1
|
Perron S, Ouriadov A. Hyperpolarized 129Xe MRI at low field: Current status and future directions. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 348:107387. [PMID: 36731353 DOI: 10.1016/j.jmr.2023.107387] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/07/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Magnetic Resonance Imaging (MRI) is dictated by the magnetization of the sample, and is thus a low-sensitivity imaging method. Inhalation of hyperpolarized (HP) noble gases, such as helium-3 and xenon-129, is a non-invasive, radiation-risk free imaging technique permitting high resolution imaging of the lungs and pulmonary functions, such as the lung microstructure, diffusion, perfusion, gas exchange, and dynamic ventilation. Instead of increasing the magnetic field strength, the higher spin polarization achievable from this method results in significantly higher net MR signal independent of tissue/water concentration. Moreover, the significantly longer apparent transverse relaxation time T2* of these HP gases at low magnetic field strengths results in fewer necessary radiofrequency (RF) pulses, permitting larger flip angles; this allows for high-sensitivity imaging of in vivo animal and human lungs at conventionally low (<0.5 T) field strengths and suggests that the low field regime is optimal for pulmonary MRI using hyperpolarized gases. In this review, theory on the common spin-exchange optical-pumping method of hyperpolarization and the field dependence of the MR signal of HP gases are presented, in the context of human lung imaging. The current state-of-the-art is explored, with emphasis on both MRI hardware (low field scanners, RF coils, and polarizers) and image acquisition techniques (pulse sequences) advancements. Common challenges surrounding imaging of HP gases and possible solutions are discussed, and the future of low field hyperpolarized gas MRI is posed as being a clinically-accessible and versatile imaging method, circumventing the siting restrictions of conventional high field scanners and bringing point-of-care pulmonary imaging to global facilities.
Collapse
Affiliation(s)
- Samuel Perron
- Department of Physics and Astronomy, The University of Western Ontario, London, Ontario, Canada.
| | - Alexei Ouriadov
- Department of Physics and Astronomy, The University of Western Ontario, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada; School of Biomedical Engineering, Faculty of Engineering, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
2
|
Preclinical MRI Using Hyperpolarized 129Xe. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238338. [PMID: 36500430 PMCID: PMC9738892 DOI: 10.3390/molecules27238338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022]
Abstract
Although critical for development of novel therapies, understanding altered lung function in disease models is challenging because the transport and diffusion of gases over short distances, on which proper function relies, is not readily visualized. In this review we summarize progress introducing hyperpolarized 129Xe imaging as a method to follow these processes in vivo. The work is organized in sections highlighting methods to observe the gas replacement effects of breathing (Gas Dynamics during the Breathing Cycle) and gas diffusion throughout the parenchymal airspaces (3). We then describe the spectral signatures indicative of gas dissolution and uptake (4), and how these features can be used to follow the gas as it enters the tissue and capillary bed, is taken up by hemoglobin in the red blood cells (5), re-enters the gas phase prior to exhalation (6), or is carried via the vasculature to other organs and body structures (7). We conclude with a discussion of practical imaging and spectroscopy techniques that deliver quantifiable metrics despite the small size, rapid motion and decay of signal and coherence characteristic of the magnetically inhomogeneous lung in preclinical models (8).
Collapse
|
3
|
Perron S, Ouriadov A, Wawrzyn K, Hickling S, Fox MS, Serrai H, Santyr G. Application of a 2D frequency encoding sectoral approach to hyperpolarized 129Xe MRI at low field. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 336:107159. [PMID: 35183921 DOI: 10.1016/j.jmr.2022.107159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 01/05/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Inhaled hyperpolarized 129Xe MRI is a non-invasive and radiation risk free lung imaging method, which can directly measure the business unit of the lung where gas exchange occurs: the alveoli and acinar ducts (lung function). Currently, three imaging approaches have been demonstrated to be useful for hyperpolarized 129Xe MR in lungs: Fast Gradient Recalled Echo (FGRE), Radial Projection Reconstruction (PR), and spiral/cones. Typically, non-Cartesian acquisitions such as PR and spiral/cones require specific data post-processing, such as interpolating, regridding, and density-weighting procedures for image reconstruction, which often leads to smoothing effects and resolution degradation. On the other hand, Cartesian methods such as FGRE are not short-echo time (TE) methods; they suffer from imaging gradient-induced diffusion-weighting of the k-space center, and employ a significant number of radio-frequency (RF) pulses. Due to the non-renewable magnetization of the hyperpolarized media, the use of a large number of RF pulses (FGRE/PR) required for full k-space coverage is a significant limitation, especially for low field (<0.5 T) hyperpolarized gas MRI. We demonstrate an ultra-fast, purely frequency-encoded, Cartesian pulse sequence called Frequency-Encoding Sectoral (FES), which takes advantage of the long T2* of hyperpolarized 129Xe gas at low field strength (0.074 T). In contrast to PR/FGRE, it uses a much smaller number of RF pulses, and consequently maximizes image Signal-to-Noise Ratio (SNR) while shortening acquisition time. Additionally, FES does not suffer from non-uniform T2* decay leading to image blurring; a common issue with interleaved spirals/cones. The Cartesian k-space coverage of the proposed FES method does not require specific k-space data post-processing, unlike PR/FGRE and spiral/cones methods. Proton scans were used to compare the FES sequence to both FGRE and Phase Encoding Sectoral, in terms of their SNR values and imaging efficiency estimates. Using FES, proton and hyperpolarized 129Xe images were acquired from a custom hollow acrylic phantom (0.04L) and two normal rats (129Xe only), utilizing both single-breath and multiple-breath schemes. For the 129Xe phantom images, the apparent diffusion coefficient, T1, and T2* relaxation maps were acquired and generated. Blurring due to the T2* decay and B0 field variation were simulated to estimate dependence of the image resolution on the duration of the data acquisition windows (i.e. sector length), and temperature-induced resonance frequency shift from the low field magnet hardware.
Collapse
Affiliation(s)
- Samuel Perron
- Department of Physics and Astronomy, The University of Western Ontario, London, Ontario, Canada
| | - Alexei Ouriadov
- Department of Physics and Astronomy, The University of Western Ontario, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada; School of Biomedical Engineering, Faculty of Engineering, The University of Western Ontario, London, ON, Canada.
| | - Krzysztof Wawrzyn
- Department of Physics and Astronomy, The University of Western Ontario, London, Ontario, Canada
| | | | - Matthew S Fox
- Department of Physics and Astronomy, The University of Western Ontario, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada
| | - Hacene Serrai
- Department of Physics and Astronomy, The University of Western Ontario, London, Ontario, Canada
| | - Giles Santyr
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Application of a stretched-exponential model for morphometric analysis of accelerated diffusion-weighted 129Xe MRI of the rat lung. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2020; 34:73-84. [PMID: 32632748 DOI: 10.1007/s10334-020-00860-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/10/2020] [Accepted: 06/19/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Diffusion-weighted, hyperpolarized 129Xe MRI is useful for the characterization of microstructural changes in the lung. A stretched exponential model was proposed for morphometric extraction of the mean chord length (Lm) from diffusion-weighted data. The stretched exponential model enables accelerated mapping of Lm in a single-breathhold using compressed sensing. Our purpose was to compare Lm maps obtained from stretched-exponential model analysis of accelerated versus unaccelerated diffusion-weighted 129Xe MRI data obtained from healthy/injured rat lungs. MATERIAL AND METHODS Lm maps were generated using a stretched-exponential model analysis of previously acquired fully sampled diffusion-weighted 129Xe rat data (b values = 0 … 110 s/cm2) and compared to Lm maps generated from retrospectively undersampled data simulating acceleration factors of 7/10. The data included four control rats and five rats receiving whole-lung irradiation to mimic radiation-induced lung injury. Mean Lm obtained from the accelerated/unaccelerated maps were compared to histological mean linear intercept. RESULTS Accelerated Lm estimates were similar to unaccelerated Lm estimates in all rats, and similar to those previously reported (< 12% different). Lm was significantly reduced (p < 0.001) in the irradiated rat cohort (90 ± 20 µm/90 ± 20 µm) compared to the control rats (110 ± 20 µm/100 ± 15 µm) and agreed well with histological mean linear intercept. DISCUSSION Accelerated mapping of Lm using a stretched-exponential model analysis is feasible, accurate and agrees with histological mean linear intercept. Acceleration reduces scan time, thus should be considered for the characterization of lung microstructural changes in humans where breath-hold duration is short.
Collapse
|
5
|
Niedbalski PJ, Cochran AS, Akinyi TG, Thomen RP, Fugate EM, Lindquist DM, Pratt RG, Cleveland ZI. Preclinical hyperpolarized 129 Xe MRI: ventilation and T 2 * mapping in mouse lungs at 7 T using multi-echo flyback UTE. NMR IN BIOMEDICINE 2020; 33:e4302. [PMID: 32285574 PMCID: PMC7702724 DOI: 10.1002/nbm.4302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/28/2020] [Accepted: 03/07/2020] [Indexed: 05/13/2023]
Abstract
Fast apparent transverse relaxation (short T2 *) is a common obstacle when attempting to perform quantitative 1 H MRI of the lungs. While T2 * times are longer for pulmonary hyperpolarized (HP) gas functional imaging (in particular for gaseous 129 Xe), T2 * can still lead to quantitative inaccuracies for sequences requiring longer echo times (such as diffusion weighted images) or longer readout duration (such as spiral sequences). This is especially true in preclinical studies, where high magnetic fields lead to shorter relaxation times than are typically seen in human studies. However, the T2 * of HP 129 Xe in the most common animal model of human disease (mice) has not been reported. Herein, we present a multi-echo radial flyback imaging sequence and use it to measure HP 129 Xe T2 * at 7 T under a variety of respiratory conditions. This sequence mitigates the impact of T1 relaxation outside the animal by using multiple gradient-refocused echoes to acquire images at a number of effective echo times for each RF excitation. After validating the sequence using a phantom containing water doped with superparamagnetic iron oxide nanoparticles, we measured the 129 Xe T2 * in vivo for 10 healthy C57Bl/6 J mice and found T2 * ~ 5 ms in the lung airspaces. Interestingly, T2 * was relatively constant over all experimental conditions, and varied significantly with sex, but not age, mass, or the O2 content of the inhaled gas mixture. These results are discussed in the context of T2 * relaxation within porous media.
Collapse
Affiliation(s)
- Peter J. Niedbalski
- Center for Pulmonary Imaging Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Alexander S. Cochran
- Center for Pulmonary Imaging Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221
| | - Teckla G. Akinyi
- Center for Pulmonary Imaging Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221
| | - Robert P. Thomen
- Center for Pulmonary Imaging Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Elizabeth M. Fugate
- Imaging Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Diana M. Lindquist
- Imaging Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Ronald G. Pratt
- Imaging Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Zackary I. Cleveland
- Center for Pulmonary Imaging Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221
- Imaging Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
6
|
Topping GJ, Hundshammer C, Nagel L, Grashei M, Aigner M, Skinner JG, Schulte RF, Schilling F. Acquisition strategies for spatially resolved magnetic resonance detection of hyperpolarized nuclei. MAGMA (NEW YORK, N.Y.) 2020; 33:221-256. [PMID: 31811491 PMCID: PMC7109201 DOI: 10.1007/s10334-019-00807-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/08/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022]
Abstract
Hyperpolarization is an emerging method in magnetic resonance imaging that allows nuclear spin polarization of gases or liquids to be temporarily enhanced by up to five or six orders of magnitude at clinically relevant field strengths and administered at high concentration to a subject at the time of measurement. This transient gain in signal has enabled the non-invasive detection and imaging of gas ventilation and diffusion in the lungs, perfusion in blood vessels and tissues, and metabolic conversion in cells, animals, and patients. The rapid development of this method is based on advances in polarizer technology, the availability of suitable probe isotopes and molecules, improved MRI hardware and pulse sequence development. Acquisition strategies for hyperpolarized nuclei are not yet standardized and are set up individually at most sites depending on the specific requirements of the probe, the object of interest, and the MRI hardware. This review provides a detailed introduction to spatially resolved detection of hyperpolarized nuclei and summarizes novel and previously established acquisition strategies for different key areas of application.
Collapse
Affiliation(s)
- Geoffrey J Topping
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christian Hundshammer
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Luca Nagel
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Martin Grashei
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Maximilian Aigner
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jason G Skinner
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | | | - Franz Schilling
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
| |
Collapse
|
7
|
S. Fox M, V. Ouriadov A. High Resolution 3He Pulmonary MRI. Magn Reson Imaging 2019. [DOI: 10.5772/intechopen.84756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Niedbalski PJ, Willmering MM, Robertson SH, Freeman MS, Loew W, Giaquinto RO, Ireland C, Pratt RG, Dumoulin CL, Woods JC, Cleveland ZI. Mapping and correcting hyperpolarized magnetization decay with radial keyhole imaging. Magn Reson Med 2019; 82:367-376. [PMID: 30847967 PMCID: PMC6491256 DOI: 10.1002/mrm.27721] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/17/2019] [Accepted: 02/11/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE Hyperpolarized (HP) media enable biomedical imaging applications that cannot be achieved with conventional MRI contrast agents. Unfortunately, quantifying HP images is challenging, because relaxation and radio-frequency pulsing generate spatially varying signal decay during acquisition. We demonstrate that, by combining center-out k-space sampling with postacquisition keyhole reconstruction, voxel-by-voxel maps of regional HP magnetization decay can be generated with no additional data collection. THEORY AND METHODS Digital phantom, HP 129 Xe phantom, and in vivo 129 Xe human (N = 4 healthy; N = 2 with cystic fibrosis) imaging was performed using radial sampling. Datasets were reconstructed using a postacquisition keyhole approach in which 2 temporally resolved images were created and used to generate maps of regional magnetization decay following a simple analytical model. RESULTS Mean, keyhole-derived decay terms showed excellent agreement with the decay used in simulations (R2 = 0.996) and with global attenuation terms in HP 129 Xe phantom imaging (R2 > 0.97). Mean regional decay from in vivo imaging agreed well with global decay values and displayed spatial heterogeneity that matched expected variations in flip angle and oxygen partial pressure. Moreover, these maps could be used to correct variable signal decay across the image volume. CONCLUSIONS We have demonstrated that center-out trajectories combined with keyhole reconstruction can be used to map regional HP signal decay and to quantitatively correct images. This approach may be used to improve the accuracy of quantitative measures obtained from hyperpolarized media. Although validated with gaseous HP 129 Xe in this work, this technique can be generalized to any hyperpolarized agent.
Collapse
Affiliation(s)
- Peter J. Niedbalski
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Matthew M. Willmering
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Scott H. Robertson
- Clinical Imaging Physics Group, Department of Radiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Matthew S. Freeman
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Wolfgang Loew
- Imaging Research Center, Department of Radiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Randy O. Giaquinto
- Imaging Research Center, Department of Radiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Christopher Ireland
- Imaging Research Center, Department of Radiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA
| | - Ronald G. Pratt
- Imaging Research Center, Department of Radiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Charles L. Dumoulin
- Imaging Research Center, Department of Radiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jason C. Woods
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Imaging Research Center, Department of Radiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Zackary I. Cleveland
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Imaging Research Center, Department of Radiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
9
|
Morgado F, Couch MJ, Stirrat E, Santyr G. Effect of T1relaxation on ventilation mapping using hyperpolarized129Xe multiple breath wash-out imaging. Magn Reson Med 2018; 80:2670-2680. [DOI: 10.1002/mrm.27234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 03/21/2018] [Accepted: 04/03/2018] [Indexed: 02/02/2023]
Affiliation(s)
- Felipe Morgado
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children; Toronto Ontario, Canada
- Department of Medical Biophysics; University of Toronto; Toronto Ontario, Canada
| | - Marcus J. Couch
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children; Toronto Ontario, Canada
- Department of Medical Biophysics; University of Toronto; Toronto Ontario, Canada
| | - Elaine Stirrat
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children; Toronto Ontario, Canada
| | - Giles Santyr
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children; Toronto Ontario, Canada
- Department of Medical Biophysics; University of Toronto; Toronto Ontario, Canada
| |
Collapse
|
10
|
Woods JC, Conradi MS. 3He diffusion MRI in human lungs. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 292:90-98. [PMID: 29705031 PMCID: PMC6386180 DOI: 10.1016/j.jmr.2018.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 03/05/2018] [Accepted: 04/11/2018] [Indexed: 06/08/2023]
Abstract
Hyperpolarized 3He gas allows the air spaces of the lungs to be imaged via MRI. Imaging of restricted diffusion is addressed here, which allows the microstructure of the lung to be characterized through the physical restrictions to gas diffusion presented by airway and alveolar walls in the lung. Measurements of the apparent diffusion coefficient (ADC) of 3He at time scales of milliseconds and seconds are compared; measurement of acinar airway sizes by determination of the microscopic anisotropy of diffusion is discussed. This is where Dr. JJH Ackerman's influence was greatest in aiding the formation of the Washington University 3He group, involving early a combination of physicists, radiologists, and surgeons, as the first applications of 3He ADC were to COPD and its destruction/modification of lung microstructure via emphysema. The sensitivity of the method to early COPD is demonstrated, as is its validation by direct comparison to histology. More recently the method has been used broadly in adult and pediatric obstructive lung diseases, from severe asthma to cystic fibrosis to bronchopulmonary dysplasia, a result of premature birth. These applications of the technique are discussed briefly.
Collapse
Affiliation(s)
- Jason C Woods
- Center for Pulmonary Imaging Research, Departments of Radiology and Pediatrics (Pulmonary Medicine), Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, ML 5033, Cincinnati, OH 45229, USA; Department of Physics, Washington University, One Brookings Drive, CB 1105, St Louis, MO 63130, USA.
| | - Mark S Conradi
- ABQMR, Inc., 2301 Yale Blvd. SE, Suite C2, Albuquerque, NM 87106, USA; Department of Physics, Washington University, One Brookings Drive, CB 1105, St Louis, MO 63130, USA.
| |
Collapse
|
11
|
Lessard E, Young HM, Bhalla A, Pike D, Sheikh K, McCormack DG, Ouriadov A, Parraga G. Pulmonary 3He Magnetic Resonance Imaging Biomarkers of Regional Airspace Enlargement in Alpha-1 Antitrypsin Deficiency. Acad Radiol 2017. [PMID: 28645458 DOI: 10.1016/j.acra.2017.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
RATIONALE AND OBJECTIVES Thoracic x-ray computed tomography (CT) and hyperpolarized 3He magnetic resonance imaging (MRI) provide quantitative measurements of airspace enlargement in patients with emphysema. For patients with panlobular emphysema due to alpha-1 antitrypsin deficiency (AATD), sensitive biomarkers of disease progression and response to therapy have been difficult to develop and exploit, especially those biomarkers that correlate with outcomes like quality of life. Here, our objective was to generate and compare CT and diffusion-weighted inhaled-gas MRI measurements of emphysema including apparent diffusion coefficient (ADC) and MRI-derived mean linear intercept (Lm) in patients with AATD, chronic obstructive pulmonary disease (COPD) ex-smokers, and elderly never-smokers. MATERIALS AND METHODS We enrolled patients with AATD (n = 8; 57 ± 7 years), ex-smokers with COPD (n = 8; 77 ± 6 years), and a control group of never-smokers (n = 5; 64 ± 2 years) who underwent thoracic CT, MRI, spirometry, plethysmography, the St. George's Respiratory Questionnaire, and the 6-minute walk test during a single 2-hour visit. MRI-derived ADC, Lm, surface-to-volume ratio, and ventilation defect percent were generated for the apical, basal, and whole lung as was CT lung area ≤-950 Hounsfield units (RA950), low attenuating clusters, and airway count. RESULTS In patients with AATD, there was a significantly different MRI-derived ADC (P = .03), Lm (P < .0001), and surface-to-volume ratio (P < .0001), but not diffusing capacity of carbon monoxide, residual volume or total lung capacity, or CT RA950 (P > .05) compared to COPD ex-smokers with a significantly different St. George's Respiratory Questionnaire. CONCLUSIONS In this proof-of-concept demonstration, we evaluated CT and MRI lung emphysema measurements and observed significantly worse MRI biomarkers of emphysema in patients with AATD compared to patients with COPD, although CT RA950 and diffusing capacity of carbon monoxide were not significantly different, underscoring the sensitivity of MRI measurements of AATD emphysema.
Collapse
Affiliation(s)
- Eric Lessard
- Robarts Research Institute, 1151 Richmond Street North, London, ON, Canada N6A 5B7; Department of Medical Biophysics, The University of Western Ontario, 1151 Richmond St North, London, ON, Canada N6A 5C1
| | - Heather M Young
- Robarts Research Institute, 1151 Richmond Street North, London, ON, Canada N6A 5B7; Department of Medical Biophysics, The University of Western Ontario, 1151 Richmond St North, London, ON, Canada N6A 5C1
| | - Anurag Bhalla
- Robarts Research Institute, 1151 Richmond Street North, London, ON, Canada N6A 5B7
| | - Damien Pike
- Robarts Research Institute, 1151 Richmond Street North, London, ON, Canada N6A 5B7; Department of Medical Biophysics, The University of Western Ontario, 1151 Richmond St North, London, ON, Canada N6A 5C1
| | - Khadija Sheikh
- Robarts Research Institute, 1151 Richmond Street North, London, ON, Canada N6A 5B7; Department of Medical Biophysics, The University of Western Ontario, 1151 Richmond St North, London, ON, Canada N6A 5C1
| | - David G McCormack
- Division of Respirology, Department of Medicine, The University of Western Ontario, London, Ontario, Canada
| | - Alexei Ouriadov
- Robarts Research Institute, 1151 Richmond Street North, London, ON, Canada N6A 5B7; Department of Medical Biophysics, The University of Western Ontario, 1151 Richmond St North, London, ON, Canada N6A 5C1
| | - Grace Parraga
- Robarts Research Institute, 1151 Richmond Street North, London, ON, Canada N6A 5B7; Department of Medical Biophysics, The University of Western Ontario, 1151 Richmond St North, London, ON, Canada N6A 5C1.
| |
Collapse
|
12
|
Doganay O, Matin TN, Mcintyre A, Burns B, Schulte RF, Gleeson FV, Bulte D. Fast dynamic ventilation MRI of hyperpolarized 129 Xe using spiral imaging. Magn Reson Med 2017; 79:2597-2606. [PMID: 28921655 PMCID: PMC5836876 DOI: 10.1002/mrm.26912] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 08/17/2017] [Accepted: 08/17/2017] [Indexed: 02/06/2023]
Abstract
Purpose To develop and optimize a rapid dynamic hyperpolarized 129Xe ventilation (DXeV) MRI protocol and investigate the feasibility of capturing pulmonary signal‐time curves in human lungs. Theory and Methods Spiral k‐space trajectories were designed with the number of interleaves Nint = 1, 2, 4, and 8 corresponding to voxel sizes of 8 mm, 5 mm, 4 mm, and 2.5 mm, respectively, for field of view = 15 cm. DXeV images were acquired from a gas‐flow phantom to investigate the ability of Nint = 1, 2, 4, and 8 to capture signal‐time curves. A finite element model was constructed to investigate gas‐flow dynamics corroborating the experimental signal‐time curves. DXeV images were also carried out in six subjects (three healthy and three chronic obstructive pulmonary disease subjects). Results DXeV images and numerical modelling of signal‐time curves permitted the quantification of temporal and spatial resolutions for different numbers of spiral interleaves. The two‐interleaved spiral (Nint = 2) was found to be the most time‐efficient to obtain DXeV images and signal‐time curves of whole lungs with a temporal resolution of 624 ms for 13 slices. Signal‐time curves were well matched in three healthy volunteers. The Spearman's correlations of chronic obstructive pulmonary disease subjects were statistically different from three healthy subjects (P < 0.05). Conclusion The Nint = 2 spiral demonstrates the successful acquisition of DXeV images and signal‐time curves in healthy subjects and chronic obstructive pulmonary disease patients. Magn Reson Med 79:2597–2606, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Collapse
Affiliation(s)
- Ozkan Doganay
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, United Kingdom.,Department of Radiology, The Churchill Hospital, Oxford University Hospitals NHS Trust, Old Road, Headington, OX3 7LE, United Kingdom
| | - Tahreema N Matin
- Department of Radiology, The Churchill Hospital, Oxford University Hospitals NHS Trust, Old Road, Headington, OX3 7LE, United Kingdom
| | - Anthony Mcintyre
- Department of Radiology, The Churchill Hospital, Oxford University Hospitals NHS Trust, Old Road, Headington, OX3 7LE, United Kingdom
| | - Brian Burns
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, United Kingdom.,Department of Radiology, The Churchill Hospital, Oxford University Hospitals NHS Trust, Old Road, Headington, OX3 7LE, United Kingdom
| | | | - Fergus V Gleeson
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, United Kingdom.,Department of Radiology, The Churchill Hospital, Oxford University Hospitals NHS Trust, Old Road, Headington, OX3 7LE, United Kingdom
| | - Daniel Bulte
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, United Kingdom.,Department of Radiology, The Churchill Hospital, Oxford University Hospitals NHS Trust, Old Road, Headington, OX3 7LE, United Kingdom
| |
Collapse
|
13
|
Ouriadov AV, Santyr GE. High spatial resolution hyperpolarized3He MRI of the rodent lung using a single breath X-centric gradient-recalled echo approach. Magn Reson Med 2017; 78:2334-2341. [DOI: 10.1002/mrm.26602] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/22/2016] [Accepted: 12/14/2016] [Indexed: 01/05/2023]
Affiliation(s)
- Alexei V. Ouriadov
- Imaging Research Laboratories, Robarts Research Institute; London Canada
- Department of Medical Biophysics; The University of Western Ontario; London Canada
| | - Giles E. Santyr
- Department of Medical Biophysics; University of Toronto; Toronto Canada
- Physiology & Experimental Medicine Program, Peter Gilgan Centre for Research and Learning, the Hospital for Sick Children; Toronto Canada
| |
Collapse
|
14
|
Zhong J, Ruan W, Han Y, Sun X, Ye C, Zhou X. Fast Determination of Flip Angle and T1 in Hyperpolarized Gas MRI During a Single Breath-Hold. Sci Rep 2016; 6:25854. [PMID: 27169670 PMCID: PMC4864326 DOI: 10.1038/srep25854] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 04/25/2016] [Indexed: 01/06/2023] Open
Abstract
MRI of hyperpolarized media, such as (129)Xe and (3)He, shows great potential for clinical applications. The optimal use of the available spin polarization requires accurate flip angle calibrations and T1 measurements. Traditional flip angle calibration methods are time-consuming and suffer from polarization losses during T1 relaxation. In this paper, we propose a method to simultaneously calibrate flip angles and measure T1 in vivo during a breath-hold time of less than 4 seconds. We demonstrate the accuracy, robustness and repeatability of this method and contrast it with traditional methods. By measuring the T1 of hyperpolarized gas, the oxygen pressure in vivo can be calibrated during the same breath hold. The results of the calibration have been applied in variable flip angle (VFA) scheme to obtain a stable steady-state transverse magnetization. Coupled with this method, the ultra-short TE (UTE) and constant VFA (CVFA) schemes are expected to give rise to new applications of hyperpolarized media.
Collapse
Affiliation(s)
- Jianping Zhong
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory for Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Weiwei Ruan
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory for Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yeqing Han
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory for Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xianping Sun
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory for Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Chaohui Ye
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory for Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory for Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
15
|
Deng H, Zhong J, Ruan W, Chen X, Sun X, Ye C, Liu M, Zhou X. Constant-variable flip angles for hyperpolarized media MRI. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 263:92-100. [PMID: 26774646 DOI: 10.1016/j.jmr.2015.12.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 12/10/2015] [Accepted: 12/11/2015] [Indexed: 06/05/2023]
Abstract
The longitudinal magnetization of hyperpolarized media, such as hyperpolarized (129)Xe, (3)He, etc., is nonrenewable. When the MRI data acquisition begins at the k-domain center, a constant flip angle (CFA) results in an image of high signal-to-noise ratio (SNR) but sacrifices the accuracy of spatial information. On the other hand, a variable flip angle (VFA) strategy results in high accuracy but suffers from a low SNR. In this paper, we propose a novel scheme to optimize both the SNR and accuracy, called constant-variable flip angles (CVFA). The proposed scheme suggests that hyperpolarized magnetic resonance signals are firstly acquired through a train of n(∗) CFA excitation pulses, followed by a train of N-n(∗) VFA excitation pulses. We simulate and optimize the flip angle used in the CFA section, the number of CFA excitation pulses, the number of VFA excitation pulses, and the initial and final variable flip angles adopted in the VFA section. Phantom and in vivo experiments demonstrate the good performance of the CVFA designs and their ability to maintain both high SNR and spatial resolution.
Collapse
Affiliation(s)
- He Deng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; The Department of Information Technology, Central China Normal University, Wuhan 430079, China
| | - Jianping Zhong
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Weiwei Ruan
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xian Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xianping Sun
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Chaohui Ye
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
16
|
Paulin GA, Ouriadov A, Lessard E, Sheikh K, McCormack DG, Parraga G. Noninvasive quantification of alveolar morphometry in elderly never- and ex-smokers. Physiol Rep 2015; 3:3/10/e12583. [PMID: 26462748 PMCID: PMC4632953 DOI: 10.14814/phy2.12583] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Diffusion-weighted magnetic resonance imaging (MRI) provides a way to generate in vivo lung images with contrast sensitive to the molecular displacement of inhaled gas at subcellular length scales. Here, we aimed to evaluate hyperpolarized 3He MRI estimates of the alveolar dimensions in 38 healthy elderly never-smokers (73 ± 6 years, 15 males) and 21 elderly ex-smokers (70 ± 10 years, 14 males) with (n = 8, 77 ± 6 years) and without emphysema (n = 13, 65 ± 10 years). The ex-smoker and never-smoker subgroups were significantly different for FEV1/FVC (P = 0.0001) and DLCO (P = 0.009); while ex-smokers with emphysema reported significantly diminished FEV1/FVC (P = 0.02) and a trend toward lower DLCO (P = 0.05) than ex-smokers without emphysema. MRI apparent diffusion coefficients (ADC) and CT measurements of emphysema (relative area–CT density histogram, RA950) were significantly different (P = 0.001 and P = 0.007) for never-smoker and ex-smoker subgroups. In never-smokers, the MRI estimate of mean linear intercept (260 ± 27 μm) was significantly elevated as compared to the results previously reported in younger never-smokers (210 ± 30 μm), and trended smaller than in the age-matched ex-smokers (320 ± 72 μm, P = 0.06) evaluated here. Never-smokers also reported significantly smaller internal (220 ± 24 μm, P = 0.01) acinar radius but greater alveolar sheath thickness (120 ± 4 μm, P < 0.0001) than ex-smokers. Never-smokers were also significantly different than ex-smokers without emphysema for alveolar sheath thickness but not ADC, while ex-smokers with emphysema reported significantly different ADC but not alveolar sheath thickness compared to ex-smokers without CT evidence of emphysema. Differences in alveolar measurements in never- and ex-smokers demonstrate the sensitivity of MRI measurements to the different effects of smoking and aging on acinar morphometry.
Collapse
Affiliation(s)
- Gregory A Paulin
- Imaging Research Laboratories, Robarts Research Institute The University of Western Ontario, London, Ontario, Canada Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
| | - Alexei Ouriadov
- Imaging Research Laboratories, Robarts Research Institute The University of Western Ontario, London, Ontario, Canada
| | - Eric Lessard
- Imaging Research Laboratories, Robarts Research Institute The University of Western Ontario, London, Ontario, Canada Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
| | - Khadija Sheikh
- Imaging Research Laboratories, Robarts Research Institute The University of Western Ontario, London, Ontario, Canada Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
| | - David G McCormack
- Division of Respirology, Department of Medicine, The University of Western Ontario, London, Ontario, Canada
| | - Grace Parraga
- Imaging Research Laboratories, Robarts Research Institute The University of Western Ontario, London, Ontario, Canada Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
17
|
Doganay O, Wade T, Hegarty E, McKenzie C, Schulte RF, Santyr GE. Hyperpolarized (129) Xe imaging of the rat lung using spiral IDEAL. Magn Reson Med 2015; 76:566-76. [PMID: 26332385 DOI: 10.1002/mrm.25911] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 08/03/2015] [Accepted: 08/06/2015] [Indexed: 12/22/2022]
Abstract
PURPOSE To implement and optimize a single-shot spiral encoding strategy for rapid 2D IDEAL projection imaging of hyperpolarized (Hp) (129) Xe in the gas phase, and in the pulmonary tissue (PT) and red blood cells (RBCs) compartments of the rat lung, respectively. THEORY AND METHODS A theoretical and experimental point spread function analysis was used to optimize the spiral k-space read-out time in a phantom. Hp (129) Xe IDEAL images from five healthy rats were used to: (i) optimize flip angles by a Bloch equation analysis using measured kinetics of gas exchange and (ii) investigate the feasibility of the approach to characterize the exchange of Hp (129) Xe. RESULTS A read-out time equal to approximately 1.8 × T2* was found to provide the best trade-off between spatial resolution and signal-to-noise ratio (SNR). Spiral IDEAL approaches that use the entire dissolved phase magnetization should give an SNR improvement of a factor of approximately three compared with Cartesian approaches with similar spatial resolution. The IDEAL strategy allowed imaging of gas, PT, and RBC compartments with sufficient SNR and temporal resolution to permit regional gas exchange measurements in healthy rats. CONCLUSION Single-shot spiral IDEAL imaging of gas, PT and RBC compartments and gas exchange is feasible in rat lung using Hp (129) Xe. Magn Reson Med 76:566-576, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ozkan Doganay
- Department of Medical Biophysics, Western University, London, ON, Canada.,Imaging Research Laboratories, Robarts Research Institute, London, ON, Canada
| | - Trevor Wade
- Department of Medical Biophysics, Western University, London, ON, Canada.,Imaging Research Laboratories, Robarts Research Institute, London, ON, Canada
| | - Elaine Hegarty
- Imaging Research Laboratories, Robarts Research Institute, London, ON, Canada
| | - Charles McKenzie
- Department of Medical Biophysics, Western University, London, ON, Canada.,Imaging Research Laboratories, Robarts Research Institute, London, ON, Canada.,Department of Medical Imaging, Western University, London, ON, Canada
| | | | - Giles E Santyr
- Department of Medical Biophysics, Western University, London, ON, Canada.,Imaging Research Laboratories, Robarts Research Institute, London, ON, Canada.,Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
18
|
Ouriadov A, Fox M, Hegarty E, Parraga G, Wong E, Santyr GE. Early stage radiation-induced lung injury detected using hyperpolarized (129) Xe Morphometry: Proof-of-concept demonstration in a rat model. Magn Reson Med 2015; 75:2421-31. [PMID: 26154889 DOI: 10.1002/mrm.25825] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 05/27/2015] [Accepted: 06/08/2015] [Indexed: 11/08/2022]
Abstract
PURPOSE Radiation-induced lung injury (RILI) is still the major dose-limiting toxicity related to lung cancer radiation therapy, and it is difficult to predict and detect patients who are at early risk of severe pneumonitis and fibrosis. The goal of this proof-of-concept preclinical demonstration was to investigate the potential of hyperpolarized (129) Xe diffusion-weighted MRI to detect the lung morphological changes associated with early stage RILI. METHODS Hyperpolarized (129) Xe MRI was performed using eight different diffusion sensitizations (0.0-115 s/cm(2) ) in a small group of control rats (n = 4) and rats 2 wk after radiation exposure (n = 5). The diffusion-weighted images were used to obtain morphological estimates of the pulmonary parenchyma including external radius (R), internal radius (r), alveolar sleeve depth (h), and mean airspace chord length (Lm ). The histological mean linear intercept (MLI) were obtained for five control and five irradiated animals. RESULTS Mean R, r, and Lm were both significantly different (P < 0.02) in the irradiated rats (74 ± 17 µm, 43 ± 12 µm, and 54 ± 17 µm, respectively) compared with the control rats (100 ± 12 µm, 67 ± 10 µm, and 79 ± 12 µm, respectively). Changes in measured Lm values were consistent with changes in MLI values observed by histology. CONCLUSIONS Hyperpolarized (129) Xe MRI provides a way to detect and measure regional microanatomical changes in lung parenchyma in a preclinical model of RILI. Magn Reson Med 75:2421-2431, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alexei Ouriadov
- Imaging Research Laboratories, Robarts Research Institute, Western University, London, Ontario, Canada
| | - Matthew Fox
- Imaging Research Laboratories, Robarts Research Institute, Western University, London, Ontario, Canada.,Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Elaine Hegarty
- Imaging Research Laboratories, Robarts Research Institute, Western University, London, Ontario, Canada
| | - Grace Parraga
- Imaging Research Laboratories, Robarts Research Institute, Western University, London, Ontario, Canada.,Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Eugene Wong
- Department of Medical Biophysics, Western University, London, Ontario, Canada.,Department of Physics and Astronomy, Western University, London, Ontario, Canada
| | - Giles E Santyr
- Imaging Research Laboratories, Robarts Research Institute, Western University, London, Ontario, Canada.,Department of Medical Biophysics, Western University, London, Ontario, Canada.,Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Kuzmin VV, Bidinosti CP, Hayden ME, Nacher PJ. An improved shielded RF transmit coil for low-frequency NMR and MRI. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 256:70-76. [PMID: 26022393 DOI: 10.1016/j.jmr.2015.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/13/2015] [Accepted: 05/04/2015] [Indexed: 06/04/2023]
Abstract
We describe an actively shielded cylindrical RF transmit coil producing a highly uniform internal field (±0.5%) over an extended volume and a strongly suppressed (÷20) external field. Direct field mapping and experimental checks using in-situ NMR and MRI of polarised (3)He at low temperature demonstrate performance consistent with numerical field computations.
Collapse
Affiliation(s)
- V V Kuzmin
- Laboratoire Kastler Brossel, ENS-PSL Research University, CNRS, UPMC-Sorbonne Universités, Collège de France, 24 rue Lhomond, F-75005 Paris, France
| | - C P Bidinosti
- Department of Physics, University of Winnipeg, Winnipeg, MB R3B 2E9, Canada
| | - M E Hayden
- Department of Physics, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - P-J Nacher
- Laboratoire Kastler Brossel, ENS-PSL Research University, CNRS, UPMC-Sorbonne Universités, Collège de France, 24 rue Lhomond, F-75005 Paris, France.
| |
Collapse
|
20
|
Hamedani H, Kadlecek SJ, Ishii M, Xin Y, Emami K, Han B, Shaghaghi H, Gopstein D, Cereda M, Gefter WB, Rossman MD, Rizi RR. Alterations of regional alveolar oxygen tension in asymptomatic current smokers: assessment with hyperpolarized (3)He MR imaging. Radiology 2014; 274:585-96. [PMID: 25322340 DOI: 10.1148/radiol.14132809] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To assess the ability of helium 3 ((3)He) magnetic resonance (MR) imaging of regional alveolar partial pressure of oxygen (Pao2) to depict smoking-induced functional alterations and to compare its efficacy to that of current diagnostic techniques. MATERIALS AND METHODS This study was approved by the local institutional review board and was compliant with HIPAA. All subjects provided informed consent. A total of 43 subjects were separated into three groups: nonsmokers, asymptomatic smokers, and symptomatic smokers. All subjects underwent a Pao2 imaging session followed by clinically standard pulmonary function tests (PFTs), the 6-minute walk test, and St George Respiratory Questionnaire (SGRQ). The whole-lung mean and standard deviation of Pao2 were compared with metrics derived from PFTs, the 6-minute walk test, and the SGRQ. A logistic regression model was developed to identify the predictors of alterations to the lungs of asymptomatic smokers. RESULTS The whole-lung standard deviation of Pao2 correlated with PFT metrics (forced expiratory volume in 1 second [FEV1]/forced vital capacity [FVC], Pearson r = -0.69, P < .001; percentage predicted FEV1, Pearson r = -0.67, P < .001; diffusing capacity of lung for carbon monoxide [Dlco], Pearson r = -0.45, P = .003), SGRQ score (Pearson r = 0.67, P < .001), and distance walked in 6 minutes (Pearson r = -0.47, P = .002). The standard deviation of Pao2 was significantly higher in asymptomatic smokers than in nonsmokers (change in the standard deviation of Pao2 = 7.59 mm Hg, P = .041) and lower when compared with symptomatic smokers (change in the standard deviation of Pao2 = 10.72 mm Hg, P = .001). A multivariate prediction model containing FEV1/FVC and the standard deviation of Pao2 (as significant predictors of subclinical changes in smokers) and Dlco (as a confounding variable) was formulated. This model resulted in an area under the receiver operating characteristic curve with a significant increase of 29.2% when compared with a prediction model based solely on nonimaging clinical tests. CONCLUSION The (3)He MR imaging heterogeneity metric (standard deviation of Pao2) enabled the differentiation of all three study cohorts, which indicates that it can depict smoking-related functional alterations in asymptomatic current smokers.
Collapse
Affiliation(s)
- Hooman Hamedani
- From the Department of Radiology (H.H., S.J.K., M.I., Y.X., K.E., B.H., H.S., D.G., W.G., R.R.R.), Department of Anesthesiology and Critical Care (M.C.), and Pulmonary, Allergy and Critical Care Division (M.D.R.), University of Pennsylvania, 308 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ouriadov AV, Fox MS, Couch MJ, Li T, Ball IK, Albert MS. In vivo regional ventilation mapping using fluorinated gas MRI with an x-centric FGRE method. Magn Reson Med 2014; 74:550-7. [DOI: 10.1002/mrm.25406] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 07/20/2014] [Accepted: 07/22/2014] [Indexed: 11/09/2022]
Affiliation(s)
| | - Matthew S. Fox
- Thunder Bay Regional Research Institute; Thunder Bay Canada
| | - Marcus J. Couch
- Thunder Bay Regional Research Institute; Thunder Bay Canada
- Lakehead University; Thunder Bay Canada
| | - Tao Li
- Thunder Bay Regional Research Institute; Thunder Bay Canada
| | - Iain K. Ball
- Thunder Bay Regional Research Institute; Thunder Bay Canada
| | - Mitchell S. Albert
- Thunder Bay Regional Research Institute; Thunder Bay Canada
- Lakehead University; Thunder Bay Canada
| |
Collapse
|
22
|
Fox MS, Ouriadov A, Santyr GE. Comparison of hyperpolarized 3
He and 129
Xe MRI for the measurement of absolute ventilated lung volume in rats. Magn Reson Med 2013; 71:1130-6. [DOI: 10.1002/mrm.24746] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Matthew S. Fox
- Department of Physics and Astronomy; Western University; London Canada
- Imaging Research Laboratories; Robarts Research Institute, Western University; London Canada
| | - Alexei Ouriadov
- Imaging Research Laboratories; Robarts Research Institute, Western University; London Canada
| | - Giles E. Santyr
- Imaging Research Laboratories; Robarts Research Institute, Western University; London Canada
- Depts. of Medical Biophysics and Medical Imaging; Western University; London Canada
| |
Collapse
|
23
|
Hamedani H, Kadlecek SJ, Ishii M, Emami K, Kuzma NN, Xin Y, Rossman M, Rizi RR. A variability study of regional alveolar oxygen tension measurement in humans using hyperpolarized (3) He MRI. Magn Reson Med 2013; 70:1557-66. [PMID: 23382040 DOI: 10.1002/mrm.24604] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 10/28/2012] [Accepted: 11/27/2012] [Indexed: 11/06/2022]
Abstract
PURPOSE A systematic study of the short-term and long-term variability of regional alveolar partial pressure of oxygen tension (pA O2 ) measurements using (3) He magnetic resonance imaging was presented. Additionally, the repeatability of the average evaluated pA O2 was compared with that of the standard pulmonary function tests. METHODS Pulmonary function test and pA O2 imaging were performed on 4 nonsmokers (1 M, 3 F, 56 ± 1.7 years) and 4 smokers (3 M, 1 F, 52 ± 7.5 years) during three visits over the course of 2 weeks. Two measurements were performed per visit. Variability of pA O2 was assessed using a mixed-effect model, with an intraclass correlation coefficient calculated for each group. The coefficient of variation of pA O2 over the 3-day period was also compared with the coefficient of variation of pulmonary function test results. RESULTS Short-term regional variability based on intraclass correlation coefficient was 0.71 for nonsmokers, and 0.63 for smokers, with long-term variability significantly lower at 0.59 and 0.47, respectively. While the coefficient of variation of the average pA O2 was similar to the repeatability of the diffusing capacity of CO, it was significantly higher than that of Forced Vital Capacity (P = 0.02). CONCLUSION Short-term and long-term pA O2 variability differences were used as an indication of true physiological changes in order to measure technical reproducibility. Smokers show higher physiologic variability and less technical reproducibility. The suggested pA O2 -imaging technique showed a reasonable regional repeatability in nonsmokers as well as the ability to detect differences between the two groups with similar reproducibility and superior discriminatory ability when compared with pulmonary function tests.
Collapse
Affiliation(s)
- Hooman Hamedani
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Ouriadov A, Farag A, Kirby M, McCormack DG, Parraga G, Santyr GE. Lung morphometry using hyperpolarized 129
Xe apparent diffusion coefficient anisotropy in chronic obstructive pulmonary disease. Magn Reson Med 2013; 70:1699-706. [DOI: 10.1002/mrm.24595] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 11/19/2012] [Accepted: 11/20/2012] [Indexed: 12/27/2022]
Affiliation(s)
- Alexei Ouriadov
- Ph.D., Imaging Research Laboratories; Robarts Research Institute; Western University, London Ontario Canada
| | - Adam Farag
- Ph.D., Imaging Research Laboratories; Robarts Research Institute; Western University, London Ontario Canada
| | - Miranda Kirby
- Ph.D., Imaging Research Laboratories; Robarts Research Institute; Western University, London Ontario Canada
- Department of Medical Biophysics; Western University; London Ontario Canada
| | | | - Grace Parraga
- Ph.D., Imaging Research Laboratories; Robarts Research Institute; Western University, London Ontario Canada
- Department of Medical Biophysics; Western University; London Ontario Canada
- Department of Medical Imaging; Western University; London Ontario Canada
| | - Giles E. Santyr
- Ph.D., Imaging Research Laboratories; Robarts Research Institute; Western University, London Ontario Canada
- Department of Medical Biophysics; Western University; London Ontario Canada
- Department of Medical Imaging; Western University; London Ontario Canada
| |
Collapse
|
25
|
Boudreau M, Xu X, Santyr GE. Measurement of 129Xe gas apparent diffusion coefficient anisotropy in an elastase-instilled rat model of emphysema. Magn Reson Med 2012; 69:211-20. [PMID: 22378050 DOI: 10.1002/mrm.24224] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 02/01/2012] [Accepted: 02/02/2012] [Indexed: 11/08/2022]
Abstract
Hyperpolarized noble gas ((3)He and (129)Xe) apparent diffusion coefficient (ADC) measurements have shown remarkable sensitivity to microstructural (i.e., alveolar) changes in the lung, particularly emphysema. The ADC of hyperpolarized noble gases depends strongly on the diffusion time (Δ), and (3)He ADC has been shown to be anisotropic for Δ ranging from a few milliseconds down to a few hundred microseconds. In this study, the anisotropic nature of (129)Xe diffusion and its dependence on Δ were investigated both numerically, in a budded cylinder model, and in vivo, in an elastase-instilled rat model of emphysema. Whole lung longitudinal ADC (D(L)) and transverse ADC (D(T)) were measured for Δ = 6, 50, and 100 ms at 73.5 mT, and correlated with measurements of the mean linear intercept (L(m)) obtained from lung histology. A significant increase (P = 0.0021) in D(T) was measured for Δ = 6 ms between the sham (0.0021 ± 0.0005 cm(2)/s) and elastase-instilled (0.005 ± 0.001 cm(2)/s) cohorts, and a strong correlation was measured between D(T) (Δ = 6 ms) and L(m), with a Pearson's correlation coefficient of 0.90. This study confirms that (129)Xe D(T) increases correlate with alveolar space enlargement due to elastase instillation in rats.
Collapse
Affiliation(s)
- Mathieu Boudreau
- Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada
| | | | | |
Collapse
|
26
|
Couch MJ, Ouriadov A, Santyr GE. Regional ventilation mapping of the rat lung using hyperpolarized129Xe magnetic resonance imaging. Magn Reson Med 2012; 68:1623-31. [DOI: 10.1002/mrm.24152] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 11/17/2011] [Accepted: 12/14/2011] [Indexed: 11/11/2022]
|
27
|
Santyr GE, Couch MJ, Lam WW, Ouriadov A, Drangova M, McCormack DG, Holdsworth DW. Comparison of hyperpolarized (3)He MRI with Xe-enhanced computed tomography imaging for ventilation mapping of rat lung. NMR IN BIOMEDICINE 2011; 24:1073-1080. [PMID: 21274963 DOI: 10.1002/nbm.1659] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 11/16/2010] [Accepted: 12/02/2010] [Indexed: 05/30/2023]
Abstract
Lung ventilation was mapped in five healthy Brown Norway rats (210-377 g) using both hyperpolarized (3)He MRI and Xe-enhanced computed tomography (Xe-CT) under similar ventilator conditions. Whole-lung measurements of ventilation r obtained with (3)He MRI were not significantly different from those obtained from Xe-CT (p = 0.1875 by Wilcoxon matched pairs test). The ventilation parameter r is defined as the fraction of refreshed gas per unit volume per breath. Regional ventilation was also measured in four regions of the lung using both methods. A two-tailed paired t-test was performed for each region, yielding p > 0.05 for all but the upper portion of the right lung. The distribution of regional ventilation was evaluated by calculating ventilation gradients in the superior/inferior (S/I) direction. The average S/I gradient obtained using the (3)He MRI method was found to be 0.17 ± 0.04 cm(-1) , whereas the average S/I gradient obtained using the Xe-CT method was found to be 0.016 ± 0.005 cm(-1) . In general, S/I ventilation gradients obtained from both methods were significantly different from each other (p = 0.0019 by two-tailed paired t-test). These regional differences in ventilation measurements may be caused by the manner in which the gas contrast agents distribute physiologically and/or by the imaging modality.
Collapse
Affiliation(s)
- Giles E Santyr
- Imaging Research Laboratories, Robarts Research Institute, London, ON, Canada.
| | | | | | | | | | | | | |
Collapse
|
28
|
Hamedani H, Kadlecek SJ, Emami K, Kuzma NN, Xu Y, Xin Y, Mongkolwisetwara P, Rajaei J, Barulic A, Wilson Miller G, Rossman M, Ishii M, Rizi RR. A multislice single breath-hold scheme for imaging alveolar oxygen tension in humans. Magn Reson Med 2011; 67:1332-45. [PMID: 22190347 DOI: 10.1002/mrm.23125] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 07/06/2011] [Accepted: 07/07/2011] [Indexed: 11/10/2022]
Abstract
Reliable, noninvasive, and high-resolution imaging of alveolar partial pressure of oxygen (p(A)O(2)) is a potentially valuable tool in the early diagnosis of pulmonary diseases. Several techniques have been proposed for regional measurement of p(A)O(2) based on the increased depolarization rate of hyperpolarized (3) He. In this study, we explore one such technique by applying a multislice p(A)O(2) -imaging scheme that uses interleaved-slice ordering to utilize interslice time-delays more efficiently. This approach addresses the low spatial resolution and long breath-hold requirements of earlier techniques, allowing p(A)O(2) measurements to be made over the entire human lung in 10-15 s with a typical resolution of 8.3 × 8.3 × 15.6 mm(3). PO(2) measurements in a glass syringe phantom were in agreement with independent gas analysis within 4.7 ± 4.1% (R = 0.9993). The technique is demonstrated in four human subjects (healthy nonsmoker, healthy former smoker, healthy smoker, and patient with COPD), each imaged six times on 3 different days during a 2-week span. Two independent measurements were performed in each session, consisting of 12 coronal slices. The overall p(A)O(2) mean across all subjects was 95.9 ± 12.2 Torr and correlated well with end-tidal O(2) (R = 0.805, P < 0.0001). The alveolar O(2) uptake rate was consistent with the expected range of 1-2 Torr/s. Repeatable visual features were observed in p(A)O(2) maps over different days, as were characteristic differences among the subjects and gravity-dependent effects.
Collapse
Affiliation(s)
- Hooman Hamedani
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kraayvanger RJ, Bidinosti CP, Dominguez-Viqueira W, Parra-Robles J, Fox M, Lam WW, Santyr GE. Measurement of alveolar oxygen partial pressure in the rat lung using Carr-Purcell-Meiboom-Gill spin-spin relaxation times of hyperpolarized 3He and 129Xe at 74 mT. Magn Reson Med 2011; 64:1484-90. [PMID: 20593371 DOI: 10.1002/mrm.22520] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Regional measurement of alveolar oxygen partial pressure can be obtained from the relaxation rates of hyperpolarized noble gases, (3) He and (129) Xe, in the lungs. Recently, it has been demonstrated that measurements of alveolar oxygen partial pressure can be obtained using the spin-spin relaxation rate (R(2) ) of (3) He at low magnetic field strengths (<0.1 T) in vivo. R(2) measurements can be achieved efficiently using the Carr-Purcell-Meiboom-Gill pulse sequence. In this work, alveolar oxygen partial pressure measurements based on Carr-Purcell-Meiboom-Gill R(2) values of hyperpolarized (3) He and (129) Xe in vitro and in vivo in the rat lung at low magnetic field strength (74 mT) are presented. In vitro spin-spin relaxivity constants for (3) He and (129) Xe were determined to be (5.2 ± 0.6) × 10(-6) Pa(-1) sec(-1) and (7.3 ± 0.4) × 10(-6) Pa(-1) s(-1) compared with spin-lattice relaxivity constants of (4.0 ± 0.4) × 10(-6) Pa(-1) s(-1) and (4.3 ± 1.3) × 10(-6) Pa(-1) s(-1), respectively. In vivo experimental measurements of alveolar oxygen partial pressure using (3) He in whole rat lung show good agreement (r(2) = 0.973) with predictions based on lung volumes and ventilation parameters. For (129) Xe, multicomponent relaxation was observed with one component exhibiting an increase in R(2) with decreasing alveolar oxygen partial pressure.
Collapse
Affiliation(s)
- Ryan J Kraayvanger
- Imaging Research Laboratories, Robarts Research Institute, London, Canada
| | | | | | | | | | | | | |
Collapse
|