1
|
Yu W, Zhao Z, Zhang Y, Tu Y, He B. AozC, a zn(II) 2Cys 6 transcription factor, negatively regulates salt tolerance in Aspergillus oryzae by controlling fatty acid biosynthesis. Microb Cell Fact 2025; 24:10. [PMID: 39773712 PMCID: PMC11706192 DOI: 10.1186/s12934-024-02639-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/28/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND In the soy sauce fermentation industry, Aspergillus oryzae (A. oryzae) plays an essential role and is frequently subjected to high salinity levels, which pose a significant osmotic stress. This environmental challenge necessitates the activation of stress response mechanisms within the fungus. The Zn(II)2Cys6 family of transcription factors, known for their zinc binuclear cluster-containing proteins, are key regulators in fungi, modulating various cellular functions such as stress adaptation and metabolic pathways. RESULTS Overexpression of AozC decreased growth rates in the presence of salt, while its knockdown enhanced growth, the number of spores, and biomass, particularly under conditions of 15% salt concentration, doubling these metrics compared to the wild type. Conversely, the knockdown of AozC via RNA interference significantly enhanced spore density and dry biomass, particularly under 15% salt stress, where these parameters were markedly improved over the wild type strain. Moreover, the overexpression of AozC led to a downregulation of the FAD2 gene, a pivotal enzyme in the biosynthesis of unsaturated fatty acids (UFAs), which are essential for preserving cell membrane fluidity and integrity under saline conditions. Transcriptome profiling further exposed the influence of AozC on the regulation of UFA biosynthesis and the modulation of critical stress response pathways. Notably, the regulatory role of AozC in the mitogen-activated protein kinase (MAPK) signaling and ABC transporters pathways was highlighted, underscoring its significance in cellular osmotic balance and endoplasmic reticulum homeostasis. These findings collectively indicate that AozC functions as a negative regulator of salt tolerance in A. oryzae. CONCLUSION This research suggest that AozC acts as a negative regulator in salt tolerance and modulates fatty acid biosynthesis in response to osmotic stress. These results provide insights into the regulatory mechanisms of stress adaptation in A. oryzae.
Collapse
Affiliation(s)
- Wenbin Yu
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, China
| | - Zeying Zhao
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, China
| | - Yufei Zhang
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, China
| | - Yayi Tu
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, China.
| | - Bin He
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, China.
| |
Collapse
|
2
|
Wang D, Xu R, Liu S, Sun X, Zhang T, Shi L, Wang Y. Enhancing the application of probiotics in probiotic food products from the perspective of improving stress resistance by regulating cell physiological function: A review. Food Res Int 2025; 199:115369. [PMID: 39658167 DOI: 10.1016/j.foodres.2024.115369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/28/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024]
Abstract
Probiotic foods are foods containing probiotics, including dairy and non-dairy products, that exert significant beneficial impacts on human health. Benefiting from the rapid progress in systems biology, diverse types of probiotics with prominent health-promoting functionalities are unraveled, albeit such functions could be substantially influenced by the stress environments. Here, we conducted a comprehensive review to characterize the state-of-the-art research on probiotic foods and specific probiotics employed in their production. We summarized the detrimental effects of various environmental stresses, including those encountered during industrial fermentation and storage (in vitro), as well as in vivo conditions such as digestion and intestinal colonization, on the biological functions of probiotics. Furthermore, this review outlines the recent advancements in elucidating the mechanisms of stress resistance, which are expected to enhance targeted probiotic applications and optimize their functional properties. Additionally, we summarized various strategies aimed at improving stress tolerance by regulating cell physiological function, specifically adaptive laboratory evolution, preadaptation treatment, exogenous supplementation, and molecular biological manipulation. This review underscores the significance of enhancing our understanding of stress tolerance mechanisms at a systems level and developing efficacious anti-stress strategies to enhance the application of probiotics while maximizing their biological functionalities.
Collapse
Affiliation(s)
- Dingkang Wang
- Global Health Institute, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Ruijie Xu
- Global Health Institute, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Sha Liu
- Global Health Institute, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaomin Sun
- Global Health Institute, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Tianxiao Zhang
- Global Health Institute, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Lin Shi
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
| | - Youfa Wang
- Global Health Institute, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
3
|
Xu C, Zhou S, Zhang J, Bu D, Zang C, Fan R, Wang J, Guo T, Han R, Yang Y. Dynamic changes in microbial communities and volatile compounds in kombucha fermentation using Flos sophorae and Elm fruits, compared to black and green tea. Food Res Int 2024; 197:115233. [PMID: 39593316 DOI: 10.1016/j.foodres.2024.115233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/20/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024]
Abstract
The dynamic changes in physicochemical properties, microbial communities, and volatile compounds in kombucha made from Flos sophorae (FLSK) and Elm fruit (EFK) were compared to those of black tea (BTK) and green tea (GTK) over a 12-day fermentation period. The results revealed that overall flavonoid and polyphenol content, as well as antioxidant activity, increased initially and then decreased, accompanied by a steady reduction in pH within the fermentation broths investigated. Notably, the GTK exhibited stronger antioxidant activity than the other fermentation broths. Furthermore, 16S rRNA gene sequencing revealed that Komagataeibacter rhaeticus, Komagataeibacter saccharivorans, and Acidovorax wautersii were the dominating microbial species in the fermentation broths under this study. Komagataeibacter rhaeticus initially reduced and then increased throughout the FLSK fermentation, whereas Komagataeibacter saccharivorans increased from day 0 to day 6, and remain stable by day 12 during the EFK fermentation. Comparative analysis revealed that Komagataeibacter rhaeticus was more abundant in the FLSK and GTK than in the EFK and BTK, whereas Komagataeibacter saccharivorans showed a higher abundance in the EFK relative to the other fermentation broths. Gas chromatography-mass spectrometry identified acetic acid, linalool, ethanol, and ethyl acetate as the major volatile chemicals that rose significantly in fermentation mixtures of the examined substrates. The FLSK had a much higher linalool concentration than the other fermentation broths, although the EFK and GTK had higher ethanol content. Correlation study found that Komagataeibacter rhaeticus was negatively related with alcohol compounds, but Komagataeibacter saccharivorans was positively associated with a diverse spectrum of acids, alcohols, and esters. The study found changes in bioactive chemicals as well as interactions between bacterial populations and volatile compounds throughout fermentation in the substrates investigated.
Collapse
Affiliation(s)
- Chunyu Xu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China.
| | - Shichu Zhou
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China.
| | - Junyu Zhang
- Institute of Feed Research, Xinjiang Academy of Animal Science, Urumqi 830000, Xinjiang, China.
| | - Dengpan Bu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, Shandong, China.
| | - Changjiang Zang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China.
| | - Rongbo Fan
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China.
| | - Jun Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China.
| | - Tongjun Guo
- Institute of Feed Research, Xinjiang Academy of Animal Science, Urumqi 830000, Xinjiang, China.
| | - Rongwei Han
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China.
| | - Yongxin Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China.
| |
Collapse
|
4
|
Hua S, Wang Y, Wang L, Zhou Q, Li Z, Liu P, Wang K, Zhu Y, Han D, Yu Y. Regulatory mechanisms of acetic acid, ethanol and high temperature tolerances of acetic acid bacteria during vinegar production. Microb Cell Fact 2024; 23:324. [PMID: 39614240 PMCID: PMC11607832 DOI: 10.1186/s12934-024-02602-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024] Open
Abstract
Acetic acid bacteria (AAB) play a pivotal role in the food fermentation industry, especially in vinegar production, due to their ability to partially oxidize alcohols to acetic acid. However, economic bioproduction using AAB is challenged by harsh environments during acetic acid fermentation, among which initial ethanol pressure, subsequent acetic acid pressure, and consistently high temperatures are common experiences. Understanding the stress-responsive mechanisms is essential to developing robust AAB strains. Here, we review recent progress in mechanisms underlying AAB stress response, including changes in cell membrane composition, increased activity of membrane-bound enzymes, activation of efflux systems, and the upregulation of stress response molecular chaperones. We also discuss the potential of advanced technologies, such as global transcription machinery engineering (gTME) and Design-Build-Test-Learn (DBTL) approach, to enhance the stress tolerance of AAB, aiming to improve vinegar production.
Collapse
Affiliation(s)
- Shengkai Hua
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Yuqin Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
| | - Leyi Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Qinxuan Zhou
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Zhitao Li
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Peng Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Ke Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Yuanyuan Zhu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Dong Han
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Yongjian Yu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
| |
Collapse
|
5
|
Román-Camacho JJ, Mauricio JC, Sánchez-León I, Santos-Dueñas IM, Fuentes-Almagro CA, Amil-Ruiz F, García-Martínez T, García-García I. Implementation of a Novel Method for Processing Proteins from Acetic Acid Bacteria via Liquid Chromatography Coupled with Tandem Mass Spectrometry. Molecules 2024; 29:2548. [PMID: 38893424 PMCID: PMC11173641 DOI: 10.3390/molecules29112548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Acetic acid bacteria (AAB) and other members of the complex microbiotas, whose activity is essential for vinegar production, display biodiversity and richness that is difficult to study in depth due to their highly selective culture conditions. In recent years, liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) has emerged as a powerful tool for rapidly identifying thousands of proteins present in microbial communities, offering broader precision and coverage. In this work, a novel method based on LC-MS/MS was established and developed from previous studies. This methodology was tested in three studies, enabling the characterization of three submerged acetification profiles using innovative raw materials (synthetic alcohol medium, fine wine, and craft beer) while working in a semicontinuous mode. The biodiversity of existing microorganisms was clarified, and both the predominant taxa (Komagataeibacter, Acetobacter, Gluconacetobacter, and Gluconobacter) and others never detected in these media (Asaia and Bombella, among others) were identified. The key functions and adaptive metabolic strategies were determined using comparative studies, mainly those related to cellular material biosynthesis, energy-associated pathways, and cellular detoxification processes. This study provides the groundwork for a highly reliable and reproducible method for the characterization of microbial profiles in the vinegar industry.
Collapse
Affiliation(s)
- Juan J. Román-Camacho
- Department of Agricultural Chemistry, Edaphology and Microbiology Agrifood Campus of International Excellence ceiA3, University of Cordoba, 14014 Cordoba, Spain; (J.J.R.-C.); (I.S.-L.); (T.G.-M.)
| | - Juan C. Mauricio
- Department of Agricultural Chemistry, Edaphology and Microbiology Agrifood Campus of International Excellence ceiA3, University of Cordoba, 14014 Cordoba, Spain; (J.J.R.-C.); (I.S.-L.); (T.G.-M.)
| | - Irene Sánchez-León
- Department of Agricultural Chemistry, Edaphology and Microbiology Agrifood Campus of International Excellence ceiA3, University of Cordoba, 14014 Cordoba, Spain; (J.J.R.-C.); (I.S.-L.); (T.G.-M.)
| | - Inés M. Santos-Dueñas
- Department of Inorganic Chemistry and Chemical Engineering, Agrifood Campus of International Excellence ceiA3, Institute of Chemistry for Energy and Environment (IQUEMA), University of Cordoba, 14014 Cordoba, Spain; (I.M.S.-D.); (I.G.-G.)
| | - Carlos A. Fuentes-Almagro
- Proteomics Unit, Central Service for Research Support (SCAI), University of Cordoba, 14014 Cordoba, Spain;
| | - Francisco Amil-Ruiz
- Bioinformatics Unit, Central Service for Research Support (SCAI), University of Cordoba, 14014 Cordoba, Spain;
| | - Teresa García-Martínez
- Department of Agricultural Chemistry, Edaphology and Microbiology Agrifood Campus of International Excellence ceiA3, University of Cordoba, 14014 Cordoba, Spain; (J.J.R.-C.); (I.S.-L.); (T.G.-M.)
| | - Isidoro García-García
- Department of Inorganic Chemistry and Chemical Engineering, Agrifood Campus of International Excellence ceiA3, Institute of Chemistry for Energy and Environment (IQUEMA), University of Cordoba, 14014 Cordoba, Spain; (I.M.S.-D.); (I.G.-G.)
| |
Collapse
|
6
|
Kim H, Oh S, Song S. Lactobacillus Persisters Formation and Resuscitation. J Microbiol Biotechnol 2024; 34:854-862. [PMID: 38326923 DOI: 10.4014/jmb.2312.12035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/09/2024]
Abstract
Lactobacillus is a commonly used probiotic, and many researchers have focused on its stress response to improve its functionality and survival. However, studies on persister cells, dormant cells that aid bacteria in surviving general stress, have focused on pathogenic bacteria that cause infection, not Lactobacillus. Thus, understanding Lactobacillus persister cells will provide essential clues for understanding how Lactobacillus survives and maintains its function under various environmental conditions. We treated Lactobacillus strains with various antibiotics to determine the conditions required for persister formation using kill curves and transmission electron microscopy. In addition, we observed the resuscitation patterns of persister cells using single-cell analysis. Our results show that Lactobacillus creates a small population of persister cells (0.0001-1% of the bacterial population) in response to beta-lactam antibiotics such as ampicillin and amoxicillin. Moreover, only around 0.5-1% of persister cells are heterogeneously resuscitated by adding fresh media; the characteristics are typical of persister cells. This study provides a method for forming and verifying the persistence of Lactobacillus and demonstrates that antibiotic-induced Lactobacillus persister cells show characteristics of dormancy, sensitivity of antibiotics, same as exponential cells, multi-drug tolerance, and resuscitation, which are characteristics of general persister cells. This study suggests that the mechanisms of formation and resuscitation may vary depending on the characteristics, such as the membrane structure of the bacterial species.
Collapse
Affiliation(s)
- Hyein Kim
- Department of Animal Science, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Sejong Oh
- Division of Animal Science, Chonnam National University, Gwang-Ju 61186, Republic of Korea
| | - Sooyeon Song
- Department of Animal Science, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
7
|
Wang Z, Cui T, Wang Q. Optimization of degradation conditions and analysis of degradation mechanism for nitrite by Bacillus aryabhattai 47. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171096. [PMID: 38387569 DOI: 10.1016/j.scitotenv.2024.171096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/17/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024]
Abstract
Excessive nitrite levels cause significant damage to aquaculture, making it crucial to explore green and reliable nitrite removal technologies. In this study, A Bacillus aryabhattai (designated as the strain 47) isolated from aquaculture wastewater was used as the experimental strain. The nitrite degradation conditions of the strain 47 were optimized, and the optimal conditions are: glucose was 12.74 g/L, fermented special soybean meal was 21.27 g/L, MgCl2 369 mg/L, pH 7.0, incubated at 30 °C with the inoculum size of 2 % and the rotation speed of 170 rpm. Under the optimal conditions, the nitrite concentration of the culture solution was 200 mg/L, and the nitrite removal rate reached 91.4 %. Meanwhile, the mechanism by which Mg2+ enhanced the nitrite degradation ability of the strain 47 was investigated by transcriptomics. An operon structure directed cellular trafficking of Mg2+, and then, the Mg2+-mediated catalytic reaction of multiple enzymes enhanced and improved cellular metabolic processes (e.g. the transport and metabolism of nitrite, central carbohydrate metabolism oxidative phosphorylation). At the same time, with the progress of cell metabolism, cells secreted a series of enzymes related to nitrite transport and metabolism to promote the metabolism of nitrite. And the process of the assimilated nitrate reduction pathway of nitrite degradation in the strain 47 was elaborated at the transcriptome level. This study provided a new insight into nitrite treatment mediated by microbial organisms.
Collapse
Affiliation(s)
- Zhenhao Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Tangbing Cui
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China.
| | - Qiang Wang
- Guangdong Yuzanchen Biotechnology Co., Ltd, Jiangmen 529100, PR China
| |
Collapse
|
8
|
Wu X, Zhang Y, Zhang B, Tian H, Liang Y, Dang H, Zhao Y. Dynamic Changes in Microbial Communities, Physicochemical Properties, and Flavor of Kombucha Made from Fu-Brick Tea. Foods 2023; 12:4242. [PMID: 38231678 DOI: 10.3390/foods12234242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/10/2023] [Accepted: 11/21/2023] [Indexed: 01/19/2024] Open
Abstract
In this study, Fu-brick tea (FBT) was used for kombucha preparation. The succession of microbial community structures, changes in physicochemical properties, and the volatiles were investigated during the kombucha fermentation. The sequencing analysis showed that Komagataeibacter was the most predominant bacterium. Aspergillus and Zygosaccharomyces were the dominant fungi before fermentation whereas Zygosaccharomyces and Derkella were the dominant fungi after 3 days of fermentation. The physicochemical analysis revealed that acetic acid, glucuronic acid, and polyphenols increased by 10.22 g/L, 0.08 g/L, and 177.40 mg/L, respectively, by the end of fermentation. The GC-MS analysis showed that a total of 49 volatile compounds were detected during the fermentation. Moreover, there were great differences in volatile components among the kombucha samples with different fermentation times. Furthermore, the relevance among microbial community and volatile compounds was evaluated through correlation network analysis. The results suggested that Komagataeibacter, Aspergillus, Zygosaccharomyces, and Dekkera were closely related to the main volatile compounds of FBT kombucha. The results in this study may provide deep understanding for constructing the microbiota and improving the quality of FBT kombucha.
Collapse
Affiliation(s)
- Xiaoya Wu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yue Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Baoshan Zhang
- Research Center of Fruit and Vegetable Deep-Processing Technology, Xi'an 710119, China
| | - Honglei Tian
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yan Liang
- Xianyang Jingwei Fu Tea Co., Ltd., Xianyang 712044, China
- Key Laboratory of Fu Tea Processing and Utilization, Ministry of Agriculture and Rural Affairs, Xianyang 712044, China
| | - Hui Dang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yu Zhao
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
9
|
Román-Camacho JJ, García-García I, Santos-Dueñas IM, García-Martínez T, Mauricio JC. Latest Trends in Industrial Vinegar Production and the Role of Acetic Acid Bacteria: Classification, Metabolism, and Applications-A Comprehensive Review. Foods 2023; 12:3705. [PMID: 37835358 PMCID: PMC10572879 DOI: 10.3390/foods12193705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
Vinegar is one of the most appreciated fermented foods in European and Asian countries. In industry, its elaboration depends on numerous factors, including the nature of starter culture and raw material, as well as the production system and operational conditions. Furthermore, vinegar is obtained by the action of acetic acid bacteria (AAB) on an alcoholic medium in which ethanol is transformed into acetic acid. Besides the highlighted oxidative metabolism of AAB, their versatility and metabolic adaptability make them a taxonomic group with several biotechnological uses. Due to new and rapid advances in this field, this review attempts to approach the current state of knowledge by firstly discussing fundamental aspects related to industrial vinegar production and then exploring aspects related to AAB: classification, metabolism, and applications. Emphasis has been placed on an exhaustive taxonomic review considering the progressive increase in the number of new AAB species and genera, especially those with recognized biotechnological potential.
Collapse
Affiliation(s)
- Juan J. Román-Camacho
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence ceiA3, University of Córdoba, 14014 Córdoba, Spain; (J.J.R.-C.); (T.G.-M.); (J.C.M.)
| | - Isidoro García-García
- Department of Inorganic Chemistry and Chemical Engineering, Agrifood Campus of International Excellence ceiA3, Nano Chemistry Institute (IUNAN), University of Córdoba, 14014 Córdoba, Spain;
| | - Inés M. Santos-Dueñas
- Department of Inorganic Chemistry and Chemical Engineering, Agrifood Campus of International Excellence ceiA3, Nano Chemistry Institute (IUNAN), University of Córdoba, 14014 Córdoba, Spain;
| | - Teresa García-Martínez
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence ceiA3, University of Córdoba, 14014 Córdoba, Spain; (J.J.R.-C.); (T.G.-M.); (J.C.M.)
| | - Juan C. Mauricio
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence ceiA3, University of Córdoba, 14014 Córdoba, Spain; (J.J.R.-C.); (T.G.-M.); (J.C.M.)
| |
Collapse
|
10
|
Zhu X, Guo Z, Wang N, Liu J, Zuo Y, Li K, Song C, Song Y, Gong C, Xu X, Yuan F, Zhang L. Environmental stress stimulates microbial activities as indicated by cyclopropane fatty acid enhancement. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162338. [PMID: 36813189 DOI: 10.1016/j.scitotenv.2023.162338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/24/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Soil microbial responses to environmental stress remain a critical question in microbial ecology. The content of cyclopropane fatty acid (CFA) in cytomembrane has been widely used to evaluate environmental stress on microorganisms. Here, we used CFA to investigate the ecological suitability of microbial communities and found a stimulating impact of CFA on microbial activities during wetland reclamation in Sanjiang Plain, Northeastern China. The seasonality of environmental stress resulted in the fluctuation of CFA content in the soil, which suppressed microbial activities due to nutrient loss upon wetland reclamation. After land conversion, the aggravation of temperature stress to microbes increased the CFA content by 5 % (autumn) to 163 % (winter), which led to the suppression of microbial activities by 7 %-47 %. By contrast, the warmer soil temperature and permeability decreased the CFA content by 3 % to 41 % and consequently aggravated the microbial reduction by 15 %-72 % in spring and summer. Complex microbial communities of 1300 CFA-produced species were identified using a sequencing approach, suggesting that soil nutrients dominated the differentiation in these microbial community structures. Further analysis with structural equation modeling highlighted the important function of CFA content to environmental stress and the stimulating influence of CFA induced by environmental stress on microbial activities. Our study shows the biological mechanisms of seasonal CFA content for microbial adaption to environmental stress under wetland reclamation. It advances our knowledge of microbial physiology affecting soil element cycling caused by anthropogenic activities.
Collapse
Affiliation(s)
- Xinhao Zhu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, China; Biology Department, San Diego State University, San Diego, CA 92182, USA
| | - Ziyu Guo
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nannan Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, China
| | - Jianzhao Liu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunjiang Zuo
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kexin Li
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changchun Song
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, China
| | - Yanyu Song
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, China
| | - Chao Gong
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, China
| | - Xiaofeng Xu
- Biology Department, San Diego State University, San Diego, CA 92182, USA
| | - Fenghui Yuan
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, China; Department of Soil, Water, and Climate, University of Minnesota, Saint Paul, MN 55108, USA.
| | - Lihua Zhang
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, Beijing 100081, China.
| |
Collapse
|
11
|
Li K, Pang S, Li Z, Ding X, Gan Y, Gan Q, Fang S. House ammonia exposure causes alterations in microbiota, transcriptome, and metabolome of rabbits. Front Microbiol 2023; 14:1125195. [PMID: 37250049 PMCID: PMC10213413 DOI: 10.3389/fmicb.2023.1125195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/11/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction Pollutant gas emissions in the current production system of the livestock industry have negative influences on environment as well as the health of farm staffs and animals. Although ammonia (NH3) is considered as the primary and harmful gas pollutant in the rabbit farm, less investigation has performed to determine the toxic effects of house ammonia exposure on rabbit in the commercial confined barn. Methods In this study, we performed multi-omics analysis on rabbits exposed to high and low concentration of house ammonia under similar environmental conditions to unravel the alterations in nasal and colonic microbiota, pulmonary and colonic gene expression, and muscular metabolic profile. Results and discussion The results showed that house ammonia exposure notably affected microbial structure, composition, and functional capacity in both nasal and colon, which may impact on local immune responses and inflammatory processes. Transcriptome analysis indicated that genes related to cell death (MCL1, TMBIM6, HSPB1, and CD74) and immune response (CDC42, LAMTOR5, VAMP8, and CTSB) were differentially expressed in the lung, and colonic genes associated with redox state (CAT, SELENBP1, GLUD1, and ALDH1A1) were significantly up-regulated. Several key differentially abundant metabolites such as L-glutamic acid, L-glutamine, L-ornithine, oxoglutaric acid, and isocitric acid were identified in muscle metabolome, which could denote house ammonia exposure perturbed amino acids, nucleotides, and energy metabolism. In addition, the widespread and strong inter-system interplay were uncovered in the integrative correlation network, and central features were confirmed by in vitro experiments. Our findings disclose the comprehensive evidence for the deleterious effects of house ammonia exposure on rabbit and provide valuable information for understanding the underlying impairment mechanisms.
Collapse
|
12
|
Lamaudière MTF, Arasaradnam R, Weedall GD, Morozov IY. The Colorectal Cancer Gut Environment Regulates Activity of the Microbiome and Promotes the Multidrug Resistant Phenotype of ESKAPE and Other Pathogens. mSphere 2023; 8:e0062622. [PMID: 36847529 PMCID: PMC10117110 DOI: 10.1128/msphere.00626-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/28/2023] [Indexed: 03/01/2023] Open
Abstract
Taxonomic composition of the gut microbiota in colorectal cancer (CRC) patients is altered, a newly recognized driving force behind the disease, the activity of which has been overlooked. We conducted a pilot study on active microbial taxonomic composition in the CRC gut via metatranscriptome and 16S rRNA gene (rDNA) sequencing. We revealed sub-populations in CRC (n = 10) and control (n = 10) cohorts of over-active and dormant species, as changes in activity were often independent from abundance. Strikingly, the diseased gut significantly influenced transcription of butyrate producing bacteria, clinically relevant ESKAPE, oral, and Enterobacteriaceae pathogens. A focused analysis of antibiotic (AB) resistance genes showed that both CRC and control microbiota displayed a multidrug resistant phenotype, including ESKAPE species. However, a significant majority of AB resistance determinants of several AB families were upregulated in the CRC gut. We found that environmental gut factors regulated AB resistance gene expression in vitro of aerobic CRC microbiota, specifically acid, osmotic, and oxidative pressures in a predominantly health-dependent manner. This was consistent with metatranscriptome analysis of these cohorts, while osmotic and oxidative pressures induced differentially regulated responses. This work provides novel insights into the organization of active microbes in CRC, and reveals significant regulation of functionally related group activity, and unexpected microbiome-wide upregulation of AB resistance genes in response to environmental changes of the cancerous gut. IMPORTANCE The human gut microbiota in colorectal cancer patients have a distinct population compared to heathy counterparts. However, the activity (gene expression) of this community has not been investigated. Following quantification of both expressed genes and gene abundance, we established that a sub-population of microbes lies dormant in the cancerous gut, while other groups, namely, clinically relevant oral and multi-drug resistant pathogens, significantly increased in activity. Targeted analysis of community-wide antibiotic resistance determinants found that their expression occurs independently of antibiotic treatment, regardless of host health. However, its expression in aerobes, in vitro, can be regulated by specific environmental stresses of the gut, including organic and inorganic acid pressure in a health-dependent manner. This work advances the field of microbiology in the context of disease, showing, for the first time, that colorectal cancer regulates activity of gut microorganisms and that specific gut environmental pressures can modulate their antibiotic resistance determinants expression.
Collapse
Affiliation(s)
| | - Ramesh Arasaradnam
- Divison of Biomedical Sciences, Warwick Medical School, University of Warwick, Warwick, United Kingdom
- Department of Gastroenterology, University Hospitals of Coventry and Warwickshire, NHS trust, Coventry, United Kingdom
- University of Leicester, Leicester, United Kingdom
| | - Gareth D. Weedall
- School of Biological and Environmental Sciences, Liverpool John Moors University, Liverpool, United Kingdom
| | - Igor Y. Morozov
- Centre for Sports, Exercise and Life Sciences, Coventry University, Coventry, United Kingdom
| |
Collapse
|
13
|
Zhang Y, Pan L, Zhang Y, Wang K, Wang L, Zhang H, Zhang J, Chen X. Understanding the Streptomyces albulus response to low-pH stress at the interface of physiology and transcriptomics. Appl Microbiol Biotechnol 2023; 107:2611-2626. [PMID: 36882645 DOI: 10.1007/s00253-023-12449-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 03/09/2023]
Abstract
Streptomyces albulus is a well-established cell factory for ε-poly-L-lysine (ε-PL) production. It has been reported that ε-PL biosynthesis is strictly regulated by pH and that ε-PL can accumulate at approximately pH 4.0, which is outside of the general pH range for natural product production by Streptomyces species. However, how S. albulus responds to low pH is not clear. In this study, we attempted to explore the response of S. albulus to low-pH stress at the physiological and global gene transcription levels. At the physiological level, S. albulus maintained intracellular pH homeostasis at ~pH 7.5, increased the unsaturated fatty acid ratio, extended the fatty acid chain length, enhanced ATP accumulation, increased H+-ATPase activity, and accumulated the basic amino acids L-lysine and L-arginine. At the global gene transcription level, carbohydrate metabolism, oxidative phosphorylation, macromolecule protection and repair, and the acid tolerance system were found to be involved in combating low-pH stress. Finally, we preliminarily evaluated the effect of the acid tolerance system and cell membrane fatty acid synthesis on low-pH tolerance via gene manipulation. This work provides new insight into the adaptation mechanism of Streptomyces to low-pH stress and a new opportunity for constructing robust S. albulus strains for ε-PL production. KEY POINTS: • S. albulus consistently remained pH i at ~7.4 regardless of the environmental pH. • S. albulus combats low-pH stress by modulating lipid composition of cell membrane. • Overexpression of cfa in S. albulus could improve low-pH tolerance and ɛ-PL titer.
Collapse
Affiliation(s)
- Yulin Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi214122, Wuxi, Jiangsu, China
| | - Long Pan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi214122, Wuxi, Jiangsu, China
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Yue Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi214122, Wuxi, Jiangsu, China
| | - Kaifang Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi214122, Wuxi, Jiangsu, China
| | - Liang Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi214122, Wuxi, Jiangsu, China
| | - Hongjian Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi214122, Wuxi, Jiangsu, China
| | - Jianhua Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi214122, Wuxi, Jiangsu, China
| | - Xusheng Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi214122, Wuxi, Jiangsu, China.
| |
Collapse
|
14
|
Shao M, Liu L, Liu B, Zheng H, Meng W, Liu Y, Zhang X, Ma X, Sun C, Luo X, Li F, Xing B. Hormetic Effect of Pyroligneous Acids on Conjugative Transfer of Plasmid-mediated Multi-antibiotic Resistance Genes within Bacterial Genus. ACS ENVIRONMENTAL AU 2023; 3:105-120. [PMID: 37102089 PMCID: PMC10125354 DOI: 10.1021/acsenvironau.2c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 04/28/2023]
Abstract
Spread of antibiotic resistance genes (ARGs) by conjugation poses great challenges to public health. Application of pyroligneous acids (PA) as soil amendments has been evidenced as a practical strategy to remediate pollution of ARGs in soils. However, little is known about PA effects on horizontal gene transfer (HGT) of ARGs by conjugation. This study investigated the effects of a woody waste-derived PA prepared at 450°C and its three distillation components (F1, F2, and F3) at different temperatures (98, 130, and 220°C) on conjugative transfer of plasmid RP4 within Escherichia coli. PA at relatively high amount (40-100 μL) in a 30-mL mating system inhibited conjugation by 74-85%, following an order of PA > F3 ≈ F2 ≈ F1, proving the hypothesis that PA amendments may mitigate soil ARG pollution by inhibiting HGT. The bacteriostasis caused by antibacterial components of PA, including acids, phenols, and alcohols, as well as its acidity (pH 2.81) contributed to the inhibited conjugation. However, a relatively low amount (10-20 μL) of PA in the same mating system enhanced ARG transfer by 26-47%, following an order of PA > F3 ≈ F2 > F1. The opposite effect at low amount is mainly attributed to the increased intracellular reactive oxygen species production, enhanced cell membrane permeability, increased extracellular polymeric substance contents, and reduced cell surface charge. Our findings highlight the hormesis (low-amount promotion and high-amount inhibition) of PA amendments on ARG conjugation and provide evidence for selecting an appropriate amount of PA amendment to control the dissemination of soil ARGs. Moreover, the promoted conjugation also triggers questions regarding the potential risks of soil amendments (e.g., PA) in the spread of ARGs via HGT.
Collapse
Affiliation(s)
- Mengying Shao
- Institute
of Coastal Environmental Pollution Control, Ministry of Education
Key Laboratory of Marine Environment and Ecology, College of Environmental
Science and Engineering, Frontiers Science Center for Deep Ocean Multispheres
and Earth System, Ocean University of China, Qingdao 266100, China
- Marine
Ecology and Environmental Science Laboratory, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Liuqingqing Liu
- Institute
of Coastal Environmental Pollution Control, Ministry of Education
Key Laboratory of Marine Environment and Ecology, College of Environmental
Science and Engineering, Frontiers Science Center for Deep Ocean Multispheres
and Earth System, Ocean University of China, Qingdao 266100, China
- Marine
Ecology and Environmental Science Laboratory, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Bingjie Liu
- Institute
of Coastal Environmental Pollution Control, Ministry of Education
Key Laboratory of Marine Environment and Ecology, College of Environmental
Science and Engineering, Frontiers Science Center for Deep Ocean Multispheres
and Earth System, Ocean University of China, Qingdao 266100, China
- Ministry
of Ecology and Environment, South China
Institute of Environmental Sciences, Guangzhou 510535, China
| | - Hao Zheng
- Institute
of Coastal Environmental Pollution Control, Ministry of Education
Key Laboratory of Marine Environment and Ecology, College of Environmental
Science and Engineering, Frontiers Science Center for Deep Ocean Multispheres
and Earth System, Ocean University of China, Qingdao 266100, China
- Marine
Ecology and Environmental Science Laboratory, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Sanya
Oceanographic Institution, Ocean University
of China, Sanya 572000, China
| | - Wei Meng
- Institute
of Coastal Environmental Pollution Control, Ministry of Education
Key Laboratory of Marine Environment and Ecology, College of Environmental
Science and Engineering, Frontiers Science Center for Deep Ocean Multispheres
and Earth System, Ocean University of China, Qingdao 266100, China
| | - Yifan Liu
- Institute
of Coastal Environmental Pollution Control, Ministry of Education
Key Laboratory of Marine Environment and Ecology, College of Environmental
Science and Engineering, Frontiers Science Center for Deep Ocean Multispheres
and Earth System, Ocean University of China, Qingdao 266100, China
| | - Xiao Zhang
- Institute
of Coastal Environmental Pollution Control, Ministry of Education
Key Laboratory of Marine Environment and Ecology, College of Environmental
Science and Engineering, Frontiers Science Center for Deep Ocean Multispheres
and Earth System, Ocean University of China, Qingdao 266100, China
| | - Xiaohan Ma
- Institute
of Coastal Environmental Pollution Control, Ministry of Education
Key Laboratory of Marine Environment and Ecology, College of Environmental
Science and Engineering, Frontiers Science Center for Deep Ocean Multispheres
and Earth System, Ocean University of China, Qingdao 266100, China
- Marine
Ecology and Environmental Science Laboratory, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Cuizhu Sun
- Institute
of Coastal Environmental Pollution Control, Ministry of Education
Key Laboratory of Marine Environment and Ecology, College of Environmental
Science and Engineering, Frontiers Science Center for Deep Ocean Multispheres
and Earth System, Ocean University of China, Qingdao 266100, China
- Marine
Ecology and Environmental Science Laboratory, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Xianxiang Luo
- Institute
of Coastal Environmental Pollution Control, Ministry of Education
Key Laboratory of Marine Environment and Ecology, College of Environmental
Science and Engineering, Frontiers Science Center for Deep Ocean Multispheres
and Earth System, Ocean University of China, Qingdao 266100, China
- Marine
Ecology and Environmental Science Laboratory, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Sanya
Oceanographic Institution, Ocean University
of China, Sanya 572000, China
| | - Fengmin Li
- Institute
of Coastal Environmental Pollution Control, Ministry of Education
Key Laboratory of Marine Environment and Ecology, College of Environmental
Science and Engineering, Frontiers Science Center for Deep Ocean Multispheres
and Earth System, Ocean University of China, Qingdao 266100, China
- Marine
Ecology and Environmental Science Laboratory, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Sanya
Oceanographic Institution, Ocean University
of China, Sanya 572000, China
| | - Baoshan Xing
- Stockbridge
School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
15
|
Xu J, Guo L, Zhao N, Meng X, Zhang J, Wang T, Wei X, Fan M. Response mechanisms to acid stress of acid-resistant bacteria and biotechnological applications in the food industry. Crit Rev Biotechnol 2023; 43:258-274. [PMID: 35114869 DOI: 10.1080/07388551.2021.2025335] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Acid-resistant bacteria are more and more widely used in industrial production due to their unique acid-resistant properties. In order to survive in various acidic environments, acid-resistant bacteria have developed diverse protective mechanisms such as sensing acid stress and signal transduction, maintaining intracellular pH homeostasis by controlling the flow of H+, protecting and repairing biological macromolecules, metabolic modification, and cross-protection. Acid-resistant bacteria have broad biotechnological application prospects in the food field. The production of fermented foods with high acidity and acidophilic enzymes are the main applications of this kind of bacteria in the food industry. Their acid resistance modules can also be used to construct acid-resistant recombinant engineering strains for special purposes. However, they can also cause negative effects on foods, such as spoilage and toxicity. Herein, the aim of this paper is to summarize the research progress of molecular mechanisms against acid stress of acid-resistant bacteria. Moreover, their effects on the food industry were also discussed. It is useful to lay a foundation for broadening our understanding of the physiological metabolism of acid-resistant bacteria and better serving the food industry.
Collapse
Affiliation(s)
- Junnan Xu
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Li Guo
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Ning Zhao
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Xuemei Meng
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Jie Zhang
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Tieru Wang
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Xinyuan Wei
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Mingtao Fan
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| |
Collapse
|
16
|
Peng J, Xu Z, Li L, Zhao B, Guo Y. Disruption of the sensor kinase phoQ gene decreases acid resistance in plant growth-promoting rhizobacterium Rahnella aquatilis HX2. J Appl Microbiol 2023; 134:6991427. [PMID: 36748653 DOI: 10.1093/jambio/lxad009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/24/2022] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
AIMS Rahnella aquatilis HX2, a promising plant growth-promoting rhizobacterium (PGPR) in the field, contains genes homologous to the PhoP/PhoQ two-component regulatory system. Although this system regulates stress response in numerous pathogens, PhoP/PhoQ characterization in a PGPR has not received in-depth exploration. METHODS AND RESULTS The phoQ gene was mutated in strain HX2 using an in-frame deletion strategy. Compared to the wild type, the phoQ mutant exhibited increased sensitivity to acidic conditions (pH 4.0) in a chemically defined medium and in mild acidic natural soil (pH 5.7). The phoQ mutant also exhibited increased swimming motility under acidic conditions. Acid resistance was restored in the mutant by introducing the phoQ gene on a plasmid. Three acid resistance genes, add, cfa, and fur were downregulated significantly, whereas the chaperone encoding gene, dnak, was upregulated when the phoQ mutant was exposed to acid stress. CONCLUSIONS This study suggested that the PhoP/PhoQ system positively regulates the acid resistance of R. aquatilis HX2.
Collapse
Affiliation(s)
- Jing Peng
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.,Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Zhongnan Xu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.,Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Lei Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.,Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Bingjie Zhao
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.,Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Yanbin Guo
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.,Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| |
Collapse
|
17
|
Yang H, He Y, Liao J, Li X, Zhang J, Liebl W, Chen F. RNA-Seq transcriptomic analysis reveals gene expression profiles of acetic acid bacteria under high-acidity submerged industrial fermentation process. Front Microbiol 2022; 13:956729. [PMID: 36246236 PMCID: PMC9557201 DOI: 10.3389/fmicb.2022.956729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Acetic acid bacteria (AAB) are Gram-negative obligate aerobics in Acetobacteraceae family. Producing acetic acid and brewing vinegars are one of the most important industrial applications of AAB, attributed to their outstanding ability to tolerate the corresponding stresses. Several unique acid resistance (AR) mechanisms in AAB have been revealed previously. However, their overall AR strategies are still less-comprehensively clarified. Consequently, omics analysis was widely performed for a better understanding of this field. Among them, transcriptome has recently obtained more and more attention. However, most currently reported transcriptomic studies were conducted under lab conditions and even in low-acidity environment, which may be unable to completely reflect the conditions that AAB confront under industrialized vinegar-brewing processes. In this study, we performed an RNA-Seq transcriptomic analysis concerning AAB’s AR mechanisms during a continuous and periodical industrial submerged vinegar fermentation process, where a single AAB strain performed the fermentation and the acetic acid concentration fluctuated between ~8% and ~12%, the highest acidity as far we know for transcriptomic studies. Samples were directly taken from the initial (CK), mid, and final stages of the same period of the on-going fermentation. 16S rRNA sequence analysis indicated the participation of Komagataeibacter europaeus in the fermentation. Transcriptomic results demonstrated that more genes were downregulated than upregulated at both mid and final stages. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrich analysis reflected that the upregulated genes mainly carried out tricarboxylic acid cycle and oxidative phosphorylation processes, probably implying a considerable role of acetic acid overoxidation in AR during fermentation. Besides, upregulation of riboflavin biosynthesis pathway and two NAD+-dependent succinate-semialdehyde dehydrogenase-coding genes suggested a critical role of succinate oxidation in AR. Meanwhile, downregulated genes were mainly ribosomal protein-coding ones, reflecting that the adverse impact on ribosomes initiates at the transcription level. However, it is ambiguous whether the downregulation is good for stress responding or it actually reflects the stress. Furthermore, we also assumed that the fermentation stages may have a greater effect on gene expression than acidity. Additionally, it is possible that some physiological alterations would affect the AR to a larger extent than changes in gene expression, which suggests the combination of molecular biology and physiology research will provide deeper insight into the AR mechanisms in AAB.
Collapse
Affiliation(s)
- Haoran Yang
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Chair of Microbiology, Technical University of Munich, Freising, Germany
| | - Yating He
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jing Liao
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xin Li
- Jiangsu Hengshun Vinegar Industry Co., Ltd, Zhenjiang, Jiangsu, China
| | - Junhong Zhang
- Jiangsu Hengshun Vinegar Industry Co., Ltd, Zhenjiang, Jiangsu, China
| | - Wolfgang Liebl
- Chair of Microbiology, Technical University of Munich, Freising, Germany
| | - Fusheng Chen
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- *Correspondence: Fusheng Chen,
| |
Collapse
|
18
|
Chen W, Guo R, Wang Z, Xu W, Hu Y. Dimethyl phthalate destroys the cell membrane structural integrity of Pseudomonas fluorescens. Front Microbiol 2022; 13:949590. [PMID: 36071970 PMCID: PMC9441906 DOI: 10.3389/fmicb.2022.949590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/26/2022] [Indexed: 12/02/2022] Open
Abstract
A Gram-negative bacteria (Pseudomonas fluorescens) was exposed to different concentrations (0, 20, and 40 mg/L) of dimethyl phthalate (DMP) for 8 h, and then Fourier transform infrared spectroscopy (FTIR) analysis, lipopolysaccharide content detection, analysis of fatty acids, calcein release test, proteomics, non-targeted metabolomics, and enzyme activity assays were used to evaluate the toxicological effect of DMP on P. fluorescens. The results showed that DMP exposure caused an increase in the unsaturated fatty acid/saturated fatty acid (UFA/SFA) ratio and in the release of lipopolysaccharides (LPSs) from the cell outer membrane (OM) of P. fluorescens. Moreover, DMP regulated the abundances of phosphatidyl ethanolamine (PE) and phosphatidyl glycerol (PG) of P. fluorescens and induced dye leakage from an artificial membrane. Additionally, excessive reactive oxygen species (ROS), malondialdehyde (MDA), and changes in antioxidant enzymes (i.e., catalase [CAT] and superoxide dismutase [SOD]) activities, as well as the inhibition of Ca2+-Mg2+-ATPase and Na+/K+-ATPase activities in P. fluorescens, which were induced by the DMP. In summary, DMP could disrupt the lipid asymmetry of the outer membrane, increase the fluidity of the cell membrane, and destroy the integrity of the cell membrane of P. fluorescens through lipid peroxidation, oxidative stress, and ion imbalance.
Collapse
Affiliation(s)
- Wenjing Chen
- College of Life Sciences, Agriculture and Forestry, Qiqihar University, Qiqihar, China
- Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar, China
- Center for Ecological Research, Northeast Forestry University, Harbin, China
| | - Ruxin Guo
- College of Life Sciences, Agriculture and Forestry, Qiqihar University, Qiqihar, China
- Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar, China
| | - Zhigang Wang
- College of Life Sciences, Agriculture and Forestry, Qiqihar University, Qiqihar, China
- Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar, China
- *Correspondence: Zhigang Wang
| | - Weihui Xu
- College of Life Sciences, Agriculture and Forestry, Qiqihar University, Qiqihar, China
- Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar, China
| | - Yunlong Hu
- College of Life Sciences, Agriculture and Forestry, Qiqihar University, Qiqihar, China
- Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar, China
| |
Collapse
|
19
|
Xiao T, Zhang D, Tun HM, Shah NP. Cysteine protected cells from H 2O 2-induced damage and promoted long-chain fatty acids synthesis in vivo to improve γ-aminobutyric acid production in Levilactobacillus brevis. World J Microbiol Biotechnol 2022; 38:185. [PMID: 35972565 DOI: 10.1007/s11274-022-03379-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/06/2022] [Indexed: 10/15/2022]
Abstract
Levilactobacillus brevis NPS-QW-145 isolated from kimchi is deficient in glutamate dehydrogenase-encoding gene (gdhA) to form glutamate, hence it required exogenous supplementation of glutamate/monosodium glutamate (MSG) for decarboxylation reaction to produce γ-aminobutyric acid (GABA). However, GABA conversion rate from MSG was relatively low. The individual effect of 20 amino acids on regulating GABA biosynthesis was investigated. Cysteine was selected to significantly improve GABA production from MSG. It was found that Lb. brevis was capable of producing H2O2, cysteine protected Lb. brevis against H2O2-induced oxidative damage to increase cell viability for the enhancement of GABA production. Moreover, cysteine promoted glucose consumption to produce acetyl-CoA for synthesizing long-chain fatty acids to significantly up-regulate GABA biosynthesis. These findings deciphered antioxidative capability of cysteine in Lb. brevis 145 and provided a theoretical basis for fatty acids synthesis-mediated GABA synthesis in Lb. brevis 145, and possibly in other lactic acid bacteria.
Collapse
Affiliation(s)
- Tingting Xiao
- Food and Nutritional Science, School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China
| | - Dengwei Zhang
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Hein Min Tun
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Nagendra P Shah
- Food and Nutritional Science, School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
20
|
Yang H, Chen T, Wang M, Zhou J, Liebl W, Barja F, Chen F. Molecular biology: Fantastic toolkits to improve knowledge and application of acetic acid bacteria. Biotechnol Adv 2022; 58:107911. [PMID: 35033586 DOI: 10.1016/j.biotechadv.2022.107911] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/27/2021] [Accepted: 01/09/2022] [Indexed: 12/24/2022]
Abstract
Acetic acid bacteria (AAB) are a group of gram-negative, obligate aerobic bacteria within the Acetobacteraceae family of the alphaproteobacteria class, which are distributed in a wide variety of different natural sources that are rich in sugar and alcohols, as well as in several traditionally fermented foods. Their capabilities are not limited to the production of acetic acid and the brewing of vinegar, as their names suggest. They can also fix nitrogen and produce various kinds of aldehydes, ketones and other organic acids by incomplete oxidation (also referred to as oxidative fermentation) of the corresponding alcohols and/or sugars, as well as pigments and exopolysaccharides (EPS). In order to gain more insight into these organisms, molecular biology techniques have been extensively applied in almost all aspects of AAB research, including their identification and classification, acid resistance mechanisms, oxidative fermentation, EPS production, thermotolerance and so on. In this review, we mainly focus on the application of molecular biological technologies in the advancement of research into AAB while presenting the progress of the latest studies using these techniques.
Collapse
Affiliation(s)
- Haoran Yang
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, Hubei, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Tao Chen
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, Hubei, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Min Wang
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science &Technology, Tianjin, China
| | - Jingwen Zhou
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| | | | - François Barja
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Sciences III, Geneva, Switzerland
| | - Fusheng Chen
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, Hubei, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
21
|
Wang D, Chen H, Yang H, Yao S, Wu C. Incorporation of Exogenous Fatty Acids Enhances the Salt Tolerance of Food Yeast Zygosaccharomyces rouxii. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10301-10310. [PMID: 34449211 DOI: 10.1021/acs.jafc.1c03896] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fatty acids have great effects on the maintenance of the cell membrane structure, cell viability, and cell metabolisms. In this study, we sought to elucidate the effects of exogenous fatty acids on the salt tolerance of food yeast Zygosaccharomyces rouxii. Results showed that Z. rouxii can grow by using exogenous fatty acids (C12:0, C14:0, C16:0, C16:1, C18:0, C18:1, and C18:2) as the sole carbon source. Four fatty acids (C12:0, C16:0, C16:1, and C18:1) can improve the salt tolerance of cells, enhance the formation of the cell biofilm, regulate the chemical compositions, restore growth in the presence of cerulenin, regulate the contents of membrane fatty acids, and control the expression of key genes in the fatty acid metabolism. Our results reveal that Z. rouxii can synthesize membrane fatty acids from exogenous fatty acids and the supplementation of these fatty acids can override the need for de novo fatty acid biosynthesis.
Collapse
Affiliation(s)
- Dingkang Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Hong Chen
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Huan Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Shangjie Yao
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| |
Collapse
|
22
|
Gao X, Kong J, Zhu H, Mao B, Cui S, Zhao J. Lactobacillus, Bifidobacterium and Lactococcus response to environmental stress: Mechanisms and application of cross-protection to improve resistance against freeze-drying. J Appl Microbiol 2021; 132:802-821. [PMID: 34365708 DOI: 10.1111/jam.15251] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 06/12/2021] [Accepted: 07/07/2021] [Indexed: 01/30/2023]
Abstract
The review deals with lactic acid bacteria in characterizing the stress adaptation with cross-protection effects, mainly associated with Lactobacillus, Bifidobacterium and Lactococcus. It focuses on adaptation and cross-protection in Lactobacillus, Bifidobacterium and Lactococcus, including heat shocking, cold stress, acid stress, osmotic stress, starvation effect, etc. Web of Science, Google Scholar, Science Direct, and PubMed databases were used for the systematic search of literature up to the year 2020. The literature suggests that a lower survival rate during freeze-drying is linked to environmental stress. Protective pretreatment under various mild stresses can be applied to lactic acid bacteria which may enhance resistance in a strain-dependent manner. We investigate the mechanism of damage and adaptation under various stresses including heat, cold, acidic, osmotic, starvation, oxidative and bile stress. Adaptive mechanisms include synthesis of stress-induced proteins, adjusting the composition of cell membrane fatty acids, accumulating compatible substances, etc. Next, we reveal the cross-protective effect of specific stress on the other environmental stresses. Freeze-drying is discussed from three perspectives including the regulation of membrane, accumulation of compatible solutes and the production of chaperones and stress-responsive proteases. The resistance of lactic acid bacteria against technological stress can be enhanced via cross-protection, which improves industrial efficiency concerning the survival of probiotics. However, the adaptive responses and cross-protection are strain-dependent and should be optimized case by case.
Collapse
Affiliation(s)
- Xinwei Gao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, P.R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jie Kong
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hongkang Zhu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, P.R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, P.R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, P.R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
23
|
Román-Camacho JJ, Mauricio JC, Santos-Dueñas IM, García-Martínez T, García-García I. Functional metaproteomic analysis of alcohol vinegar microbiota during an acetification process: A quantitative proteomic approach. Food Microbiol 2021; 98:103799. [PMID: 33875225 DOI: 10.1016/j.fm.2021.103799] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/20/2021] [Accepted: 03/30/2021] [Indexed: 11/16/2022]
Abstract
Vinegar is elaborated using a semi-continuous submerged culture of a complex microbiota of acetic acid bacteria. The genus Komagataeibacter provides much of the proteins of the metaproteome, being K. europaeus the main species working in this environment. In this work, the protein profile of the vinegar microbiota, obtained by means of liquid chromatography-tandem mass spectrometry (LC-MS/MS) in samples from different cycle times of an acetification process using an alcohol medium, has been used to describe the functional metaproteome throughout the process. The analysis was focused on Komagataeibacter species which supplied about 90% of the metaproteome and particularly K. europaeus which accounts for more than 70%. According to these results, the natural behaviour of a microbial community in vinegar has been predicted at a quantitative proteomic level. The results revealed that most of the identified proteins involved in the metabolism of amino acids, biosynthesis of proteins, and energy production related-metabolic pathways increased their expression throughout the cycle loading phase and afterwards experimented a decrease coming into play other proteins acting against acetic acid stress. These findings may facilitate a better understanding of the microbiota's role and contributing to obtain a quality product.
Collapse
Affiliation(s)
- Juan J Román-Camacho
- Department of Agricultural Chemistry, Edaphology and Microbiology, Microbiology Area, Severo Ochoa Building (C6), Agrifood Campus of International Excellence ceiA3, University of Cordoba, Ctra. N-IV-A, Km 396, 14014, Córdoba, Spain.
| | - Juan C Mauricio
- Department of Agricultural Chemistry, Edaphology and Microbiology, Microbiology Area, Severo Ochoa Building (C6), Agrifood Campus of International Excellence ceiA3, University of Cordoba, Ctra. N-IV-A, Km 396, 14014, Córdoba, Spain.
| | - Inés M Santos-Dueñas
- Department of Inorganic Chemistry and Chemical Engineering, Chemical Engineering Area, Marie Curie Building (C3), Agrifood Campus of International Excellence ceiA3, University of Cordoba, Ctra. N-IV-A, Km 396, 14014, Córdoba, Spain.
| | - Teresa García-Martínez
- Department of Agricultural Chemistry, Edaphology and Microbiology, Microbiology Area, Severo Ochoa Building (C6), Agrifood Campus of International Excellence ceiA3, University of Cordoba, Ctra. N-IV-A, Km 396, 14014, Córdoba, Spain.
| | - Isidoro García-García
- Department of Inorganic Chemistry and Chemical Engineering, Chemical Engineering Area, Marie Curie Building (C3), Agrifood Campus of International Excellence ceiA3, University of Cordoba, Ctra. N-IV-A, Km 396, 14014, Córdoba, Spain.
| |
Collapse
|
24
|
|
25
|
Xia K, Han C, Xu J, Liang X. Toxin-antitoxin HicAB regulates the formation of persister cells responsible for the acid stress resistance in Acetobacter pasteurianus. Appl Microbiol Biotechnol 2021; 105:725-739. [PMID: 33386897 DOI: 10.1007/s00253-020-11078-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/02/2020] [Accepted: 12/27/2020] [Indexed: 12/13/2022]
Abstract
Elucidation of the acetic acid resistance (AAR) mechanisms is of great significance to the development of industrial microbial species, specifically to the acetic acid bacteria (AAB) in vinegar industry. Currently, the role of population heterogeneity in the AAR of AAB is still unclear. In this study, we investigated the persister formation in AAB and the physiological role of HicAB in Acetobacter pasteurianus Ab3. We found that AAB were able to produce a high level of persister cells (10-2 to 100 in frequency) in the exponential-phase cultures. Initial addition of acetic acid and ethanol reduced the ratio of persister cells in A. pasteurianus by promoting the intracellular ATP level. Further, we demonstrated that HicAB was an important regulator of AAR in A. pasteurianus Ab3. Strains lacking hicAB showed a decreased survival under acetic acid exposure. Deletion of hicAB significantly diminished the acetic acid production, acetification rate, and persister formation in A. pasteurianus Ab3, underscoring the correlation between hicAB, persister formation, and acid stress resistance. By transcriptomic analysis (RNA-seq), we revealed that HicAB contributed to the survival of A. pasteurianus Ab3 under high acid stress by upregulating the expression of genes involved in the acetic acid over-oxidation and transport, 2-methylcitrate cycle, and oxidative phosphorylation. Collectively, the results of this study refresh our current understanding of the AAR mechanisms in A. pasteurianus, which may facilitate the development of novel ways for improving its industrial performance and direct the scaled-up vinegar production. KEY POINTS: • AAB strains form persister cells with different frequencies. • A. pasteurianus are able to form acid-tolerant persister cells. • HicAB contributes to the AAR and persister formation in A. pasteurianus Ab3.
Collapse
Affiliation(s)
- Kai Xia
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Chengcheng Han
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.,Institute of Food Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Jun Xu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.,Institute of Food Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Xinle Liang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China. .,Institute of Food Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|
26
|
Han C, Xia K, Yang J, Zhang H, DeLisa MP, Liang X. Investigation of lipid profile in Acetobacter pasteurianus Ab3 against acetic acid stress during vinegar production. Extremophiles 2020; 24:909-922. [PMID: 33026498 DOI: 10.1007/s00792-020-01204-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 09/21/2020] [Indexed: 10/23/2022]
Abstract
Elucidation of the acetic acid resistance (AAR) mechanisms of Acetobacter pasteurianus is significant for vinegar production. In this study, cell membrane lipid profile of A. pasteurianus Ab3 was investigated by gas chromatography-mass spectrometer (GC-MS) and high performance liquid chromatography-electrospray ionization (HPLC-ESI) combined with high resolution accurate mass/mass spectrometry (HRAM/MS). We observed that cell remodeled the membrane physical state by decreasing the ratio of saturated fatty acids (SFAs)/unsaturated fatty acids (UFAs), and increasing the chain length of fatty acids (FAs) and the content of cyclopropane FAs in response to extreme acid stress. Noticeably, the content of octadecadienoic acid (C18:2) elevated remarkably. Moreover, a continuous reduction in cell membrane fluidity and a "V-type" variance in permeability were discovered. The content of glycerophospholipid and ceramide increased significantly in cells harvested from culture with acidity of 75 g/L and 95 g/L compared to that with acidity of 30 g/L. Among the identified lipid species, the content of phosphatidylcholine (e.g. PC 19:0/18:2 and 19:1/18:0), ceramide (e.g. Cer d18:0/16:1 and d18:0/16:1 + O), and dimethylphosphatidylethanolamine (e.g. dMePE 19:1/16:1) increased notably with increasing acidity. Collectively, these findings refresh our current understanding of the AAR mechanisms in A. pasteurianus Ab3, and should direct future strain breeding and vinegar fermentation.
Collapse
Affiliation(s)
- Chengcheng Han
- Department of Biochemical Engineering, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Kai Xia
- Department of Biochemical Engineering, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Jieqiong Yang
- Department of Biochemical Engineering, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Hong Zhang
- Department of Biochemical Engineering, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Matthew P DeLisa
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, NY, 14853, USA
| | - Xinle Liang
- Department of Biochemical Engineering, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|
27
|
Marič L, Cleenwerck I, Accetto T, Vandamme P, Trček J. Description of Komagataeibacter melaceti sp. nov. and Komagataeibacter melomenusus sp. nov. Isolated from Apple Cider Vinegar. Microorganisms 2020; 8:E1178. [PMID: 32756518 PMCID: PMC7465234 DOI: 10.3390/microorganisms8081178] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 01/18/2023] Open
Abstract
Two novel strains AV382 and AV436 were isolated from a submerged industrial bioreactor for production of apple cider vinegar in Kopivnik (Slovenia). Both strains showed very high (≥98.2%) 16S rRNA gene sequence similarities with Komagataeibacter species, but lower 16S-23S rRNA gene internal transcribed spacer (ITS). The highest similarity of the 16S-23S rRNA gene ITS of AV382 was to Komagataeibacter kakiaceti LMG 26206T (91.6%), of AV436 to Komagataeibacter xylinus LMG 1515T (93.9%). The analysis of genome sequences confirmed that AV382 is the most closely related to K. kakiaceti (ANIb 88.2%) and AV436 to K. xylinus (ANIb 91.6%). Genome to genome distance calculations exhibit for both strains ≤47.3% similarity to all type strains of the genus Komagataeibacter. The strain AV382 can be differentiated from its closest relatives K. kakiaceti and Komagataeibacter saccharivorans by its ability to form 2-keto and 5-keto-D-gluconic acids from glucose, incapability to grow in the presence of 30% glucose, formation of C19:0 cyclo ω8c fatty acid and tolerance of up to 5% acetic acid in the presence of ethanol. The strain AV436 can be differentiated from its closest relatives K. xylinus, Komagataeibacter sucrofermentans, and Komagataeibacter nataicola by its ability to form 5-keto-D-gluconic acid, growth on 1-propanol, efficient synthesis of cellulose, and tolerance to up to 5% acetic acid in the presence ethanol. The major fatty acid of both strains is C18:1ω7c. Based on a combination of phenotypic, chemotaxonomic and phylogenetic features, the strains AV382T and AV436T represent novel species of the genus Komagataeibacter, for which the names Komagataeibactermelaceti sp. nov. and Komagataeibacter melomenusus are proposed, respectively. The type strain of Komagataeibacter melaceti is AV382T (= ZIM B1054T = LMG 31303T = CCM 8958T) and of Komagataeibacter melomenusus AV436T (= ZIM B1056T = LMG 31304T = CCM 8959T).
Collapse
Affiliation(s)
- Leon Marič
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, SI-2000 Maribor, Slovenia;
| | - Ilse Cleenwerck
- BCCM/LMG Bacteria Collection, Laboratory of Microbiology, Ghent University, Faculty of Sciences, B-9000 Ghent, Belgium; (I.C.); (P.V.)
| | - Tomaž Accetto
- Animal Science Department, Biotechnical Faculty, University of Ljubljana, SI-1230 Domžale, Slovenia;
| | - Peter Vandamme
- BCCM/LMG Bacteria Collection, Laboratory of Microbiology, Ghent University, Faculty of Sciences, B-9000 Ghent, Belgium; (I.C.); (P.V.)
| | - Janja Trček
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, SI-2000 Maribor, Slovenia;
- Faculty of Chemistry and Chemical Engineering, University of Maribor, SI-2000 Maribor, Slovenia
| |
Collapse
|
28
|
Román-Camacho JJ, Santos-Dueñas IM, García-García I, Moreno-García J, García-Martínez T, Mauricio JC. Metaproteomics of microbiota involved in submerged culture production of alcohol wine vinegar: A first approach. Int J Food Microbiol 2020; 333:108797. [PMID: 32738750 DOI: 10.1016/j.ijfoodmicro.2020.108797] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/04/2020] [Accepted: 07/20/2020] [Indexed: 01/03/2023]
Abstract
Acetic acid bacteria form a complex microbiota that plays a fundamental role in the industrial production of vinegar through the incomplete oxidation reaction from ethanol to acetic acid. The organoleptic properties and the quality of vinegar are influenced by many factors, especially by the raw material used as acetification substrate, the microbial diversity and the technical methods employed in its production. The metaproteomics has been considered, among the new methods employed for the investigation of microbial communities, since it may provide information about the microbial biodiversity and behaviour by means of a protein content analysis. In this work, alcohol wine vinegar was produced through a submerged culture of acetic acid bacteria using a pilot acetator, operated in a semi-continuous mode, where the main system variables were monitored and the cycle profile throughout the acetification was obtained. Through a first approach, at qualitative level, of a metaproteomic analysis performed at relevant moments of the acetification cycle (end of fast and discontinuous loading phases and just prior to unloading phase), it is aimed to investigate the microbiota existent in alcohol wine vinegar as well as its changes during the cycle; to our knowledge, this is the first metaproteomics report carried out in this way on this system. A total of 1723 proteins from 30 different genera were identified; 1615 out of 1723 proteins (93.73%) belonged to the four most frequent (%) genera: Acetobacter, Gluconacetobacter, Gluconobacter and Komagataeibacter. Around 80% of identified proteins belonged to the species Komagataeibacter europaeus. In addition, GO Term enrichment analysis highlighted the important role of catalytic activity, organic cyclic compound binding, metabolic and biosynthesis processes throughout acetic acid fermentation. These findings provide the first step to obtain an AAB profile at omics level related to the environmental changes produced during the typical semi-continuous cycles used in this process and it would contribute to the optimization of operating conditions and improving the industrial production of vinegar.
Collapse
Affiliation(s)
- Juan J Román-Camacho
- Department of Agricultural Chemistry, Edaphology and Microbiology, Microbiology Area, Severo Ochoa Building (C6), Campus of Rabanales, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A, Km 396, 14014 Córdoba, Spain.
| | - Inés M Santos-Dueñas
- Department of Inorganic Chemistry and Chemical Engineering, Chemical Engineering Area, Marie Curie Building (C3), Campus of Rabanales, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A, Km 396, 14014 Córdoba, Spain.
| | - Isidoro García-García
- Department of Inorganic Chemistry and Chemical Engineering, Chemical Engineering Area, Marie Curie Building (C3), Campus of Rabanales, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A, Km 396, 14014 Córdoba, Spain.
| | - Jaime Moreno-García
- Department of Agricultural Chemistry, Edaphology and Microbiology, Microbiology Area, Severo Ochoa Building (C6), Campus of Rabanales, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A, Km 396, 14014 Córdoba, Spain.
| | - Teresa García-Martínez
- Department of Agricultural Chemistry, Edaphology and Microbiology, Microbiology Area, Severo Ochoa Building (C6), Campus of Rabanales, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A, Km 396, 14014 Córdoba, Spain.
| | - Juan C Mauricio
- Department of Agricultural Chemistry, Edaphology and Microbiology, Microbiology Area, Severo Ochoa Building (C6), Campus of Rabanales, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A, Km 396, 14014 Córdoba, Spain.
| |
Collapse
|
29
|
Towards control of cellulose biosynthesis by Komagataeibacter using systems-level and strain engineering strategies: current progress and perspectives. Appl Microbiol Biotechnol 2020; 104:6565-6585. [PMID: 32529377 PMCID: PMC7347698 DOI: 10.1007/s00253-020-10671-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/29/2022]
Abstract
The strains of the Komagataeibacter genus have been shown to be the most efficient bacterial nanocellulose producers. Although exploited for many decades, the studies of these species focused mainly on the optimisation of cellulose synthesis process through modification of culturing conditions in the industrially relevant settings. Molecular physiology of Komagataeibacter was poorly understood and only a few studies explored genetic engineering as a strategy for strain improvement. Only since recently the systemic information of the Komagataeibacter species has been accumulating in the form of omics datasets representing sequenced genomes, transcriptomes, proteomes and metabolomes. Genetic analyses of the mutants generated in the untargeted strain modification studies have drawn attention to other important proteins, beyond those of the core catalytic machinery of the cellulose synthase complex. Recently, modern molecular and synthetic biology tools have been developed which showed the potential for improving targeted strain engineering. Taking the advantage of the gathered knowledge should allow for better understanding of the genotype–phenotype relationship which is necessary for robust modelling of metabolism as well as selection and testing of new molecular engineering targets. In this review, we discuss the current progress in the area of Komagataeibacter systems biology and its impact on the research aimed at scaled-up cellulose synthesis as well as BNC functionalisation.Key points • The accumulated omics datasets advanced the systemic understanding of Komagataeibacter physiology at the molecular level. • Untargeted and targeted strain modification approaches have been applied to improve nanocellulose yield and properties. • The development of modern molecular and synthetic biology tools presents a potential for enhancing targeted strain engineering. • The accumulating omic information should improve modelling of Komagataeibacter’s metabolism as well as selection and testing of new molecular engineering targets. |
Collapse
|
30
|
ARTP mutation and adaptive laboratory evolution improve probiotic performance of Bacillus coagulans. Appl Microbiol Biotechnol 2020; 104:6363-6373. [DOI: 10.1007/s00253-020-10703-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/28/2020] [Accepted: 05/24/2020] [Indexed: 12/19/2022]
|