1
|
Jin W, Yu J, Wang H, Jin C, Zhao Y, Wang Y, Guo L. Intra/extracellular electron transfer and metagenomic analysis elucidated the roles of magnetic iron powder (Fe 3O 4) on mixotrophic denitrification system. ENVIRONMENTAL RESEARCH 2024; 263:120237. [PMID: 39461701 DOI: 10.1016/j.envres.2024.120237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/15/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
Elemental iron provides a viable strategy to improve the denitrification efficiency by expediting electron transport. However, the roles of magnetic iron powder (Fe3O4) on mixotrophic denitrification remains unknown. In this study, the intra/extracellular electron transfer (IET/EET) and microbial metabolism mechanisms were explored in a Fe3O4-mediated sulfide-autotrophic and heterotrophic denitrification system. The results showed that Fe3O4 promoted the formation of dense clump structure with filamentous cross-linking in activated sludge. Fe3O4 could increase the coenzyme Q activity in IET and the content of free riboflavin and cytochrome c in EET. Metagenomic analysis indicated that denitrification, sulfide oxidation and sulfate reduction were the main pathways of nitrogen and sulfur metabolism, and the enriched denitrifying bacteria (Halomonas and Hypobacterium) and sulfur-oxidizing bacteria (Marinicella) could stably support nitrate removal. This study expands our understanding of the IET/EET during Fe3O4-mediated mixotrophic denitrification process, providing a novel insight for nitrogen removal from marine recirculating aquaculture wastewater.
Collapse
Affiliation(s)
- Wandi Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Jinghan Yu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Hutao Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Chunji Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yi Wang
- Department of Biological and Agricultural Engineering, University of California, Davis, CA, 95616, United States
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environmental and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
2
|
Barco RA, Merino N, Lam B, Budnik B, Kaplan M, Wu F, Amend JP, Nealson KH, Emerson D. Comparative proteomics of a versatile, marine, iron-oxidizing chemolithoautotroph. Environ Microbiol 2024; 26:e16632. [PMID: 38861374 DOI: 10.1111/1462-2920.16632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/20/2024] [Indexed: 06/13/2024]
Abstract
This study conducted a comparative proteomic analysis to identify potential genetic markers for the biological function of chemolithoautotrophic iron oxidation in the marine bacterium Ghiorsea bivora. To date, this is the only characterized species in the class Zetaproteobacteria that is not an obligate iron-oxidizer, providing a unique opportunity to investigate differential protein expression to identify key genes involved in iron-oxidation at circumneutral pH. Over 1000 proteins were identified under both iron- and hydrogen-oxidizing conditions, with differentially expressed proteins found in both treatments. Notably, a gene cluster upregulated during iron oxidation was identified. This cluster contains genes encoding for cytochromes that share sequence similarity with the known iron-oxidase, Cyc2. Interestingly, these cytochromes, conserved in both Bacteria and Archaea, do not exhibit the typical β-barrel structure of Cyc2. This cluster potentially encodes a biological nanowire-like transmembrane complex containing multiple redox proteins spanning the inner membrane, periplasm, outer membrane, and extracellular space. The upregulation of key genes associated with this complex during iron-oxidizing conditions was confirmed by quantitative reverse transcription-PCR. These findings were further supported by electromicrobiological methods, which demonstrated negative current production by G. bivora in a three-electrode system poised at a cathodic potential. This research provides significant insights into the biological function of chemolithoautotrophic iron oxidation.
Collapse
Affiliation(s)
- Roman A Barco
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, USA
| | - N Merino
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Lawrence Livermore National Lab, Biosciences and Biotechnology Division, Livermore, California, USA
| | - B Lam
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - B Budnik
- Mass Spectrometry and Proteomics Resource Laboratory, Harvard University, Cambridge, Massachusetts, USA
| | - M Kaplan
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - F Wu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang, China
| | - J P Amend
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - K H Nealson
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - D Emerson
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, USA
| |
Collapse
|
3
|
Wu F, He S, Gu X, Yan P, Peng Y, Sun S, Liu Z. The suitable biomass carbon source for improving nitrogen removal in surface flow constructed wetland system: Fresh vs. withered. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 308:114624. [PMID: 35121457 DOI: 10.1016/j.jenvman.2022.114624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/28/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Plant biomass can be used as a carbon source to enhance the nitrogen removal effect. Related researches mainly focused on withered biomass, while little on fresh biomass. In this study, batch experiments revealed that the carbon release rate (60.5 mg TOC g-1) of fresh biomass was significantly higher than that of withered biomass (44.9 mg TOC g-1), while the nitrogen release rate showed the opposite trend. Compared with withered biomass, fresh biomass could release more sugar and less refractory humic acid, which means higher bioavailability. After adding fresh biomass, TN removal rate increased from 18.65% to 51.59%. The TN removal in the wetland adding withered biomass increased from 13.59% to 42.25%. The biomass addition had a slight impact on the effluent sensory quality in the first two days. After adding fresh biomass and withered biomass, the relative abundance of denitrifying bacteria like Flavobacterium and Pseudomonas in the system significantly increased. In general, fresh biomass was more suitable as a denitrification carbon source for surface flow constructed wetlands.
Collapse
Affiliation(s)
- Fei Wu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Shanghai Engineering Research Center of Landscape Water Environment, Shanghai, 200031, PR China.
| | - Xushun Gu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Pan Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Yuanyuan Peng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Shanshan Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Zexuan Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| |
Collapse
|
4
|
Ma H, Gao X, Chen Y, Zhu J, Liu T. Fe(II) enhances simultaneous phosphorus removal and denitrification in heterotrophic denitrification by chemical precipitation and stimulating denitrifiers activity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117668. [PMID: 34426390 DOI: 10.1016/j.envpol.2021.117668] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/15/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Using Fe(II) salt as the precipitant in heterotrophic denitrification achieves improved TP removal, and enhancement in denitrification was often observed. This study aimed to obtain a better understanding of Fe(II)-enhanced denitrification with sufficient carbon source supply. Laboratory-scale experiments were conducted in SBRs with or without Fe(II) addition. Remarkably improved TP removal was experienced. TP removal efficiency in Fe(II) adding reactor was 85.8 ± 3.4%; whereas, that in the reactor without Fe(II) addition was 31.1 ± 2.8%. Besides improved TP removal, better TN removal efficiency (94.1 ± 1.1%) were recorded when Fe(II) was added, and that in the reactor without Fe(II) addition was 89 ± 0.8%. The specific denitrification rate were observed increase by 12.6% when Fe(II) was added. Further microbial analyses revealed increases in the abundances of typical denitrifiers (i.e. Niastella, Opitutus, Dechloromonas, Ignavibacterium, Anaeromyxobacter, Pedosphaera, and Myxococcus). Their associated denitrifying genes, narG, nirS, norB, and nosZ, were observed had 14.2%, 19.4%, 21.6%, and 9.9% elevation, respectively. Such enhancement in denitrification shall not be due to nitrate-dependent ferrous oxidation, which prevails in organic-deficient environments. In an environment with a continuous supply of Fe(II) and plenty of carbon sources, a cycle of denitrifying enzyme activity enhancement in the presence of Fe(II) facilitating nitrogen substrate utilization, stimulating denitrifier metabolism and growth, elevating denitrifying genes abundance, and increasing denitrifying enzymes expression were thought to be responsible for the Fe(II)-enhanced heterotrophic denitrification. Fe(II) salt is often a less expensive precipitant and has recently become attractive for TP removal in wastewater. The findings of this study solidify previous observation of enhancement of both TP and TN removal by adding Fe(II) in denitrification, and would be helpful for developing cost-effective pollutant removal processes.
Collapse
Affiliation(s)
- Hang Ma
- Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Xinlei Gao
- Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China; Guangdong Water Co., Ltd, Shenzhen, 518021, China
| | - Yihua Chen
- Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Jiaxin Zhu
- Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Tongzhou Liu
- Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China.
| |
Collapse
|
5
|
Ma X, Li X, Li J, Ren J, Chi L, Cheng X. Iron-carbon could enhance nitrogen removal in Sesuvium portulacastrum constructed wetlands for treating mariculture effluents. BIORESOURCE TECHNOLOGY 2021; 325:124602. [PMID: 33486413 DOI: 10.1016/j.biortech.2020.124602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/16/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
This study investigated an Iron-carbon (Fe-C) micro-electrolysis method to enhance nitrogen removal of Sesuvium portulacastrum constructed wetlands (CWs) when treating mariculture effluents. The main objective was to investigate the effects of Fe-C on nitrogen purification performance and microbial characteristics of Sesuvium portulacastrum CWs. Results showed that the presence of Fe-C and Sesuvium portulacastrum could improve nitrogen removal efficiency by 20-30% and 15-30%, respectively. CWs with 33% v/v Fe-C addition performed well on nitrogen removal: TAN, 41.49 ± 13.64%; NO2--N, 13.32%; NO3--N, 60.02 ± 6.17%; TIN, 63.40 ± 12.11%. Microbial analysis revealed that Fe-C altered the microbial communities, and improved the abundance of denitrification related genera. Based on microbial enzyme activities and genes abundance, the anammox and denitrification processes were promoted by Fe-C in CWs. These findings indicate that Sesuvium portulacastrum CWs with 33% v/v Fe-C represents an effective nitrogen removal for mariculture wastewater with insufficient carbon source.
Collapse
Affiliation(s)
- Xiaona Ma
- The Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Xian Li
- The Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Jun Li
- The Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China.
| | - Jilong Ren
- School of Marine Technology and Environment, Dalian Ocean University, Dalian 116023, China
| | - Liang Chi
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266071, China
| | - Xuewen Cheng
- School of Marine Technology and Environment, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
6
|
Qin S, Zhang X, He S, Huang J. Improvement of nitrogen removal with iron scraps in floating treatment wetlands. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:17878-17890. [PMID: 33398766 DOI: 10.1007/s11356-020-12177-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Floating treatment wetland (FTW) in restoration of low C/N ratio wastewater was deemed to a frequently used method. However, the nitrate removal performance in floating beds was limited due to insufficient organic carbon sources. Iron scraps as a potential electron donor was beneficial to the NO3--N reduction. To research the removal performance and mechanism of denitrification in FTW with iron scraps, FTW with Iris pseudacorus was built, and iron scraps were added as an electron donor to improve nitrogen removal efficiency. The batch experimental results demonstrated that the proper mass ratio of iron scraps to NO3--N was 500:1. With iron scraps, the NO3--N removal efficiency of FTW and control system increased significantly to 98.04% and 44.42% respectively in 2 weeks, while there was no obvious influence on the removal of NH4+-N. After adding iron scraps, the proportion of bacteria in the systems related to iron cycle and the relative abundance of nitrifying and denitrifying bacteria have increased obviously. By calculating the nitrogen balance, nitrogen reduction via plant uptake accounted for 8.79%, and the microbial denitrification was the main nitrogen removal pathway in FTW.
Collapse
Affiliation(s)
- Si Qin
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Dong Chuan Road 800, Shanghai, 200240, People's Republic of China
| | - Xiaoyi Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Dong Chuan Road 800, Shanghai, 200240, People's Republic of China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Dong Chuan Road 800, Shanghai, 200240, People's Republic of China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China.
- Shanghai Engineering Research Center of Landscape Water Environment, Shanghai, 200031, People's Republic of China.
| | - Jungchen Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Dong Chuan Road 800, Shanghai, 200240, People's Republic of China
| |
Collapse
|
7
|
Wang R, Yang C, Wang WY, Yu LP, Zheng P. An efficient way to achieve stable and high-rate ferrous ion-dependent nitrate removal (FeNiR): Batch sludge replacement. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:139396. [PMID: 32580082 DOI: 10.1016/j.scitotenv.2020.139396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/07/2020] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
Ferrous ion can be used as electron donor for denitrification in the ferrous ion-dependent nitrate removal (FeNiR). To prevent the FeNiR performance decrease caused by iron encrustation, a modified FeNiR process with batch sludge replacement was developed. Based on the decay kinetics of sludge mass and sludge activity, the sludge retention time (SRT) was determined as 40 days in the modified FeNiR process. To keep the FeNiR rate at 0.70 kg-N/(m3·d), the sludge replacement amount was 25% of total sludge every 10 days. The FeNiR efficiency stabilized around 70%. The batch sludge replacement could be an effective method to offset the active sludge decay caused by iron encrustation, and therefore led to the good FeNiR performance. The wasted FeNiR sludge was found to adsorb phosphate at a rate of 0.9 mg-P/(g VS min). The modified FeNiR process was proposed to be coupled with phosphate removal, achieving the co-removal of nitrate and phosphate. The coupled technology is promising due to the less consumption of resources and energy, as well as the less production of excessive sludge.
Collapse
Affiliation(s)
- Ru Wang
- Department of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China.
| | - Cheng Yang
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI 48105, United States.
| | - Wen-Yan Wang
- Department of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Li-Ping Yu
- Department of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Ping Zheng
- Department of Environmental Engineering, College of Environmental & Resource Science, Zhejiang University, Yuhangtang road 866, Hangzhou 310058, PR China.
| |
Collapse
|
8
|
Wang R, Xu SY, Zhang M, Ghulam A, Dai CL, Zheng P. Iron as electron donor for denitrification: The efficiency, toxicity and mechanism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 194:110343. [PMID: 32151862 DOI: 10.1016/j.ecoenv.2020.110343] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
For the treatment of low C/N wastewaters, methanol or acetate is usually dosed as electron donor for denitrification but such organics makes the process costly. To decrease the cost, iron which is the fourth most abundant element in lithosphere is suggested as the substitution of methanol and acetate. The peak volumetric removal rate (VRR) of nitrate nitrogen in the ferrous iron-dependent nitrate removal (FeNiR) reactor was 0.70 ± 0.04 kg-N/(m3·d), and the corresponding removal efficiency was 98%. Iron showed toxicity to cells by decreasing the live cell amount (dropped 56%) and the live cell activity (dropped 70%). The toxicity of iron was mainly expressed by the formation of iron encrustation. From microbial community data analysis, heterotrophs (Paracocccus, Thauera and Azoarcus) faded away while the facultative chemolithotrophs (Hyphomicrobium and Anaerolineaceae_uncultured) dominated in the reactor after replacing acetate with ferrous iron in the influent. Through scanning electron microscope (SEM) and transmission electron microscope (TEM), two iron oxidation sites in FeNiR cells were observed and accordingly two FeNiR mechanisms were proposed: 1) extracellular FeNiR in which ferrous iron was bio-oxidized extracellularly; and 2) intracellular FeNiR in which ferrous iron was chemically oxidized in periplasm. Bio-oxidation (extracellular FeNiR) and chemical oxidation (intracellular FeNiR) of ferrous iron coexisted in FeNiR reactor, but the former one predominated. Comparing with the control group without electron donor in the influent, FeNiR reactor showed 2 times higher and stable nitrate removal rate, suggesting iron could be used as electron donor for denitrification. However, further research works are still needed for the practical application of FeNiR in wastewater treatment.
Collapse
Affiliation(s)
- Ru Wang
- Environmental and Municipal Engineering College, Xi'an Univerisity of Architecture and Technology, Xi'an, 710055, PR China.
| | - Shao-Yi Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, PR China.
| | - Meng Zhang
- Advanced Environmental Biotechnology Centre, Nanyang Environment Water Research Institute, Nanyang Technological University, Singapore, 637141, Singapore.
| | - Abbas Ghulam
- Department of Chemical Engineering and Technology, University of Gujrat, Gujrat, 50700, Pakistan.
| | - Chen-Lin Dai
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, PR China.
| | - Ping Zheng
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, PR China.
| |
Collapse
|
9
|
Wang Y, Lin Z, Huang W, He S, Zhou J. Electron storage and resupply modes during sulfur cycle enhanced nitrogen removal stability in electrochemically assisted constructed wetlands under low temperature. BIORESOURCE TECHNOLOGY 2020; 300:122704. [PMID: 31911318 DOI: 10.1016/j.biortech.2019.122704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/21/2019] [Accepted: 12/26/2019] [Indexed: 06/10/2023]
Abstract
In this work, an electrochemically assisted vertical flow constructed wetland (E-VFCW) achieved efficient PO43--P (92.9-96.6%), NO3--N (50.8-91.8%) and TN (38.8-73.1%) removal from synthetic sewage effluent within 1-12 h at 12 °C. Abiotic reduction, Fe(II)-, S- and H2-dependent denitrification, as well as coupling of fermentation, acetogenesis and heterotrophic denitrification might facilitate NO3--N removal in the E-VFCW. Particularly, electron resupply for NO3--N reduction by the in-situ deposited FeS, FeS2 and S0 in the E-VFCW would occur during electron supply-demand disequilibrium situations (e.g., lower HRT or temperature). Stoichiometric results suggested that 21.7-278.7 mmol e- d-1 from the in-situ deposited S contributed to NO3--N reduction under HRT of 1-6 h at 12 °C, which improved the resilience capabilities of the E-VFCW to temperature and nitrogen loads fluctuations. Overall, this work provides new insights into the modes of S cycle mediating NO3--N conversions in the E-VFCW under low temperature.
Collapse
Affiliation(s)
- Yingmu Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; National Centre for International Research of Low-Carbon and Green Buildings, Chongqing University, Chongqing 400045, China
| | - Ziyuan Lin
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; National Centre for International Research of Low-Carbon and Green Buildings, Chongqing University, Chongqing 400045, China
| | - Wei Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; National Centre for International Research of Low-Carbon and Green Buildings, Chongqing University, Chongqing 400045, China
| | - Shuang He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; National Centre for International Research of Low-Carbon and Green Buildings, Chongqing University, Chongqing 400045, China
| | - Jian Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; National Centre for International Research of Low-Carbon and Green Buildings, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
10
|
Enrichment of Denitrifying Bacterial Community Using Nitrite as an Electron Acceptor for Nitrogen Removal from Wastewater. WATER 2019. [DOI: 10.3390/w12010048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This work aimed to enrich a denitrifying bacterial community for economical denitrification via nitrite to provide the basic objects for enhancing nitrogen removal from wastewater. A sequencing batch reactor (SBR) with continuous nitrite and acetate feeding was operated by reasonably adjusting the supply rate based on the reaction rate, and at a temperature of 20 ± 2 °C, pH of 7.5 ± 0.2, and dissolved oxygen (DO) of 0 mg/L. The results revealed that the expected nitrite concentration can be achieved during the whole anoxic reaction period. The nitrite denitrification rate of nitrogen removal from synthetic wastewater gradually increased from approximately 10 mg/(L h) to 275.35 mg/(L h) over 12 days (the specific rate increased from 3.83 mg/(g h) to 51.80 mg/(g h)). Correspondingly, the chemical oxygen demand/nitrogen (COD/N) ratio of reaction decreased from 7.9 to 2.7. Both nitrite and nitrate can be used as electron acceptors for denitrification. The mechanism of this operational mode was determined via material balance analysis of substrates in a typical cycle. High-throughput sequencing showed that the main bacterial community was related to denitrification, which accounted for 84.26% in the cultivated sludge, and was significantly higher than the 2.16% in the seed sludge.
Collapse
|
11
|
Huang J, Cao C, Liu J, Yan C, Xiao J. The response of nitrogen removal and related bacteria within constructed wetlands after long-term treating wastewater containing environmental concentrations of silver nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 667:522-531. [PMID: 30833250 DOI: 10.1016/j.scitotenv.2019.02.396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
The wide application of consumer products containing silver nanoparticles (AgNPs) inevitably results in their release into sewer systems and wastewater treatment plants, where they would encounter (and cause potential negative impacts) constructed wetlands (CWs), a complex biological system containing plants, substrate and microorganisms. Herein, the long-term effects of environmental AgNPs concentrations on nitrogen removal, key enzymatic activities and nitrogen-related microbes in constructed wetlands (CWs) were investigated. The short-term exposure (40 d) to AgNPs significantly inhibited TN and NH4+-N removal, and the inhibition degree had a positive relationship with AgNPs levels. After about 450 d exposure, 200 μg/L AgNPs could slightly increase average TN removal efficiency, while presence of 50 μg/L AgNPs showed no difference, compared to control. The NH4+-N removal in all CWs had no difference. The present study indicated that short-term AgNPs loading evidently reduced nitrogen removal, whereas long-term exposure to AgNPs showed no adverse impacts on NH4+-N removal and slightly stimulated TN removal, which was related to the increase of corresponding enzymatic activities. After exposing AgNPs for 450 d, the abundance of relative functional genes and the composition of key community structure were determined by qPCR and high-throughput sequencing, respectively. The results showed that the abundance of amoA and nxrA dramatically higher than control, whereas the abundance of nirK, nirS, nosZ and anammox 16S rRNA was slightly higher than control, but had no statistical difference, which accorded with the TN removal performance. The microbial community analysis showed that different AgNPs concentrations could affect the microbial diversity and structure. The changes of the relative abundance of nitrogen-related genera were associated with the impacts of AgNPs on the nitrogen removal performance. Overall, the AgNPs loading had impacts on the key enzymatic activities, the abundance of nitrogen-related genes and microbial community, thus finally affected the treatment performance of CWs.
Collapse
Affiliation(s)
- Juan Huang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China.
| | - Chong Cao
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Jialiang Liu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Chunni Yan
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Jun Xiao
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
12
|
Zhang Y, Douglas GB, Kaksonen AH, Cui L, Ye Z. Microbial reduction of nitrate in the presence of zero-valent iron. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 646:1195-1203. [PMID: 30235605 DOI: 10.1016/j.scitotenv.2018.07.112] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/09/2018] [Accepted: 07/09/2018] [Indexed: 06/08/2023]
Abstract
Microbial reduction of nitrate in the presence of zero-valent iron (ZVI) was evaluated in anoxic shake flasks to assess the feasibility of ZVI-facilitated biological nitrate removal. Nitrate was completely reduced within 3days in the presence of both ZVI and microorganisms (ZVI-M). In contrast, only 75% of the nitrate was reduced in the presence of ZVI but without microbial inoculum. Nitrate removal was affected by ZVI-M flasks initial pH, nitrate concentration and ZVI dosage. Nitrate removal in the inoculated ZVI flasks system could be divided into two phases: adaptation phase and log phase which could be described by first-order kinetic equations. The analysis of bacterial communities in the inoculated flasks in the absence and presence of ZVI, indicated that the addition of ZVI increased the relative abundance of Methylotenera spp., Alcaligenes eutrophus, Pseudomonas spp. which might play an important role in nitrogen removal. The presence of ZVI could enhance biological denitrification through four mechanisms: the biological reduction of nitrate with 1) electrons derived directly from ZVI; 2) with hydrogen released from ZVI; 3) with Fe2+ released from ZVI; and 4) with acetate generated by homoacetogens which utilize H2 released from ZVI.
Collapse
Affiliation(s)
- Yiping Zhang
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Grant B Douglas
- CSIRO Land and Water, Centre for Environment and Life Sciences, Private Bag 5, Wembley, 6913, WA, Australia
| | - Anna H Kaksonen
- CSIRO Land and Water, Centre for Environment and Life Sciences, Private Bag 5, Wembley, 6913, WA, Australia
| | - Lili Cui
- Hebei Energy and Environmental Engineering, Hebei Institute of Architectural Engineering, Zhangjiakou, Hebei 075000, China
| | - Zhengfang Ye
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China.
| |
Collapse
|
13
|
O’Brien FJM, Dumont MG, Webb JS, Poppy GM. Rhizosphere Bacterial Communities Differ According to Fertilizer Regimes and Cabbage ( Brassica oleracea var. capitata L.) Harvest Time, but Not Aphid Herbivory. Front Microbiol 2018; 9:1620. [PMID: 30083141 PMCID: PMC6064718 DOI: 10.3389/fmicb.2018.01620] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 06/28/2018] [Indexed: 11/16/2022] Open
Abstract
Rhizosphere microbial communities are known to be highly diverse and strongly dependent on various attributes of the host plant, such as species, nutritional status, and growth stage. High-throughput 16S rRNA gene amplicon sequencing has been used to characterize the rhizosphere bacterial community of many important crop species, but this is the first study to date to characterize the bacterial and archaeal community of Brassica oleracea var. capitata. The study also tested the response of the bacterial community to fertilizer type (organic or synthetic) and N dosage (high or low), in addition to plant age (9 or 12 weeks) and aphid (Myzus persicae) herbivory (present/absent). The impact of aboveground herbivory on belowground microbial communities has received little attention in the literature, and since the type (organic or mineral) and amount of fertilizer applications are known to affect M. percicae populations, these treatments were applied at agricultural rates to test for synergistic effects on the soil bacterial community. Fertilizer type and plant growth were found to result in significantly different rhizosphere bacterial communities, while there was no effect of aphid herbivory. Several operational taxonomic units were identified as varying significantly in abundance between the treatment groups and age cohorts. These included members of the S-oxidizing genus Thiobacillus, which was significantly more abundant in organically fertilized 12-week-old cabbages, and the N-fixing cyanobacteria Phormidium, which appeared to decline in synthetically fertilized soils relative to controls. These responses may be an effect of accumulating root-derived glucosinolates in the B. oleracea rhizosphere and increased N-availability, respectively.
Collapse
Affiliation(s)
- Flora J. M. O’Brien
- Biological Sciences, University of Southampton, Southampton, United Kingdom
- NIAB EMR, East Malling, United Kingdom
| | - Marc G. Dumont
- Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Jeremy S. Webb
- Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Guy M. Poppy
- Biological Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
14
|
Gao L, Zhou W, Wu S, He S, Huang J, Zhang X. Nitrogen removal by thiosulfate-driven denitrification and plant uptake in enhanced floating treatment wetland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 621:1550-1558. [PMID: 29054632 DOI: 10.1016/j.scitotenv.2017.10.073] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/30/2017] [Accepted: 10/09/2017] [Indexed: 06/07/2023]
Abstract
This study investigated the potential of thiosulfate-driven autotrophic enhanced floating treatment wetland (AEFTW) in removing nitrogen from the secondary effluent at the relatively short hydraulic retention times and low S/N ratios. Simultaneous autotrophic and heterotrophic denitrification was observed in AEFTW. The peak TN removal rate (15.3gm-2d-1) exceeded most of the reported floating treatment wetlands. Based on the kinetic model results, low mean temperature coefficient and high k20 verified that the excellent performance in AEFTW diminished the microbial dependence on temperature. Nitrogen removal performance of enhanced floating treatment wetland (EFTW) and floating treatment wetland (FTW) were similar and highly sensitive to temperature. The interaction of sulfur transformation on the nitrogen, carbon uptake of plants was studied. Thiosulfate addition significantly raised sulfur content in the shoots and further enhanced the uptake of nitrogen and carbon, and increased the plant biomass at the same time. Higher composition of autotrophic and heterotrophic denitrifiers in AEFTW interpreted the occurrence of mixotrophic denitrification during summer. Thiosulfate induced mutual promotion of nitrogen removal by plant uptake and microbial denitrification in AEFTW.
Collapse
Affiliation(s)
- Lei Gao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Weili Zhou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Suqing Wu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jungchen Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xu Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
15
|
Zhang L, Sun H, Zhang XX, Ren H, Ye L. High diversity of potential nitrate-reducing Fe(II)-oxidizing bacteria enriched from activated sludge. Appl Microbiol Biotechnol 2018; 102:4975-4985. [PMID: 29644429 DOI: 10.1007/s00253-018-8961-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/11/2018] [Accepted: 03/21/2018] [Indexed: 11/25/2022]
Abstract
Nitrate-dependent Fe(II) oxidation (NDFO) has been discovered in various environments including activated sludge and can potentially be used to remove nitrate from wastewater. In this study, NDFO sludge was successfully enriched from activated sludge under high Fe(II) concentrations over 100 days and the denitrification rate achieved 1.37 mmol N/(gVSS day). High-throughput sequencing of the bacterial 16S rRNA gene was used to investigate the microbial community structure dynamics during the enrichment process. The results showed that the microbial community changed significantly and high diversity of potential Fe(II)-oxidizing bacteria (FeOB) was observed in the enriched sludge. Thermomonas and Gallionella were the dominant bacterial genera in the enriched sludge and their relative abundances accounted for 9.49 and 4.08%, respectively. Furthermore, it was found that potential FeOB were also abundantly present in activated sludge samples of common municipal wastewater treatment plants. Collectively, this study demonstrated that NDFO could be successfully performed by enriched activated sludge and high diversity of bacteria is involved in this process, and the results also provide baseline information for future research and engineering application of NDFO process.
Collapse
Affiliation(s)
- Liangying Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Haohao Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Lin Ye
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
16
|
Gao L, Zhou W, Huang J, He S, Yan Y, Zhu W, Wu S, Zhang X. Nitrogen removal by the enhanced floating treatment wetlands from the secondary effluent. BIORESOURCE TECHNOLOGY 2017; 234:243-252. [PMID: 28324826 DOI: 10.1016/j.biortech.2017.03.036] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/02/2017] [Accepted: 03/05/2017] [Indexed: 06/06/2023]
Abstract
Three novel floating treatment wetlands, including autotrophic enhanced floating treatment wetland (AEFTW), heterotrophic enhanced floating treatment wetland (HEFTW) and enhanced floating treatment wetland (EFTW) were developed to remove nitrogen from the secondary effluent. Results showed that the analogously excellent nitrogen removal performance was achieved in AEFTW and HEFTW. About 89.4% of the total nitrogen (TN) was removed from AEFTW at a low S/N of 0.9 and 88.5% from HEFTW at a low C/N of 3.5 when the hydraulic retention time (HRT) was 1d in summer. Higher nitrification and denitrification performance were achieved in AEFTW. Addition of electron donors effectively reduced the N2O emission, especially in summer and autumn. High-throughput sequencing analysis revealed that the electron donors distinctly induced the microbial shifts. Dechloromonas, Thiobacillus and Nitrospira became the most predominant genus in HEFTW, AEFTW and EFTW. And autotrophic and heterotrophic denitrification could simultaneously occur in HEFTW and AEFTW.
Collapse
Affiliation(s)
- Lei Gao
- School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, PR China
| | - Weili Zhou
- School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, PR China
| | - Jungchen Huang
- School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, PR China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, PR China.
| | - Yijia Yan
- School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, PR China
| | - Wenying Zhu
- School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, PR China
| | - Suqing Wu
- School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, PR China
| | - Xu Zhang
- School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, PR China
| |
Collapse
|
17
|
Eberly JO, Indest KJ, Hancock DE, Jung CM, Crocker FH. Metagenomic analysis of denitrifying wastewater enrichment cultures able to transform the explosive, 3-nitro-1,2,4-triazol-5-one (NTO). ACTA ACUST UNITED AC 2016; 43:795-805. [DOI: 10.1007/s10295-016-1755-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/29/2016] [Indexed: 10/22/2022]
Abstract
Abstract
Removal of 3-nitro-1,2,4-triazol-5-one (NTO) was investigated in conjunction with heterotrophic and autotrophic denitrifying growth conditions by a microbial consortium from a wastewater treatment plant. Microcosms were supplemented with molasses, methanol, or thiosulfate. Cultures were passaged twice by transferring 10 % of the culture volume to fresh media on days 11 and 21. Rates of NTO removal were 18.71 ± 0.65, 9.04 ± 2.61, and 4.34 ± 2.72 mg/L/day while rates of nitrate removal were 20.08 ± 1.13, 21.58 ± 1.20, and 24.84 ± 1.26 mg/L/day, respectively, for molasses, methanol, or thiosulfate. Metagenomic analysis showed that Proteobacteria and Firmicutes were the major phyla in the microbial communities. In molasses supplemented cultures, the community profile at the family level changed over time with Pseudomonadaceae the most abundant (67.4 %) at day 11, Clostridiaceae (65.7 %) at day 21, and Sporolactobacillaceae (35.4 %) and Clostridiaceae (41.0 %) at day 29. Pseudomonadaceae was the dominant family in methanol and thiosulfate supplemented cultures from day 21 to 29 with 76.6 and 81.6 % relative abundance, respectively.
Collapse
Affiliation(s)
- Jed O Eberly
- grid.417553.1 0000000106379574 Environmental Laboratory U.S. Army Engineer Research and Development Center 39180 Vicksburg MS USA
| | - Karl J Indest
- grid.417553.1 0000000106379574 Environmental Laboratory U.S. Army Engineer Research and Development Center 39180 Vicksburg MS USA
| | - Dawn E Hancock
- grid.417553.1 0000000106379574 Environmental Laboratory U.S. Army Engineer Research and Development Center 39180 Vicksburg MS USA
| | - Carina M Jung
- grid.417553.1 0000000106379574 Environmental Laboratory U.S. Army Engineer Research and Development Center 39180 Vicksburg MS USA
| | - Fiona H Crocker
- grid.417553.1 0000000106379574 Environmental Laboratory U.S. Army Engineer Research and Development Center 39180 Vicksburg MS USA
| |
Collapse
|
18
|
Wang R, Zheng P, Ding AQ, Zhang M, Ghulam A, Yang C, Zhao HP. Effects of inorganic salts on denitrifying granular sludge: The acute toxicity and working mechanisms. BIORESOURCE TECHNOLOGY 2016; 204:65-70. [PMID: 26773376 DOI: 10.1016/j.biortech.2015.12.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/16/2015] [Accepted: 12/18/2015] [Indexed: 06/05/2023]
Abstract
It is highly significant to investigate the toxicity of inorganic salts to denitrifying granular sludge (DGS) and its mechanism since the application of high-rate denitrification is seriously limited in the treatment of saline nitrogen-rich wastewaters. The batch experiments showed that the IC50 (half inhibition concentration) and LC50 (half lethal concentration) of NaCl, Na2SO4 and Na3PO4 on DGS were 11.46, 21.72, 7.46 g/L and 77.35, 100.58, 67.92 g/L respectively. Based on the analysis of specific denitrifying activity, the live cell percentage, the cell structure, and the DNA leakage, the toxicity of low salinity was ascribed to the inhibition of denitrifying activity and the toxicity of high salinity was ascribed to both the inhibition of denitrifying activity and the lethality of denitrifying cell.
Collapse
Affiliation(s)
- Ru Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Ping Zheng
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, PR China.
| | - A-Qiang Ding
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Meng Zhang
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Abbas Ghulam
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Cheng Yang
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - He-Ping Zhao
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
19
|
Liu Y, Feng C, Chen N, Sheng Y, Dong S, Hao C, Lei K. Bioremediation of nitrate and Fe(ii) combined contamination in groundwater by heterotrophic denitrifying bacteria and microbial community analysis. RSC Adv 2016. [DOI: 10.1039/c6ra22687f] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The optimal condition range was determined for the simultaneous removal of nitrate and Fe(ii) in groundwater mediated by denitrifying Betaproteobacterial communities.
Collapse
Affiliation(s)
- Ying Liu
- School of Water Resources and Environment
- China University of Geosciences
- Beijing 100083
- China
| | - Chuanping Feng
- School of Water Resources and Environment
- China University of Geosciences
- Beijing 100083
- China
| | - Nan Chen
- School of Water Resources and Environment
- China University of Geosciences
- Beijing 100083
- China
| | - Yizhi Sheng
- School of Water Resources and Environment
- China University of Geosciences
- Beijing 100083
- China
| | - Shanshan Dong
- School of Water Resources and Environment
- China University of Geosciences
- Beijing 100083
- China
| | - Chunbo Hao
- School of Water Resources and Environment
- China University of Geosciences
- Beijing 100083
- China
| | - Kang Lei
- School of Water Resources and Environment
- China University of Geosciences
- Beijing 100083
- China
| |
Collapse
|
20
|
Wang R, Zheng P, Zhang M, Zhao HP, Ji JY, Zhou XX, Li W. Bioaugmentation of nitrate-dependent anaerobic ferrous oxidation by heterotrophic denitrifying sludge addition: A promising way for promotion of chemoautotrophic denitrification. BIORESOURCE TECHNOLOGY 2015; 197:410-415. [PMID: 26348287 DOI: 10.1016/j.biortech.2015.08.135] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 08/22/2015] [Accepted: 08/25/2015] [Indexed: 06/05/2023]
Abstract
Nitrate-dependent anaerobic ferrous oxidation (NAFO) is a new and valuable bio-process for the treatment of wastewaters with low C/N ratio, and the NAFO process is in state of the art. The heterotrophic denitrifying sludge (HDS), possessing NAFO activity, was used as bioaugmentation to enhance NAFO efficiency. At a dosage of 6% (V/V), the removal of nitrate and ferrous was 2.4 times and 2.3 times of as primary, and the volumetric removal rate (VRR) of nitrate and ferrous was 2.4 times and 2.2 times of as primary. Tracing experiments of HDS indicated that the bioaugmentation on NAFO reactor was resulted from the NAFO activity by HDS itself. The predominant bacteria in HDS were identified as Thauera (52.5%) and Hyphomicrobium (20.0%) which were typical denitrifying bacteria and had potential ability to oxidize ferrous. In conclusion, HDS could serve as bioaugmentation or a new seeding sludge for operating high-efficiency NAFO reactors.
Collapse
Affiliation(s)
- Ru Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Ping Zheng
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, PR China.
| | - Meng Zhang
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - He-Ping Zhao
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Jun-Yuan Ji
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266003, PR China
| | - Xiao-Xin Zhou
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Wei Li
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
21
|
Li W, Li C, Lin X, Liu Y, Abbas G, Zheng P. Effects of operation mode on self-alkalization of high-load denitrifying reactor. BIORESOURCE TECHNOLOGY 2015; 187:282-287. [PMID: 25863205 DOI: 10.1016/j.biortech.2015.03.063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 06/04/2023]
Abstract
To study the alkalization issue and its potential effects on high-load denitrifying system, the effects of operation mode on self-alkalization of high-load denitrifying reactor were investigated. The results showed that both the increase of substrate concentration and decrease of hydraulic retention time (HRT) can induce notable self-alkalization of high-load denitrification reactor (with the nitrogen loading rate (NLR) higher than 25kg Nm(-3)d(-1)). The effluent pH surpassed the 9.20 when the influent pH value was 7.0±0.1. The self-alkalization of denitrification process originated from the nitrate reduction, while the methanol oxidation could alleviate the self-alkalization by neutralizing OH(-) and setting up a buffering system of HCO3(-)/CO3(2-). At the same NLR, the self-alkalization induced by increase of substrate concentration was remarkably stronger than that induced by decrease of HRT. Keeping the nitrate concentration below inhibition concentration improved the performance of high-load reactor and alleviated the self-alkalization.
Collapse
Affiliation(s)
- Wei Li
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Chenxu Li
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Xiaoyu Lin
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yan Liu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Ghulam Abbas
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Ping Zheng
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
22
|
Zhang M, Zheng P, Li W, Wang R, Ding S, Abbas G. Performance of nitrate-dependent anaerobic ferrous oxidizing (NAFO) process: a novel prospective technology for autotrophic denitrification. BIORESOURCE TECHNOLOGY 2015; 179:543-548. [PMID: 25576990 DOI: 10.1016/j.biortech.2014.12.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/09/2014] [Accepted: 12/11/2014] [Indexed: 06/04/2023]
Abstract
Nitrate-dependent anaerobic ferrous oxidizing (NAFO) is a valuable biological process, which utilizes ferrous iron to convert nitrate into nitrogen gas, removing nitrogen from wastewater. In this work, the performance of NAFO process was investigated as a nitrate removal technology. The results showed that NAFO system was feasible for autotrophic denitrification. The volumetric loading rate (VLR) and volumetric removal rate (VRR) under steady state were 0.159±0.01 kg-N/(m(3) d) and 0.073±0.01 kg-N/(m(3) d), respectively. In NAFO system, the effluent pH was suggested as an indicator which demonstrated a good correlation with nitrogen removal. The nitrate concentration was preferred to be less than 130 mg-N/L. Organic matters had little influence on NAFO performance. Abundant iron compounds were revealed to accumulate in NAFO sludge with peak value of 51.73% (wt), and they could be recycled for phosphorus removal, with capacity of 16.57 mg-P/g VS and removal rate of 94.77±2.97%, respectively.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Ping Zheng
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China.
| | - Wei Li
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Ru Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Shuang Ding
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Ghulam Abbas
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
23
|
Zhang H, Wang H, Yang K, Chang Q, Sun Y, Tian J, Long C. Autotrophic denitrification with anaerobic Fe(2+) oxidation by a novel Pseudomonas sp. W1. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2015; 71:1081-1087. [PMID: 25860712 DOI: 10.2166/wst.2015.071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In the present study, a novel Pseudomonas sp. W1 was characterized in terms of its ability to perform nitrate removal coupled with anaerobic Fe⁻¹ oxidation under autotrophic growth condition. The effects of operating parameters with respect to the initial solution pH, temperature and initial Fe⁻¹ concentration on nitrate removal were investigated by central composite design. Based on the results of response surface methodology, the maximal nitrate removal efficiency was achieved under the following conditions: pH 7.0, temperature 30 °C and initial Fe⁻¹ concentration 1,100 mg L⁻¹. Under this optimal condition and with an initial NO(3)(-)-N concentration of 55 mg L⁻¹, this strain could remove NO(3)(-)-N with 90% reduction of NO(3)(-)-N, corresponding to oxidizing Fe⁻¹ with 71% oxidation of Fe⁻¹ after 7 days of incubation. The result of kinetic evaluation indicated that this bacterium showed significant substrate affinity to both NO(3)(-)-N and Fe⁻¹.
Collapse
Affiliation(s)
- Huining Zhang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China E-mail:
| | - Hongyu Wang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China E-mail:
| | - Kai Yang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China E-mail:
| | - Qing Chang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China E-mail:
| | - Yuchong Sun
- Northeast Electric Power Design Institute, Changchun 130000, China
| | - Jun Tian
- Central and Southern China Municipal Engineering Design and Research Institute Co., Ltd, Wuhan 430010, China
| | - Chengli Long
- Central and Southern China Municipal Engineering Design and Research Institute Co., Ltd, Wuhan 430010, China
| |
Collapse
|
24
|
Zhang M, Zheng P, Wang R, Li W, Lu H, Zhang J. Nitrate-dependent anaerobic ferrous oxidation (NAFO) by denitrifying bacteria: a perspective autotrophic nitrogen pollution control technology. CHEMOSPHERE 2014; 117:604-609. [PMID: 25461924 DOI: 10.1016/j.chemosphere.2014.09.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 09/05/2014] [Accepted: 09/05/2014] [Indexed: 06/04/2023]
Abstract
The nitrate-dependent anaerobic ferrous oxidation (NAFO) is an important discovery in the fields of microbiology and geology, which is a valuable biological reaction since it can convert nitrate into nitrogen gas, removing nitrogen from wastewater. The research on NAFO can promote the development of novel autotrophic biotechnologies for nitrogen pollution control and get a deep insight into the biogeochemical cycles. In this work, batch experiments were conducted with denitrifying bacteria as biocatalyst to investigate the performance of nitrogen removal by NAFO. The results showed that the denitrifying bacteria were capable of chemolithotrophic denitrification with ferrous salt as electron donor, namely NAFO. And the maximum nitrate conversion rates (qmax) reached 57.89 mg (g VSS d)−1, which was the rate-limiting step in NAFO. Fe/N ratio, temperature and initial pH had significant influences on nitrogen removal by NAFO process, and their optimal values were 2.0 °C, 30.15 °C and 8.0 °C, respectively.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | | | |
Collapse
|