoffii. Sequencing effort revealed the presence of nine plasmids in the size between 4.3 and 38.4 kb as well as one 186.6 kb megaplasmid. All plasmids, except the megaplasmid, do apparently not confer distinguishing phenotypic features. In contrast, the megaplasmid carries arsenic and heavy metals resistance regions similar to those found in permafrost A. lwoffii strains. In-depth in silico analyses have shown a significant similarity between the regions from these plasmids, especially concerning multiple transposable elements, transfer and mobilization genes, and toxin-antitoxin systems. Since ars genes encode proteins of major significance in terms of potential use in bioremediation, arsenic resistance level of ZS207 was determined and the functionality of selected ars genes was examined. Additionally, we checked the functionality of plasmid-encoded toxin-antitoxin systems and their impact on the formation of persister cells.
Collapse
Affiliation(s)
- Tomasz Walter
- Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a Str., 02-106 Warsaw, Poland
| | - Joanna Klim
- Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a Str., 02-106 Warsaw, Poland
| | - Marcin Jurkowski
- Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a Str., 02-106 Warsaw, Poland
| | - Jan Gawor
- Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a Str., 02-106 Warsaw, Poland
| | - Iwona Köhling
- Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a Str., 02-106 Warsaw, Poland
| | - Małgorzata Słodownik
- Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a Str., 02-106 Warsaw, Poland
| | - Urszula Zielenkiewicz
- Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a Str., 02-106 Warsaw, Poland.
| |
Collapse
|
40
|
Liao Q, Tang J, Wang H, Yang W, He L, Wang Y, Yang Z. Dynamic proteome responses to sequential reduction of Cr(VI) and adsorption of Pb(II) by Pannonibacter phragmitetus BB. JOURNAL OF HAZARDOUS MATERIALS 2020; 386:121988. [PMID: 31901545 DOI: 10.1016/j.jhazmat.2019.121988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/30/2019] [Accepted: 12/26/2019] [Indexed: 06/10/2023]
Abstract
Here, the microbial responses to Cr(VI) and Pb(II) with bio-removal of the metals in water by Pannonibacter phragmitetus BB were explored. The comparative bacterial proteomics showed that the intracellular and extracellular Cr(VI) reduction proteins, Pb(II) adsorption by the lipoprotein and sugar-related bacterial proteins, as well as Pb(II) precipitation by phosphate and OH- were vital to the bio-removal of Cr(VI) and Pb(II). Moreover, the influx and efflux channels of Cr(VI) and Cr(III), Pb(II) transporters, extracellular siderophores for Pb(II) complexation and antioxidant proteins enabled the strain BB to resist the toxicity of Cr(VI) and Pb(II). In addition, the dynamic expression levels of the proteins related to reduction and transportation of Cr(VI), and adsorption, transportation and complexation of Pb(II) were dependent on the corresponding metal, respectively. The anti-oxidative stress system, such as superoxide dismutase, and Na+/H+ antiporters played central roles in the protein-protein interaction network to resist and detoxify Cr(VI) and Pb(II). The results of our study provide a novel insight for the physiological responses of the strain BB to the combined stresses of Pb(II) and Cr(VI).
Collapse
Affiliation(s)
- Qi Liao
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083, Changsha, China; National Engineering Research Center for Heavy Metals Pollution Control and Treatment, 410083, Changsha, China
| | - Jiaqi Tang
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083, Changsha, China
| | - Haiying Wang
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083, Changsha, China; National Engineering Research Center for Heavy Metals Pollution Control and Treatment, 410083, Changsha, China; Water Pollution Control Technology Key Lab of Hunan Province, 410083, Changsha, China
| | - Weichun Yang
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083, Changsha, China; National Engineering Research Center for Heavy Metals Pollution Control and Treatment, 410083, Changsha, China; Water Pollution Control Technology Key Lab of Hunan Province, 410083, Changsha, China
| | - Lixu He
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083, Changsha, China
| | - Yangyang Wang
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083, Changsha, China; College of Environment and Planning, Henan University, 475004, Kaifeng, China
| | - Zhihui Yang
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083, Changsha, China; National Engineering Research Center for Heavy Metals Pollution Control and Treatment, 410083, Changsha, China.
| |
Collapse
|
41
|
Bazzi W, Abou Fayad AG, Nasser A, Haraoui LP, Dewachi O, Abou-Sitta G, Nguyen VK, Abara A, Karah N, Landecker H, Knapp C, McEvoy MM, Zaman MH, Higgins PG, Matar GM. Heavy Metal Toxicity in Armed Conflicts Potentiates AMR in A. baumannii by Selecting for Antibiotic and Heavy Metal Co-resistance Mechanisms. Front Microbiol 2020; 11:68. [PMID: 32117111 PMCID: PMC7008767 DOI: 10.3389/fmicb.2020.00068] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 01/14/2020] [Indexed: 12/29/2022] Open
Abstract
Acinetobacter baumannii has become increasingly resistant to leading antimicrobial agents since the 1970s. Increased resistance appears linked to armed conflicts, notably since widespread media stories amplified clinical reports in the wake of the American invasion of Iraq in 2003. Antimicrobial resistance is usually assumed to arise through selection pressure exerted by antimicrobial treatment, particularly where treatment is inadequate, as in the case of low dosing, substandard antimicrobial agents, or shortened treatment course. Recently attention has focused on an emerging pathogen, multi-drug resistant A. baumannii (MDRAb). MDRAb gained media attention after being identified in American soldiers returning from Iraq and treated in US military facilities, where it was termed "Iraqibacter." However, MDRAb is strongly associated in the literature with war injuries that are heavily contaminated by both environmental debris and shrapnel from weapons. Both may harbor substantial amounts of toxic heavy metals. Interestingly, heavy metals are known to also select for antimicrobial resistance. In this review we highlight the potential causes of antimicrobial resistance by heavy metals, with a focus on its emergence in A. baumanni in war zones.
Collapse
Affiliation(s)
- Wael Bazzi
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
- World Health Organisation (WHO) Collaborating Center for Reference and Research on Bacterial Pathogens, Beirut, Lebanon
| | - Antoine G. Abou Fayad
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
- World Health Organisation (WHO) Collaborating Center for Reference and Research on Bacterial Pathogens, Beirut, Lebanon
| | - Aya Nasser
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
- World Health Organisation (WHO) Collaborating Center for Reference and Research on Bacterial Pathogens, Beirut, Lebanon
| | - Louis-Patrick Haraoui
- Department of Microbiology and Infectious Diseases, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Omar Dewachi
- Rutgers, The State University of New Jersey, Newark, NJ, United States
| | | | - Vinh-Kim Nguyen
- The Graduate Institute of International and Developmental Studies, Geneva, Switzerland
| | - Aula Abara
- Department of Infection, Imperial College London, London, United Kingdom
| | - Nabil Karah
- Department of Molecular Biology, Umea University, Umea, Sweden
| | - Hannah Landecker
- Department of Sociology and Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Charles Knapp
- Civil and Environmental Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Megan M. McEvoy
- Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Muhammad H. Zaman
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Paul G. Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Ghassan M. Matar
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
- World Health Organisation (WHO) Collaborating Center for Reference and Research on Bacterial Pathogens, Beirut, Lebanon
| |
Collapse
|
42
|
Sharma Ghimire P, Tripathee L, Zhang Q, Guo J, Ram K, Huang J, Sharma CM, Kang S. Microbial mercury methylation in the cryosphere: Progress and prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 697:134150. [PMID: 32380618 DOI: 10.1016/j.scitotenv.2019.134150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/20/2019] [Accepted: 08/26/2019] [Indexed: 06/11/2023]
Abstract
Mercury (Hg) is one of the most toxic heavy metals, and its cycle is mainly controlled by oxidation-reduction reactions carried out by photochemical or microbial process under suitable conditions. The deposition and accumulation of methylmercury (MeHg) in various ecosystems, including the cryospheric components such as snow, meltwater, glaciers, and ice sheet, and subsequently in the food chain pose serious health concerns for living beings. Unlike the abundance of knowledge about the processes of MeHg production over land and oceans, little is known about the sources and production/degradation rate of MeHg in cryosphere systems. In addition, processes controlling the concentration of Hg and MeHg in the cryosphere remains poorly understood, and filling this scientific gap has been challenging. Therefore, it is essential to study and review the deposition and accumulation by biological, physical, and chemical mechanisms involved in Hg methylation in the cryosphere. This review attempts to address knowledge gaps in understanding processes, especially biotic and abiotic, applicable for Hg methylation in the cryosphere. First, we focus on the variability in Hg concentration and mechanisms of Hg methylation, including physical, chemical, microbial, and biological processes, and transportation in the cryosphere. Then, we elaborate on the mechanism of redox reactions and biotic and abiotic factors controlling Hg methylation and biogeochemistry of Hg in the cryosphere. We also present possible mechanisms of Hg methylation with an emphasis on microbial transformation and molecular function to understand variability in Hg concentration in the cryosphere. Recent advancements in the genetic and physicochemical mechanisms of Hg methylation are also presented. Finally, we summarize and propose a method to study the unsolved issues of Hg methylation in the cryosphere.
Collapse
Affiliation(s)
- Prakriti Sharma Ghimire
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou 730000, China; Himalayan Environment Research Institute (HERI), Kathmandu, Nepal
| | - Lekhendra Tripathee
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou 730000, China; Himalayan Environment Research Institute (HERI), Kathmandu, Nepal.
| | - Qianggong Zhang
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100085, China
| | - Junming Guo
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Kirpa Ram
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India
| | - Jie Huang
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100085, China; Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Chhatra Mani Sharma
- Himalayan Environment Research Institute (HERI), Kathmandu, Nepal; Central Department of Environmental Science, Tribhuvan University, Kathmandu, Nepal
| | - Shichang Kang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou 730000, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100085, China.
| |
Collapse
|
43
|
Cabral L, Noronha MF, de Sousa STP, Lacerda-Júnior GV, Richter L, Fostier AH, Andreote FD, Hess M, Oliveira VMD. The metagenomic landscape of xenobiotics biodegradation in mangrove sediments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 179:232-240. [PMID: 31051396 DOI: 10.1016/j.ecoenv.2019.04.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/08/2019] [Accepted: 04/15/2019] [Indexed: 06/09/2023]
Abstract
Metagenomics is a powerful approach to study microorganisms present in any given environment and their potential to maintain and improve ecosystem health without the need of cultivating these microorganisms in the laboratory. In this study, we combined a cultivation-independent metagenomics approach with functional assays to identify the detoxification potential of microbial genes evaluating their potential to contribute to xenobiotics resistance in oil-impacted mangrove sediments. A metagenomic fosmid library containing 12,960 clones from highly contaminated mangrove sediment was used in this study. For assessment of metal resistance, clones were grown in culture medium with increasing concentrations of mercury. The analyses metagenomic library sequences revealed the presence of genes related to heavy metals and antibiotics resistance in the oil-impacted mangrove microbiome. The taxonomic profiling of these sequences suggests that at the genus level, Geobacter was the most abundant genus in our dataset. A functional screening assessment of the metagenomic library successfully detected 24 potential heavy metal tolerant clones, six of which were capable of growing with increased concentrations of mercury. The genetic characterization of selected clones allowed the detection of genes related to detoxification processes, such as chromate transport protein ChrA, haloacid dehalogenase-like hydrolase, lipopolysaccharide transport system, and 3-oxoacyl-[acyl-carrier-protein] reductase. Clones were capable of growing in medium containing increased concentrations of metals and antibiotics, but none manifested strong mercury removal from culture medium characteristic of mercuric reductase activity. These results suggest that resistance to xenobiotic stress varies greatly and that additional studies to elucidate the potential of metal biotransformation need to be carried out with the goal of improving bioremediation application.
Collapse
Affiliation(s)
- Lucélia Cabral
- Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; Institute of Biology (IB)- University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| | - Melline Fontes Noronha
- Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; Institute of Biology (IB)- University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Sanderson Tarciso Pereira de Sousa
- Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; Institute of Biology (IB)- University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Gileno Vieira Lacerda-Júnior
- Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; Institute of Biology (IB)- University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Larissa Richter
- Institute of Chemistry - University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Anne Hélène Fostier
- Institute of Chemistry - University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Fernando Dini Andreote
- Department of Soil Science, ''Luiz de Queiroz'' College of Agriculture, University of Sao Paulo, Piracicaba, São Paulo, Brazil
| | - Matthias Hess
- University of California, Davis, Department of Animal Science, Davis, CA, USA
| | - Valéria Maia de Oliveira
- Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
44
|
Macêdo WV, Sakamoto IK, Azevedo EB, Damianovic MHRZ. The effect of cations (Na +, Mg 2+, and Ca 2+) on the activity and structure of nitrifying and denitrifying bacterial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 679:279-287. [PMID: 31082601 DOI: 10.1016/j.scitotenv.2019.04.397] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 06/09/2023]
Abstract
Wastewaters generated in regions with water scarcity usually have high alkalinity, hardness, and elevated osmotic pressure (OP). Those characteristics should be considered when using biological systems for wastewater treatment along with the salinity heterogeneity. The interaction of different salts in mixed electrolyte solutions may cause inhibition, antagonism, synergism, and stimulation effects on microbial communities. Little is known about those effects on microbial activity and community structure of nitrifying and denitrifying bacteria. In this work, factorial design was used to evaluate the effects of NaCl, MgCl2 and CaCl2 on nitrifying and denitrifying communities. Antagonistic relationships between all salts were observed and they had greater magnitude on the nitrifying community. Stimulus and synernism were more evident on the nitrifying and denitrifying experiments, respectively. For this reason, the highest nitrification and denitrification specific rates were 1.1 × 10-1 mgN-NH4+ gSSV-1 min-1 for condition 01 and 6.5 × 10-2 mgN-NO3- gSSV-1 min-1 for control condition, respectively. The toxicity of the salts followed the order of NaCl > MgCl2 > CaCl2 and the antagonism between MgCl2 and NaCl was the most significant. PCR/DGGE analyses showed that Mg2+ may be the element that expresses the least influence in the differentiation of microbial structure even though it significantly affects the activity of the autotrophic microorganisms. The same behavior was observed for Ca2+ on denitrifying microorganism. In addition, microbial diversity and richness was not negatively affected by different salinities. Genetic sequencing suggested that the genus Aeromonas, Alishewanella, Azospirillum, Pseudoalteromonas, and Thioalkalivibrio were outstanding on ammonium and nitrate removal under saline conditions. The specific toxicity of each salt and the interactions among them are the major effects on microbial activity in biological wastewater treatments rather than the osmotic pressure caused by the final salinity.
Collapse
Affiliation(s)
- Williane Vieira Macêdo
- Biological Processes Laboratory (LPB), University of São Paulo (USP), 1100 João Dagnone Avenue, 13563-120 São Carlos, SP, Brazil.
| | - Isabel K Sakamoto
- Biological Processes Laboratory (LPB), University of São Paulo (USP), 1100 João Dagnone Avenue, 13563-120 São Carlos, SP, Brazil
| | - Eduardo Bessa Azevedo
- Environmental Technology Development Laboratory (LTDAmb), University of São Paulo (USP), 400 Trab. São Carlense Avenue, 13563-120 São Carlos, SP, Brazil
| | - Marcia Helena R Z Damianovic
- Biological Processes Laboratory (LPB), University of São Paulo (USP), 1100 João Dagnone Avenue, 13563-120 São Carlos, SP, Brazil
| |
Collapse
|
45
|
Zhang J, Li Q, Zeng Y, Zhang J, Lu G, Dang Z, Guo C. Bioaccumulation and distribution of cadmium by Burkholderia cepacia GYP1 under oligotrophic condition and mechanism analysis at proteome level. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 176:162-169. [PMID: 30927637 DOI: 10.1016/j.ecoenv.2019.03.091] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/17/2019] [Accepted: 03/20/2019] [Indexed: 06/09/2023]
Abstract
Bacteria have been applied for the bioremediation of cadmium-contaminated environment. Less is known about the bioaccumulation of high concentration of Cd over time under the oligotrophic environment. Burkholderia cepacia GYP1, which was isolated from multiple heavy metal contaminated farmland, was studied for its bioaccumulation mechanism of Cd under oligotrophic condition. GYP1 possessed highly accumulation capacity for cadmium reaching 116 mg Cd/g biomass (dry weight). ATR-FTIR, electron microscopy, flow cytometry along with subcellular fraction demonstrated that the uptake and distribution of cadmium varied with the increased amount of cadmium of GYP1 cell during the 7-day treatment time: the accumulation of cadmium was mainly on the outer membrane at the beginning (within 1 day), and the intracellular cadmium kept increased and held stable after 2 days, after that, the increased amount of cadmium mainly located extracellularly, related to the secreted EPS. Further mechanism analysis of bioaccumulation of Cd by GYP1 based on iTRAQ-based proteomics showed that Cd(II) could trigger the up-regulation of the Cd2+/Zn2+-exporting ATPase, type VI protein secretion systems, and glutathione-S-transferase that are related to cadmium response, which may contribute to maintain the intracellular cadmium homeostasis. In summary, the immobilization of Cd(II) by B. cepacia GYP1 contains three steps:(1) fast immobilization of Cd(II) on the cell surface coordinated with functional groups, (2) transport of Cd(II) to cells and accumulation in cytoplasm, and (3) efflux of intracellular Cd(II) depended on energy and the entrapped or adsorbed of extracellular Cd(II) by EPS. Our study provided the understanding of the cadmium accumulation process of B. cepacia GYP1 under oligotrophic condition, which would be helpful in bioremediation of natural cadmium contaminated environment.
Collapse
Affiliation(s)
- Junhui Zhang
- School of Environment and Energy, South China University of Technology, The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangzhou, Guangdong, 510006, PR China
| | - Qi Li
- School of Environment and Energy, South China University of Technology, The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangzhou, Guangdong, 510006, PR China
| | - Yufei Zeng
- School of Environment and Energy, South China University of Technology, The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangzhou, Guangdong, 510006, PR China
| | - Jian Zhang
- School of Environment and Energy, South China University of Technology, The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangzhou, Guangdong, 510006, PR China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangzhou, Guangdong, 510006, PR China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangzhou, Guangdong, 510006, PR China
| | - Chuling Guo
- School of Environment and Energy, South China University of Technology, The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangzhou, Guangdong, 510006, PR China.
| |
Collapse
|
46
|
Sher S, Rehman A. Use of heavy metals resistant bacteria-a strategy for arsenic bioremediation. Appl Microbiol Biotechnol 2019; 103:6007-6021. [PMID: 31209527 DOI: 10.1007/s00253-019-09933-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/20/2019] [Accepted: 05/20/2019] [Indexed: 01/26/2023]
Abstract
A large number of industries release their untreated wastes in the environment causing an increase in the concentration of toxic pollutants including heavy metal ions in ground and drinking water which is above the WHO limit. The presence of toxic pollutants in the industrial wastes pollutes our environment. Arsenic (As) is a ubiquitous toxic metalloid. Its amount varies in different parts on the earth, and its concentration is increasing in our environment day by day both by natural and anthropogenic activities. It is found in two forms; one is arsenate (As5+) and other is arsenite (As3+) and the latter is more toxic due to high mobility across the cell membrane. The long-term use of arsenic-containing water causes arsenicosis. High arsenic consumption, revealed by skin harms, color change, and spots on hands and feet, may cause skin cancer and affect lungs and kidneys. Hypertension, a state of high blood pressure, and lack of insulin which causes diabetes and many other disorders which relate to reproduction are the consequences of arsenic contamination. Several methods have been employed to decontaminate arsenic pollution, but the bioremediation by using biomass of bacteria, algae, fungi, and yeasts is the most compromising approach and has gained much attention from researchers in the last few decades. The microbial detoxification of arsenic can be achieved by reduction, oxidation, and methylation. High bioremediation potential and feasibility of the process make bacteria an impending foundation for green chemistry to exterminate arsenic in the environment.
Collapse
Affiliation(s)
- Shahid Sher
- Department of Microbiology and Molecular Genetics, University of the Punjab, New Campus, Lahore, 54590, Pakistan
| | - Abdul Rehman
- Department of Microbiology and Molecular Genetics, University of the Punjab, New Campus, Lahore, 54590, Pakistan.
| |
Collapse
|
47
|
Letuta UG, Berdinskiy VL. Biological effects of static magnetic fields and zinc isotopes on E. coli bacteria. Bioelectromagnetics 2019; 40:62-73. [PMID: 30562415 DOI: 10.1002/bem.22162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/09/2018] [Indexed: 12/22/2022]
Abstract
The sensitivity of intracellular enzymatic systems to static magnetic fields (SMFs) and magnetic isotopes has been shown both in vitro and in vivo. These effects are determined by the spin-dependent magnetosensitive stages of enzymatic reactions. The search for experimental evidence of the combined effect of SMFs and zinc magnetic isotope 67 Zn on the intracellular processes on Escherichia coliEscherichia coli bacteria has taken place in vivo. The joint effects of external SMFs and magnetic zinc isotope 67 Zn on vital functions of E.coli bacteria have been shown experimentally. The combined effect of isotope 67 Zn and weak SMFs (25-35 mT) causes a 2-4-fold increase in the colony-forming ability and growth rate constants of bacteria E. coli compared with nonmagnetic zinc isotopes 64,66 Zn. The effects of SMFs in the range of 2.2-8 mT were detected for all bacteria, regardless of zinc isotope content in the media. An increase in ATP concentration in E. coli was detected for bacteria grown on a medium with the magnetic isotope 67 Zn in the SMF range of 2.2-4.2 mT. The major elements' (Na, K, Ca, Mg, P, Zn) metabolism in E. coli depend on the intensity of SMFs and zinc isotopes. These data confirm the existence of intracellular enzymatic processes stages that are sensitive to SMFs and magnetic moments of atomic nuclei. It is important to note that magnetic zinc 67 Zn and magnesium 25 Mg isotopes induce effects on viability of E. coli in different SMF ranges. Bioelectromagnetics. 40:62-73, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
|
48
|
Castro C, Urbieta MS, Plaza Cazón J, Donati ER. Metal biorecovery and bioremediation: Whether or not thermophilic are better than mesophilic microorganisms. BIORESOURCE TECHNOLOGY 2019; 279:317-326. [PMID: 30755320 DOI: 10.1016/j.biortech.2019.02.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/03/2019] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
Metal mobilization and immobilization catalyzed by microbial action are key processes in environmental biotechnology. Metal mobilization from ores, mining wastes, or solid residues can be used for recovering metals and/or remediating polluted environments; furthermore, immobilization reduces the migration of metals; cleans up effluents plus ground- and surface water; and, moreover, can help to concentrate and recover metals. Usually these processes provide certain advantages over traditional technologies such as more efficient economical and environmentally sustainable results. Since elevated temperatures typically increase chemical kinetics, it could be expected that bioprocesses should also be enhanced by replacing mesophiles with thermophiles or hyperthermophiles. Nevertheless, other issues like process stability, flexibility, and thermophile-versus-mesophile resistance to acidity and/or metal toxicity should be carefully considered. This review critically analyzes and compares thermophilic and mesophilic microbial performances in recent and selected representative examples of metal bioremediation and biorecovery.
Collapse
Affiliation(s)
- C Castro
- CINDEFI (CONICET-CCT LA PLATA UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115, (1900), La Plata, Argentina
| | - M S Urbieta
- CINDEFI (CONICET-CCT LA PLATA UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115, (1900), La Plata, Argentina.
| | - J Plaza Cazón
- CINDEFI (CONICET-CCT LA PLATA UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115, (1900), La Plata, Argentina
| | - E R Donati
- CINDEFI (CONICET-CCT LA PLATA UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115, (1900), La Plata, Argentina
| |
Collapse
|
49
|
Lazareva EV, Myagkaya IN, Kirichenko IS, Gustaytis MA, Zhmodik SM. Interaction of natural organic matter with acid mine drainage: In-situ accumulation of elements. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 660:468-483. [PMID: 30640114 DOI: 10.1016/j.scitotenv.2018.12.467] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/30/2018] [Accepted: 12/30/2018] [Indexed: 06/09/2023]
Abstract
Natural organic matter (NOM) within the dispersion train of Novo-Ursk tailings (Salair Ridge, Kemerovo region, Russia) is composed of remnant sedge peat mounds and is located either on the surface or is buried under cyanide wastes. The organic material interacts with AMD and with the wastes, which leaves imprint on its composition. This interaction produces geochemical anomalies (g/t: 1582 Cu, 41,300 Zn, 6060 Se, 11,700 Hg, 114-155 Au, 534 Ag, 416 I). The contents of elements depend on Fe in three groups of NOM samples that contain <10 wt% Fe (group I), 10-22 wt% Fe (group II), and >22 wt% Fe (group III). NOM with higher Fe enrichment contains less Cu, Zn, Se, Hg, Ag and I, as well as Cd, Ba, Sr and Rb, Y, Zr, Nb, Mo, Sn, Sb, and Te but more As. Yet, gold may reach high concentrations in NOM with any Fe contents. Accumulation of elements by NOM during its prolonged interaction with wastes and AMD is maintained by physical, chemical, biochemical, and mineralogical processes. They are, respectively, migration of waters controlled by permeability of material in the dispersion train depending on its grain sizes and by AMD flow direction; oxidative dissolution of sulfides, complexing, and adsorption on organic matter and Fe(III) hydroxides; microbial mediation; and secondary mineralization. The chemistry of waters interacting with NOM at the time of its deposition can be reconstructed with regard to several factors, including microbial mediation. Namely, local geochemical anomalies with ultrahigh element concentrations may arise because microorganisms can immobilize Hg to make it less toxic; sulfate-reducing bacteria can maintain precipitation of Zn, Cu, and Cd sulfides; microbial activity can mediate redistribution of elements between clastic and organic materials, etc. The inferred inheritance of AMD geochemical signatures by NOM has implications for the conditions and mechanisms of element accumulation.
Collapse
Affiliation(s)
- E V Lazareva
- V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, Koptyuga Ave. 3, Novosibirsk 630090, Russia
| | - I N Myagkaya
- V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, Koptyuga Ave. 3, Novosibirsk 630090, Russia.
| | - I S Kirichenko
- V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, Koptyuga Ave. 3, Novosibirsk 630090, Russia
| | - M A Gustaytis
- V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, Koptyuga Ave. 3, Novosibirsk 630090, Russia
| | - S M Zhmodik
- V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, Koptyuga Ave. 3, Novosibirsk 630090, Russia
| |
Collapse
|
50
|
Ramos-Zúñiga J, Gallardo S, Martínez-Bussenius C, Norambuena R, Navarro CA, Paradela A, Jerez CA. Response of the biomining Acidithiobacillus ferrooxidans to high cadmium concentrations. J Proteomics 2019; 198:132-144. [DOI: 10.1016/j.jprot.2018.12.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 11/28/2022]
|