1
|
Vaziri GJ, Reid NM, Rittenhouse TAG, Bolnick DI. Winter break? The effect of overwintering on immune gene expression in wood frogs. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101296. [PMID: 39096759 DOI: 10.1016/j.cbd.2024.101296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 08/05/2024]
Abstract
Among terrestrial ectotherms, hibernation is a common response to extreme cold temperatures and is associated with reduced physiological rates, including immunity. When winter wanes and temperatures increase, so too do vital rates of both ectothermic hosts and their parasites. Due to metabolic scaling, if parasite activity springs back faster than host immune functions then cold seasons and transitions between cold and warm seasons may represent periods of vulnerability for ectothermic hosts. Understanding host regulation of physiological rates at seasonal junctions is a first step toward identifying thermal mismatches between hosts and parasites. Here we show that immune gene expression is responsive to transitions into and out of the cold season in a winter-adapted amphibian, the wood frog (Lithobates sylvaticus), and that frogs experienced parasitism by at least two nematode species throughout the entirety of the cold season. In both splenic and skin tissues, we observed a decrease in immune gene expression going from fall to winter, observed no changes between winter and emergence from hibernation, and observed increases in immune gene expression after hibernation ended. At all timepoints, differentially expressed genes from spleens were more highly enriched for immune system processes than those from ventral skin, especially with respect to terms related to adaptive immune processes. Infection with nematode lungworms was also associated with upregulation of immune processes in the spleen. We suggest that rather than being a period of stagnation, during which physiological processes and infection potential cease, the cold season is immunologically dynamic, requiring coordinated regulation of many biological processes, and that the reemergence period may be an important time during which hosts invest in preparatory immunity.
Collapse
Affiliation(s)
- Grace J Vaziri
- University of Connecticut, Department of Ecology and Evolutionary Biology, Storrs, CT, 06269, USA.
| | - Noah M Reid
- University of Connecticut, Institute for Systems Genomics, Storrs, CT, 06269, USA
| | - Tracy A G Rittenhouse
- University of Connecticut, Department of Natural Resources and the Environment, Storrs, CT, 06269, CT, USA
| | - Daniel I Bolnick
- University of Connecticut, Department of Ecology and Evolutionary Biology, Storrs, CT, 06269, USA
| |
Collapse
|
2
|
Steel R, Hamed M, Haugom JT, Ho T, Kenner N, Malfavon-Borja J, Morgans S, Salek SA, Seylani A, Jancovich JK. Age- and dose-dependent susceptibility of axolotls (Ambystoma mexicanum) by bath exposure to Ambystoma tigrinum virus (ATV). Virology 2023; 588:109909. [PMID: 37879268 PMCID: PMC11225570 DOI: 10.1016/j.virol.2023.109909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/27/2023]
Abstract
Ranaviruses are large, dsDNA viruses that have significant ecological and economic impact on cold-blooded vertebrates. However, our understanding of the viral proteins and subsequent host immune response(s) that impact susceptibility to infection and disease is not clear. The ranavirus Ambystoma tigrinum virus (ATV), originally isolated from the Sonoran tiger salamander (Ambystoma mavortium stebbinsi), is highly pathogenic at low doses of ATV at all tiger salamander life stages and this model has been used to explore the host-pathogen interactions of ATV infection. However, inconsistencies in the availability of laboratory reared larval tiger salamanders required us to look at the well characterized axolotl (A. mexicanum) as a model for ATV infection. Data obtained from five infection experiments over different developmental timepoints suggest that axolotls are susceptible to ATV in an age- and dose-dependent manner. These data support the use of the ATV-axolotl model to further explore the host-pathogen interactions of ranavirus infections.
Collapse
Affiliation(s)
- Riley Steel
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA, 92078, USA
| | - Michelle Hamed
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA, 92078, USA
| | - Josefine T Haugom
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA, 92078, USA
| | - Trang Ho
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA, 92078, USA
| | - Nathaniel Kenner
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA, 92078, USA
| | - Joanna Malfavon-Borja
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA, 92078, USA
| | - Scott Morgans
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA, 92078, USA
| | - Savannah A Salek
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA, 92078, USA
| | - Allen Seylani
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA, 92078, USA
| | - James K Jancovich
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA, 92078, USA.
| |
Collapse
|
3
|
Douglas AJ, Katzenback BA. The wood frog (Rana sylvatica): An emerging comparative model for anuran immunity and host-ranavirus interactions. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 147:104733. [PMID: 37550009 DOI: 10.1016/j.dci.2023.104733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 08/09/2023]
Abstract
The wood frog (Rana sylvatica) is widely distributed across North America and is the only amphibian found north of the Arctic Circle due to its remarkable ability to tolerate whole-body freezing. Recent mass mortalities attributable to Ranavirus spp. (family Iridoviridae) in wild juvenile wood frogs, coupled with the apparent high susceptibility of wood frogs to experimental infection with frog virus 3 (FV3), the type species of the Ranavirus genus, or FV3-like isolates underscore the serious threat ranaviruses poses to wood frog populations. Despite the ecological relevance and unique life history of wood frogs, our understanding of the wood frog immune system and antiviral response to ranaviral infections is in its infancy. Here we aim to (1) synthesize the limited knowledge of wood frog immune defences, (2) review recent progress in establishing the wood frog as a study system for ranavirus infection, and (3) highlight the future use of wood frogs as a model anuran to provide insight into the evolution of anuran immune systems and antiviral responses.
Collapse
Affiliation(s)
- Alexander J Douglas
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | - Barbara A Katzenback
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada.
| |
Collapse
|
4
|
Hughey MC, Warne R, Dulmage A, Reeve RE, Curtis GH, Whitfield K, Schock DM, Crespi E. Diet- and salinity-induced modifications of the gut microbiota are associated with differential physiological responses to ranavirus infection in Rana sylvatica. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220121. [PMID: 37305908 PMCID: PMC10258663 DOI: 10.1098/rstb.2022.0121] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 03/26/2023] [Indexed: 06/13/2023] Open
Abstract
Greater knowledge of how host-microbiome interactions vary with anthropogenic environmental change and influence pathogenic infections is needed to better understand stress-mediated disease outcomes. We investigated how increasing salinization in freshwaters (e.g. due to road de-icing salt runoff) and associated increases in growth of nutritional algae influenced gut bacterial assembly, host physiology and responses to ranavirus exposure in larval wood frogs (Rana sylvatica). Elevating salinity and supplementing a basic larval diet with algae increased larval growth and also increased ranavirus loads. However, larvae given algae did not exhibit elevated kidney corticosterone levels, accelerated development or weight loss post-infection, whereas larvae fed a basic diet did. Thus, algal supplementation reversed a potentially maladaptive stress response to infection observed in prior studies in this system. Algae supplementation also reduced gut bacterial diversity. Notably, we observed higher relative abundances of Firmicutes in treatments with algae-a pattern consistent with increased growth and fat deposition in mammals-that may contribute to the diminished stress responses to infection via regulation of host metabolism and endocrine function. Our study informs mechanistic hypotheses about the role of microbiome mediation of host responses to infection that can be tested in future experiments in this host-pathogen system. This article is part of the theme issue 'Amphibian immunity: stress, disease and ecoimmunology'.
Collapse
Affiliation(s)
- Myra C. Hughey
- Department of Biology, Vassar College, Poughkeepsie, NY 12604, USA
| | - Robin Warne
- School of Biological Sciences, Southern Illinois University, Carbondale, IL 62901, USA
| | - Alexa Dulmage
- School of Biological Sciences, Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
| | - Robyn E. Reeve
- School of Biological Sciences, Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
| | - Grace H. Curtis
- School of Biological Sciences, Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
| | - Kourtnie Whitfield
- School of Biological Sciences, Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
| | | | - Erica Crespi
- School of Biological Sciences, Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
5
|
Snyder MN, Henderson WM, Glinski DA, Purucker ST. Differentiating metabolomic responses of amphibians to multiple stressors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155666. [PMID: 35598671 PMCID: PMC9875051 DOI: 10.1016/j.scitotenv.2022.155666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
One of the biggest challenges in ecological risk assessment is determining the impact of multiple stressors on individual organisms and populations in real world scenarios. Frequently, data derived from laboratory studies of single stressors are used to estimate risk parameters and do not adequately address scenarios where other stressors exist. Emerging 'omic technologies, notably metabolomics, provide an opportunity to address the uncertainties surrounding ecological risk assessment of multiple stressors. The objective of this study was to use metabolomic profiling to investigate the effect of multiple stressors on amphibian metamorphs. We exposed post-metamorphosis (180 days) southern leopard frogs (Lithobates sphenocephala) to the insecticide carbaryl (480 μg/L), predation stress, and a combined pesticide and predation stress treatment. Corticosterone analysis revealed mild support for an induction in response to predation stress alone but strongly suggests that carbaryl exposure, alone or in combination with predation cues, can significantly elevate this known biomarker in amphibians. Metabolomics analysis accurately classed, based on relative nearness, carbaryl and predation induced changes in the hepatic metabolome and biochemical fluxes appear to be associated with a similar biological response. Support vector machine analysis with recursive feature elimination of the acquired metabolomic spectra demonstrated 85-96% classification accuracy among control and all treatment groups when using the top 75 ranked retention time bins. Biochemical fluxes observed in the groups exposed to carbaryl, predation, and the combined treatment include amino acids, sugar derivatives, and purine nucleotides. Ultimately, this methodology could be used to interpret short-term toxicity assays and the presence of environmental stressors to overall metabolomic effects in non-target organisms.
Collapse
Affiliation(s)
- Marcía N Snyder
- U.S. Environmental Protection Agency, ORD/CPHEA, Corvallis, OR 97333, USA.
| | | | - Donna A Glinski
- NRC Postdoctoral Research Fellow with the U.S. Environmental Protection Agency, Athens, GA 30605, USA.
| | - S Thomas Purucker
- U.S. Environmental Protection Agency, ORD/CCTE, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
6
|
Endogenous Retroviruses Augment Amphibian (Xenopus laevis) Tadpole Antiviral Protection. J Virol 2022; 96:e0063422. [PMID: 35575553 PMCID: PMC9175618 DOI: 10.1128/jvi.00634-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The global amphibian declines are compounded by infections with members of the Ranavirus genus such as Frog Virus 3 (FV3). Premetamorphic anuran amphibians are believed to be significantly more susceptible to FV3 while this pathogen targets the kidneys of both pre- and postmetamorphic animals. Paradoxically, FV3-challenged Xenopus laevis tadpoles exhibit lower kidney viral loads than adult frogs. Presently, we demonstrate that X. laevis tadpoles are intrinsically more resistant to FV3 kidney infections than cohort-matched metamorphic and postmetamorphic froglets and that this resistance appears to be epigenetically conferred by endogenous retroviruses (ERVs). Using a X. laevis kidney-derived cell line, we show that enhancing ERV gene expression activates cellular double-stranded RNA-sensing pathways, resulting in elevated mRNA levels of antiviral interferon (IFN) cytokines and thus greater anti-FV3 protection. Finally, our results indicate that large esterase-positive myeloid-lineage cells, rather than renal cells, are responsible for the elevated ERV/IFN axis seen in the tadpole kidneys. This conclusion is supported by our observation that CRISPR-Cas9 ablation of colony-stimulating factor-3 results in abolished homing of these myeloid cells to tadpole kidneys, concurrent with significantly abolished tadpole kidney expression of both ERVs and IFNs. We believe that the manuscript marks an important step forward in understanding the mechanisms controlling amphibian antiviral defenses and thus susceptibility and resistance to pathogens like FV3. IMPORTANCE Global amphibian biodiversity is being challenged by pathogens like the Frog Virus 3 (FV3) ranavirus, underlining the need to gain a greater understanding of amphibian antiviral defenses. While it was previously believed that anuran (frog/toad) amphibian tadpoles are more susceptible to FV3, we demonstrated that tadpoles are in fact more resistant to this virus than metamorphic and postmetamorphic froglets. We showed that this resistance is conferred by large myeloid cells within the tadpole kidneys (central FV3 target), which possess an elevated expression of endogenous retroviruses (ERVs). In turn, these ERVs activate cellular double-stranded RNA-sensing pathways, resulting in a greater expression of antiviral interferon cytokines, thereby offering the observed anti-FV3 protection.
Collapse
|
7
|
Roh N, Park J, Kim J, Kwon H, Park D. Prevalence of Ranavirus Infection in Three Anuran Species across South Korea. Viruses 2022; 14:v14051073. [PMID: 35632814 PMCID: PMC9148164 DOI: 10.3390/v14051073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 12/13/2022] Open
Abstract
To cope with amphibian die-offs caused by ranavirus, it is important to know the underlying ranavirus prevalence in a region. We studied the ranavirus prevalence in tadpoles of two native and one introduced anuran species inhabiting agricultural and surrounding areas at 49 locations across eight provinces of South Korea by applying qPCR. The local ranavirus prevalence and the individual infection rates at infected locations were 32.6% and 16.1%, respectively, for Dryophytes japonicus (Japanese tree frog); 25.6% and 26.1% for Pelophylax nigromaculatus (Black-spotted pond frog); and 30.5% and 50.0% for Lithobates catesbeianus (American bullfrog). The individual infection rate of L. catesbeianus was significantly greater than that of D. japonicus. The individual infection rate of P. nigromaculatus was related to the site-specific precipitation and air temperature. The individual infection rate gradually increased from Gosner development stage 39, and intermittent infection was confirmed in the early and middle developmental stages. Our results show that ranavirus is widespread among wild amphibians living in agricultural areas of South Korea, and mass die-offs by ranavirus could occur at any time.
Collapse
Affiliation(s)
- Namho Roh
- Department of Biological Sciences, Kangwon National University, Chuncheon 24341, Kangwon, Korea;
| | - Jaejin Park
- Division of Science Education, Kangwon National University, Chuncheon 24341, Kangwon, Korea; (J.P.); (J.K.); (H.K.)
| | - Jongsun Kim
- Division of Science Education, Kangwon National University, Chuncheon 24341, Kangwon, Korea; (J.P.); (J.K.); (H.K.)
| | - Hyerim Kwon
- Division of Science Education, Kangwon National University, Chuncheon 24341, Kangwon, Korea; (J.P.); (J.K.); (H.K.)
| | - Daesik Park
- Division of Science Education, Kangwon National University, Chuncheon 24341, Kangwon, Korea; (J.P.); (J.K.); (H.K.)
- Correspondence: ; Tel.: +82-33-250-6739; Fax: +82-33-259-5600
| |
Collapse
|
8
|
Bienentreu JF, Schock DM, Greer AL, Lesbarrères D. Ranavirus Amplification in Low-Diversity Amphibian Communities. Front Vet Sci 2022; 9:755426. [PMID: 35224079 PMCID: PMC8863596 DOI: 10.3389/fvets.2022.755426] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
In an era where emerging infectious diseases are a serious threat to biodiversity, epidemiological patterns need to be identified, particularly the complex mechanisms driving the dynamics of multi-host pathogens in natural communities. Many amphibian species have faced unprecedented population declines associated with diseases. Yet, specific processes shaping host-pathogen relationships within and among communities for amphibian pathogens such as ranaviruses (RV) remain poorly understood. To address this gap, we conducted a comprehensive study of RV in low-diversity amphibian communities in north-western Canada to assess the effects of biotic factors (species identity, species richness, abundance) and abiotic factors (conductivity, pH) on the pathogen prevalence and viral loads. Across 2 years and 18 sites, with communities of up to three hosts (wood frog, Rana sylvatica; boreal chorus frog, Pseudacris maculata; Canadian toad, Anaxyrus hemiophrys), we observed that RV prevalence nearly doubled with each additional species in a community, suggesting an amplification effect in aquatic, as well as terrestrial life-history stages. Infection intensity among infected wood frogs and boreal chorus frogs also significantly increased with an increase in species richness. Interestingly, we did not observe any effects of host abundance or abiotic factors, highlighting the importance of including host identity and species richness when investigating multi-host pathogens. Ultimately, only such a comprehensive approach can improve our understanding of complex and often highly context-dependent host-pathogen interactions.
Collapse
Affiliation(s)
- Joe-Felix Bienentreu
- Department of Biology, Laurentian University, Sudbury, ON, Canada
- *Correspondence: Joe-Felix Bienentreu
| | - Danna M. Schock
- Sciences and Environmental Technology, Keyano College, Fort McMurray, AB, Canada
| | - Amy L. Greer
- Department of Population Medicine, University of Guelph, Guelph, ON, Canada
| | | |
Collapse
|
9
|
Hossainey MRH, Yaparla A, Hauser KA, Moore TE, Grayfer L. The Roles of Amphibian ( Xenopus laevis) Macrophages during Chronic Frog Virus 3 Infections. Viruses 2021; 13:v13112299. [PMID: 34835105 PMCID: PMC8621048 DOI: 10.3390/v13112299] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/06/2021] [Accepted: 11/16/2021] [Indexed: 12/27/2022] Open
Abstract
Infections by Frog Virus 3 (FV3) and other ranavirus genus members are significantly contributing to global amphibian decline. The Xenopus laevis frog is an ideal research platform upon which to study the roles of distinct frog leukocyte populations during FV3 infections. Frog macrophages (MΦs) are integrally involved during FV3 infection, as they facilitate viral dissemination and persistence but also participate in immune defense against this pathogen. In turn, MΦ differentiation and functionality depend on the colony-stimulating factor-1 receptor (CSF-1R), which is ligated by CSF-1 and iterleukin-34 (IL-34) cytokines. Our past work indicated that X. laevis CSF-1 and IL-34 give rise to morphologically and functionally distinct frog MΦ subsets, and that these CSF-1- and IL-34-MΦs respectively confer susceptibility and antiviral resistance to FV3. Because FV3 targets the frog kidneys and establishes chronic infections therein, presently we examined the roles of the frog CSF-1- and IL-34-MΦs in seeding and maintaining these chronic kidney infections. Our findings indicate that the frog CSF-1-MΦs result in more prominent kidney FV3 infections, which develop into greater reservoirs of lingering FV3 marked by infiltrating leukocytes, fibrosis, and overall immunosuppressive states. Moreover, the antiviral effects of IL-34-MΦs are short-lived and are lost as FV3 infections progress.
Collapse
|
10
|
Richards RL, Drake JM, Ezenwa VO. Do predators keep prey healthy or make them sicker? A meta-analysis. Ecol Lett 2021; 25:278-294. [PMID: 34738700 DOI: 10.1111/ele.13919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/17/2021] [Accepted: 10/14/2021] [Indexed: 11/27/2022]
Abstract
Ecological theory suggests that predators can either keep prey populations healthy by reducing parasite burdens or alternatively, increase parasitism in prey. To quantify the overall magnitude and direction of the effect of predation on parasitism in prey observed in practice, we conducted a meta-analysis of 47 empirical studies. We also examined how study attributes, including parasite type and life cycle, habitat type, study design, and whether predators were able to directly consume prey contributed to variation in the predator-prey-parasite interaction. We found that the overall effect of predation on parasitism differed between parasites and parasitoids and that whether consumptive effects were present, and whether a predator was a non-host spreader of parasites, were the most important traits predicting the parasite response. Our results suggest that the mechanistic basis of predator-prey interactions strongly influences the effects of predators on parasites and that these effects, although context dependent, are predictable.
Collapse
Affiliation(s)
- Robert L Richards
- Odum School of Ecology, University of Georgia, Athens, Georgia, USA.,Center for the Ecology of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - John M Drake
- Odum School of Ecology, University of Georgia, Athens, Georgia, USA.,Center for the Ecology of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - Vanessa O Ezenwa
- Odum School of Ecology, University of Georgia, Athens, Georgia, USA.,Center for the Ecology of Infectious Diseases, University of Georgia, Athens, Georgia, USA.,Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
11
|
Hauser KA, Singer JC, Hossainey MRH, Moore TE, Wendel ES, Yaparla A, Kalia N, Grayfer L. Amphibian ( Xenopus laevis) Tadpoles and Adult Frogs Differ in Their Antiviral Responses to Intestinal Frog Virus 3 Infections. Front Immunol 2021; 12:737403. [PMID: 34489981 PMCID: PMC8418544 DOI: 10.3389/fimmu.2021.737403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/05/2021] [Indexed: 11/19/2022] Open
Abstract
The global amphibian declines are compounded by ranavirus infections such as Frog Virus 3 (FV3), and amphibian tadpoles more frequently succumb to these pathogens than adult animals. Amphibian gastrointestinal tracts represent a major route of ranavirus entry, and viral pathogenesis often leads to hemorrhaging and necrosis within this tissue. Alas, the differences between tadpole and adult amphibian immune responses to intestinal ranavirus infections remain poorly defined. As interferon (IFN) cytokine responses represent a cornerstone of vertebrate antiviral immunity, it is pertinent that the tadpoles and adults of the anuran Xenopus laevis frog mount disparate IFN responses to FV3 infections. Presently, we compared the tadpole and adult X. laevis responses to intestinal FV3 infections. Our results indicate that FV3-challenged tadpoles mount more robust intestinal type I and III IFN responses than adult frogs. These tadpole antiviral responses appear to be mediated by myeloid cells, which are recruited into tadpole intestines in response to FV3 infections. Conversely, myeloid cells bearing similar cytology already reside within the intestines of healthy (uninfected) adult frogs, possibly accounting for some of the anti-FV3 resistance of these animals. Further insight into the differences between tadpole and adult frog responses to ranaviral infections is critical to understanding the facets of susceptibility and resistance to these pathogens.
Collapse
Affiliation(s)
- Kelsey A Hauser
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| | - Julia C Singer
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| | | | - Tyler E Moore
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| | - Emily S Wendel
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| | - Amulya Yaparla
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| | - Namarta Kalia
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| | - Leon Grayfer
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| |
Collapse
|
12
|
Leggett S, Borrelli J, Jones DK, Relyea R. The Combined Effects of Road Salt and Biotic Stressors on Amphibian Sex Ratios. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:231-235. [PMID: 33090538 DOI: 10.1002/etc.4913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/16/2020] [Accepted: 10/17/2020] [Indexed: 06/11/2023]
Abstract
Aquatic systems worldwide are threatened by the anthropogenic use of synthetic chemicals, including pesticides, pharmaceuticals, and road de-icers. Exposure to contaminants can alter the behavior, morphology, and physiology of organisms if it occurs during sensitive life stages. For instance, past studies have documented feminization of male amphibians following herbicide exposure and skewed sex ratios among amphibian populations exposed to road salt. However, many of these studies lack the complexities found within natural environments, such as competition with conspecifics or threat of predation, which are also known to influence development. Thus, it is important to understand how anthropogenic and natural stressors interact to alter animal sex ratios. Given the growing concern of secondary salinization of freshwater systems, we exposed larval wood frogs (Rana sylvatica) to either road salt (sodium chloride [NaCl]) or an alternative salt mixture (NaCl, magnesium chloride [MgCl2 ], and potassium chloride [KCl]) at 3 concentrations (200, 600, and 1000 mg Cl- /L) crossed with 3 biotic stressors (no-stressor control, competition, or predator cues) to examine their potentially interactive effects on sex. Exposure to biotic stressors and NaCl did not influence wood frog sex ratios. In contrast, tadpole exposure to the intermediate salt mixture concentration significantly reduced the proportion of female frogs. Future studies are needed to determine whether such changes in sex are widespread among sensitive species with complex life cycles, and to assess the consequences of sex ratio changes on long-term population dynamics. Environ Toxicol Chem 2021;40:231-235. © 2020 SETAC.
Collapse
Affiliation(s)
- Sagan Leggett
- Department of Biological Sciences, Darrin Fresh Water Institute, Rensselaer Polytechnic Institute, New York, USA
| | - Jonathan Borrelli
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Devin K Jones
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Rick Relyea
- Department of Biological Sciences, Darrin Fresh Water Institute, Rensselaer Polytechnic Institute, New York, USA
| |
Collapse
|
13
|
Billig ST, Weber RN, Zimmerman LM, Wilcoxen TE. Effects of elevated corticosterone on humoral innate and antibody-mediated immunity in southern leopard frog (Lithobates sphenocephalus) tadpoles. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:756-766. [PMID: 32798287 DOI: 10.1002/jez.2406] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/25/2022]
Abstract
As a free-living larval stage of a vertebrate, tadpoles are good subjects for the study of the development of physiological systems and the study of evolutionarily conserved, context-dependent responses to variable environments. While the basic components of innate and adaptive immune defenses in tadpoles are known, the impact of glucocorticoids on immune defenses in tadpoles is not well-studied. We completed four experiments to assess effects of elevation of corticosterone on humoral innate defenses and antibody-mediated immunity in southern leopard frog tadpoles (Lithobates sphenocephalus). To test humoral innate defense within the tadpoles exposed to short-term and long-term elevation of glucocorticoids, we exposed tadpoles to exogenous corticosterone for different lengths of time in each experiment (0-84 days). We used bacterial killing assays to assess humoral innate immune defense. To test antibody-mediated immune responses, we again exposed tadpoles to exogenous corticosterone, while also exposing them to Aeromonas hydrophila. We used A. hydrophila ELISA comparing IgM and IgY responses among groups. Plasma from corticosterone-dosed tadpoles killed more A. hydrophila than control tadpoles each following a short-term (14 day) and long-term (56 day) exposure to exogenous corticosterone. Conversely, corticosterone-dosed tadpoles had significantly lower IgM and IgY against A. hydrophila after 12 weeks. Our fourth experiment revealed that the lower IgY response is a product of weaker, delayed isotype switching compared with controls. These results show that elevated corticosterone has differential effects on innate and acquired immunity in larval southern leopard frogs, consistent with patterns in more derived vertebrates and in adult frogs.
Collapse
Affiliation(s)
- Samuel T Billig
- Department of Biology, Millikin University, Decatur, Illinois
| | - Rachael N Weber
- Department of Biology, Millikin University, Decatur, Illinois
| | | | | |
Collapse
|
14
|
Bienentreu JF, Lesbarrères D. Amphibian Disease Ecology: Are We Just Scratching the Surface? HERPETOLOGICA 2020. [DOI: 10.1655/0018-0831-76.2.153] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | - David Lesbarrères
- Department of Biology, Laurentian University, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
15
|
Hopkins WA, DuRant SE, Beck ML, Ray WK, Helm RF, Romero LM. Cortisol is the predominant glucocorticoid in the giant paedomorphic hellbender salamander (Cryptobranchus alleganiensis). Gen Comp Endocrinol 2020; 285:113267. [PMID: 31491375 DOI: 10.1016/j.ygcen.2019.113267] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/19/2019] [Accepted: 09/01/2019] [Indexed: 11/20/2022]
Abstract
Corticosterone is widely regarded to be the predominant glucocorticoid produced in amphibians. However, we recently described unusually low baseline and stress-induced corticosterone profiles in eastern hellbenders (Cryptobranchus alleganiensis alleganiensis), a giant, fully aquatic salamander. Here, we hypothesized that hellbenders might also produce cortisol, the predominant glucocorticoid used by fishes and non-rodent mammals. To test our hypothesis, we collected plasma samples in two field experiments and analyzed them using multiple analytical techniques to determine how plasma concentrations of cortisol and corticosterone co-varied after 1) physical restraint and 2) injection with adrenocorticotropic hormone (ACTH), the pituitary hormone responsible for triggering the release of glucocorticoids from amphibian interrenal glands. Using liquid chromatography-mass spectrometry, we found that baseline and restraint-induced plasma concentrations of cortisol were more than five times those of corticosterone. We then demonstrated that plasma concentrations of both glucocorticoids increased in response to ACTH in a dose-dependent manner, but cortisol concentrations were consistently higher (up to 10-fold) than corticosterone. Cortisol and corticosterone concentrations were not correlated with one another at basal or induced conditions. The extremely low plasma concentrations of corticosterone in hellbenders suggests that corticosterone could simply be a byproduct of cortisol production, and raises questions as to whether corticosterone has any distinct physiological function in hellbenders. Our results indicate that hellbenders produce cortisol as their predominant glucocorticoid, supporting a small and inconclusive body of literature indicating that some other amphibians may produce appreciable quantities of cortisol. We hypothesize that the use of cortisol by hellbenders could be an adaptation to their fully aquatic life history due to cortisol's ability to fulfill both mineralocorticoid and glucocorticoid functions, similar to its functions in fishes. Given the large number of amphibian species that are fully aquatic or have aquatic life stages, we suggest that the broadly held assumption that corticosterone is the predominant glucocorticoid in all amphibians requires further scrutiny. Ultimately, multi-species tests of this assumption will reveal the ecological factors that influenced the evolution of endocrine adaptations among amphibian lineages, and may provide insight into convergent evolution of endocrine traits in paedomorphic species.
Collapse
Affiliation(s)
- William A Hopkins
- Dept of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Sarah E DuRant
- Dept of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Michelle L Beck
- Dept of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA 24061, USA; Dept. of Biology, Rivier University, Nashua, NH 03060, USA
| | - W Keith Ray
- Dept of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Richard F Helm
- Dept of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | | |
Collapse
|
16
|
Bienentreu JF, Grayfer L, Schock DM, Guerreiro M, Mehes-Smith M, DeWitte-Orr SJ, Robert J, Brunetti CR, Lesbarrères D. Sublethal effects of wild-type and a vIF-2α-knockout Frog virus 3 on postmetamorphic wood frogs (Rana sylvatica): potential for a stage-specific reservoir. Facets (Ott) 2020. [DOI: 10.1139/facets-2020-0001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Ranaviruses have been associated with rising numbers of mass die-offs in amphibian populations around the globe. However, most studies on ranaviruses to date focused on larval amphibians. To assess the role of postmetamorphic amphibians in the epidemiology of ranaviruses and to determine the role of viral immune-suppression genes, we performed a bath-exposure study on post-metamorphic wood frogs ( Rana sylvatica) using environmentally relevant concentrations of wild-type Frog virus 3 (WT FV3), and a gene-knockout mutant (KO FV3), deficient for the putative immune-suppression gene vIF-2α. We observed a 42% infection rate and 5% mortality across the virus challenges, with infection rates and viral loads following a dose-dependent pattern. Individuals exposed to the knockout variant exhibited significantly decreased growth and increased lethargy compared with wild-type treatments. Although 85% of exposed individuals exhibited common signs of ranavirosis throughout the experiment, most of these individuals did not exhibit signs of infection by 40 d post-exposure. Overall, we showed that even a single short time exposure to environmentally relevant concentrations of ranavirus may cause sublethal infections in postmetamorphic amphibians, highlighting the importance of this life stage in the epidemiology of ranaviruses. Our study also supports the importance of the vIF-2α gene in immune-suppression in infected individuals.
Collapse
Affiliation(s)
| | - Leon Grayfer
- Department of Biological Sciences, George Washington University, Washington, DC 20052, USA
| | - Danna M. Schock
- University Studies and Environmental Technology, Keyano College, Fort McMurray, AB T9H 2H7, Canada
| | - Matthew Guerreiro
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| | | | | | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | - Craig R. Brunetti
- Department of Biology, Trent University, Peterborough, ON K9J 7B8, Canada
| | - David Lesbarrères
- Department of Biology, Laurentian University, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
17
|
Hammond TT, Blackwood PE, Shablin SA, Richards-Zawacki CL. Relationships between glucocorticoids and infection with Batrachochytrium dendrobatidis in three amphibian species. Gen Comp Endocrinol 2020; 285:113269. [PMID: 31493395 DOI: 10.1016/j.ygcen.2019.113269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/20/2019] [Accepted: 09/03/2019] [Indexed: 11/19/2022]
Abstract
It is often hypothesized that organisms exposed to environmental change may experience physiological stress, which could reduce individual quality and make them more susceptible to disease. Amphibians are amongst the most threatened taxa, particularly in the context of disease, but relatively few studies explore links between stress and disease in amphibian species. Here, we use the fungal pathogen Batrachochytrium dendrobatidis (Bd) and amphibians as an example to explore relationships between disease and glucocorticoids (GCs), metabolic hormones that comprise one important component of the stress response. While previous work is limited, it has largely identified positive relationships between GCs and Bd-infection. However, the causality remains unclear and few studies have integrated both baseline (GC release that is related to standard, physiological functioning) and stress-induced (GC release in response to an acute stressor) measures of GCs. Here, we examine salivary corticosterone before and after exposure to a stressor, in both field and captive settings. We present results for Bd-infected and uninfected individuals of three amphibian species with differential susceptibilities to this pathogen (Rana catesbeiana, R. clamitans, and R. sylvatica). We hypothesized that prior to stress, baseline GCs would be higher in Bd-infected animals, particularly in more Bd-susceptible species. We also expected that after exposure to a stressor, stress-induced GCs would be lower in Bd-infected animals. These species exhibited significant interspecific differences in baseline and stress induced corticosterone, though other variables like sex, body size, and day of year were usually not predictive of corticosterone. In contrast to most previous work, we found no relationships between Bd and corticosterone for two species (R. catesbeiana and R. clamitans), and in the least Bd-tolerant species (R. sylvatica) animals exhibited context-dependent differences in relationships between Bd infection and corticosterone: Bd-positive R. sylvatica had significantly lower baseline and stress-induced corticosterone, with this pattern being stronger in the field than in captivity. These results were surprising, as past work in other species has more often found elevated GCs in Bd-positive animals, a pattern that aligns with well-documented relationships between chronically high GCs, reduced individual quality, and immunosuppression. This work highlights the potential relevance of GCs to disease susceptibility in the context of amphibian declines, while underscoring the importance of characterizing these relationships in diverse contexts.
Collapse
Affiliation(s)
- Talisin T Hammond
- Department of Biological Sciences, University of Pittsburgh, 105 Clapp Hall, 5th Ave at Ruskin Ave, Pittsburgh, PA 15260, USA; San Diego Zoo Institute for Conservation Research, 15600 San Pasqual Valley Rd., Escondido, CA 92027, USA.
| | - Paradyse E Blackwood
- Department of Biological Sciences, University of Pittsburgh, 105 Clapp Hall, 5th Ave at Ruskin Ave, Pittsburgh, PA 15260, USA
| | - Samantha A Shablin
- Department of Biological Sciences, University of Pittsburgh, 105 Clapp Hall, 5th Ave at Ruskin Ave, Pittsburgh, PA 15260, USA
| | - Corinne L Richards-Zawacki
- Department of Biological Sciences, University of Pittsburgh, 105 Clapp Hall, 5th Ave at Ruskin Ave, Pittsburgh, PA 15260, USA
| |
Collapse
|
18
|
Eakin C, Calhoun AJK, Hunter ML. Indicators of wood frog (
Lithobates sylvaticus
) condition in a suburbanizing landscape. Ecosphere 2019. [DOI: 10.1002/ecs2.2789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Carly Eakin
- Department of Wildlife, Fisheries, and Conservation Biology University of Maine Orono Maine 04469 USA
| | - Aram J. K. Calhoun
- Department of Wildlife, Fisheries, and Conservation Biology University of Maine Orono Maine 04469 USA
| | - Malcolm L. Hunter
- Department of Wildlife, Fisheries, and Conservation Biology University of Maine Orono Maine 04469 USA
| |
Collapse
|
19
|
Grant SA, Bienentreu JF, Vilaça ST, Brunetti CR, Lesbarrères D, Murray DL, Kyle CJ. Low intraspecific variation of Frog virus 3 with evidence for novel FV3-like isolates in central and northwestern Canada. DISEASES OF AQUATIC ORGANISMS 2019; 134:1-13. [PMID: 32132268 DOI: 10.3354/dao03354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Frog virus 3 (FV3) and FV3-like ranaviruses can infect a variety of cold-blooded aquatic species and present a primary threat to amphibians across the globe. Previous studies of FV3-like viruses have largely investigated higher-level phylogenetic distinctions of these pathogens via portions of the conserved major capsid protein (MCP), and the putative virulence gene vIF-2α. Few studies, however, have investigated the spatial distribution of FV3 variants at the population level3-data that can be used to further understand the spatial epidemiology of this disease. In this study, we sequenced the MCP and vIF-2α of 127 FV3-positive amphibians sampled from Canadian water bodies in Ontario, northeastern Alberta, and southern Northwest Territories to explore whether intraspecific genetic variation exists within FV3. There was a lack of variation at the 2 markers across these regions, suggesting that there is a lack of FV3 sequence diversity in Canada, which may hint at a single source of infection that has spread. However, an undocumented variant termed Wood Buffalo ranavirus (WBRV) was detected in samples from 3 sites in Alberta and Northwest Territories that clustered within the FV3-like lineage with 99.3% sequence homology for MCP. For vIF-2α, all sequences were the expected truncated variant except for 6 samples in Ontario. These latter sequences were suggestive of recombination with common midwife toad virus (CMTV). The lack of variation suggests that higher-resolution genome analyses will be required to further explore the spatial spread and intraspecific variation of the disease.
Collapse
Affiliation(s)
- Samantha A Grant
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario K9J 7B8, Canada
| | | | | | | | | | | | | |
Collapse
|
20
|
Wirth W, Schwarzkopf L, Skerratt LF, Ariel E. Ranaviruses and reptiles. PeerJ 2018; 6:e6083. [PMID: 30581674 PMCID: PMC6295156 DOI: 10.7717/peerj.6083] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 11/06/2018] [Indexed: 01/22/2023] Open
Abstract
Ranaviruses can infect many vertebrate classes including fish, amphibians and reptiles, but for the most part, research has been focused on non-reptilian hosts, amphibians in particular. More recently, reports of ranaviral infections of reptiles are increasing with over 12 families of reptiles currently susceptible to ranaviral infection. Reptiles are infected by ranaviruses that are genetically similar to, or the same as, the viruses that infect amphibians and fish; however, physiological and ecological differences result in differences in study designs. Although ranaviral disease in reptiles is often influenced by host species, viral strain and environmental differences, general trends in pathogenesis are emerging. More experimental studies using a variety of reptile species, life stages and routes of transmission are required to unravel the complexity of wild ranavirus transmission. Further, our understanding of the reptilian immune response to ranaviral infection is still lacking, although the considerable amount of work conducted in amphibians will serve as a useful guide for future studies in reptiles.
Collapse
Affiliation(s)
- Wytamma Wirth
- College of Public Health, Medical and Veterinary Sciences, James Cook University of North Queensland, Townsville, QLD, Australia
| | - Lin Schwarzkopf
- College of Science and Engineering, James Cook University of North Queensland, Townsville, QLD, Australia
| | - Lee F Skerratt
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, Australia
| | - Ellen Ariel
- College of Public Health, Medical and Veterinary Sciences, James Cook University of North Queensland, Townsville, QLD, Australia
| |
Collapse
|
21
|
Watters JL, Davis DR, Yuri T, Siler CD. Concurrent Infection of Batrachochytrium dendrobatidis and Ranavirus among Native Amphibians from Northeastern Oklahoma, USA. JOURNAL OF AQUATIC ANIMAL HEALTH 2018; 30:291-301. [PMID: 30290015 DOI: 10.1002/aah.10041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 07/22/2018] [Indexed: 06/08/2023]
Abstract
Global amphibian decline continues to be a great concern despite our increased understanding of the causes behind the observed patterns of the decline, such as habitat modification and infectious diseases. Although there is a large body of literature on the topic of amphibian infectious diseases, pathogen prevalence and distribution among entire communities of species in many regions remain poorly understood. In addition to these geographic gaps in our understanding, past work has focused largely on individual pathogens, either Batrachochytrium dendrobatidis (Bd) or ranavirus (RV), rather than dual infection rates among host species. We sampled for prevalence and infection load of both pathogens in 514 amphibians across 16 total sites in northeastern Oklahoma. Amphibians were caught by hand, net, or seine; they were swabbed to screen for Bd; and liver tissue samples were collected to screen for RV. Overall results of quantitative PCR assays showed that 7% of screened individuals were infected with RV only, 37% were infected with Bd only, and 9% were infected with both pathogens simultaneously. We also documented disease presence in several rare amphibian species that are currently being monitored as species of concern due to their small population sizes in Oklahoma. This study synthesizes a growing body of research regarding infectious diseases among amphibian communities in the central United States.
Collapse
Affiliation(s)
- Jessa L Watters
- Sam Noble Oklahoma Museum of Natural History, University of Oklahoma, 2401 Chautauqua Avenue, Norman, Oklahoma, 73072-7029, USA
| | - Drew R Davis
- Department of Biology, University of South Dakota, 414 East Clark Street, Vermillion, South Dakota, 57069, USA
| | - Tamaki Yuri
- Sam Noble Oklahoma Museum of Natural History, University of Oklahoma, 2401 Chautauqua Avenue, Norman, Oklahoma, 73072-7029, USA
| | - Cameron D Siler
- Sam Noble Oklahoma Museum of Natural History, University of Oklahoma, 2401 Chautauqua Avenue, Norman, Oklahoma, 73072-7029, USA
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, Oklahoma, 73019, USA
| |
Collapse
|
22
|
de Bruijn R, Romero LM. The role of glucocorticoids in the vertebrate response to weather. Gen Comp Endocrinol 2018; 269:11-32. [PMID: 30012539 DOI: 10.1016/j.ygcen.2018.07.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/29/2018] [Accepted: 07/13/2018] [Indexed: 12/18/2022]
Abstract
Changes in the environment related to inclement weather can threaten survival and reproductive success both through direct adverse exposure and indirectly by decreasing food availability. Glucocorticoids, released during activation of the hypothalamic-pituitary-adrenal axis as part of the stress response, are an important candidate for linking vertebrate coping mechanisms to weather. This review attempts to determine if there is a consensus response of glucocorticoids to exposure to weather-related stimuli, including food availability, precipitation, temperature and barometric pressure. The included studies cover field and laboratory studies for all vertebrate taxa, and are separated into four exposure periods, e.g., hours, days, weeks and months. Each reported result was assigned a score based on the glucocorticoid response, e.g., increased, no change, or decreased. Short-term exposure to weather-related stimuli, of up to 24 h, is generally associated with increased glucocorticoids (79% of studies), suggesting that these stimuli are perceived as stressors by most animals. In contrast, the pattern for exposures longer than 24 h shows more variation, even though a majority of studies still report an increase (64%). Lack of glucocorticoid increases appeared to result from instances where: (1) prolonged exposure was a predictable part of the life history of an animal; (2) environmental context was important for the ultimate effect of a stimulus (e.g., precipitation limited food availability in one environment, but increased food in another); (3) prolonged exposure induced chronic stress; and (4) long-term responses appeared to reflect adaptations to seasonal shifts, instead of to short-term weather. However, there is a strong bias towards studies in domesticated laboratory species and wild animals held in captivity, indicating a need for field studies, especially in reptiles and amphibians. In conclusion, the accumulated literature supports the hypothesis that glucocorticoids can serve as the physiological mechanism promoting fitness during inclement weather.
Collapse
Affiliation(s)
- Robert de Bruijn
- Department of Biology, Tufts University, Medford, MA 02155, USA.
| | - L Michael Romero
- Department of Biology, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
23
|
Grogan LF, Robert J, Berger L, Skerratt LF, Scheele BC, Castley JG, Newell DA, McCallum HI. Review of the Amphibian Immune Response to Chytridiomycosis, and Future Directions. Front Immunol 2018; 9:2536. [PMID: 30473694 PMCID: PMC6237969 DOI: 10.3389/fimmu.2018.02536] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/15/2018] [Indexed: 12/27/2022] Open
Abstract
The fungal skin disease, chytridiomycosis (caused by Batrachochytrium dendrobatidis and B. salamandrivorans), has caused amphibian declines and extinctions globally since its emergence. Characterizing the host immune response to chytridiomycosis has been a focus of study with the aim of disease mitigation. However, many aspects of the innate and adaptive arms of this response are still poorly understood, likely due to the wide range of species' responses to infection. In this paper we provide an overview of expected immunological responses (with inference based on amphibian and mammalian immunology), together with a synthesis of current knowledge about these responses for the amphibian-chytridiomycosis system. We structure our review around four key immune stages: (1) the naïve immunocompetent state, (2) immune defenses that are always present (constitutive defenses), (3) mechanisms for recognition of a pathogen threat and innate immune defenses, and (4) adaptive immune responses. We also evaluate the current hot topics of immunosuppression and immunopathology in chytridiomycosis, and discuss their respective roles in pathogenesis. Our synthesis reveals that susceptibility to chytridiomycosis is likely to be multifactorial. Susceptible amphibians appear to have ineffective constitutive and innate defenses, and a late-stage response characterized by immunopathology and Bd-induced suppression of lymphocyte responses. Overall, we identify substantial gaps in current knowledge, particularly concerning the entire innate immune response (mechanisms of initial pathogen detection and possible immunoevasion by Bd, degree of activation and efficacy of the innate immune response, the unexpected absence of innate leukocyte infiltration, and the cause and role of late-stage immunopathology in pathogenesis). There are also gaps concerning most of the adaptive immune system (the relative importance of B and T cell responses for pathogen clearance, the capacity and extent of immunological memory, and specific mechanisms of pathogen-induced immunosuppression). Improving our capacity for amphibian immunological research will require selection of an appropriate Bd-susceptible model species, the development of taxon-specific affinity reagents and cell lines for functional assays, and the application of a suite of conventional and emerging immunological methods. Despite current knowledge gaps, immunological research remains a promising avenue for amphibian conservation management.
Collapse
Affiliation(s)
- Laura F Grogan
- Environmental Futures Research Institute and School of Environment and Science, Griffith University, Nathan, QLD, Australia
| | - Jacques Robert
- University of Rochester Medical Center, Rochester, NY, United States
| | - Lee Berger
- One Health Research Group, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia.,Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, University of Melbourne, Werribee, VIC, Australia
| | - Lee F Skerratt
- One Health Research Group, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia.,Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, University of Melbourne, Werribee, VIC, Australia
| | - Benjamin C Scheele
- Fenner School of Environment and Society, The Australian National University, Canberra, ACT, Australia.,Threatened Species Recovery Hub, National Environmental Science Program, Fenner School of Environment and Society, The Australian National University, Canberra, ACT, Australia
| | - J Guy Castley
- Environmental Futures Research Institute and School of Environment and Science, Griffith University, Nathan, QLD, Australia
| | - David A Newell
- Forest Research Centre, School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW, Australia
| | - Hamish I McCallum
- Environmental Futures Research Institute and School of Environment and Science, Griffith University, Nathan, QLD, Australia
| |
Collapse
|
24
|
Koubourli DV, Yaparla A, Popovic M, Grayfer L. Amphibian ( Xenopus laevis) Interleukin-8 (CXCL8): A Perspective on the Evolutionary Divergence of Granulocyte Chemotaxis. Front Immunol 2018; 9:2058. [PMID: 30258441 PMCID: PMC6145007 DOI: 10.3389/fimmu.2018.02058] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/21/2018] [Indexed: 12/26/2022] Open
Abstract
The glutamic acid-leucine-arginine (ELR) motif is a hallmark feature shared by mammalian inflammatory CXC chemokines such the granulocyte chemo-attractant CXCL8 (interleukin-8, IL-8). By contrast, most teleost fish inflammatory chemokines lack this motif. Interestingly, the amphibian Xenopus laevis encodes multiple isoforms of CXCL8, one of which (CXCL8a) possesses an ELR motif, while another (CXCL8b) does not. These CXCL8 isoforms exhibit distinct expression patterns during frog development and following immune challenge of animals and primary myeloid cultures. To define potential functional differences between these X. laevis CXCL8 chemokines, we produced them in recombinant form (rCXCL8a and rCXCL8b) and performed dose-response chemotaxis assays. Our results indicate that compared to rCXCL8b, rCXCL8a is a significantly more potent chemo-attractant of in vivo-derived tadpole granulocytes and of in vitro-differentiated frog bone marrow granulocytes. The mammalian CXCL8 mediates its effects through two distinct chemokine receptors, CXCR1 and CXCR2 and our pharmacological inhibition of these receptors in frog granulocytes indicates that the X. laevis CXCL8a and CXCL8b both chemoattract tadpole and adult frog granulocytes by engaging CXCR1 and CXCR2. To delineate which frog cells are recruited by CXCL8a and CXCL8b in vivo, we injected tadpoles and adult frogs intraperitoneally with rCXCL8a or rCXCL8b and recovered the accumulated cells by lavage. Our transcriptional and cytological analyses of these tadpole and adult frog peritoneal exudates indicate that they are comprised predominantly of granulocytes. Interestingly, the granulocytes recruited into the tadpole, but not adult frog peritonea by rCXCL8b, express significantly greater levels of several pan immunosuppressive genes.
Collapse
Affiliation(s)
- Daphne V Koubourli
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| | - Amulya Yaparla
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| | - Milan Popovic
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| | - Leon Grayfer
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| |
Collapse
|
25
|
Youker-Smith TE, Boersch-Supan PH, Whipps CM, Ryan SJ. Environmental Drivers of Ranavirus in Free-Living Amphibians in Constructed Ponds. ECOHEALTH 2018; 15:608-618. [PMID: 30094775 PMCID: PMC6245063 DOI: 10.1007/s10393-018-1350-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 06/18/2018] [Accepted: 06/22/2018] [Indexed: 06/08/2023]
Abstract
Amphibian ranaviruses occur globally, but we are only beginning to understand mechanisms for emergence. Ranaviruses are aquatic pathogens which can cause > 90% mortality in larvae of many aquatic-breeding amphibians, making them important focal host taxa. Host susceptibilities and virulence of ranaviruses have been studied extensively in controlled laboratory settings, but research is needed to identify drivers of infection in natural environments. Constructed ponds, essential components of wetland restoration, have been associated with higher ranavirus prevalence than natural ponds, posing a conundrum for conservation efforts, and emphasizing the need to understand potential drivers. In this study, we analyzed 4 years of Frog virus 3 prevalence and associated environmental parameters in populations of wood frogs (Lithobates sylvaticus) and green frogs (Lithobates clamitans) in a constructed pond system. High prevalence was best predicted by low temperature, high host density, low zooplankton concentrations, and Gosner stages approaching metamorphosis. This study identified important variables to measure in assessments of ranaviral infection risk in newly constructed ponds, including effects of zooplankton, which have not been previously quantified in natural settings. Examining factors mediating diseases in natural environments, particularly in managed conservation settings, is important to both validate laboratory findings in situ, and to inform future conservation planning, particularly in the context of adaptive management.
Collapse
Affiliation(s)
- Tess E Youker-Smith
- Department of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, Syracuse, NY, 13210, USA
| | - Philipp H Boersch-Supan
- Quantitative Disease Ecology and Conservation (QDEC) Lab, Department of Geography, University of Florida, 3128 Turlington Hall, Gainesville, FL, 32601, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Christopher M Whipps
- Department of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, Syracuse, NY, 13210, USA
| | - Sadie J Ryan
- Quantitative Disease Ecology and Conservation (QDEC) Lab, Department of Geography, University of Florida, 3128 Turlington Hall, Gainesville, FL, 32601, USA.
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
26
|
Effects of Emerging Infectious Diseases on Amphibians: A Review of Experimental Studies. DIVERSITY-BASEL 2018. [DOI: 10.3390/d10030081] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Numerous factors are contributing to the loss of biodiversity. These include complex effects of multiple abiotic and biotic stressors that may drive population losses. These losses are especially illustrated by amphibians, whose populations are declining worldwide. The causes of amphibian population declines are multifaceted and context-dependent. One major factor affecting amphibian populations is emerging infectious disease. Several pathogens and their associated diseases are especially significant contributors to amphibian population declines. These include the fungi Batrachochytrium dendrobatidis and B. salamandrivorans, and ranaviruses. In this review, we assess the effects of these three pathogens on amphibian hosts as found through experimental studies. Such studies offer valuable insights to the causal factors underpinning broad patterns reported through observational studies. We summarize key findings from experimental studies in the laboratory, in mesocosms, and from the field. We also summarize experiments that explore the interactive effects of these pathogens with other contributors of amphibian population declines. Though well-designed experimental studies are critical for understanding the impacts of disease, inconsistencies in experimental methodologies limit our ability to form comparisons and conclusions. Studies of the three pathogens we focus on show that host susceptibility varies with such factors as species, host age, life history stage, population and biotic (e.g., presence of competitors, predators) and abiotic conditions (e.g., temperature, presence of contaminants), as well as the strain and dose of the pathogen, to which hosts are exposed. Our findings suggest the importance of implementing standard protocols and reporting for experimental studies of amphibian disease.
Collapse
|
27
|
Amphibian ( Xenopus laevis) Tadpoles and Adult Frogs Differ in Their Use of Expanded Repertoires of Type I and Type III Interferon Cytokines. Viruses 2018; 10:v10070372. [PMID: 30018186 PMCID: PMC6070924 DOI: 10.3390/v10070372] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/30/2018] [Accepted: 07/07/2018] [Indexed: 12/19/2022] Open
Abstract
While amphibians around the globe are facing catastrophic declines, in part because of infections with pathogens such as the Frog Virus 3 (FV3) ranavirus; the mechanisms governing amphibian susceptibility and resistance to such pathogens remain poorly understood. The type I and type III interferon (IFN) cytokines represent a cornerstone of vertebrate antiviral immunity, while our recent work indicates that tadpoles and adult frogs of the amphibian Xenopus laevis may differ in their IFN responses to FV3. In this respect, it is notable that anuran (frogs and toads) tadpoles are significantly more susceptible to FV3 than adult frogs, and thus, gaining greater insight into the differences in the tadpole and adult frog antiviral immunity would be invaluable. Accordingly, we examined the FV3-elicited expression of a panel of type I and type III IFN genes in the skin (site of FV3 infection) and kidney (principal FV3 target) tissues and isolated cells of X. laevis tadpoles and adult frogs. We also examined the consequence of tadpole and adult frog skin and kidney cell stimulation with hallmark pathogen-associated molecular patterns (PAMPs) on the IFN responses of these cells. Together, our findings indicate that tadpoles and adult frogs mount drastically distinct IFN responses to FV3 as well as to viral and non-viral PAMPs, while these expression differences do not appear to be the result of a distinct pattern recognition receptor expression by tadpoles and adults.
Collapse
|
28
|
Tornabene BJ, Blaustein AR, Briggs CJ, Calhoun DM, Johnson PTJ, McDevitt-Galles T, Rohr JR, Hoverman JT. The influence of landscape and environmental factors on ranavirus epidemiology in a California amphibian assemblage. FRESHWATER BIOLOGY 2018; 63:639-651. [PMID: 30127540 PMCID: PMC6097636 DOI: 10.1111/fwb.13100] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/16/2018] [Indexed: 06/08/2023]
Abstract
A fundamental goal of disease ecology is to determine the landscape and environmental processes that drive disease dynamics at different biological levels to guide management and conservation. Although ranaviruses (family Iridoviridae) are emerging amphibian pathogens, few studies have conducted comprehensive field surveys to assess potential drivers of ranavirus disease dynamics.We examined the factors underlying patterns in site-level ranavirus presence and individual-level ranavirus infection in 76 ponds and 1,088 individuals representing 5 amphibian species within the East Bay region of California.Based on a competing-model approach followed by variance partitioning, landscape and biotic variables explained the most variation in site-level presence. However, biotic and individual-level variables explained the most variation in individual-level infection.Distance to nearest ranavirus-infected pond (the landscape factor) was more important than biotic factors at the site-level; however, biotic factors were most influential at the individual-level. At the site level, the probability of ranavirus presence correlated negatively with distance to nearest ranavirus-positive pond, suggesting that the movement of water or mobile taxa (e.g., adult amphibians, birds, reptiles) may facilitate the movement of ranavirus between ponds and across the landscape.Taxonomic richness associated positively with ranavirus presence at the site-level, but vertebrate richness associated negatively with infection prevalence in the host population. This might reflect the contrasting influences of diversity on pathogen colonization versus transmission among hosts.Amphibian host species differed in their likelihood of ranavirus infection: American bullfrogs (Rana catesbeiana) had the weakest association with infection while rough-skinned newts (Taricha granulosa) had the strongest. After accounting for host species effects, hosts with greater snout-vent length had a lower probability of infection.Our study demonstrates the array of landscape, environmental, and individual-level factors associated with ranavirus epidemiology. Moreover, our study helps illustrate that the importance of these factors varies with biological level.
Collapse
Affiliation(s)
- Brian J Tornabene
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907-2061
| | - Andrew R Blaustein
- Integrative Biology, 3029 Cordley Hall, Oregon State University, Corvallis, OR 97331-2914
| | - Cheryl J Briggs
- Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106-9610
| | - Dana M Calhoun
- Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, Boulder, CO 80309-0334
| | - Pieter T J Johnson
- Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, Boulder, CO 80309-0334
| | - Travis McDevitt-Galles
- Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, Boulder, CO 80309-0334
| | - Jason R Rohr
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620
| | - Jason T Hoverman
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907-2061
| |
Collapse
|
29
|
Hrynyk MA, Brunetti C, Kerr L, Metcalfe CD. Effect of imidacloprid on the survival of Xenopus tadpoles challenged with wild type frog virus 3. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 194:152-158. [PMID: 29179150 DOI: 10.1016/j.aquatox.2017.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 11/09/2017] [Accepted: 11/11/2017] [Indexed: 06/07/2023]
Abstract
The sensitivity of amphibians to Ranavirus may be increased by exposure to other environmental stressors, including chemical contaminants. Neonicotinoid insecticides comprise 27% of the global insecticide market and have been detected in wetlands and other aquatic habitats. The present study focused on the effects of exposure of pre-metamorphic Xenopus laevis to the neonicotinoid, imidacloprid (IMI) on sensitivity to frog virus 3 (FV3) infection. It was hypothesized that exposure of tadpoles to IMI at sublethal concentrations of 1 and 500μgL-1 would increase FV3 related mortalities relative to tadpole mortalities in a control treatment with only the virus. However, contrary to the predicted outcome, IMI reduced the rates of mortality following viral challenge, although the total mortalities by the 25th day after infection did not differ among the treatments. These results should not be interpreted as an indication that neonicotinoid insecticides are beneficial to aquatic ecosystems, since these insecticides cause toxic responses at low concentrations to other non-target aquatic organisms.
Collapse
Affiliation(s)
- Morgan A Hrynyk
- Environmental and Life Sciences Graduate Program, Trent University, 1600 West Bank Dr. Peterborough, Ontario, K9J 7B8, Canada
| | - Craig Brunetti
- Biology Department, Trent University, 1600 West Bank Dr. Peterborough, Ontario, K9J 7B8, Canada
| | - Leslie Kerr
- Biology Department, Trent University, 1600 West Bank Dr. Peterborough, Ontario, K9J 7B8, Canada
| | - Chris D Metcalfe
- The School of the Environment, Trent University, 1600 West Bank Dr. Peterborough, Ontario, K9J 7B8, Canada.
| |
Collapse
|
30
|
Yaparla A, Popovic M, Grayfer L. Differentiation-dependent antiviral capacities of amphibian ( Xenopus laevis) macrophages. J Biol Chem 2017; 293:1736-1744. [PMID: 29259133 DOI: 10.1074/jbc.m117.794065] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 12/12/2017] [Indexed: 12/30/2022] Open
Abstract
Infections by ranaviruses such as Frog virus 3 (Fv3), are significantly contributing to worldwide amphibian population declines. Notably, amphibian macrophages (Mφs) are important to both the Fv3 infection strategies and the immune defense against this pathogen. However, the mechanisms underlying amphibian Mφ Fv3 susceptibility and resistance remain unknown. Mφ differentiation is mediated by signaling through the colony-stimulating factor-1 receptor (CSF-1R) which is now known to be bound not only by CSF-1, but also by the unrelated interleukin-34 (IL-34) cytokine. Pertinently, amphibian (Xenopus laevis) Mφs differentiated by CSF-1 and IL-34 are highly susceptible and resistant to Fv3, respectively. Accordingly, in the present work, we elucidate the facets of this Mφ Fv3 susceptibility and resistance. Because cellular resistance to viral replication is marked by expression of antiviral restriction factors, it was intuitive to find that IL-34-Mφs possess significantly greater mRNA levels of select restriction factor genes than CSF-1-Mφs. Xenopodinae amphibians have highly expanded repertoires of antiviral interferon (IFN) cytokine gene families, and our results indicated that in comparison with the X. laevis CSF-1-Mφs, the IL-34-Mφs express substantially greater transcripts of representative IFN genes, belonging to distinct gene family clades, as well as their cognate receptor genes. Finally, we demonstrate that IL-34-Mφ-conditioned supernatants confer IFN-mediated anti-Fv3 protection to the virally susceptible X. laevis kidney (A6) cell line. Together, this work underlines the differentiation pathways leading to Fv3-susceptible and -resistant amphibian Mφ populations and defines the molecular mechanisms responsible for these differences.
Collapse
Affiliation(s)
- Amulya Yaparla
- From the Department of Biological Sciences, George Washington University, Washington, D. C. 20052-0066
| | - Milan Popovic
- From the Department of Biological Sciences, George Washington University, Washington, D. C. 20052-0066
| | - Leon Grayfer
- From the Department of Biological Sciences, George Washington University, Washington, D. C. 20052-0066
| |
Collapse
|
31
|
Kirschman LJ, Crespi EJ, Warne RW. Critical disease windows shaped by stress exposure alter allocation trade‐offs between development and immunity. J Anim Ecol 2017; 87:235-246. [DOI: 10.1111/1365-2656.12778] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 10/20/2017] [Indexed: 02/06/2023]
Affiliation(s)
| | - Erica J. Crespi
- School of Biological SciencesWashington State University Pullman WA USA
| | - Robin W. Warne
- Department of ZoologySouthern Illinois University Carbondale IL USA
| |
Collapse
|
32
|
Kwon S, Park J, Choi WJ, Koo KS, Lee JG, Park D. First case of ranavirus-associated mass mortality in a natural population of the Huanren frog (Rana huanrenensis) tadpoles in South Korea. Anim Cells Syst (Seoul) 2017. [DOI: 10.1080/19768354.2017.1376706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Sera Kwon
- Department of Biology, Kangwon National University, Chuncheon, South Korea
| | - Jaejin Park
- Department of Biology, Kangwon National University, Chuncheon, South Korea
| | - Woo-Jin Choi
- Department of Biology, Kangwon National University, Chuncheon, South Korea
| | - Kyo-Soung Koo
- Department of Biology, Kangwon National University, Chuncheon, South Korea
| | - Jin-Gu Lee
- Gyeonggido Agricultural Research and Extension Services, Hwaseong, South Korea
| | - Daesik Park
- Division of Science Education, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
33
|
Koubourli DV, Wendel ES, Yaparla A, Ghaul JR, Grayfer L. Immune roles of amphibian (Xenopus laevis) tadpole granulocytes during Frog Virus 3 ranavirus infections. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 72:112-118. [PMID: 28238879 DOI: 10.1016/j.dci.2017.02.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 02/21/2017] [Accepted: 02/21/2017] [Indexed: 06/06/2023]
Abstract
Infections by Frog Virus 3 (FV3) and other ranaviruses (RVs) are contributing to the amphibian declines, while the mechanisms controlling anuran tadpole susceptibility and adult frog resistance to RVs, including the roles of polymorphonuclear granulocytes (PMNs) during anti-FV3 responses, remain largely unknown. Since amphibian kidneys represent an important FV3 target, the inability of amphibian (Xenopus laevis) tadpoles to mount effective kidney inflammatory responses to FV3 is thought to contribute to their susceptibility. Here we demonstrate that a recombinant X. laevis granulocyte colony-stimulating factor (G-CSF) generates PMNs with hallmark granulocyte morphology. Tadpole pretreatment with G-CSF prior to FV3 infection reduces animal kidney FV3 loads and extends their survival. Moreover, G-CSF-derived PMNs are resistant to FV3 infection and express high levels of TNFα in response to this virus. Notably, FV3-infected tadpoles fail to recruit G-CSFR expressing granulocytes into their kidneys, suggesting that they lack an integral inflammatory effector population at this site.
Collapse
Affiliation(s)
- Daphne V Koubourli
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Emily S Wendel
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Amulya Yaparla
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Jonathan R Ghaul
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Leon Grayfer
- Department of Biological Sciences, George Washington University, Washington, DC, USA.
| |
Collapse
|
34
|
Abstract
We first review fundamental insights into anti-ranavirus immunity learned with the Xenopus laevis/ranavirus FV3 model that are generally applicable to ectothermic vertebrates. We then further investigate FV3 genes involved in immune evasion. Focusing on FV3 knockout (KO) mutants defective for a putative viral caspase activation and recruitment domain-containing (CARD)-like protein (Δ64R-FV3), a β-hydroxysteroid dehydrogenase homolog (Δ52L-FV3), and an immediate-early18kDa protein (FV3-Δ18K), we assessed the involvement of these viral genes in replication, dissemination and interaction with peritoneal macrophages in tadpole and adult frogs. Our results substantiate the role of 64R and 52L as critical immune evasion genes, promoting persistence and dissemination in the host by counteracting type III IFN in tadpoles and type I IFN in adult frogs. Comparably, the substantial accumulation of genome copy numbers and exacerbation of type I and III IFN gene expression responses but deficient release of infectious virus suggests that 18K is a viral regulatory gene.
Collapse
Affiliation(s)
- Robert Jacques
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, United States.
| | - Eva-Stina Edholm
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - Sanchez Jazz
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - Torres-Luquis Odalys
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - De Jesús Andino Francisco
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, United States
| |
Collapse
|
35
|
Fonner CW, Patel SA, Boord SM, Venesky MD, Woodley SK. Effects of corticosterone on infection and disease in salamanders exposed to the amphibian fungal pathogen Batrachochytrium dendrobatidis. DISEASES OF AQUATIC ORGANISMS 2017; 123:159-171. [PMID: 28262636 DOI: 10.3354/dao03089] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Although it is well established that glucocorticoid hormones (GCs) alter immune function and disease resistance in humans and laboratory animal models, fewer studies have linked elevated GCs to altered immune function and disease resistance in wild animals. The chytrid fungal pathogen Batrachochytrium dendrobatidis (Bd) infects amphibians and can cause the disease chytridiomycosis, which is responsible for worldwide amphibian declines. It is hypothesized that long-term exposure to environmental stressors reduces host resistance to Bd by suppressing host immunity via stress-induced release of GCs such as corticosterone (CORT). We tested whether elevation of CORT would reduce resistance to Bd and chytridiomycosis development in the red-legged salamander Plethodon shermani. Plasma CORT was elevated daily in animals for 9 d, after which animals were inoculated with Bd and subsequently tested for infection loads and clinical signs of disease. On average, Bd-inoculated animals treated with CORT had higher infection abundance compared to Bd-inoculated animals not treated with CORT. However, salamanders that received CORT prior to Bd did not experience any increase in clinical signs of chytridiomycosis compared to salamanders not treated with CORT. The lack of congruence between CORT effects on infection abundance versus disease may be due to threshold effects. Nonetheless, our results show that elevation of plasma CORT prior to Bd inoculation decreases resistance to infection by Bd. More studies are needed to better understand the effects of CORT on animals exposed to Bd and whether CORT variation contributes to differential responses to Bd observed across amphibian species and populations.
Collapse
Affiliation(s)
- Chris W Fonner
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | | | | | | | | |
Collapse
|
36
|
Brunner JL, Beaty L, Guitard A, Russell D. Heterogeneities in the infection process drive ranavirus transmission. Ecology 2017; 98:576-582. [PMID: 27859036 DOI: 10.1002/ecy.1644] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/16/2016] [Accepted: 10/24/2016] [Indexed: 12/14/2022]
Abstract
Transmission is central to our understanding and efforts to control the spread of infectious diseases. Because transmission generally requires close contact, host movements and behaviors can shape transmission dynamics: random and complete mixing leads to the classic density-dependent model, but if hosts primarily interact locally (e.g., aggregate) or within groups, transmission may saturate. Manipulating host behavior may thus change both the rate and functional form of transmission. We used the ranavirus-wood frog (Lithobates sylvaticus) tadpole system to test whether transmission rates reflect contacts, and whether the functional form of transmission can be influenced by the distribution of food in mesocosms (widely dispersed, promoting random movement and mixing vs. a central pile, promoting aggregations). Contact rates increased with density, as expected, but transmission rapidly saturated. Observed rates of transmission were not explained by observed contact rates or the density-dependent model, but instead transmission in both treatments followed models allowing for heterogeneities in the transmission process. We argue that contacts were not generally limiting, but instead that our results are better explained by heterogeneities in host susceptibility. Moreover, manipulating host behavior to manage the spread of infectious disease may prove difficult to implement.
Collapse
Affiliation(s)
- Jesse L Brunner
- School of Biological Sciences, Washington State University, Pullman, Washington, 99164, USA.,Department of Environmental and Forest Biology, SUNY College of Environmental Science and Forestry, Syracuse, New York, 13210, USA
| | - Lynne Beaty
- Department of Environmental and Forest Biology, SUNY College of Environmental Science and Forestry, Syracuse, New York, 13210, USA.,Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma, 74078, USA
| | - Alexandra Guitard
- Department of Environmental and Forest Biology, SUNY College of Environmental Science and Forestry, Syracuse, New York, 13210, USA
| | - Deanna Russell
- Department of Environmental and Forest Biology, SUNY College of Environmental Science and Forestry, Syracuse, New York, 13210, USA
| |
Collapse
|
37
|
Wendel ES, Yaparla A, Koubourli DV, Grayfer L. Amphibian (Xenopus laevis) tadpoles and adult frogs mount distinct interferon responses to the Frog Virus 3 ranavirus. Virology 2017; 503:12-20. [PMID: 28081430 DOI: 10.1016/j.virol.2017.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 12/31/2016] [Accepted: 01/02/2017] [Indexed: 11/30/2022]
Abstract
Infections of amphibians by Frog Virus 3 (FV3) and other ranavirus genus members are significantly contributing to the amphibian declines, yet much remains unknown regarding amphibian antiviral immunity. Notably, amphibians represent an important step in the evolution of antiviral interferon (IFN) cytokines as they are amongst the first vertebrates to possess both type I and type III IFNs. Accordingly, we examined the roles of type I and III IFNs in the skin of FV3-challenged amphibian Xenopus laevis) tadpoles and adult frogs. Interestingly, FV3-infected tadpoles mounted type III IFN responses, whereas adult frogs relied on type I IFN immunity. Subcutaneous administration of type I or type III IFNs offered short-term protection of tadpoles against FV3 and these type I and type III IFNs induced the expression of distinct antiviral genes in the tadpole skin. Moreover, subcutaneous injection of tadpoles with type III IFN significantly extended their survival and reduced FV3 dissemination.
Collapse
Affiliation(s)
- Emily S Wendel
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Amulya Yaparla
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Daphne V Koubourli
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Leon Grayfer
- Department of Biological Sciences, George Washington University, Washington, DC, USA.
| |
Collapse
|
38
|
Rollins-Smith LA. Amphibian immunity-stress, disease, and climate change. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 66:111-119. [PMID: 27387153 DOI: 10.1016/j.dci.2016.07.002] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 06/25/2016] [Accepted: 07/01/2016] [Indexed: 05/22/2023]
Abstract
Like all other vertebrate groups, amphibian responses to the environment are mediated through the brain (hypothalamic)-pituitary-adrenal/interrenal (HPA/I) axis and the sympathetic nervous system. Amphibians are facing historically unprecedented environmental stress due to climate change that will involve unpredictable temperature and rainfall regimes and possible nutritional deficits due to extremes of temperature and drought. At the same time, amphibians in all parts of the world are experiencing unprecedented declines due to the emerging diseases, chytridiomycosis (caused by Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans) and ranavirus diseases due to viruses of the genus Ranavirus in the family Iridoviridae. Other pathogens and parasites also afflict amphibians, but here I will limit myself to a review of recent literature linking stress and these emerging diseases (chytridiomycosis and ranavirus disease) in order to better predict how environmental stressors and disease will affect global amphibian populations.
Collapse
Affiliation(s)
- Louise A Rollins-Smith
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
39
|
Bagwill AL, Lovern MB, Worthington TA, Smith LM, McMurry ST. Effects of Water Loss on New Mexico Spadefoot Toad (Spea multiplicata) Development, Spleen Cellularity, and Corticosterone Levels. ACTA ACUST UNITED AC 2016; 325:548-561. [PMID: 27714986 DOI: 10.1002/jez.2049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 09/08/2016] [Accepted: 09/09/2016] [Indexed: 01/22/2023]
Abstract
Amphibian metamorphosis is complex and larval morphology and physiology are completely restructured during this time. Amphibians that live in unpredictable environments are often exposed to stressors that can directly and indirectly alter physiological systems during development, with subsequent consequences (carryover effects) later in life. In this study, we investigated the effects of water level reduction on development rate, spleen size and cellularity, and examined the role of corticosterone levels in premetamorphic, metamorphic, and postmetamorphic New Mexico spadefoot toads (Spea multiplicata). Based on previous studies, we hypothesized that declining water level would increase tadpole developmental rate, but with the trade-off of increasing corticosterone to a level that would subsequently affect spleen size and cellularity, thus prolonging potential immunological suppression. Declining water levels increased developmental rate by 3 days; however, there were no significant body size effects. Corticosterone (CORT) was negatively correlated with total length, snout vent length, body weight, and spleen weight at metamorphosis, suggesting that size at metamorphosis and the immune system may be affected by excessive CORT levels. When compared to other studies, our results support the view that multiple factors may be acting as stressors in the field affecting amphibian responses, and simple pathways as tested in this study may not adequately represent field conditions.
Collapse
Affiliation(s)
- April L Bagwill
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma. .,ECS Federal, LLC, Fairfax, Virginia.
| | - Matthew B Lovern
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma
| | - Thomas A Worthington
- Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Loren M Smith
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma
| | - Scott T McMurry
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma
| |
Collapse
|
40
|
Kindermann C, Narayan EJ, Hero JM. Does physiological response to disease incur cost to reproductive ecology in a sexually dichromatic amphibian species? Comp Biochem Physiol A Mol Integr Physiol 2016; 203:220-226. [PMID: 27712921 DOI: 10.1016/j.cbpa.2016.09.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 11/16/2022]
Abstract
It is well known that the disease chytridiomycosis, caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd) has contributed to amphibian declines worldwide. The impact of Bd varies, with some species being more susceptible to infection than others. Recent evidence has shown that Bd can have sub-lethal effects, whereby increases in stress hormones have been associated with infection. Could this increased stress response, which is a physiological adaptation that provides an increased resilience against Bd infection, potentially be a trade-off with important life-history traits such as reproduction? We studied this question in adult male frogs of a non-declining species (Litoria wilcoxii). Frogs were sampled for (1) seasonal hormone (testosterone and corticosterone), color and disease profiles, (2) the relationship between disease infection status and hormone levels or dorsal color, (3) subclinical effects of Bd by investigating disease load and hormone level, and (4) reproductive and stress hormone relationships independent of disease. Testosterone levels and color score varied seasonally (throughout the spring/summer months) while corticosterone levels remained stable. Frogs with high Bd prevalence had significantly higher corticosterone levels and lower testosterone levels compared to uninfected frogs, and no differences in color were observed. There was a significant positive correlation between disease load and corticosterone levels, and a significant negative relationship between disease load and testosterone. Our field data provides novel evidence that increased physiological stress response associated with Bd infection in wild frogs, could suppress reproduction by down-regulating gonadal hormones in amphibians, however the impacts on reproductive output is yet to be established.
Collapse
Affiliation(s)
- Christina Kindermann
- Environmental Futures Research Institute, School of Environment, Griffith University, Gold Coast campus, QLD 4222, Australia.
| | - Edward J Narayan
- Environmental Futures Research Institute, School of Environment, Griffith University, Gold Coast campus, QLD 4222, Australia; School of Animal and Veterinary Sciences, Faculty of Science, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Jean-Marc Hero
- Environmental Futures Research Institute, School of Environment, Griffith University, Gold Coast campus, QLD 4222, Australia
| |
Collapse
|
41
|
Host food resource supplementation increases echinostome infection in larval anurans. Parasitol Res 2016; 115:4477-4483. [PMID: 27581843 DOI: 10.1007/s00436-016-5234-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 08/17/2016] [Indexed: 10/21/2022]
Abstract
Host-parasite interactions are often influenced by environmental factors through multiple mechanisms. For example, changes in host food resources may affect multiple host traits (e.g., body size, behavior, immunocompetence), which may increase or decrease infection levels and the impact of parasites on host fitness. We often lack an understanding of which traits are most important for parasite transmission and fitness effects, posing challenges to predicting consequences of changing environmental conditions (e.g., eutrophication). Here, I examined the effects of food resources and host traits experimentally in a larval frog (Rana clamitans Latreille, 1801)-trematode parasite (Echinostoma revolutum Looss, 1899) system. I hypothesized that higher food resources reduce parasite infection and parasite effects on host growth and survival, due to increased host investment in parasite defenses, which I tested in a laboratory experiment. Contrary to my hypothesis, the results indicated that increased food levels enhanced infection in hosts, while the effect of parasites on survival did not depend on host food resources. A potential explanation for the positive effect of food level on infection was size-dependent infection rates (i.e., higher food levels increased infection through increased host growth), which is supported by a positive relationship between host body size and infection. These findings emphasize the complex relationship between host food resources and parasitism and the importance of environmental context and host traits (i.e., body size) in mediating interactions with parasites. The results also have relevance for conservation in light of rising anthropogenic impacts on aquatic systems and recent amphibian declines.
Collapse
|
42
|
Kirschman LJ, Haslett S, Fritz KA, Whiles MR, Warne RW. Influence of Physiological Stress on Nutrient Stoichiometry in Larval Amphibians. Physiol Biochem Zool 2016; 89:313-21. [DOI: 10.1086/687047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
43
|
Brand MD, Hill RD, Brenes R, Chaney JC, Wilkes RP, Grayfer L, Miller DL, Gray MJ. Water Temperature Affects Susceptibility to Ranavirus. ECOHEALTH 2016; 13:350-359. [PMID: 27283058 DOI: 10.1007/s10393-016-1120-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 03/31/2016] [Accepted: 04/02/2016] [Indexed: 06/06/2023]
Abstract
The occurrence of emerging infectious diseases in wildlife populations is increasing, and changes in environmental conditions have been hypothesized as a potential driver. For example, warmer ambient temperatures might favor pathogens by providing more ideal conditions for propagation or by stressing hosts. Our objective was to determine if water temperature played a role in the pathogenicity of an emerging pathogen (ranavirus) that infects ectothermic vertebrate species. We exposed larvae of four amphibian species to a Frog Virus 3 (FV3)-like ranavirus at two temperatures (10 and 25°C). We found that FV3 copies in tissues and mortality due to ranaviral disease were greater at 25°C than at 10°C for all species. In a second experiment with wood frogs (Lithobates sylvaticus), we found that a 2°C change (10 vs. 12°C) affected ranaviral disease outcomes, with greater infection and mortality at 12°C. There was evidence that 10°C stressed Cope's gray tree frog (Hyla chrysoscelis) larvae, which is a species that breeds during summer-all individuals died at this temperature, but only 10% tested positive for FV3 infection. The greater pathogenicity of FV3 at 25°C might be related to faster viral replication, which in vitro studies have reported previously. Colder temperatures also may decrease systemic infection by reducing blood circulation and the proportion of phagocytes, which are known to disseminate FV3 through the body. Collectively, our results indicate that water temperature during larval development may play a role in the emergence of ranaviruses.
Collapse
Affiliation(s)
- Mabre D Brand
- Department of Biomedical and Diagnostic Services, College of Veterinary Medicine, University of Tennessee Institute of Agriculture, Knoxville, TN, USA
| | - Rachel D Hill
- Center for Wildlife Health, University of Tennessee Institute of Agriculture, Knoxville, TN, USA
| | - Roberto Brenes
- Department of Biology, Carroll University, Waukesha, WI, USA
| | - Jordan C Chaney
- Center for Wildlife Health, University of Tennessee Institute of Agriculture, Knoxville, TN, USA
| | - Rebecca P Wilkes
- Veterinary Diagnostic and Investigational Laboratory, University of Georgia, Tifton, GA, USA
| | - Leon Grayfer
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Debra L Miller
- Department of Biomedical and Diagnostic Services, College of Veterinary Medicine, University of Tennessee Institute of Agriculture, Knoxville, TN, USA
- Center for Wildlife Health, University of Tennessee Institute of Agriculture, Knoxville, TN, USA
| | - Matthew J Gray
- Center for Wildlife Health, University of Tennessee Institute of Agriculture, Knoxville, TN, USA.
| |
Collapse
|
44
|
Harris BN, Carr JA. The role of the hypothalamus-pituitary-adrenal/interrenal axis in mediating predator-avoidance trade-offs. Gen Comp Endocrinol 2016; 230-231:110-42. [PMID: 27080550 DOI: 10.1016/j.ygcen.2016.04.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 04/07/2016] [Accepted: 04/09/2016] [Indexed: 11/20/2022]
Abstract
Maintaining energy balance and reproducing are important for fitness, yet animals have evolved mechanisms by which the hypothalamus-pituitary-adrenal/interrenal (HPA/HPI) axis can shut these activities off. While HPA/HPI axis inhibition of feeding and reproduction may have evolved as a predator defense, to date there has been no review across taxa of the causal evidence for such a relationship. Here we review the literature on this topic by addressing evidence for three predictions: that exposure to predators decreases reproduction and feeding, that exposure to predators activates the HPA/HPI axis, and that predator-induced activation of the HPA/HPI axis inhibits foraging and reproduction. Weight of evidence indicates that exposure to predator cues inhibits several aspects of foraging and reproduction. While the evidence from fish and mammals supports the hypothesis that predator cues activate the HPA/HPI axis, the existing data in other vertebrate taxa are equivocal. A causal role for the HPA axis in predator-induced suppression of feeding and reproduction has not been demonstrated to date, although many studies report correlative relationships between HPA activity and reproduction and/or feeding. Manipulation of HPA/HPI axis signaling will be required in future studies to demonstrate direct mediation of predator-induced inhibition of feeding and reproduction. Understanding the circuitry linking sensory pathways to their control of the HPA/HPI axis also is needed. Finally, the role that fear and anxiety pathways play in the response of the HPA axis to predator cues is needed to better understand the role that predators have played in shaping anxiety related behaviors in all species, including humans.
Collapse
Affiliation(s)
- Breanna N Harris
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, United States
| | - James A Carr
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, United States.
| |
Collapse
|
45
|
Rothermel BB, Miller DL, Travis ER, Gonynor McGuire JL, Jensen JB, Yabsley MJ. Disease dynamics of red-spotted newts and their anuran prey in a montane pond community. DISEASES OF AQUATIC ORGANISMS 2016; 118:113-127. [PMID: 26912042 DOI: 10.3354/dao02965] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Long-term monitoring of amphibians is needed to clarify population-level effects of ranaviruses (Rv) and the fungal pathogen Batrachochytrium dendrobatidis (Bd). We investigated disease dynamics of co-occurring amphibian species and potential demographic consequences of Rv and Bd infections at a montane site in the Southern Appalachians, Georgia, USA. Our 3-yr study was unique in combining disease surveillance with intensive population monitoring at a site where both pathogens are present. We detected sub-clinical Bd infections in larval and adult red-spotted newts Notophthalmus viridescens viridescens, but found no effect of Bd on body condition of adult newts. Bd infections also occurred in larvae of 5 anuran species that bred in our fishless study pond, and we detected co-infections with Bd and Rv in adult newts and larval green frogs Lithobates clamitans. However, all mortality and clinical signs in adult newts and larval anurans were most consistent with ranaviral disease, including a die-off of larval wood frogs Lithobates sylvaticus in small fish ponds located near our main study pond. During 2 yr of drift fence monitoring, we documented high juvenile production in newts, green frogs and American bullfrogs L. catesbeianus, but saw no evidence of juvenile recruitment in wood frogs. Larvae of this susceptible species may have suffered high mortality in the presence of both Rv and predators. Our findings were generally consistent with results of Rv-exposure experiments and support the purported role of red-spotted newts, green frogs, and American bullfrogs as common reservoirs for Bd and/or Rv in permanent and semi-permanent wetlands.
Collapse
|
46
|
Crespi EJ, Rissler LJ, Mattheus NM, Engbrecht K, Duncan SI, Seaborn T, Hall EM, Peterson JD, Brunner JL. Geophysiology of Wood Frogs: Landscape Patterns of Prevalence of Disease and Circulating Hormone Concentrations across the Eastern Range. Integr Comp Biol 2015; 55:602-17. [PMID: 26269462 DOI: 10.1093/icb/icv096] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
One of the major challenges for conservation physiologists is to determine how current or future environmental conditions relate to the health of animals at the population level. In this study, we measured prevalence of disease, mean condition of the body, and mean resting levels of corticosterone and testosterone in a total of 28 populations across the years 2011 and 2012, and correlated these measures of health to climatic suitability of habitat, using estimates from a model of the ecological niche of the wood frog's geographic range. Using the core-periphery hypothesis as a theoretical framework, we predicted a higher prevalence and intensity of infection of Batrachochytrium dendrobatidis (Bd) and ranaviruses, two major amphibian pathogens causing disease, and higher resting levels of circulating corticosterone, an indicator of allostatic load incurred from living in marginal habitats. We found that Bd infections were rare (2% of individuals tested), while infections with ranavirus were much more common: ranavirus-infected individuals were found in 92% of ponds tested over the 2 years. Contrary to our predictions, rates of infection with ranaviruses were positively correlated with quality of the habitat with the highest prevalence at the core of the range, and plasma corticosterone concentrations measured when frogs were at rest were not correlated with quality of the habitat, the prevalence of ranavirus, or the intensity of infection. Prevalence and mean viral titers of ranavirus infection were higher in 2012 than in 2011, which coincided with lower levels of circulating corticosterone and testosterone and an extremely early time of breeding due to relatively higher temperatures during the winter. In addition, the odds of having a ranavirus infection increased with decreased body condition, and if animals had an infection, viral titers were positively correlated to levels of circulating testosterone concentration. By resolving these patterns, experiments can be designed to test hypotheses about the mechanisms that produce them, such as whether transmission of the ranavirus and tolerance of the host are greater or whether virulence is lower in populations within core habitats. While there is debate about which metrics serve as the best bioindicators of population health, the findings of this study demonstrate the importance of long-term monitoring of multiple physiological parameters to better understand the dynamic relationship between the environment and the health of wildlife populations over space and time.
Collapse
Affiliation(s)
- Erica J Crespi
- *School of Biological Sciences, Washington State University, Pullman, WA 99164, USA;
| | - Leslie J Rissler
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Nichole M Mattheus
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Kristin Engbrecht
- *School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Sarah I Duncan
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Travis Seaborn
- *School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Emily M Hall
- *School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - John D Peterson
- *School of Biological Sciences, Washington State University, Pullman, WA 99164, USA; Department of Biology, University of Wisconsin-Platteville, Platteville, WI 538183, USA
| | - Jesse L Brunner
- *School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
47
|
Thomas JR, Woodley SK. Treatment with corticosterone delays cutaneous wound healing in male and female salamanders. Gen Comp Endocrinol 2015; 216:33-8. [PMID: 25913258 DOI: 10.1016/j.ygcen.2015.04.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 02/12/2015] [Accepted: 04/19/2015] [Indexed: 11/24/2022]
Abstract
In vertebrates, exposure to stressors and stress hormones has a number of physiological effects including modulation of immune function. These effects on immune function have been well studied in mammals, but less is known in other groups, in particular amphibians. To analyze the effects of exposure to stressors and the stress hormone corticosterone, we monitored cutaneous wound healing as a measure of integrated immunity in male and female semi-terrestrial salamanders (Desmognathus ochrophaeus) that were chased to induce endogenous release of corticosterone or were treated with physiologically relevant doses of corticosterone. As predicted, subjects treated daily with corticosterone healed more slowly than did controls. In contrast, subjects that had been chased daily healed at the same rate as controls. Surprisingly, repeated chasing did not elevate plasma corticosterone despite causing drops in body mass and survival. Additionally, females healed more slowly than males, possibly due to energetic constraints.
Collapse
Affiliation(s)
- Jessica R Thomas
- Department of Biological Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, USA.
| | - Sarah K Woodley
- Department of Biological Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, USA
| |
Collapse
|
48
|
Jolles AE, Beechler BR, Dolan BP. Beyond mice and men: environmental change, immunity and infections in wild ungulates. Parasite Immunol 2015; 37:255-66. [PMID: 25354672 PMCID: PMC4414670 DOI: 10.1111/pim.12153] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 10/16/2014] [Indexed: 02/06/2023]
Abstract
In the face of rapid environmental change, anticipating shifts in microparasite and macroparasite dynamics, including emergence events, is an enormous challenge. We argue that immunological studies in natural populations are pivotal to meeting this challenge: many components of environmental change--shifts in biotic assemblages, altered climate patterns and reduced environmental predictability--may affect host immunity. We suggest that wild ungulates can serve as model systems aiding the discovery of immunological mechanisms that link environmental change with parasite transmission dynamics. Our review of eco-immunological studies in wild ungulates reveals progress in understanding how co-infections affect immunity and parasite transmission and how environmental and genetic factors interact to shape immunity. Changes in bioavailability of micronutrients have been linked to immunity and health in wild ungulates. Although physiological stress in response to environmental change has been assessed, downstream effects on immunity have not been studied. Moreover, the taxonomic range of ungulates studied is limited to bovids (bighorn sheep, Soay sheep, chamois, musk oxen, bison, African buffalo) and a few cervids (red deer, black-tailed deer). We discuss areas where future studies in ungulates could lead to significant contributions in understanding the patterns of immunity and infection in natural populations and across species.
Collapse
Affiliation(s)
- Anna E. Jolles
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331
| | - Brianna R. Beechler
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331
| | - Brian P. Dolan
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331
| |
Collapse
|
49
|
Prominent amphibian (Xenopus laevis) tadpole type III interferon response to the frog virus 3 ranavirus. J Virol 2015; 89:5072-82. [PMID: 25717104 DOI: 10.1128/jvi.00051-15] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 02/17/2015] [Indexed: 01/22/2023] Open
Abstract
UNLABELLED Ranaviruses (Iridoviridae) are posing an increasing threat to amphibian populations, with anuran tadpoles being particularly susceptible to these viral infections. Moreover, amphibians are the most basal phylogenetic class of vertebrates known to possess both type I and type III interferon (IFN)-mediated immunity. Moreover, little is known regarding the respective roles of the IFN mediators in amphibian antiviral defenses. Accordingly, we transcriptionally and functionally compared the amphibian Xenopus laevis type I (IFN) and III (IFN-λ) IFNs in the context of infections by the ranavirus frog virus 3 (FV3). X. laevis IFN and IFN-λ displayed distinct tissue expression profiles. In contrast to our previous findings that X. laevis tadpoles exhibit delayed and modest type I IFN responses to FV3 infections compared to the responses of adults, here we report that tadpoles mount timely and robust type III IFN gene responses. Recombinant forms of these cytokines (recombinant X. laevis IFN [rXlIFN] and rXlIFN-λ) elicited antiviral gene expression in the kidney-derived A6 cell line as well as in tadpole leukocytes and tissues. However, rXlIFN-λ was less effective than rXlIFN in preventing FV3 replication in A6 cells and tadpoles and inferior at promoting tadpole survival. Intriguingly, FV3 impaired A6 cell and tadpole kidney type III IFN receptor gene expression. Furthermore, in A6 cultures rXlIFN-λ conferred equal or greater protection than rXlIFN against recombinant viruses deficient for the putative immune evasion genes, the viral caspase activation and recruitment domain (vCARD) or a truncated vIF-2α gene. Thus, in contrast to previous assumptions, tadpoles possess intact antiviral defenses reliant on type III IFNs, which are overcome by FV3 pathogens. IMPORTANCE Anuran tadpoles, including those of Xenopus laevis, are particularly susceptible to infection by ranavirus such as FV3. We investigated the respective roles of X. laevis type I and type III interferons (IFN and IFN-λ, respectively) during FV3 infections. Notably, tadpoles mounted timely and more robust IFN-λ gene expression responses to FV3 than adults, contrasting with the poorer tadpole type I IFN responses. However, a recombinant X. laevis IFN-λ (rXlIFN-λ) conferred less protection to tadpoles and the A6 cell line than rXlIFN, which may be explained by the FV3 impairment of IFN-λ receptor gene expression. The importance of IFN-λ in tadpole anti-FV3 defenses is underlined by the critical involvement of two putative immune evasion genes in FV3 resistance to IFN- and IFN-λ-mediated responses. These findings challenge the view that tadpoles have defective antiviral immunity and suggest, rather, that their antiviral responses are predominated by IFN-λ responses, which are overcome by FV3.
Collapse
|
50
|
Zanette LY, Clinchy M, Suraci JP. Diagnosing predation risk effects on demography: can measuring physiology provide the means? Oecologia 2014; 176:637-51. [PMID: 25234371 DOI: 10.1007/s00442-014-3057-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 08/18/2014] [Indexed: 11/30/2022]
Abstract
Predators kill prey thereby affecting prey survival and, in the traditional top-down view of predator limitation, that is their sole effect. Bottom-up food limitation alters the physiological condition of individuals affecting both fecundity and survival. Predators of course also scare prey inducing anti-predator defences that may carry physiological costs powerful enough to reduce prey fecundity and survival. Here, we consider whether measuring physiology can be used as a tool to unambiguously diagnose predation risk effects. We begin by providing a review of recent papers reporting physiological effects of predation risk. We then present a conceptual framework describing the pathways by which predators and food can affect prey populations and give an overview of predation risk effects on demography in various taxa. Because scared prey typically eat less the principal challenge we see will be to identify measures that permit us to avoid mistaking predator-induced reductions in food intake for absolute food shortage. To construct an effective diagnostic toolkit we advocate collecting multiple physiological measures and utilizing multivariate statistical procedures. We recommend conducting two-factor predation risk × food manipulations to identify those physiological effects least likely to be mistaken for responses to bottom-up food limitation. We suggest there is a critical need to develop a diagnostic tool that can be used when it is infeasible to experimentally test for predation risk effects on demography, as may often be the case in wildlife conservation, since failing to consider predation risk effects may cause the total impact of predators to be dramatically underestimated.
Collapse
Affiliation(s)
- Liana Y Zanette
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B7, Canada,
| | | | | |
Collapse
|