1
|
Ning LH, Hui TC. The Accompanying Effect in Responses to Auditory Perturbations: Unconscious Vocal Adjustments to Unperturbed Parameters. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2024; 67:1731-1751. [PMID: 38754028 DOI: 10.1044/2024_jslhr-23-00543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
PURPOSE The present study examined whether participants respond to unperturbed parameters while experiencing specific perturbations in auditory feedback. For instance, we aim to determine if speakers adjust voice loudness when only pitch is artificially altered in auditory feedback. This phenomenon is referred to as the "accompanying effect" in the present study. METHOD Thirty native Mandarin speakers were asked to sustain the vowel /ɛ/ for 3 s while their auditory feedback underwent single shifts in one of the three distinct ways: pitch shift (±100 cents; coded as PT), loudness shift (±6 dB; coded as LD), or first formant (F1) shift (±100 Hz; coded as FM). Participants were instructed to ignore the perturbations in their auditory feedback. Response types were categorized based on pitch, loudness, and F1 for each individual trial, such as Popp_Lopp_Fopp indicating opposing responses in all three domains. RESULTS The accompanying effect appeared 93% of the time. Bayesian Poisson regression models indicate that opposing responses in all three domains (Popp_Lopp_Fopp) were the most prevalent response type across the conditions (PT, LD, and FM). The more frequently used response types exhibited opposing responses and significantly larger response curves than the less frequently used response types. Following responses became more prevalent only when the perturbed stimuli were perceived as voices from someone else (external references), particularly in the FM condition. In terms of isotropy, loudness and F1 tended to change in the same direction rather than loudness and pitch. CONCLUSION The presence of the accompanying effect suggests that the motor systems responsible for regulating pitch, loudness, and formants are not entirely independent but rather interconnected to some degree.
Collapse
Affiliation(s)
- Li-Hsin Ning
- Department of English, National Taiwan Normal University, Taipei City
| | - Tak-Cheung Hui
- Department of Creative Arts, Hong Kong Metropolitan University, Kowloon
| |
Collapse
|
2
|
Sebastianelli M, Lukhele SM, Secomandi S, de Souza SG, Haase B, Moysi M, Nikiforou C, Hutfluss A, Mountcastle J, Balacco J, Pelan S, Chow W, Fedrigo O, Downs CT, Monadjem A, Dingemanse NJ, Jarvis ED, Brelsford A, vonHoldt BM, Kirschel ANG. A genomic basis of vocal rhythm in birds. Nat Commun 2024; 15:3095. [PMID: 38653976 DOI: 10.1038/s41467-024-47305-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/22/2024] [Indexed: 04/25/2024] Open
Abstract
Vocal rhythm plays a fundamental role in sexual selection and species recognition in birds, but little is known of its genetic basis due to the confounding effect of vocal learning in model systems. Uncovering its genetic basis could facilitate identifying genes potentially important in speciation. Here we investigate the genomic underpinnings of rhythm in vocal non-learning Pogoniulus tinkerbirds using 135 individual whole genomes distributed across a southern African hybrid zone. We find rhythm speed is associated with two genes that are also known to affect human speech, Neurexin-1 and Coenzyme Q8A. Models leveraging ancestry reveal these candidate loci also impact rhythmic stability, a trait linked with motor performance which is an indicator of quality. Character displacement in rhythmic stability suggests possible reinforcement against hybridization, supported by evidence of asymmetric assortative mating in the species producing faster, more stable rhythms. Because rhythm is omnipresent in animal communication, candidate genes identified here may shape vocal rhythm across birds and other vertebrates.
Collapse
Affiliation(s)
- Matteo Sebastianelli
- Department of Biological Sciences, University of Cyprus, PO Box 20537, Nicosia, 1678, Cyprus.
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 751 23, Uppsala, Sweden.
| | - Sifiso M Lukhele
- Department of Biological Sciences, University of Cyprus, PO Box 20537, Nicosia, 1678, Cyprus
| | - Simona Secomandi
- Department of Biological Sciences, University of Cyprus, PO Box 20537, Nicosia, 1678, Cyprus
| | - Stacey G de Souza
- Department of Biological Sciences, University of Cyprus, PO Box 20537, Nicosia, 1678, Cyprus
| | - Bettina Haase
- Vertebrate Genome Lab, The Rockefeller University, New York, NY, USA
| | - Michaella Moysi
- Department of Biological Sciences, University of Cyprus, PO Box 20537, Nicosia, 1678, Cyprus
| | - Christos Nikiforou
- Department of Biological Sciences, University of Cyprus, PO Box 20537, Nicosia, 1678, Cyprus
| | - Alexander Hutfluss
- Behavioural Ecology, Faculty of Biology, LMU Munich (LMU), 82152, Planegg-Martinsried, Germany
| | | | - Jennifer Balacco
- Vertebrate Genome Lab, The Rockefeller University, New York, NY, USA
| | | | | | - Olivier Fedrigo
- Vertebrate Genome Lab, The Rockefeller University, New York, NY, USA
| | - Colleen T Downs
- Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, 3209, South Africa
| | - Ara Monadjem
- Department of Biological Sciences, University of Eswatini, Kwaluseni, Eswatini
- Mammal Research Institute, Department of Zoology & Entomology, University of Pretoria, Private Bag 20, Hatfield, 0028, Pretoria, South Africa
| | - Niels J Dingemanse
- Behavioural Ecology, Faculty of Biology, LMU Munich (LMU), 82152, Planegg-Martinsried, Germany
| | - Erich D Jarvis
- Vertebrate Genome Lab, The Rockefeller University, New York, NY, USA
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Alan Brelsford
- Department of Evolution, Ecology and Organismal Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Bridgett M vonHoldt
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Alexander N G Kirschel
- Department of Biological Sciences, University of Cyprus, PO Box 20537, Nicosia, 1678, Cyprus.
| |
Collapse
|
3
|
Frank SY, Hunt JL, Bae AJ, Chirathivat N, Lotfi S, Raja SC, Gobes SMH. Hemispheric dominance in HVC is experience-dependent in juvenile male zebra finches. Sci Rep 2024; 14:5781. [PMID: 38461197 PMCID: PMC10924951 DOI: 10.1038/s41598-024-55987-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/29/2024] [Indexed: 03/11/2024] Open
Abstract
Juvenile male zebra finches (Taeniopygia guttata) must be exposed to an adult tutor during a sensitive period to develop normal adult song. The pre-motor nucleus HVC (acronym used as a proper name), plays a critical role in song learning and production (cf. Broca's area in humans). In the human brain, left-side hemispheric dominance in some language regions is positively correlated with proficiency in linguistic skills. However, it is unclear whether this pattern depends upon language learning, develops with normal maturation of the brain, or is the result of pre-existing functional asymmetries. In juvenile zebra finches, even though both left and right HVC contribute to song production, baseline molecular activity in HVC is left-dominant. To test if HVC exhibits hemispheric dominance prior to song learning, we raised juvenile males in isolation from adult song and measured neuronal activity in the left and right HVC upon first exposure to an auditory stimulus. Activity in the HVC was measured using the immediate early gene (IEG) zenk (acronym for zif-268, egr-1, NGFI-a, and krox-24) as a marker for neuronal activity. We found that neuronal activity in the HVC of juvenile male zebra finches is not lateralized when raised in the absence of adult song, while normally-reared juvenile birds are left-dominant. These findings show that there is no pre-existing asymmetry in the HVC prior to song exposure, suggesting that lateralization of the song system depends on learning through early exposure to adult song and subsequent song-imitation practice.
Collapse
Affiliation(s)
- Sophia Y Frank
- Neuroscience Department, Wellesley College, Wellesley, MA, 02481, USA
| | - Jesse L Hunt
- Neuroscience Department, Wellesley College, Wellesley, MA, 02481, USA
| | - Andrea J Bae
- Neuroscience Department, Wellesley College, Wellesley, MA, 02481, USA
| | - Napim Chirathivat
- Neuroscience Department, Wellesley College, Wellesley, MA, 02481, USA
| | - Sima Lotfi
- Neuroscience Department, Wellesley College, Wellesley, MA, 02481, USA
| | - Sahitya C Raja
- Neuroscience Department, Wellesley College, Wellesley, MA, 02481, USA
| | - Sharon M H Gobes
- Neuroscience Department, Wellesley College, Wellesley, MA, 02481, USA.
| |
Collapse
|
4
|
Furest Cataldo B, Yang L, Cabezas B, Ovetsky J, Vicario DS. Novel sound exposure drives dynamic changes in auditory lateralization that are associated with perceptual learning in zebra finches. Commun Biol 2023; 6:1205. [PMID: 38012325 PMCID: PMC10681987 DOI: 10.1038/s42003-023-05567-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/09/2023] [Indexed: 11/29/2023] Open
Abstract
Songbirds provide a model for adult plasticity in the auditory cortex as a function of recent experience due to parallels with human auditory processing. As for speech processing in humans, activity in songbirds' higher auditory cortex (caudomedial nidopallium, NCM) is lateralized for complex vocalization sounds. However, in Zebra finches exposed to a novel heterospecific (canary) acoustic environment for 4-9 days, the typical pattern of right-lateralization is reversed. We now report that, in birds passively exposed to a novel heterospecific environment for extended periods (up to 21 days), the right-lateralized pattern of epidural auditory potentials first reverses transiently then returns to the typical pattern. Using acute, bilateral multi-unit electrophysiology, we confirm that this dynamic pattern occurs in NCM. Furthermore, extended exposure enhances discrimination for heterospecific stimuli. We conclude that lateralization is functionally labile and, when engaged by novel sensory experience, contributes to discrimination of novel stimuli that may be ethologically relevant. Future studies seek to determine whether, (1) the dynamicity of lateralized processes engaged by novel sensory experiences recurs with every novel challenge in the same organism; (2) the dynamic pattern extends to other cortical, thalamic or midbrain structures; and (3) the phenomenon generalizes across sensory modalities.
Collapse
Affiliation(s)
| | - Lillian Yang
- The City College of New York (CUNY), Physiology, Pharmacology and Neuroscience Department, New York, NY, 10031, USA
| | - Bryan Cabezas
- Rutgers University, Department of Psychology, Piscataway, NJ, 08854, USA
| | - Jonathan Ovetsky
- Rutgers University, Department of Psychology, Piscataway, NJ, 08854, USA
| | - David S Vicario
- Rutgers University, Department of Psychology, Piscataway, NJ, 08854, USA.
| |
Collapse
|
5
|
Favaro L, Zanoli A, Ludynia K, Snyman A, Carugati F, Friard O, Scaglione FE, Manassero L, Valazza A, Mathevon N, Gamba M, Reby D. Vocal tract shape variation contributes to individual vocal identity in African penguins. Proc Biol Sci 2023; 290:20231029. [PMID: 37817600 PMCID: PMC10565386 DOI: 10.1098/rspb.2023.1029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/18/2023] [Indexed: 10/12/2023] Open
Abstract
Variation in formant frequencies has been shown to affect social interactions and sexual competition in a range of avian species. Yet, the anatomical bases of this variation are poorly understood. Here, we investigated the morphological correlates of formants production in the vocal apparatus of African penguins. We modelled the geometry of the supra-syringeal vocal tract of 20 specimens to generate a population of virtual vocal tracts with varying dimensions. We then estimated the acoustic response of these virtual vocal tracts and extracted the centre frequency of the first four predicted formants. We demonstrate that: (i) variation in length and cross-sectional area of vocal tracts strongly affects the formant pattern, (ii) the tracheal region determines most of this variation, and (iii) the skeletal size of penguins does not correlate with the trachea length and consequently has relatively little effect on formants. We conclude that in African penguins, while the variation in vocal tract geometry generates variation in resonant frequencies supporting the discrimination of conspecifics, such variation does not provide information on the emitter's body size. Overall, our findings advance our understanding of the role of formant frequencies in bird vocal communication.
Collapse
Affiliation(s)
- Livio Favaro
- ENES Bioacoustics Research Laboratory, CRNL, University of Saint-Etienne, CNRS, Inserm, Saint-Etienne, France
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Anna Zanoli
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Katrin Ludynia
- Southern African Foundation for the Conservation of Coastal Birds (SANCCOB), Cape Town, South Africa
- Department of Biodiversity and Conservation Biology, University of the Western Cape, Bellville, South Africa
| | - Albert Snyman
- Southern African Foundation for the Conservation of Coastal Birds (SANCCOB), Cape Town, South Africa
| | - Filippo Carugati
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Olivier Friard
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | | | - Luca Manassero
- Department of Veterinary Science, University of Turin, Turin, Italy
| | - Alberto Valazza
- Department of Veterinary Science, University of Turin, Turin, Italy
| | - Nicolas Mathevon
- ENES Bioacoustics Research Laboratory, CRNL, University of Saint-Etienne, CNRS, Inserm, Saint-Etienne, France
- Institut Universitaire de France, Ministry of Higher Education, Research and Innovation, 1 rue Descartes, 75231 Paris Cedex 05, France
| | - Marco Gamba
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - David Reby
- ENES Bioacoustics Research Laboratory, CRNL, University of Saint-Etienne, CNRS, Inserm, Saint-Etienne, France
- Institut Universitaire de France, Ministry of Higher Education, Research and Innovation, 1 rue Descartes, 75231 Paris Cedex 05, France
| |
Collapse
|
6
|
Zhang Y, Zhou L, Zuo J, Wang S, Meng W. Analogies of human speech and bird song: From vocal learning behavior to its neural basis. Front Psychol 2023; 14:1100969. [PMID: 36910811 PMCID: PMC9992734 DOI: 10.3389/fpsyg.2023.1100969] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/06/2023] [Indexed: 02/24/2023] Open
Abstract
Vocal learning is a complex acquired social behavior that has been found only in very few animals. The process of animal vocal learning requires the participation of sensorimotor function. By accepting external auditory input and cooperating with repeated vocal imitation practice, a stable pattern of vocal information output is eventually formed. In parallel evolutionary branches, humans and songbirds share striking similarities in vocal learning behavior. For example, their vocal learning processes involve auditory feedback, complex syntactic structures, and sensitive periods. At the same time, they have evolved the hierarchical structure of special forebrain regions related to vocal motor control and vocal learning, which are organized and closely associated to the auditory cortex. By comparing the location, function, genome, and transcriptome of vocal learning-related brain regions, it was confirmed that songbird singing and human language-related neural control pathways have certain analogy. These common characteristics make songbirds an ideal animal model for studying the neural mechanisms of vocal learning behavior. The neural process of human language learning may be explained through similar neural mechanisms, and it can provide important insights for the treatment of language disorders.
Collapse
Affiliation(s)
- Yutao Zhang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Lifang Zhou
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Jiachun Zuo
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Songhua Wang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Wei Meng
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China
| |
Collapse
|
7
|
Hoeschele M, Wagner B, Mann DC. Lessons learned in animal acoustic cognition through comparisons with humans. Anim Cogn 2023; 26:97-116. [PMID: 36574158 PMCID: PMC9877085 DOI: 10.1007/s10071-022-01735-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/21/2022] [Accepted: 12/06/2022] [Indexed: 12/28/2022]
Abstract
Humans are an interesting subject of study in comparative cognition. While humans have a lot of anecdotal and subjective knowledge about their own minds and behaviors, researchers tend not to study humans the way they study other species. Instead, comparisons between humans and other animals tend to be based on either assumptions about human behavior and cognition, or very different testing methods. Here we emphasize the importance of using insider knowledge about humans to form interesting research questions about animal cognition while simultaneously stepping back and treating humans like just another species as if one were an alien researcher. This perspective is extremely helpful to identify what aspects of cognitive processes may be interesting and relevant across the animal kingdom. Here we outline some examples of how this objective human-centric approach has helped us to move forward knowledge in several areas of animal acoustic cognition (rhythm, harmonicity, and vocal units). We describe how this approach works, what kind of benefits we obtain, and how it can be applied to other areas of animal cognition. While an objective human-centric approach is not useful when studying traits that do not occur in humans (e.g., magnetic spatial navigation), it can be extremely helpful when studying traits that are relevant to humans (e.g., communication). Overall, we hope to entice more people working in animal cognition to use a similar approach to maximize the benefits of being part of the animal kingdom while maintaining a detached and scientific perspective on the human species.
Collapse
Affiliation(s)
- Marisa Hoeschele
- Acoustics Research Institute, Austrian Academy of Sciences, Wohllebengasse 12-14, 1040, Vienna, Austria.
| | - Bernhard Wagner
- Acoustics Research Institute, Austrian Academy of Sciences, Wohllebengasse 12-14, 1040, Vienna, Austria
| | - Dan C Mann
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Savoyenstrasse 1, 1160, Vienna, Austria
| |
Collapse
|
8
|
Benedict L, Charles A, Brockington A, Dahlin CR. A survey of vocal mimicry in companion parrots. Sci Rep 2022; 12:20271. [PMID: 36470907 PMCID: PMC9722931 DOI: 10.1038/s41598-022-24335-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 11/14/2022] [Indexed: 12/07/2022] Open
Abstract
Parrots are one of the rare animal taxa with life-long vocal learning. Parrot vocal repertoires are difficult to study in the wild, but companion parrots offer a valuable data source. We surveyed the public about mimicry repertoires in companion parrots to determine whether vocal learning varied by (1) species, (2) sex, (3) age, and (4) social interaction with other parrots. Species differed significantly in mimicry ability, with grey parrots (Psittacus erithacus) having the largest mimicry repertoires. Analyses of all birds (n = 877) found no overarching effects of sex, age, or parrot-parrot social interactions on mimicry repertoires. Follow up analyses (n = 671), however, revealed a human bias to assume that talking parrots are male, and indicated that five of the 19 best-sampled species exhibited sex differences. Age-specific analyses of grey parrots (n = 187) indicated that repertoire size did not increase during adulthood. Most parrots were capable of improvisation (e.g. rearranging words) and used mimicry in appropriate human contexts. Results indicate that parrot vocal production learning varies among and within species, suggesting that the mechanisms and functions of learning also vary. Our data provide a rich foundation for future comparative research on avian vocalizations, and broaden our understanding of the underpinnings of communicative behavior and learning across all animals.
Collapse
Affiliation(s)
- Lauryn Benedict
- grid.266877.a0000 0001 2097 3086Department of Biological Sciences, University of Northern Colorado, Greeley, CO 80639 USA
| | - Alexandra Charles
- grid.266877.a0000 0001 2097 3086Department of Biological Sciences, University of Northern Colorado, Greeley, CO 80639 USA
| | - Amirah Brockington
- grid.266877.a0000 0001 2097 3086Department of Biological Sciences, University of Northern Colorado, Greeley, CO 80639 USA
| | - Christine R Dahlin
- grid.469265.a0000 0004 0634 0663Department of Biology, University of Pittsburgh at Johnstown, Johnstown, PA 15904 USA
| |
Collapse
|
9
|
Méndez JM, Dukes J, Cooper BG. Preparing to sing: respiratory patterns underlying motor readiness for song. J Neurophysiol 2022; 128:1646-1662. [PMID: 36416416 PMCID: PMC9762977 DOI: 10.1152/jn.00551.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Evidence for motor preparation and planning comes from neural activity preceding neural commands to activate the effectors; such preparatory activity is observed in pallial areas controlling learned motor behaviors. Vocal learning in songbirds is an example of a learned, sequential motor behavior that is a respiratory motor act and where there is evidence for neuromuscular planning. Respiration is the foundation of vocalization, elucidating the neural control of song motor planning requires studying respiratory antecedents of song initiation. Despite the importance of respiration in song production, few studies have investigated respiratory antecedents of impending vocalizations. Therefore, we investigated respiratory patterns in male zebra finches (Taeniopygia guttata) and Bengalese finches (Lonchura striata domestica) prior to, during, and following song bouts. In both species, compared with quiet respiration, song respiratory patterns were generated with higher amplitude, faster tempo, and ∼70% of the respiratory cycle is in the expiratory phase. In female-directed and isolation song, both species show a change in the respiratory tempo and the proportion of time spent inhaling prior to song. Following song, only zebra finches show systematic changes in respiratory patterns; they spend a greater proportion of the respiratory cycle in the expiratory phase for 1 s after song, which is likely due to hyperventilation during song. Accelerated respiratory rhythms before song may reflect the motor preparation for the upcoming song production; species differences in preparatory motor activity could be related to the degree to which motor planning is required; finally, song termination may be dictated by respiratory demands.NEW & NOTEWORTHY Motor planning for vocal production in birdsong manifests as an adaptation of respiratory characteristics prior to song. The songbird's respiratory system anticipates the upcoming song production by accelerating the respiratory tempo and increasing the proportion of time spent inhaling.
Collapse
Affiliation(s)
- Jorge M Méndez
- Department of Physics and Astronomy, Minnesota State University, Mankato, Minnesota
| | - Jacqueline Dukes
- Department of Psychology, Texas Christian University, Fort Worth, Texas
| | - Brenton G Cooper
- Department of Psychology, Texas Christian University, Fort Worth, Texas
| |
Collapse
|
10
|
Ravignani A, Garcia M. A cross-species framework to identify vocal learning abilities in mammals. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200394. [PMID: 34775824 PMCID: PMC8591379 DOI: 10.1098/rstb.2020.0394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Vocal production learning (VPL) is the experience-driven ability to produce novel vocal signals through imitation or modification of existing vocalizations. A parallel strand of research investigates acoustic allometry, namely how information about body size is conveyed by acoustic signals. Recently, we proposed that deviation from acoustic allometry principles as a result of sexual selection may have been an intermediate step towards the evolution of vocal learning abilities in mammals. Adopting a more hypothesis-neutral stance, here we perform phylogenetic regressions and other analyses further testing a potential link between VPL and being an allometric outlier. We find that multiple species belonging to VPL clades deviate from allometric scaling but in the opposite direction to that expected from size exaggeration mechanisms. In other words, our correlational approach finds an association between VPL and being an allometric outlier. However, the direction of this association, contra our original hypothesis, may indicate that VPL did not necessarily emerge via sexual selection for size exaggeration: VPL clades show higher vocalization frequencies than expected. In addition, our approach allows us to identify species with potential for VPL abilities: we hypothesize that those outliers from acoustic allometry lying above the regression line may be VPL species. Our results may help better understand the cross-species diversity, variability and aetiology of VPL, which among other things is a key underpinning of speech in our species. This article is part of the theme issue 'Voice modulation: from origin and mechanism to social impact (Part II)'.
Collapse
Affiliation(s)
- Andrea Ravignani
- Comparative Bioacoustics Group, Max Planck Institute for Psycholinguistics, Wundtlaan 1, 6525 XD Nijmegen, The Netherlands
| | - Maxime Garcia
- Animal Behaviour, Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich 8051, Switzerland.,Center for the Interdisciplinary Study of Language Evolution, University of Zurich, Zurich 8032, Switzerland
| |
Collapse
|
11
|
Boari S, Mindlin GB, Amador A. Neural oscillations are locked to birdsong rhythms in canaries. Eur J Neurosci 2021; 55:549-565. [PMID: 34852183 DOI: 10.1111/ejn.15552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/28/2022]
Abstract
How vocal communication signals are represented in the cortex is a major challenge for behavioural neuroscience. Beyond a descriptive code, it is relevant to unveil the dynamical mechanism responsible for the neural representation of auditory stimuli. In this work, we report evidence of synchronous neural activity in nucleus HVC, a telencephalic area of canaries (Serinus canaria), in response to auditory playback of the bird's own song. The rhythmic features of canary song allowed us to show that this large-scale synchronization was locked to defined features of the behaviour. We recorded neural activity in a brain region where sensorimotor integration occurs, showing the presence of well-defined oscillations in the local field potentials, which are locked to song rhythm. We also show a correspondence between local field potentials, multiunit activity and single unit activity within the same brain region. Overall, our results show that the rhythmic features of the vocal behaviour are represented in a telencephalic region of canaries.
Collapse
Affiliation(s)
- Santiago Boari
- Physics Department, FCEyN, University of Buenos Aires, Buenos Aires, Argentina.,IFIBA, CONICET, Buenos Aires, Argentina
| | - Gabriel B Mindlin
- Physics Department, FCEyN, University of Buenos Aires, Buenos Aires, Argentina.,IFIBA, CONICET, Buenos Aires, Argentina
| | - Ana Amador
- Physics Department, FCEyN, University of Buenos Aires, Buenos Aires, Argentina.,IFIBA, CONICET, Buenos Aires, Argentina
| |
Collapse
|
12
|
Carouso-Peck S, Goldstein MH. Evolving the capacity for socially guided vocal learning in songbirds: a preliminary study. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200246. [PMID: 34482720 DOI: 10.1098/rstb.2020.0246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Socially guided vocal learning, the ability to use contingent reactions from social partners to guide immature vocalizations to more mature forms, is thought to be a rare ability known to be used only by humans, marmosets and two unrelated songbird species (brown-headed cowbirds and zebra finches). However, this learning strategy has never been investigated in the vast majority of species that are known to modify their vocalizations over development. We propose a novel, preliminary evolutionary modelling approach that uses ecological, reproductive and developmental traits to predict which species may incorporate social influences as part of their vocal learning system. We demonstrate our model using data from 28 passerines. We found three highly predictive traits: temporal overlap between sensory (memorization) and sensorimotor (practice) phases of song learning, song used for mate attraction, and social gregariousness outside the breeding season. Species with these traits were distributed throughout the clade, suggesting that a trait-based approach may yield new insights into the evolution of learning strategies that cannot be gleaned from phylogenetic relatedness alone. Our model suggests several previously uninvestigated and unexpected species as likely socially guided vocal learners and offers new insight into the evolution and development of vocal learning. This article is part of the theme issue 'Vocal learning in animals and humans'.
Collapse
|
13
|
Carouso-Peck S, Goldstein MH, Fitch WT. The many functions of vocal learning. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200235. [PMID: 34482721 DOI: 10.1098/rstb.2020.0235] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The capacity to learn novel vocalizations has evolved convergently in a wide range of species. Courtship songs of male birds or whales are often treated as prototypical examples, implying a sexually selected context for the evolution of this ability. However, functions of learned vocalizations in different species are far more diverse than courtship, spanning a range of socio-positive contexts from individual identification, social cohesion, or advertising pair bonds, as well as agonistic contexts such as territorial defence, deceptive alarm calling or luring prey. Here, we survey the diverse usages and proposed functions of learned novel signals, to build a framework for considering the evolution of vocal learning capacities that extends beyond sexual selection. For each function that can be identified for learned signals, we provide examples of species using unlearned signals to accomplish the same goals. We use such comparisons to generate hypotheses concerning when vocal learning is adaptive, given a particular suite of socio-ecological traits. Finally, we identify areas of uncertainty where improved understanding would allow us to better test these hypotheses. Considering the broad range of potential functions of vocal learning will yield a richer appreciation of its evolution than a narrow focus on a few prototypical species. This article is part of the theme issue 'Vocal learning in animals and humans'.
Collapse
|
14
|
Why language survives as the dominant communication tool: A neurocognitive perspective. Behav Brain Sci 2021; 44:e94. [PMID: 34588016 DOI: 10.1017/s0140525x20000692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
By focusing on the contributions of subcortical structures, our commentary suggests that the functions of the hippocampus underlying "displacement," a feature enabling humans to communicate things and situations that are remote in space and time, make language more effective at social bonding. Based on the functions of the basal ganglia and hippocampus, evolutionary trajectory of the subcomponents of music and language in different species will also be discussed.
Collapse
|
15
|
Turk AZ, Lotfi Marchoubeh M, Fritsch I, Maguire GA, SheikhBahaei S. Dopamine, vocalization, and astrocytes. BRAIN AND LANGUAGE 2021; 219:104970. [PMID: 34098250 PMCID: PMC8260450 DOI: 10.1016/j.bandl.2021.104970] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 05/06/2023]
Abstract
Dopamine, the main catecholamine neurotransmitter in the brain, is predominately produced in the basal ganglia and released to various brain regions including the frontal cortex, midbrain and brainstem. Dopamine's effects are widespread and include modulation of a number of voluntary and innate behaviors. Vigilant regulation and modulation of dopamine levels throughout the brain is imperative for proper execution of motor behaviors, in particular speech and other types of vocalizations. While dopamine's role in motor circuitry is widely accepted, its unique function in normal and abnormal speech production is not fully understood. In this perspective, we first review the role of dopaminergic circuits in vocal production. We then discuss and propose the conceivable involvement of astrocytes, the numerous star-shaped glia cells of the brain, in the dopaminergic network modulating normal and abnormal vocal productions.
Collapse
Affiliation(s)
- Ariana Z Turk
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, 20892 MD, USA
| | - Mahsa Lotfi Marchoubeh
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, 72701 AR, USA
| | - Ingrid Fritsch
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, 72701 AR, USA
| | - Gerald A Maguire
- Department of Psychiatry and Neuroscience, School of Medicine, University of California, Riverside, 92521 CA, USA
| | - Shahriar SheikhBahaei
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, 20892 MD, USA.
| |
Collapse
|
16
|
Hanson M, Hoffman EA, Norell MA, Bhullar BAS. The early origin of a birdlike inner ear and the evolution of dinosaurian movement and vocalization. Science 2021; 372:601-609. [PMID: 33958471 DOI: 10.1126/science.abb4305] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 03/09/2021] [Indexed: 12/27/2022]
Abstract
Reptiles, including birds, exhibit a range of behaviorally relevant adaptations that are reflected in changes to the structure of the inner ear. These adaptations include the capacity for flight and sensitivity to high-frequency sound. We used three-dimensional morphometric analyses of a large sample of extant and extinct reptiles to investigate inner ear correlates of locomotor ability and hearing acuity. Statistical analyses revealed three vestibular morphotypes, best explained by three locomotor categories-quadrupeds, bipeds and simple fliers (including bipedal nonavialan dinosaurs), and high-maneuverability fliers. Troodontids fall with Archaeopteryx among the extant low-maneuverability fliers. Analyses of cochlear shape revealed a single instance of elongation, on the stem of Archosauria. We suggest that this transformation coincided with the origin of both high-pitched juvenile location, alarm, and hatching-synchronization calls and adult responses to them.
Collapse
Affiliation(s)
- Michael Hanson
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA.,Peabody Museum of Natural History, Yale University, New Haven, CT, USA
| | - Eva A Hoffman
- Division of Paleontology, American Museum of Natural History, New York, NY, USA
| | - Mark A Norell
- Division of Paleontology, American Museum of Natural History, New York, NY, USA
| | - Bhart-Anjan S Bhullar
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA. .,Peabody Museum of Natural History, Yale University, New Haven, CT, USA
| |
Collapse
|
17
|
Samuels B, Grahn J, Henry MJ, MacDougall-Shackleton SA. European starlings (sturnus vulgaris) discriminate rhythms by rate, not temporal patterns. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 149:2546. [PMID: 33940875 DOI: 10.1121/10.0004215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Humans can perceive a regular psychological pulse in music known as the beat. The evolutionary origins and neural mechanisms underlying this ability are hypothetically linked to imitative vocal learning, a rare trait found only in some species of mammals and birds. Beat perception has been demonstrated in vocal learning parrots but not in songbirds. We trained European starlings (Sturnus vulgaris) on two sound discriminations to investigate their perception of the beat and temporal structure in rhythmic patterns. First, we trained birds on a two-choice discrimination between rhythmic patterns of tones that contain or lack a regular beat. Despite receiving extensive feedback, the starlings were unable to distinguish the first two patterns. Next, we probed the temporal cues that starlings use for discriminating rhythms in general. We trained birds to discriminate a baseline set of isochronous and triplet tone sequences. On occasional probe trials, we presented transformations of the baseline patterns. The starlings' responses to the probes suggest they relied on absolute temporal features to sort the sounds into "fast" and "slow" and otherwise ignored patterns that were present. Our results support that starlings attend to local features in rhythms and are less sensitive to the global temporal organization.
Collapse
Affiliation(s)
- Brendon Samuels
- Brain and Mind Institute, Department of Psychology, University of Western Ontario, 1151 Richmond Street, London, Ontario, N6A 5K7, Canada
| | - Jessica Grahn
- Brain and Mind Institute, Department of Psychology, University of Western Ontario, 1151 Richmond Street, London, Ontario, N6A 5K7, Canada
| | - Molly J Henry
- Brain and Mind Institute, Department of Psychology, University of Western Ontario, 1151 Richmond Street, London, Ontario, N6A 5K7, Canada
| | | |
Collapse
|
18
|
Podlipniak P. The Role of Canalization and Plasticity in the Evolution of Musical Creativity. Front Neurosci 2021; 15:607887. [PMID: 33796005 PMCID: PMC8007929 DOI: 10.3389/fnins.2021.607887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/24/2021] [Indexed: 11/29/2022] Open
Abstract
Creativity is defined as the ability to generate something new and valuable. From a biological point of view this can be seen as an adaptation in response to environmental challenges. Although music is such a diverse phenomenon, all people possess a set of abilities that are claimed to be the products of biological evolution, which allow us to produce and listen to music according to both universal and culture-specific rules. On the one hand, musical creativity is restricted by the tacit rules that reflect the developmental interplay between genetic, epigenetic and cultural information. On the other hand, musical innovations seem to be desirable elements present in every musical culture which suggests some biological importance. If our musical activity is driven by biological needs, then it is important for us to understand the function of musical creativity in satisfying those needs, and also how human beings have become so creative in the domain of music. The aim of this paper is to propose that musical creativity has become an indispensable part of the gene-culture coevolution of our musicality. It is suggested that the two main forces of canalization and plasticity have been crucial in this process. Canalization is an evolutionary process in which phenotypes take relatively constant forms regardless of environmental and genetic perturbations. Plasticity is defined as the ability of a phenotype to generate an adaptive response to environmental challenges. It is proposed that human musicality is composed of evolutionary innovations generated by the gradual canalization of developmental pathways leading to musical behavior. Within this process, the unstable cultural environment serves as the selective pressure for musical creativity. It is hypothesized that the connections between cortical and subcortical areas, which constitute cortico-subcortical circuits involved in music processing, are the products of canalization, whereas plasticity is achieved by the means of neurological variability. This variability is present both at the level of an individual structure's enlargement in response to practicing (e.g., the planum temporale) and within the involvement of neurological structures that are not music-specific (e.g., the default mode network) in music processing.
Collapse
Affiliation(s)
- Piotr Podlipniak
- Department of Musicology, Adam Mickiewicz University in Poznań, Poznań, Poland
| |
Collapse
|
19
|
Goodchild CG, Beck ML, VanDiest I, Czesak FN, Lane SJ, Sewall KB. Male zebra finches exposed to lead (Pb) during development have reduced volume of song nuclei, altered sexual traits, and received less attention from females as adults. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 210:111850. [PMID: 33421715 DOI: 10.1016/j.ecoenv.2020.111850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Lead (Pb) is a pervasive global contaminant that interferes with sensitive windows for neurological development and causes oxidative damage to tissues. The effects of moderate and high exposure to Pb have been well-studied in birds, but whether low-level early-life exposure to Pb influences adult phenotype remains unclear. Female songbirds use a male's song and coloration to discriminate between high- and low-quality males. Therefore, if early-life exposure to Pb disrupts song learning ability or shifts the allocation of antioxidant pigments away from colorful secondary sexual traits, male birds exposed to Pb may be less attractive to females. We exposed developing zebra finches (Taeniopygia guttata) to Pb-contaminated drinking water (100 or 1000 parts per billion [ppb]) after hatching (days 0-100). Once male finches reached adulthood (120-150 days post hatch), we measured song learning ability, coloration of bill and cheek patches, and volume of song nuclei in the brain. We also measured female preference for Pb-exposed males relative to control males. Finally, we measured motoric and spatial cognitive performance in male and female finches to assess whether cognitive traits differed in their sensitivity to Pb exposure. Male zebra finches exposed to 1000 ppb Pb had impaired song learning ability, reduced volume of song nuclei, bills with less redness and received less attention from females. Additionally, Pb exposure impaired motoric performance in both male and female finches but did not affect performance in a spatial cognitive task. Adult finches exposed to Pb-contaminated water had higher blood-Pb levels, though in all cases blood-Pb levels were below 7.0 µg dL-1. This study suggests that low-level exposure to Pb contributes to cognitive deficits that persist into adulthood and may indirectly influence fitness by altering secondary sexual traits and reducing male attractiveness.
Collapse
Affiliation(s)
- Christopher G Goodchild
- Virgina Tech, Dept. of Biology, Blacksburg, VA, USA; University of Central Oklahoma, Dept. of Biology, Edmond, OK, USA.
| | - Michelle L Beck
- Virgina Tech, Dept. of Biology, Blacksburg, VA, USA; Rivier University, Dept. of Biology, Nashua, NH, USA
| | | | | | | | | |
Collapse
|
20
|
Senescence of song revealed by a long-term study of the Seychelles warbler (Acrocephalus sechellensis). Sci Rep 2020; 10:20479. [PMID: 33235292 PMCID: PMC7686343 DOI: 10.1038/s41598-020-77405-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/09/2020] [Indexed: 11/23/2022] Open
Abstract
Senescence is widespread in nature, often resulting in diminishing survival or reproduction with age, but its role in age-dependent variation in sexual traits is often poorly understood. One reason is that few studies of sexual traits consider non-linear relationships with age, or only consider a narrow range of years relative to the life span of the species. Birdsong has evolved to allow assessment of conspecific quality in numerous bird species. Whilst theory and empirical work suggests that song may become more elaborate with age, there are a paucity of long-term studies testing whether song is associated with age or longevity. In particular, the occurrence of song senescence has rarely been demonstrated. Using an exceptional long-term dataset for the Seychelles warbler (Acrocephalus sechellensis), we analysed relationships between male song, age, survival, and longevity. This species is a long-lived songbird with early life increases, followed by senescent declines, in survival and reproduction. The study population (Cousin Island, Seychelles) is a closed population, with no depredation of adults, providing an excellent opportunity to study senescence in free-living animals. We tested whether song traits were related to age at recording, future survival, longevity, and territory quality. We found age-dependent changes in five song traits (duration, maximum frequency, peak frequency of songs, and duration and frequency bandwidth of trills). Relationships with age were quadratic, indicating reversal in the expression of song coinciding with the onset of senescence in reproduction and survival in this species. One song trait (trill bandwidth) had a quadratic relationship with future survival, but no song traits were related to longevity, suggesting age-related patterns were not the result of selective disappearance. Our study provides one of the first examples of functional senescence in song, offering new insights into avian senescence. Late-life declines in avian song, and possibly other sexual traits, may be more common than currently known, and may play a fundamental role in age-dependent changes in reproductive success.
Collapse
|
21
|
Monte A, Cerwenka AF, Ruthensteiner B, Gahr M, Düring DN. The hummingbird syrinx morphome: a detailed three-dimensional description of the black jacobin’s vocal organ. BMC ZOOL 2020. [DOI: 10.1186/s40850-020-00057-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Abstract
Background
The ability to imitate sounds depends on a process called vocal production learning, a rare evolutionary trait. In addition to the few mammalian groups that possess this ability, vocal production learning has evolved independently in three avian clades: songbirds, parrots, and hummingbirds. Although the anatomy and mechanisms of sound production in songbirds are well understood, little is known about the hummingbird’s vocal anatomy.
Results
We use high-resolution micro-computed tomography (μCT) and microdissection to reveal the three-dimensional structure of the syrinx, the vocal organ of the black jacobin (Florisuga fusca), a phylogenetically basal hummingbird species. We identify three features of the black jacobin’s syrinx: (i) a shift in the position of the syrinx to the outside of the thoracic cavity and the related loss of the sterno-tracheal muscle, (ii) complex intrinsic musculature, oriented dorso-ventrally, and (iii) ossicles embedded in the medial vibratory membranes.
Conclusions
The extra-thoracic placement of the black jacobin’s syrinx and the dorso-ventrally oriented musculature likely aid to uncoupling syrinx movements from extensive flight-related thorax constraints. The syrinx morphology further allows for vibratory decoupling, precise control of complex acoustic parameters, and a large motor redundancy that may be key biomechanical factors leading to acoustic complexity and thus facilitating the occurrence of vocal production learning.
Collapse
|
22
|
Garcia M, Ravignani A. Acoustic allometry and vocal learning in mammals. Biol Lett 2020; 16:20200081. [PMID: 32634374 PMCID: PMC7423041 DOI: 10.1098/rsbl.2020.0081] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/11/2020] [Indexed: 12/15/2022] Open
Abstract
Acoustic allometry is the study of how animal vocalizations reflect their body size. A key aim of this research is to identify outliers to acoustic allometry principles and pinpoint the evolutionary origins of such outliers. A parallel strand of research investigates species capable of vocal learning, the experience-driven ability to produce novel vocal signals through imitation or modification of existing vocalizations. Modification of vocalizations is a common feature found when studying both acoustic allometry and vocal learning. Yet, these two fields have only been investigated separately to date. Here, we review and connect acoustic allometry and vocal learning across mammalian clades, combining perspectives from bioacoustics, anatomy and evolutionary biology. Based on this, we hypothesize that, as a precursor to vocal learning, some species might have evolved the capacity for volitional vocal modulation via sexual selection for 'dishonest' signalling. We provide preliminary support for our hypothesis by showing significant associations between allometric deviation and vocal learning in a dataset of 164 mammals. Our work offers a testable framework for future empirical research linking allometric principles with the evolution of vocal learning.
Collapse
Affiliation(s)
- Maxime Garcia
- Animal Behaviour, Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8051 Zurich, Switzerland
- Center for the Interdisciplinary Study of Language Evolution, University of Zurich, 8032 Zurich, Switzerland
| | - Andrea Ravignani
- Comparative Bioacoustics Group, Max Planck Institute for Psycholinguistics, Wundtlaan 1, 6525 XD Nijmegen, The Netherlands
- Research Department, Sealcentre Pieterburen, Hoofdstraat 94a, 9968 AG Pieterburen, The Netherlands
| |
Collapse
|
23
|
|
24
|
Call production induces motor-driven ZENK response in the song control system of black-capped chickadees. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
Neural oscillations in the fronto-striatal network predict vocal output in bats. PLoS Biol 2020; 18:e3000658. [PMID: 32191695 PMCID: PMC7081985 DOI: 10.1371/journal.pbio.3000658] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/13/2020] [Indexed: 12/22/2022] Open
Abstract
The ability to vocalize is ubiquitous in vertebrates, but neural networks underlying vocal control remain poorly understood. Here, we performed simultaneous neuronal recordings in the frontal cortex and dorsal striatum (caudate nucleus, CN) during the production of echolocation pulses and communication calls in bats. This approach allowed us to assess the general aspects underlying vocal production in mammals and the unique evolutionary adaptations of bat echolocation. Our data indicate that before vocalization, a distinctive change in high-gamma and beta oscillations (50–80 Hz and 12–30 Hz, respectively) takes place in the bat frontal cortex and dorsal striatum. Such precise fine-tuning of neural oscillations could allow animals to selectively activate motor programs required for the production of either echolocation or communication vocalizations. Moreover, the functional coupling between frontal and striatal areas, occurring in the theta oscillatory band (4–8 Hz), differs markedly at the millisecond level, depending on whether the animals are in a navigational mode (that is, emitting echolocation pulses) or in a social communication mode (emitting communication calls). Overall, this study indicates that fronto-striatal oscillations could provide a neural correlate for vocal control in bats. In bats, rhythmic activity in frontal and striatal areas of the brain provide a neural correlate for vocal control, which can be used to predict whether the ensuing vocalizations are for echolocation or social communication.
Collapse
|
26
|
Pagliaro AH, Arya P, Piristine HC, Lord JS, Gobes SMH. Bilateral brain activity in auditory regions is necessary for successful vocal learning in songbirds. Neurosci Lett 2020; 718:134730. [PMID: 31899312 DOI: 10.1016/j.neulet.2019.134730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/16/2019] [Accepted: 12/30/2019] [Indexed: 11/16/2022]
Abstract
In humans and songbirds, neuronal activation for language and song shifts from bilateral- or diffuse-activation to left-hemispheric dominance while proficiency increases. Further parallels exist at the behavioural level: unstructured juvenile vocalizations become highly stereotyped adult vocalizations through a process of trial and error learning. Greater left-hemispheric dominance in the songbird caudomedial Nidopallium (NCM), a Wernicke-like region, is related to better imitation of the tutor's song learned early in development, indicating a role for the left NCM in forming auditory memories. Here, we hypothesize that inhibition of the left NCM during interaction with a song tutor would impair imitation of the tutor's song more than inhibition of the right NCM. We infused a transient sodium channel blocker (TTX) immediately prior to tutoring sessions in either the left or right auditory lobule of previously isolated juvenile male zebra finches (Taeniopygia guttata). Upon maturation, both right-infused and left-infused birds' tutor song imitation was significantly impaired. Left-infused birds also showed less consistency in the rhythmic stability of their song as well as increased pitch, suggesting a subtle division of function between the left and right auditory lobules.
Collapse
Affiliation(s)
- Alexa H Pagliaro
- Neuroscience Department, Wellesley College, 106 Central Street, Wellesley, Massachusetts 02481-8203, United States
| | - Payal Arya
- Neuroscience Department, Wellesley College, 106 Central Street, Wellesley, Massachusetts 02481-8203, United States
| | - Hande C Piristine
- Neuroscience Department, Wellesley College, 106 Central Street, Wellesley, Massachusetts 02481-8203, United States
| | - Julia S Lord
- Neuroscience Department, Wellesley College, 106 Central Street, Wellesley, Massachusetts 02481-8203, United States
| | - Sharon M H Gobes
- Neuroscience Department, Wellesley College, 106 Central Street, Wellesley, Massachusetts 02481-8203, United States.
| |
Collapse
|
27
|
Abstract
Humans and songbirds learn to sing or speak by listening to acoustic models, forming auditory templates, and then learning to produce vocalizations that match the templates. These taxa have evolved specialized telencephalic pathways to accomplish this complex form of vocal learning, which has been reported for very few other taxa. By contrast, the acoustic structure of most animal vocalizations is produced by species-specific vocal motor programmes in the brainstem that do not require auditory feedback. However, many mammals and birds can learn to fine-tune the acoustic features of inherited vocal motor patterns based upon listening to conspecifics or noise. These limited forms of vocal learning range from rapid alteration based on real-time auditory feedback to long-term changes of vocal repertoire and they may involve different mechanisms than complex vocal learning. Limited vocal learning can involve the brainstem, mid-brain and/or telencephalic networks. Understanding complex vocal learning, which underpins human speech, requires careful analysis of which species are capable of which forms of vocal learning. Selecting multiple animal models for comparing the neural pathways that generate these different forms of learning will provide a richer view of the evolution of complex vocal learning and the neural mechanisms that make it possible. This article is part of the theme issue ‘What can animal communication teach us about human language?’
Collapse
Affiliation(s)
- Peter L Tyack
- Sea Mammal Research Unit, Scottish Oceans Institute, School of Biology, University of St Andrews, East Sands, St Andrews KY16 8LB, UK
| |
Collapse
|
28
|
Novel methodology to assess vocal learning in nature. Learn Behav 2019; 48:3-4. [PMID: 30859468 DOI: 10.3758/s13420-019-00376-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A recent and thorough longitudinal study by Mennill and colleagues (Current Biology, 28(20), 3273-3278, 2018) provides the first direct evidence for vocal learning in wild birds. Reconciling these findings with prior laboratory evidence and indirect evidence for vocal learning in the field provides novel insight into the vocal learning process in songbirds.
Collapse
|
29
|
Abstract
The tremendous diversity of animal behaviors has inspired generations of scientists from an array of biological disciplines. To complement investigations of ecological and evolutionary factors contributing to behavioral evolution, modern sequencing, gene editing, computational and neuroscience tools now provide a means to discover the proximate mechanisms upon which natural selection acts to generate behavioral diversity. Social behaviors are motivated behaviors that can differ tremendously between closely related species, suggesting phylogenetic plasticity in their underlying biological mechanisms. In addition, convergent evolution has repeatedly given rise to similar forms of social behavior and mating systems in distantly related species. Social behavioral divergence and convergence provides an entry point for understanding the neurogenetic mechanisms contributing to behavioral diversity. We argue that the greatest strides in discovering mechanisms contributing to social behavioral diversity will be achieved through integration of interdisciplinary comparative approaches with modern tools in diverse species systems. We review recent advances and future potential for discovering mechanisms underlying social behavioral variation; highlighting patterns of social behavioral evolution, oxytocin and vasopressin neuropeptide systems, genetic/transcriptional "toolkits," modern experimental tools, and alternative species systems, with particular emphasis on Microtine rodents and Lake Malawi cichlid fishes.
Collapse
Affiliation(s)
- Zachary V Johnson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Larry J Young
- Center for Translational Social Neuroscience, Silvio O. Conte Center for Oxytocin and Social Cognition, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
30
|
Goller M, Shizuka D. Evolutionary origins of vocal mimicry in songbirds. Evol Lett 2018; 2:417-426. [PMID: 30283692 PMCID: PMC6121844 DOI: 10.1002/evl3.62] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 05/15/2018] [Accepted: 05/22/2018] [Indexed: 11/24/2022] Open
Abstract
Vocal learning is an important behavior in oscines (songbirds). Some songbird species learn heterospecific sounds as well as conspecific vocalizations. The emergence of vocal mimicry is necessarily tied to the evolution of vocal learning, as mimicry requires the ability to acquire sounds through learning. As such, tracking the evolutionary origins of vocal mimicry may provide insights into the causes of variation in song learning programs among songbirds. We compiled a database of known vocal mimics that comprised 339 species from 43 families. We then traced the evolutionary history of vocal mimicry across the avian phylogeny using ancestral trait reconstruction on a dataset of oscine passerines for which vocalizations have been described. We found that the common ancestor to oscines was unlikely to mimic sounds, suggesting that song learning evolved with mechanisms to constrain learning to conspecific models. Mimicry then evolved repeatedly within the songbird clade, either through relaxation of constraints on conspecific learning or through selection for active vocal mimicry. Vocal mimicry is likely ancestral in only a handful of clades, and we detect many instances of independent origins of mimicry. Our analysis underscores the liability of vocal mimicry in songbirds, and highlights the evolutionary flexibility of song learning mechanisms.
Collapse
Affiliation(s)
- Maria Goller
- School of Biological Sciences University of Nebraska-Lincoln Lincoln Nebraska 68588-0118
| | - Daizaburo Shizuka
- School of Biological Sciences University of Nebraska-Lincoln Lincoln Nebraska 68588-0118
| |
Collapse
|
31
|
Belyk M, Johnson JF, Kotz SA. Poor neuro-motor tuning of the human larynx: a comparison of sung and whistled pitch imitation. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171544. [PMID: 29765635 PMCID: PMC5936900 DOI: 10.1098/rsos.171544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 03/13/2018] [Indexed: 06/08/2023]
Abstract
Vocal imitation is a hallmark of human communication that underlies the capacity to learn to speak and sing. Even so, poor vocal imitation abilities are surprisingly common in the general population and even expert vocalists cannot match the precision of a musical instrument. Although humans have evolved a greater degree of control over the laryngeal muscles that govern voice production, this ability may be underdeveloped compared with control over the articulatory muscles, such as the tongue and lips, volitional control of which emerged earlier in primate evolution. Human participants imitated simple melodies by either singing (i.e. producing pitch with the larynx) or whistling (i.e. producing pitch with the lips and tongue). Sung notes were systematically biased towards each individual's habitual pitch, which we hypothesize may act to conserve muscular effort. Furthermore, while participants who sung more precisely also whistled more precisely, sung imitations were less precise than whistled imitations. The laryngeal muscles that control voice production are under less precise control than the oral muscles that are involved in whistling. This imprecision may be due to the relatively recent evolution of volitional laryngeal-motor control in humans, which may be tuned just well enough for the coarse modulation of vocal-pitch in speech.
Collapse
Affiliation(s)
- Michel Belyk
- Bloorview Research Institute, 150 Kilgour Road, Toronto, CanadaM4G 1R8
- Faculty of Psychology and Neuroscience, University of Maastricht, Maastricht, The Netherlands
| | - Joseph F. Johnson
- Faculty of Psychology and Neuroscience, University of Maastricht, Maastricht, The Netherlands
| | - Sonja A. Kotz
- Faculty of Psychology and Neuroscience, University of Maastricht, Maastricht, The Netherlands
- Department of Neuropsychology, Max Planck Institute for Human and Cognitive Sciences, Leipzig, Germany
| |
Collapse
|
32
|
Root-Gutteridge H, Cusano DA, Shiu Y, Nowacek DP, Van Parijs SM, Parks SE. A lifetime of changing calls: North Atlantic right whales, Eubalaena glacialis, refine call production as they age. Anim Behav 2018. [DOI: 10.1016/j.anbehav.2017.12.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Rodenas-Cuadrado PM, Mengede J, Baas L, Devanna P, Schmid TA, Yartsev M, Firzlaff U, Vernes SC. Mapping the distribution of language related genes FoxP1, FoxP2, and CntnaP2 in the brains of vocal learning bat species. J Comp Neurol 2018; 526:1235-1266. [PMID: 29297931 PMCID: PMC5900884 DOI: 10.1002/cne.24385] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 11/07/2017] [Accepted: 11/27/2017] [Indexed: 11/17/2022]
Abstract
Genes including FOXP2, FOXP1, and CNTNAP2, have been implicated in human speech and language phenotypes, pointing to a role in the development of normal language‐related circuitry in the brain. Although speech and language are unique to humans a comparative approach is possible by addressing language‐relevant traits in animal systems. One such trait, vocal learning, represents an essential component of human spoken language, and is shared by cetaceans, pinnipeds, elephants, some birds and bats. Given their vocal learning abilities, gregarious nature, and reliance on vocalizations for social communication and navigation, bats represent an intriguing mammalian system in which to explore language‐relevant genes. We used immunohistochemistry to detail the distribution of FoxP2, FoxP1, and Cntnap2 proteins, accompanied by detailed cytoarchitectural histology in the brains of two vocal learning bat species; Phyllostomus discolor and Rousettus aegyptiacus. We show widespread expression of these genes, similar to what has been previously observed in other species, including humans. A striking difference was observed in the adult P. discolor bat, which showed low levels of FoxP2 expression in the cortex that contrasted with patterns found in rodents and nonhuman primates. We created an online, open‐access database within which all data can be browsed, searched, and high resolution images viewed to single cell resolution. The data presented herein reveal regions of interest in the bat brain and provide new opportunities to address the role of these language‐related genes in complex vocal‐motor and vocal learning behaviors in a mammalian model system.
Collapse
Affiliation(s)
- Pedro M Rodenas-Cuadrado
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, 6500 AH, The Netherlands
| | - Janine Mengede
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, 6500 AH, The Netherlands
| | - Laura Baas
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, 6500 AH, The Netherlands
| | - Paolo Devanna
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, 6500 AH, The Netherlands
| | - Tobias A Schmid
- Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, California, 94720
| | - Michael Yartsev
- Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, California, 94720.,Department of Bioengineering, UC Berkeley, 306 University of California, Berkeley, California, 94720
| | - Uwe Firzlaff
- Department Tierwissenschaften, Lehrstuhl für Zoologie, TU München, München, 85354, Germany
| | - Sonja C Vernes
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, 6500 AH, The Netherlands.,Donders Centre for Cognitive Neuroimaging, Nijmegen, 6525 EN, The Netherlands
| |
Collapse
|
34
|
Ultrasonic Social Communication in Bats: Signal Complexity and Its Neural Management. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/b978-0-12-809600-0.00046-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
35
|
|
36
|
Bidding evidence for primate vocal learning and the cultural substrates for speech evolution. Neurosci Biobehav Rev 2017; 83:429-439. [DOI: 10.1016/j.neubiorev.2017.09.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 09/19/2017] [Accepted: 09/21/2017] [Indexed: 10/18/2022]
|
37
|
Podlipniak P. The Role of the Baldwin Effect in the Evolution of Human Musicality. Front Neurosci 2017; 11:542. [PMID: 29056895 PMCID: PMC5635050 DOI: 10.3389/fnins.2017.00542] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/19/2017] [Indexed: 12/17/2022] Open
Abstract
From the biological perspective human musicality is the term referred to as a set of abilities which enable the recognition and production of music. Since music is a complex phenomenon which consists of features that represent different stages of the evolution of human auditory abilities, the question concerning the evolutionary origin of music must focus mainly on music specific properties and their possible biological function or functions. What usually differentiates music from other forms of human sound expressions is a syntactically organized structure based on pitch classes and rhythmic units measured in reference to musical pulse. This structure is an auditory (not acoustical) phenomenon, meaning that it is a human-specific interpretation of sounds achieved thanks to certain characteristics of the nervous system. There is historical and cross-cultural diversity of this structure which indicates that learning is an important part of the development of human musicality. However, the fact that there is no culture without music, the syntax of which is implicitly learned and easily recognizable, suggests that human musicality may be an adaptive phenomenon. If the use of syntactically organized structure as a communicative phenomenon were adaptive it would be only in circumstances in which this structure is recognizable by more than one individual. Therefore, there is a problem to explain the adaptive value of an ability to recognize a syntactically organized structure that appeared accidentally as the result of mutation or recombination in an environment without a syntactically organized structure. The possible solution could be explained by the Baldwin effect in which a culturally invented trait is transformed into an instinctive trait by the means of natural selection. It is proposed that in the beginning musical structure was invented and learned thanks to neural plasticity. Because structurally organized music appeared adaptive (phenotypic adaptation) e.g., as a tool of social consolidation, our predecessors started to spend a lot of time and energy on music. In such circumstances, accidentally one individual was born with the genetically controlled development of new neural circuitry which allowed him or her to learn music faster and with less energy use.
Collapse
Affiliation(s)
- Piotr Podlipniak
- Institute of Musicology, Adam Mickiewicz University in Poznań, Poznań, Poland
| |
Collapse
|
38
|
Danish HH, Aronov D, Fee MS. Rhythmic syllable-related activity in a songbird motor thalamic nucleus necessary for learned vocalizations. PLoS One 2017; 12:e0169568. [PMID: 28617829 PMCID: PMC5472270 DOI: 10.1371/journal.pone.0169568] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 12/19/2016] [Indexed: 01/17/2023] Open
Abstract
Birdsong is a complex behavior that exhibits hierarchical organization. While the representation of singing behavior and its hierarchical organization has been studied in some detail in avian cortical premotor circuits, our understanding of the role of the thalamus in adult birdsong is incomplete. Using a combination of behavioral and electrophysiological studies, we seek to expand on earlier work showing that the thalamic nucleus Uvaeformis (Uva) is necessary for the production of stereotyped, adult song in zebra finch (Taeniopygia guttata). We confirm that complete bilateral lesions of Uva abolish singing in the ‘directed’ social context, but find that in the ‘undirected’ social context, such lesions result in highly variable vocalizations similar to early babbling song in juvenile birds. Recordings of neural activity in Uva reveal strong syllable-related modulation, maximally active prior to syllable onsets and minimally active prior to syllable offsets. Furthermore, both song and Uva activity exhibit a pronounced coherent modulation at 10Hz—a pattern observed in downstream premotor areas in adult and, even more prominently, in juvenile birds. These findings are broadly consistent with the idea that Uva is critical in the sequential activation of behavioral modules in HVC.
Collapse
Affiliation(s)
- Husain H. Danish
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Dmitriy Aronov
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Michale S. Fee
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- * E-mail:
| |
Collapse
|
39
|
The origins of the vocal brain in humans. Neurosci Biobehav Rev 2017; 77:177-193. [DOI: 10.1016/j.neubiorev.2017.03.014] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 02/15/2017] [Accepted: 03/22/2017] [Indexed: 01/13/2023]
|
40
|
|
41
|
Chakraborty M, Jarvis ED. Brain evolution by brain pathway duplication. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2015.0056. [PMID: 26554045 PMCID: PMC4650129 DOI: 10.1098/rstb.2015.0056] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Understanding the mechanisms of evolution of brain pathways for complex behaviours is still in its infancy. Making further advances requires a deeper understanding of brain homologies, novelties and analogies. It also requires an understanding of how adaptive genetic modifications lead to restructuring of the brain. Recent advances in genomic and molecular biology techniques applied to brain research have provided exciting insights into how complex behaviours are shaped by selection of novel brain pathways and functions of the nervous system. Here, we review and further develop some insights to a new hypothesis on one mechanism that may contribute to nervous system evolution, in particular by brain pathway duplication. Like gene duplication, we propose that whole brain pathways can duplicate and the duplicated pathway diverge to take on new functions. We suggest that one mechanism of brain pathway duplication could be through gene duplication, although other mechanisms are possible. We focus on brain pathways for vocal learning and spoken language in song-learning birds and humans as example systems. This view presents a new framework for future research in our understanding of brain evolution and novel behavioural traits.
Collapse
Affiliation(s)
- Mukta Chakraborty
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27713, USA Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Erich D Jarvis
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27713, USA Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
42
|
Pytte CL. Adult Neurogenesis in the Songbird: Region-Specific Contributions of New Neurons to Behavioral Plasticity and Stability. BRAIN, BEHAVIOR AND EVOLUTION 2016; 87:191-204. [PMID: 27560148 DOI: 10.1159/000447048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Our understanding of the role of new neurons in learning and encoding new information has been largely based on studies of new neurons in the mammalian dentate gyrus and olfactory bulb - brain regions that may be specialized for learning. Thus the role of new neurons in regions that serve other functions has yet to be fully explored. The song system provides a model for studying new neuron function in brain regions that contribute differently to song learning, song auditory discrimination, and song motor production. These regions subserve learning as well as long-term storage of previously learned information. This review examines the differences between learning-based and activity-based retention of new neurons and explores the potential contributions of new neurons to behavioral stability in the song motor production pathway.
Collapse
Affiliation(s)
- Carolyn L Pytte
- Psychology Department, Queens College and The Graduate Center, City University of New York, Flushing, N.Y., USA
| |
Collapse
|
43
|
Sayol F, Lefebvre L, Sol D. Relative Brain Size and Its Relation with the Associative Pallium in Birds. BRAIN, BEHAVIOR AND EVOLUTION 2016; 87:69-77. [DOI: 10.1159/000444670] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 02/11/2016] [Indexed: 11/19/2022]
Abstract
Despite growing interest in the evolution of enlarged brains, the biological significance of brain size variation remains controversial. Much of the controversy is over the extent to which brain structures have evolved independently of each other (mosaic evolution) or in a coordinated way (concerted evolution). If larger brains have evolved by the increase of different brain regions in different species, it follows that comparisons of the whole brain might be biologically meaningless. Such an argument has been used to criticize comparative attempts to explain the existing variation in whole-brain size among species. Here, we show that pallium areas associated with domain-general cognition represent a large fraction of the entire brain, are disproportionally larger in large-brained birds and accurately predict variation in the whole brain when allometric effects are appropriately accounted for. While this does not question the importance of mosaic evolution, it suggests that examining specialized, small areas of the brain is not very helpful for understanding why some birds have evolved such large brains. Instead, the size of the whole brain reflects consistent variation in associative pallium areas and hence is functionally meaningful for comparative analyses.
Collapse
|
44
|
Vocal Learning and Auditory-Vocal Feedback. VERTEBRATE SOUND PRODUCTION AND ACOUSTIC COMMUNICATION 2016. [DOI: 10.1007/978-3-319-27721-9_9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
45
|
Belyk M, Pfordresher PQ, Liotti M, Brown S. The Neural Basis of Vocal Pitch Imitation in Humans. J Cogn Neurosci 2015; 28:621-35. [PMID: 26696298 DOI: 10.1162/jocn_a_00914] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Vocal imitation is a phenotype that is unique to humans among all primate species, and so an understanding of its neural basis is critical in explaining the emergence of both speech and song in human evolution. Two principal neural models of vocal imitation have emerged from a consideration of nonhuman animals. One hypothesis suggests that putative mirror neurons in the inferior frontal gyrus pars opercularis of Broca's area may be important for imitation. An alternative hypothesis derived from the study of songbirds suggests that the corticostriate motor pathway performs sensorimotor processes that are specific to vocal imitation. Using fMRI with a sparse event-related sampling design, we investigated the neural basis of vocal imitation in humans by comparing imitative vocal production of pitch sequences with both nonimitative vocal production and pitch discrimination. The strongest difference between these tasks was found in the putamen bilaterally, providing a striking parallel to the role of the analogous region in songbirds. Other areas preferentially activated during imitation included the orofacial motor cortex, Rolandic operculum, and SMA, which together outline the corticostriate motor loop. No differences were seen in the inferior frontal gyrus. The corticostriate system thus appears to be the central pathway for vocal imitation in humans, as predicted from an analogy with songbirds.
Collapse
|
46
|
Simmonds AJ. A hypothesis on improving foreign accents by optimizing variability in vocal learning brain circuits. Front Hum Neurosci 2015; 9:606. [PMID: 26582984 PMCID: PMC4631821 DOI: 10.3389/fnhum.2015.00606] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/20/2015] [Indexed: 11/13/2022] Open
Abstract
Rapid vocal motor learning is observed when acquiring a language in early childhood, or learning to speak another language later in life. Accurate pronunciation is one of the hardest things for late learners to master and they are almost always left with a non-native accent. Here, I propose a novel hypothesis that this accent could be improved by optimizing variability in vocal learning brain circuits during learning. Much of the neurobiology of human vocal motor learning has been inferred from studies on songbirds. Jarvis (2004) proposed the hypothesis that as in songbirds there are two pathways in humans: one for learning speech (the striatal vocal learning pathway), and one for production of previously learnt speech (the motor pathway). Learning new motor sequences necessary for accurate non-native pronunciation is challenging and I argue that in late learners of a foreign language the vocal learning pathway becomes inactive prematurely. The motor pathway is engaged once again and learners maintain their original native motor patterns for producing speech, resulting in speaking with a foreign accent. Further, I argue that variability in neural activity within vocal motor circuitry generates vocal variability that supports accurate non-native pronunciation. Recent theoretical and experimental work on motor learning suggests that variability in the motor movement is necessary for the development of expertise. I propose that there is little trial-by-trial variability when using the motor pathway. When using the vocal learning pathway variability gradually increases, reflecting an exploratory phase in which learners try out different ways of pronouncing words, before decreasing and stabilizing once the “best” performance has been identified. The hypothesis proposed here could be tested using behavioral interventions that optimize variability and engage the vocal learning pathway for longer, with the prediction that this would allow learners to develop new motor patterns that result in more native-like pronunciation.
Collapse
Affiliation(s)
- Anna J Simmonds
- Division of Brain Sciences, Computational, Cognitive and Clinical Neuroimaging Laboratory (C3NL), Imperial College London London, UK
| |
Collapse
|
47
|
Balanoff AM, Smaers JB, Turner AH. Brain modularity across the theropod-bird transition: testing the influence of flight on neuroanatomical variation. J Anat 2015; 229:204-14. [PMID: 26538376 DOI: 10.1111/joa.12403] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2015] [Indexed: 11/29/2022] Open
Abstract
Living birds constitute the only vertebrate group whose brain volume relative to body size approaches the uniquely expanded values expressed by mammals. The broad suite of complex behaviors exhibited by crown-group birds, including sociality, vocal learning, parental care, and flying, suggests the origins of their encephalization was likely driven by a mosaic of selective pressures. If true, the historical pattern of brain expansion may be more complex than either a gradual expansion, as proposed by early studies of the avian brain, or a sudden expansion correlating with the appearance of flight. The origins of modern avian neuroanatomy are obscured by the more than 100 million years of evolution along their phylogenetic stem (from the origin of the modern radiation in the Middle Jurassic to the split from crocodile-line archosaurs). Here we use phylogenetic comparative approaches to explore which evolutionary scenarios best explain variation in measured volumes of digitally partitioned endocasts of modern birds and their non-avian ancestors. Our analyses suggest that variation in the relative volumes of the endocranium and cerebrum explain most of the structural variation in this lineage. Generalized multi-regime Ornstein-Uhlenbeck (OU) models suggest that powered flight does not appear to be a driver of observed variation, reinforcing the hypothesis that the deep history of the avian brain is complex, with nuances still to be discovered.
Collapse
Affiliation(s)
- Amy M Balanoff
- Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Jeroen B Smaers
- Department of Anthropology, Stony Brook University, Stony Brook, NY, USA
| | - Alan H Turner
- Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
48
|
Chakraborty M, Walløe S, Nedergaard S, Fridel EE, Dabelsteen T, Pakkenberg B, Bertelsen MF, Dorrestein GM, Brauth SE, Durand SE, Jarvis ED. Core and Shell Song Systems Unique to the Parrot Brain. PLoS One 2015; 10:e0118496. [PMID: 26107173 PMCID: PMC4479475 DOI: 10.1371/journal.pone.0118496] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 01/19/2015] [Indexed: 11/19/2022] Open
Abstract
The ability to imitate complex sounds is rare, and among birds has been found only in parrots, songbirds, and hummingbirds. Parrots exhibit the most advanced vocal mimicry among non-human animals. A few studies have noted differences in connectivity, brain position and shape in the vocal learning systems of parrots relative to songbirds and hummingbirds. However, only one parrot species, the budgerigar, has been examined and no differences in the presence of song system structures were found with other avian vocal learners. Motivated by questions of whether there are important differences in the vocal systems of parrots relative to other vocal learners, we used specialized constitutive gene expression, singing-driven gene expression, and neural connectivity tracing experiments to further characterize the song system of budgerigars and/or other parrots. We found that the parrot brain uniquely contains a song system within a song system. The parrot "core" song system is similar to the song systems of songbirds and hummingbirds, whereas the "shell" song system is unique to parrots. The core with only rudimentary shell regions were found in the New Zealand kea, representing one of the only living species at a basal divergence with all other parrots, implying that parrots evolved vocal learning systems at least 29 million years ago. Relative size differences in the core and shell regions occur among species, which we suggest could be related to species differences in vocal and cognitive abilities.
Collapse
Affiliation(s)
- Mukta Chakraborty
- Department of Neurobiology, Duke University Medical Center, Durham, NC, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Solveig Walløe
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Research Laboratory for Stereology and Neuroscience, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Signe Nedergaard
- Danish National Police, National Centre of Forensic Services, Vanloese, Denmark
| | - Emma E. Fridel
- Department of Neurobiology, Duke University Medical Center, Durham, NC, United States of America
| | - Torben Dabelsteen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Bente Pakkenberg
- Research Laboratory for Stereology and Neuroscience, Bispebjerg University Hospital, Copenhagen, Denmark
| | | | - Gerry M. Dorrestein
- Dutch Research Institute of Avian and Exotic Animals, Veldhoven, The Netherlands
| | - Steven E. Brauth
- University of Maryland, College Park, MA, United States of America
| | - Sarah E. Durand
- LaGuardia Community College, New York, NY, United States of America
| | - Erich D. Jarvis
- Department of Neurobiology, Duke University Medical Center, Durham, NC, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| |
Collapse
|
49
|
van der Aa J, Honing H, ten Cate C. The perception of regularity in an isochronous stimulus in zebra finches (Taeniopygia guttata) and humans. Behav Processes 2015; 115:37-45. [DOI: 10.1016/j.beproc.2015.02.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 02/24/2015] [Accepted: 02/24/2015] [Indexed: 10/23/2022]
|
50
|
Central pattern generator for vocalization: is there a vertebrate morphotype? Curr Opin Neurobiol 2014; 28:94-100. [PMID: 25050813 DOI: 10.1016/j.conb.2014.06.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 05/11/2014] [Accepted: 06/22/2014] [Indexed: 11/21/2022]
Abstract
Animals that generate acoustic signals for social communication are faced with two essential tasks: generate a temporally precise signal and inform the auditory system about the occurrence of one's own sonic signal. Recent studies of sound producing fishes delineate a hindbrain network comprised of anatomically distinct compartments coding equally distinct neurophysiological properties that allow an organism to meet these behavioral demands. A set of neural characters comprising a vocal-sonic central pattern generator (CPG) morphotype is proposed for fishes and tetrapods that shares evolutionary developmental origins with pectoral appendage motor systems.
Collapse
|