1
|
Liu Y, Guo C, Wang C. Biochemical characterization of an organic solvent- and salt-tolerant xylanase and its application of arabinoxylan-oligosaccharides production from corn fiber gum. Int J Biol Macromol 2024; 280:136146. [PMID: 39349079 DOI: 10.1016/j.ijbiomac.2024.136146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/14/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
A endo-xylanase, of the glycoside hydrolase family 10 from Schizophyllum commune DB01, was expressed in P. pastoris. Recombinant xylanase (Scxyn5) retained above 80 % maximum activity in 10 % dimethyl sulfoxide and retained 90 % maximum activity in 5 M NaCl on the substrate of birchwood xylan. The effect of NaCl on the catalytic activity of Scxyn5 was significantly different toward various substrates, which was caused by the difference of monosaccharide composition and sturcture of the substrates. Furthermore, when corn fiber gum (CFG) was used as a substrate, the catalytic activity of Scxyn5 increased by 1.3-2.03 times in 1-5 M NaCl. Based on response surface methodology, the highest catalytic activity of Scxyn5 in hydrolyzing CFG were achieved with enzymatic temperature of 50 °C, pH value of 6.0, and 4 M NaCl. These properties of Scxyn5 suit the arabinoxylan-oligosaccharides (AXOs) preparation from CFG and some other potential applications in food industry.
Collapse
Affiliation(s)
- Yuchun Liu
- Academy of National Food and Strategic Reserves Administration, No 11 Baiwanzhuang Avenue, Xicheng District, Beijing 100037, PR China.
| | - Chao Guo
- Academy of National Food and Strategic Reserves Administration, No 11 Baiwanzhuang Avenue, Xicheng District, Beijing 100037, PR China
| | - Chao Wang
- Academy of National Food and Strategic Reserves Administration, No 11 Baiwanzhuang Avenue, Xicheng District, Beijing 100037, PR China.
| |
Collapse
|
2
|
Three-Step Purification and Characterization of Organic Solvent-Tolerant and Alkali-Thermo-Tolerant Xylanase from Bacillus paramycoides T4 [MN370035]. Catalysts 2022. [DOI: 10.3390/catal12070749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In the present study, an extracellular alkali-thermo-tolerant xylanase from Bacillus paramycoides was produced in the presence of an organic solvent. The enzyme was purified by ammonium sulphate precipitation, gel filtration, and ion exchange chromatography, with an overall recovery of 25.9%. The purified enzyme hada 70 kDa molecular weight (MW) confirmed by SDS-PAGE gel analysis. The maximum enzyme activity was reported at 55 °C and pH 7.0. Xylanase activity and stability were improved in the presence of 30% (v/v) n-dodecane, iso-octane, n-decane, and cyclohexane (7 days). The enzyme activity was improved by Co2+, EDTA, and Triton-X-100 while vigorously repressed by Hg2+ and Cu2+. The purified enzyme showed 1.473 mg/mL Km and 654.017 µg/mL/min Vmax values. The distinctive assets of the isolate verified the potential application in the field of biomass conversion into fuel and other industrial processes. Organic solvent-tolerant xylanases can be used for concurrent saccharification and bioethanol production, the amplification of intoxicating beverages, and the fermenting industry.
Collapse
|
3
|
Vacilotto MM, Pellegrini VOA, Sepulchro AGV, Capetti CCDM, Curvelo AAS, Marcondes WF, Arantes V, Polikarpov I. Paludibacter propionicigenes GH10 xylanase as a tool for enzymatic xylooligosaccharides production from heteroxylans. Carbohydr Polym 2022; 275:118684. [PMID: 34742414 DOI: 10.1016/j.carbpol.2021.118684] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/30/2021] [Accepted: 09/16/2021] [Indexed: 12/17/2022]
Abstract
Bioconversion of lignocellulosic biomass into value-added products relies on polysaccharides depolymerization by carbohydrate active enzymes. This work reports biochemical characterization of Paludibacter propionicigenes xylanase from GH10 (PpXyn10A) and its application for enzymatic xylooligosaccharides (XOS) production from commercial heteroxylans and liquor of hydrothermally pretreated corn cobs (PCC). PpXyn10A is tolerant to ethanol and NaCl, and releases xylobiose (X2) and xylotriose (X3) as the main hydrolytic products. The conversion rate of complex substrates into short XOS was approximately 30% for glucuronoxylan and 8.8% for rye arabinoxylan, after only 4 h; while for PCC, PpXyn10A greatly increased unbranched XOS yields. B. adolescentis fermentation with XOS from beechwood glucuronoxylan produced mainly acetic and lactic acids. Structural analysis shows that while the glycone region of PpXyn10A active site is well preserved, the aglycone region has aromatic interactions in the +2 subsite that may explain why PpXyn10A does not release xylose.
Collapse
Affiliation(s)
- Milena Moreira Vacilotto
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense 400, 13566-590 São Carlos, SP, Brazil
| | - Vanessa O Arnoldi Pellegrini
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense 400, 13566-590 São Carlos, SP, Brazil
| | - Ana Gabriela Veiga Sepulchro
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense 400, 13566-590 São Carlos, SP, Brazil
| | - Caio C de Mello Capetti
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense 400, 13566-590 São Carlos, SP, Brazil
| | - Antonio Aprigio S Curvelo
- Instituto de Química de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense 400, 13566-590 São Carlos, SP, Brazil
| | - Wilian Fioreli Marcondes
- Biocatalysis and Bioproducts Laboratory, Department of Biotechnology, Escola de Engenharia de Lorena, Universidade de São Paulo, Lorena, SP, Brazil
| | - Valdeir Arantes
- Biocatalysis and Bioproducts Laboratory, Department of Biotechnology, Escola de Engenharia de Lorena, Universidade de São Paulo, Lorena, SP, Brazil
| | - Igor Polikarpov
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense 400, 13566-590 São Carlos, SP, Brazil.
| |
Collapse
|
4
|
Pawar R, Pawar S, Rathod V. Sequential optimization of xylanase production using Sapindus mukorossi seed waste in Lechevalieria aerocolonigenes. Prep Biochem Biotechnol 2021; 52:135-143. [PMID: 34533428 DOI: 10.1080/10826068.2021.1920035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The production of xylanase from Lechevalieria aerocolonigenes using reetha seed waste as substrate was studied using sequential optimization of fermentation parameters by response surface methodology. Five different lignocellulosic agricultural wastes as a substrate were studied to replace commercially available xylan, amongst which reetha seed waste was found to be the most suitable substrate for xylanase production. A sequential two-stage optimization strategy was used for the fermentation parameter optimization. The Plackett-Burman design was first employed for screening the 6 different physicochemical parameters affecting xylanase production (inoculum concentration, substrate concentration, temperature, pH, media volume, and agitation). The significant factors affecting the xylanase yield were further optimized by Box-Behnken Design in order to obtain the values contributing the highest enzyme yield. Three parameters, namely, temperature, inoculum concentration, and substrate concentration, can be interpreted as the most significant parameters based on the results of Plackett-Burman design. The optimum values by Box-Behnken Design (BBD) are 35 °C temperature, 3 g/L substrate concentration, and inoculum concentration of 4% (v/v) that resulted in maximum xylanase productivity of 5.75 IU/mL at 24 h of the incubation period. Sequential optimization strategy enhanced the xylanase yield by 4.8 fold to that of an unoptimized process.
Collapse
Affiliation(s)
- Rohini Pawar
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai, India
| | - Shweta Pawar
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai, India
| | - Virendra Rathod
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai, India
| |
Collapse
|
5
|
Cao L, Zhang R, Zhou J, Huang Z. Biotechnological Aspects of Salt-Tolerant Xylanases: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8610-8624. [PMID: 34324332 DOI: 10.1021/acs.jafc.1c03192] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
β-1,4-Xylan is the main component of hemicelluloses in land plant cell walls, whereas β-1,3-xylan is widely found in seaweed cell walls. Complete hydrolysis of xylan requires a series of synergistically acting xylanases. High-saline environments, such as saline-alkali lands and oceans, frequently occur in nature and are also involved in a broad range of various industrial processes. Thus, salt-tolerant xylanases may contribute to high-salt and marine food processing, aquatic feed production, industrial wastewater treatment, saline-alkali soil improvement, and global carbon cycle, with great commercial and environmental benefits. This review mainly introduces the definition, sources, classification, biochemical and molecular characteristics, adaptation mechanisms, and biotechnological applications of salt-tolerant xylanases. The scope of development for salt-tolerant xylanases is also discussed. It is anticipated that this review would serve as a reference for further development and utilization of salt-tolerant xylanases and other salt-tolerant enzymes.
Collapse
Affiliation(s)
- Lijuan Cao
- College of Life Sciences, Yunnan Normal University, Kunming, Yunnan 650500, People's Republic of China
| | - Rui Zhang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University, Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Yunnan Normal University, Kunming, Yunnan 650500, People's Republic of China
| | - Junpei Zhou
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University, Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Yunnan Normal University, Kunming, Yunnan 650500, People's Republic of China
| | - Zunxi Huang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University, Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan Provincial Education Department for Plateau Characteristic Food Enzymes, Yunnan Normal University, Kunming, Yunnan 650500, People's Republic of China
| |
Collapse
|
6
|
He L, Zhang R, Shen J, Miao Y, Tang X, Wu Q, Zhou J, Huang Z. Removal of N-terminal tail changes the thermostability of the low-temperature-active exo-inulinase InuAGN25. Bioengineered 2020; 11:921-931. [PMID: 32865156 PMCID: PMC8291819 DOI: 10.1080/21655979.2020.1809921] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Exo-inulinases are members of the glycoside hydrolase family 32 and function by hydrolyzing inulin into fructose with yields up to 90–95%. The N-terminal tail contributes to enzyme thermotolerance, which plays an important role in enzyme applications. However, the role of N-terminal amino acid residues in the thermal performance and structural properties of exo-inulinases remains to be elucidated. In this study, three and six residues of the N-terminus starting from Gln23 of the exo-inulinase InuAGN25 were deleted and expressed in Escherichia coli. After digestion with human rhinovirus 3 C protease to remove the N-terminal amino acid fusion sequence that may affect the thermolability of enzymes, wild-type RfsMInuAGN25 and its mutants RfsMutNGln23Δ3 and RfsMutNGln23Δ6 were produced. Compared with RfsMInuAGN25, thermostability of RfsMutNGln23Δ3 was enhanced while that of RfsMutNGln23Δ6 was slightly reduced. Compared with the N-terminal structures of RfsMInuAGN25 and RfsMutNGln23Δ6, RfsMutNGln23Δ3 had a higher content of (1) the helix structure, (2) salt bridges (three of which were organized in a network), (3) cation–π interactions (one of which anchored the N-terminal tail). These structural properties may account for the improved thermostability of RfsMutNGln23Δ3. The study provides a better understanding of the N-terminus–function relationships that are useful for rational design of thermostability of exo-inulinases.
Collapse
Affiliation(s)
- Limei He
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan, Kunming, People's Republic of China
| | - Rui Zhang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan, Kunming, People's Republic of China
| | - Jidong Shen
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan, Kunming, People's Republic of China
| | - Ying Miao
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan, Kunming, People's Republic of China
| | - Xianghua Tang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan, Kunming, People's Republic of China
| | - Qian Wu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan, Kunming, People's Republic of China
| | - Junpei Zhou
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan, Kunming, People's Republic of China
| | - Zunxi Huang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan, Kunming, People's Republic of China
| |
Collapse
|
7
|
Isolation and Characterization of a Novel Cold-Active, Halotolerant Endoxylanase from Echinicola rosea sp. Nov. JL3085 T. Mar Drugs 2020; 18:md18050245. [PMID: 32384803 PMCID: PMC7281462 DOI: 10.3390/md18050245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 11/24/2022] Open
Abstract
We cloned a xylanase gene (xynT) from marine bacterium Echinicola rosea sp. nov. JL3085T and recombinantly expressed it in Escherichia coli BL21. This gene encoded a polypeptide with 379 amino acid residues and a molecular weight of ~43 kDa. Its amino acid sequence shared 45.3% similarity with an endoxylanase from Cellvibrio mixtus that belongs to glycoside hydrolases family 10 (GH10). The XynT showed maximum activity at 40 °C and pH 7.0, and a maximum velocity of 62 μmoL min−1 mg−1. The XynT retained its maximum activity by more than 69%, 51%, and 26% at 10 °C, 5 °C, and 0 °C, respectively. It also exhibited the highest activity of 135% in the presence of 4 M NaCl and retained 76% of its activity after 24 h incubation with 4 M NaCl. This novel xylanase, XynT, is a cold-active and halotolerant enzyme that may have promising applications in drug, food, feed, and bioremediation industries.
Collapse
|
8
|
The critical roles of exposed surface residues for the thermostability and halotolerance of a novel GH11 xylanase from the metagenomic library of a saline-alkaline soil. Int J Biol Macromol 2019; 133:316-323. [DOI: 10.1016/j.ijbiomac.2019.04.090] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 01/06/2023]
|
9
|
Characterizing a Halo-Tolerant GH10 Xylanase from Roseithermus sacchariphilus Strain RA and Its CBM-Truncated Variant. Int J Mol Sci 2019; 20:ijms20092284. [PMID: 31075847 PMCID: PMC6539836 DOI: 10.3390/ijms20092284] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/22/2019] [Accepted: 05/07/2019] [Indexed: 11/26/2022] Open
Abstract
A halo-thermophilic bacterium, Roseithermus sacchariphilus strain RA (previously known as Rhodothermaceae bacterium RA), was isolated from a hot spring in Langkawi, Malaysia. A complete genome analysis showed that the bacterium harbors 57 glycoside hydrolases (GHs), including a multi-domain xylanase (XynRA2). The full-length XynRA2 of 813 amino acids comprises a family 4_9 carbohydrate-binding module (CBM4_9), a family 10 glycoside hydrolase catalytic domain (GH10), and a C-terminal domain (CTD) for type IX secretion system (T9SS). This study aims to describe the biochemical properties of XynRA2 and the effects of CBM truncation on this xylanase. XynRA2 and its CBM-truncated variant (XynRA2ΔCBM) was expressed, purified, and characterized. The purified XynRA2 and XynRA2ΔCBM had an identical optimum temperature at 70 °C, but different optimum pHs of 8.5 and 6.0 respectively. Furthermore, XynRA2 retained 94% and 71% of activity at 4.0 M and 5.0 M NaCl respectively, whereas XynRA2ΔCBM showed a lower activity (79% and 54%). XynRA2 exhibited a turnover rate (kcat) of 24.8 s−1, but this was reduced by 40% for XynRA2ΔCBM. Both the xylanases hydrolyzed beechwood xylan predominantly into xylobiose, and oat-spelt xylan into a mixture of xylo-oligosaccharides (XOs). Collectively, this work suggested CBM4_9 of XynRA2 has a role in enzyme performance.
Collapse
|
10
|
|
11
|
Sharma K, Antunes IL, Rajulapati V, Goyal A. Molecular characterization of a first endo-acting β-1,4-xylanase of family 10 glycoside hydrolase (PsGH10A) from Pseudopedobacter saltans comb. nov. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.03.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Improvement of the catalytic characteristics of a salt-tolerant GH10 xylanase from Streptomyce rochei L10904. Int J Biol Macromol 2018; 107:1447-1455. [DOI: 10.1016/j.ijbiomac.2017.10.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 09/30/2017] [Accepted: 10/03/2017] [Indexed: 11/18/2022]
|
13
|
Heterologous expression in Pichia pastoris and characterization of a novel GH11 xylanase from saline-alkali soil with excellent tolerance to high pH, high salt concentrations and ethanol. Protein Expr Purif 2017; 139:71-77. [DOI: 10.1016/j.pep.2017.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 05/17/2017] [Accepted: 06/06/2017] [Indexed: 11/22/2022]
|
14
|
Zhou J, Song Z, Zhang R, Liu R, Wu Q, Li J, Tang X, Xu B, Ding J, Han N, Huang Z. Distinctive molecular and biochemical characteristics of a glycoside hydrolase family 20 β-N-acetylglucosaminidase and salt tolerance. BMC Biotechnol 2017; 17:37. [PMID: 28399848 PMCID: PMC5387316 DOI: 10.1186/s12896-017-0358-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/04/2017] [Indexed: 12/05/2022] Open
Abstract
Background Enzymatic degradation of chitin has attracted substantial attention because chitin is an abundant renewable natural resource, second only to lignocellulose, and because of the promising applications of N-acetylglucosamine in the bioethanol, food and pharmaceutical industries. However, the low activity and poor tolerance to salts and N-acetylglucosamine of most reported β-N-acetylglucosaminidases limit their applications. Mining for novel enzymes from new microorganisms is one way to address this problem. Results A glycoside hydrolase family 20 (GH 20) β-N-acetylglucosaminidase (GlcNAcase) was identified from Microbacterium sp. HJ5 harboured in the saline soil of an abandoned salt mine and was expressed in Escherichia coli. The purified recombinant enzyme showed specific activities of 1773.1 ± 1.1 and 481.4 ± 2.3 μmol min−1 mg−1 towards p-nitrophenyl β-N-acetylglucosaminide and N,N'-diacetyl chitobiose, respectively, a Vmax of 3097 ± 124 μmol min−1 mg−1 towards p-nitrophenyl β-N-acetylglucosaminide and a Ki of 14.59 mM for N-acetylglucosamine inhibition. Most metal ions and chemical reagents at final concentrations of 1.0 and 10.0 mM or 0.5 and 1.0% (v/v) had little or no effect (retaining 84.5 − 131.5% activity) on the enzyme activity. The enzyme can retain more than 53.6% activity and good stability in 3.0–20.0% (w/v) NaCl. Compared with most GlcNAcases, the activity of the enzyme is considerably higher and the tolerance to salts and N-acetylglucosamine is much better. Furthermore, the enzyme had higher proportions of aspartic acid, glutamic acid, alanine, glycine, random coils and negatively charged surfaces but lower proportions of cysteine, lysine, α-helices and positively charged surfaces than its homologs. These molecular characteristics were hypothesised as potential factors in the adaptation for salt tolerance and high activity of the GH 20 GlcNAcase. Conclusions Biochemical characterization revealed that the GlcNAcase had novel salt–GlcNAc tolerance and high activity. These characteristics suggest that the enzyme has versatile potential in biotechnological applications, such as bioconversion of chitin waste and the processing of marine materials and saline foods. Molecular characterization provided an understanding of the molecular–function relationships for the salt tolerance and high activity of the GH 20 GlcNAcase. Electronic supplementary material The online version of this article (doi:10.1186/s12896-017-0358-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Junpei Zhou
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, 650500, People's Republic of China.,College of Life Sciences, Yunnan Normal University, No. 768 Juxian Street, Chenggong, Kunming, Yunnan, 650500, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan, Kunming, 650500, People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | - Zhifeng Song
- College of Life Sciences, Yunnan Normal University, No. 768 Juxian Street, Chenggong, Kunming, Yunnan, 650500, People's Republic of China
| | - Rui Zhang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, 650500, People's Republic of China.,College of Life Sciences, Yunnan Normal University, No. 768 Juxian Street, Chenggong, Kunming, Yunnan, 650500, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan, Kunming, 650500, People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | - Rui Liu
- College of Life Sciences, Yunnan Normal University, No. 768 Juxian Street, Chenggong, Kunming, Yunnan, 650500, People's Republic of China
| | - Qian Wu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, 650500, People's Republic of China.,College of Life Sciences, Yunnan Normal University, No. 768 Juxian Street, Chenggong, Kunming, Yunnan, 650500, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan, Kunming, 650500, People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | - Junjun Li
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, 650500, People's Republic of China.,College of Life Sciences, Yunnan Normal University, No. 768 Juxian Street, Chenggong, Kunming, Yunnan, 650500, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan, Kunming, 650500, People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | - Xianghua Tang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, 650500, People's Republic of China.,College of Life Sciences, Yunnan Normal University, No. 768 Juxian Street, Chenggong, Kunming, Yunnan, 650500, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan, Kunming, 650500, People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | - Bo Xu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, 650500, People's Republic of China.,College of Life Sciences, Yunnan Normal University, No. 768 Juxian Street, Chenggong, Kunming, Yunnan, 650500, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan, Kunming, 650500, People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | - Junmei Ding
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, 650500, People's Republic of China.,College of Life Sciences, Yunnan Normal University, No. 768 Juxian Street, Chenggong, Kunming, Yunnan, 650500, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan, Kunming, 650500, People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | - Nanyu Han
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, 650500, People's Republic of China.,College of Life Sciences, Yunnan Normal University, No. 768 Juxian Street, Chenggong, Kunming, Yunnan, 650500, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan, Kunming, 650500, People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | - Zunxi Huang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, 650500, People's Republic of China. .,College of Life Sciences, Yunnan Normal University, No. 768 Juxian Street, Chenggong, Kunming, Yunnan, 650500, People's Republic of China. .,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan, Kunming, 650500, People's Republic of China. .,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500, People's Republic of China.
| |
Collapse
|
15
|
Dong M, Yang Y, Tang X, Shen J, Xu B, Li J, Wu Q, Zhou J, Ding J, Han N, Mu Y, Huang Z. NaCl-, protease-tolerant and cold-active endoglucanase from Paenibacillus sp. YD236 isolated from the feces of Bos frontalis. SPRINGERPLUS 2016; 5:746. [PMID: 27376014 PMCID: PMC4909688 DOI: 10.1186/s40064-016-2360-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/17/2016] [Indexed: 12/20/2022]
Abstract
Bos frontalis, which consumes
bamboo and weeds, may have evolved unique gastrointestinal microorganisms that digest cellulase. A Paenibacillus sp. YD236 strain was isolated from B. frontalis feces, from which a GH8 endoglucanase gene, pglue8 (1107 bp, 54.5 % GC content), encoding a 368-residue polypeptide (PgluE8, 40.4 kDa) was cloned. PgluE8 efficiently hydrolyzed barley-β-d-glucan followed by CMC-Na, soluble starch, laminarin, and glucan from black yeast optimally at pH 5.5 and 50 °C, and retained 78.6, 41.6, and 34.5 % maximum activity when assayed at 20, 10, and 0 °C, respectively. Enzyme activity remained above 176.6 % after treatment with 10.0 mM β-mercaptoethanol, and was 83.0, 78, and 56 % after pre-incubation in 30 % (w/v) NaCl, 16.67 mg/mL trypsin, and 160.0 mg/mL protease K, respectively. Cys23 and Cys364 residues were critical for PgluE8 activity. pglue8, identified from B. frontalis feces for the first time in this study, is a potential alternative for applications including food processing, washing, and animal feed preparation.
Collapse
Affiliation(s)
- Mingjie Dong
- School of Life Science, Yunnan Normal University, Kunming, 650500 People's Republic of China
| | - Yunjuan Yang
- School of Life Science, Yunnan Normal University, Kunming, 650500 People's Republic of China.,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, No.1 Yuhua District, Chenggong, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500 People's Republic of China
| | - Xianghua Tang
- School of Life Science, Yunnan Normal University, Kunming, 650500 People's Republic of China.,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, No.1 Yuhua District, Chenggong, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500 People's Republic of China
| | - Jidong Shen
- School of Life Science, Yunnan Normal University, Kunming, 650500 People's Republic of China
| | - Bo Xu
- School of Life Science, Yunnan Normal University, Kunming, 650500 People's Republic of China.,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, No.1 Yuhua District, Chenggong, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500 People's Republic of China
| | - Junjun Li
- School of Life Science, Yunnan Normal University, Kunming, 650500 People's Republic of China.,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, No.1 Yuhua District, Chenggong, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500 People's Republic of China
| | - Qian Wu
- School of Life Science, Yunnan Normal University, Kunming, 650500 People's Republic of China.,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, No.1 Yuhua District, Chenggong, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500 People's Republic of China
| | - Junpei Zhou
- School of Life Science, Yunnan Normal University, Kunming, 650500 People's Republic of China.,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, No.1 Yuhua District, Chenggong, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500 People's Republic of China
| | - Junmei Ding
- School of Life Science, Yunnan Normal University, Kunming, 650500 People's Republic of China.,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, No.1 Yuhua District, Chenggong, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500 People's Republic of China
| | - Nanyu Han
- School of Life Science, Yunnan Normal University, Kunming, 650500 People's Republic of China.,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, No.1 Yuhua District, Chenggong, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500 People's Republic of China
| | - Yuelin Mu
- School of Life Science, Yunnan Normal University, Kunming, 650500 People's Republic of China.,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, No.1 Yuhua District, Chenggong, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500 People's Republic of China
| | - Zunxi Huang
- School of Life Science, Yunnan Normal University, Kunming, 650500 People's Republic of China.,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, No.1 Yuhua District, Chenggong, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500 People's Republic of China
| |
Collapse
|
16
|
Zhou J, Liu Y, Lu Q, Zhang R, Wu Q, Li C, Li J, Tang X, Xu B, Ding J, Han N, Huang Z. Characterization of a Glycoside Hydrolase Family 27 α-Galactosidase from Pontibacter Reveals Its Novel Salt-Protease Tolerance and Transglycosylation Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:2315-2324. [PMID: 26948050 DOI: 10.1021/acs.jafc.6b00255] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
α-Galactosidases are of great interest in various applications. A glycoside hydrolase family 27 α-galactosidase was cloned from Pontibacter sp. harbored in a saline soil and expressed in Escherichia coli. The purified recombinant enzyme (rAgaAHJ8) was little or not affected by 3.5-30.0% (w/v) NaCl, 10.0-100.0 mM Pb(CH3COO)2, 10.0-60.0 mM ZnSO4, or 8.3-100.0 mg mL(-1) trypsin and by most metal ions and chemical reagents at 1.0 and 10.0 mM concentrations. The degree of synergy on enzymatic degradation of locust bean gum and guar gum by an endomannanase and rAgaAHJ8 was 1.22-1.54. In the presence of trypsin, the amount of reducing sugars released from soybean milk treated by rAgaAHJ8 was approximately 3.8-fold compared with that treated by a commercial α-galactosidase. rAgaAHJ8 showed transglycosylation activity when using sucrose, raffinose, and 3-methyl-1-butanol as the acceptors. Furthermore, potential factors for salt adaptation of the enzyme were presumed.
Collapse
Affiliation(s)
- Junpei Zhou
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
| | - Yu Liu
- College of Life Sciences, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
| | - Qian Lu
- College of Life Sciences, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
| | - Rui Zhang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
| | - Qian Wu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
| | - Chunyan Li
- College of Life Sciences, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
| | - Junjun Li
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
| | - Xianghua Tang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
| | - Bo Xu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
| | - Junmei Ding
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
| | - Nanyu Han
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
| | - Zunxi Huang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
| |
Collapse
|
17
|
Shen J, Zhang R, Li J, Tang X, Li R, Wang M, Huang Z, Zhou J. Characterization of an exo-inulinase from Arthrobacter: a novel NaCl-tolerant exo-inulinase with high molecular mass. Bioengineered 2016; 6:99-105. [PMID: 25695343 DOI: 10.1080/21655979.2015.1019686] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
A glycoside hydrolase family 32 exo-inulinase gene was cloned from Arthrobacter sp. HJ7 isolated from saline soil located in Heijing town. The gene encodes an 892-residue polypeptide with a calculated mass of 95.1 kDa and a high total frequency of amino acid residues G, A, and V (30.0%). Escherichia coli BL21 (DE3) cells were used as hosts to express the exo-inulinase gene. The recombinant exo-inulinase (rInuAHJ7) showed an apparently maximal activity at pH 5.0-5.5 and 40-45°C. The addition of 1.0 and 10.0 mM Zn(2+) and Pb(2+) had little or no effect on the enzyme activity. rInuAHJ7 exhibited good salt tolerance, retaining more than 98% inulinase activity at a concentration of 3.0%-20.0% (w/v) NaCl. Fructose was the main product of inulin, levan, and Jerusalem artichoke tubers hydrolyzed by the enzyme. The present study is the first to report the identification and characterization of an Arthrobacter sp exo-inulinase showing a high molecular mass of 95.1 kDa and NaCl tolerance. These results suggest that the exo-inulinase might be an alternative material for potential applications in processing seafood and other foods with high saline contents, such as marine algae, pickles, and sauces.
Collapse
Affiliation(s)
- Jidong Shen
- a Engineering Research Center of Sustainable Development and Utilization of Biomass Energy; Ministry of Education ; Yunnan Normal University ; Kunming , PR China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Zhang R, Song Z, Wu Q, Zhou J, Li J, Mu Y, Tang X, Xu B, Ding J, Deng S, Huang Z. A novel surfactant-, NaCl-, and protease-tolerant β-mannanase from Bacillus sp. HJ14. Folia Microbiol (Praha) 2015; 61:233-42. [DOI: 10.1007/s12223-015-0430-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 10/15/2015] [Indexed: 01/18/2023]
|
19
|
Properties of an alkali-thermo stable xylanase from Geobacillus thermodenitrificans A333 and applicability in xylooligosaccharides generation. World J Microbiol Biotechnol 2015; 31:633-48. [DOI: 10.1007/s11274-015-1818-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 02/03/2015] [Indexed: 10/24/2022]
|
20
|
A thermo-halo-tolerant and proteinase-resistant endoxylanase from Bacillus sp. HJ14. Folia Microbiol (Praha) 2014; 59:423-31. [DOI: 10.1007/s12223-014-0316-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 03/27/2014] [Indexed: 12/13/2022]
|
21
|
High secretory production of an alkaliphilic actinomycete xylanase and functional roles of some important residues. World J Microbiol Biotechnol 2014; 30:2053-62. [DOI: 10.1007/s11274-014-1630-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 03/04/2014] [Indexed: 10/25/2022]
|
22
|
Liu X, Huang Z, Zhang X, Shao Z, Liu Z. Cloning, expression and characterization of a novel cold-active and halophilic xylanase from Zunongwangia profunda. Extremophiles 2014; 18:441-50. [DOI: 10.1007/s00792-014-0629-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 01/07/2014] [Indexed: 11/29/2022]
|
23
|
A novel neutral xylanase with high SDS resistance from Volvariella volvacea: characterization and its synergistic hydrolysis of wheat bran with acetyl xylan esterase. ACTA ACUST UNITED AC 2013; 40:1083-93. [DOI: 10.1007/s10295-013-1312-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 07/08/2013] [Indexed: 10/26/2022]
Abstract
Abstract
A neutral xylanase (XynII) from Volvariella volvacea was identified and characterized. Unlike other modular xylanases, it consists of only a single GH10 catalytic domain with a unique C-terminal sequence (W-R-W-F) and a phenylalanine and proline-rich motif (T-P-F-P-P-F) at N-terminus, indicating that it is a novel GH10 xylanase. XynII exhibited optimal activity at pH 7 and 60 °C and stability over a broad range of pH 4.0–10.0. XynII displayed extreme highly SDS resistance retaining 101.98, 92.99, and 69.84 % activity at the presence of 300 mM SDS on birchwood, soluble oat spelt, and beechwood xylan, respectively. It remained largely intact after 24 h of incubation with proteinase K at a protease to protein ratio of 1:50 at 37 °C. The kinetic constants K m value towards beechwood xylan was 0.548 mg ml−1, and the k cat/K m ratio, reflecting the catalytic efficiency of the enzyme, was 126.42 ml mg−1 s−1 at 60 °C. XynII was a true endo-acting xylanase lacking cellulase activity. It has weak activity towards xylotriose but efficiently hydrolyzed xylans and xylooligosaccharides larger than xylotriose mainly to xylobiose. Synergistic action with acetyl xylan esterase (AXEI) from V. volvacea was observed for de-starched wheat bran. The highest degree of synergy (DS 1.42) was obtained in sequential reactions with AXEI digestion preceding XynII. The high SDS resistance and intrinsic stability suggested XynII may have potential applications in various industrial processes especially for the detergent and textile industries and animal feed industries.
Collapse
|
24
|
High-level overproduction of Thermobifida enzyme in Streptomyces lividans using a novel expression vector. Int J Mol Sci 2013; 14:18629-39. [PMID: 24025422 PMCID: PMC3794799 DOI: 10.3390/ijms140918629] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 08/05/2013] [Accepted: 08/23/2013] [Indexed: 11/27/2022] Open
Abstract
In this study, we constructed a novel Streptomyces-E.coli shuttle vector pZRJ362 combining the xylose isomerase promoter and amylase terminator. A gene encoding the endoglucanase Cel6A in Thermobifida fusca was amplified by PCR, cloned into Streptomyces lividans host strain using the novel expression vector and Pichia pastoris GS115 host strain using the vector pPICZα-C, respectively. Afterwards, the expression pattern and the maximum expression level were comparatively studied in both expression systems. The maximum enzyme activity of Cel6A-(His)6 secreted in S. lividans supernatant after 84-h of cultivation amounted to 5.56 U/mL, which was dramatically higher than that secreted in P. pastoris about 1.4 U/mL after 96-h of cultivation. The maximum expression level of Cel6A-(His)6 in S. lividans supernatant reached up to 173 mg/L after 84-h of cultivation. The endoglucanase activity staining SDS-PAGE showed that there were some minor proteins in S. lividans supernatant which may be the Cel6A derivant by proteolytic degradation, while there was no proteolytic product detected in supernatant of P. pastoris.
Collapse
|
25
|
Production of xylanase by an alkaline-tolerant marine-derived Streptomyces viridochromogenes strain and improvement by ribosome engineering. Appl Microbiol Biotechnol 2012; 97:4361-8. [PMID: 22821440 DOI: 10.1007/s00253-012-4290-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 07/04/2012] [Accepted: 07/07/2012] [Indexed: 10/28/2022]
Abstract
Xylanase is the enzyme complex that is responsible for the degradation of xylan; however, novel xylanase producers remain to be explored in marine environment. In this study, a Streptomyces strain M11 which exhibited xylanase activity was isolated from marine sediment. The 16S rDNA sequence of M11 showed the highest identity (99 %) to that of Streptomyces viridochromogenes. The xylanase produced from M11 exhibited optimum activity at pH 6.0, and the optimum temperature was 70 °C. M11 xylanase activity was stable in the pH range of 6.0-9.0 and at 60 °C for 60 min. Xylanase activity was observed to be stable in the presence of up to 5 M NaCl. Antibiotic-resistant mutants of M11 were isolated, and among the various antibiotics tested, streptomycin showed the best effect on obtaining xylanase overproducer. Mutant M11-1(10) isolated from 10 μg/ml streptomycin-containing plate showed 14 % higher xylanase activities than that of the wild-type strain. An analysis of gene rpsL (encoding ribosomal protein S12) showed that rpsL from M11-1(10) contains a K88R mutation. This is the first report to show that marine-derived S. viridochromogenes strain can be used as a xylanase producer, and utilization of ribosome engineering for the improvement of xylanase production in Streptomyces was also first successfully demonstrated.
Collapse
|