1
|
Brown CW, Goldfine CE, Allan-Blitz LT, Erickson TB. Occupational, environmental, and toxicological health risks of mining metals for lithium-ion batteries: a narrative review of the Pubmed database. J Occup Med Toxicol 2024; 19:35. [PMID: 39192280 DOI: 10.1186/s12995-024-00433-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND The global market for lithium-ion batteries (LIBs) is growing exponentially, resulting in an increase in mining activities for the metals needed for manufacturing LIBs. Cobalt, lithium, manganese, and nickel are four of the metals most used in the construction of LIBs, and each has known toxicological risks associated with exposure. Mining for these metals poses potential human health risks via occupational and environmental exposures; however, there is a paucity of data surrounding the risks of increasing mining activity. The objective of this review was to characterize these risks. METHODS We conducted a review of the literature via a systematic search of the PubMed database on the health effects of mining for cobalt, lithium, manganese, and nickel. We included articles that (1) reported original research, (2) reported outcomes directly related to human health, (3) assessed exposure to mining for cobalt, lithium, manganese, or nickel, and (4) had an available English translation. We excluded all other articles. Our search identified 183 relevant articles. RESULTS Toxicological hazards were reported in 110 studies. Exposure to cobalt and nickel mining were most associated with respiratory toxicity, while exposure to manganese mining was most associated with neurologic toxicity. Notably, no articles were identified that assessed lithium toxicity associated with mining exposure. Traumatic hazards were reported in six studies. Three articles reported infectious disease hazards, while six studies reported effects on mental health. Several studies reported increased health risks in children compared to adults. CONCLUSIONS The results of this review suggest that occupational and environmental exposure to mining metals used in LIBs presents significant risks to human health that result in both acute and chronic toxicities. Further research is needed to better characterize these risks, particularly regarding lithium mining.
Collapse
Affiliation(s)
- Connor W Brown
- Department of Emergency Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Division of Medical Toxicology, Mass General Brigham, Boston, MA, USA.
| | - Charlotte E Goldfine
- Department of Emergency Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Medical Toxicology, Mass General Brigham, Boston, MA, USA
| | - Lao-Tzu Allan-Blitz
- Division of Global Health Equity, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Timothy B Erickson
- Department of Emergency Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Medical Toxicology, Mass General Brigham, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Harvard Humanitarian Initiative, Boston, MA, USA
| |
Collapse
|
2
|
Wu Q, Lin X, Li S, Liang Z, Wang H, Tang T. Endophytic Bacillus sp. AP10 harboured in Arabis paniculata mediates plant growth promotion and manganese detoxification. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115170. [PMID: 37354566 DOI: 10.1016/j.ecoenv.2023.115170] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 05/27/2023] [Accepted: 06/18/2023] [Indexed: 06/26/2023]
Abstract
Phytoremediation of heavy metal-polluted soils assisted by plant-associated endophytes, is a suitable method for plant growth and manganese (Mn) removal in contaminated soils. This investigation was conducted to evaluate the Mn-resistant endophytic resources of the Mn hyperaccumulator Arabis paniculata and their functions in the phytoremediation of Mn2+ toxicity. This study isolated an endophytic bacterium with high Mn resistance and indole-3-acetic acid (IAA) production form A. paniculata and identified it as Bacillus sp. AP10 using 16 S rRNA gene sequencing analysis. The effects of Bacillus sp. AP10 on the alleviation of Mn2+ toxicity in Arabidopsis thaliana seedlings and the molecular mechanisms were further investigated using biochemical tests and RNA-seq analysis. Under Mn2+ stress, Bacillus sp. AP10 increased the biomass, chlorophyll content and the translocation factor (TF) values of Mn in the aerial parts, while decreased the malondialdehyde (MDA) content of A. thaliana seedlings compared with that of control plants. The differentially expressed genes (DEGs) and enrichment analysis showed that Bacillus sp. AP10 could significantly increase the expression of key genes involved in cell-wall loosening, which may improve plant growth under Mn stress. Superoxide dismutase (SOD)-encoding genes were detected as DEGs after AP10 treatment. Moreover, AP10 regulated the expression of genes responsible for phenylpropanoid pathway, which may promote antioxidant flavonoids accumulation for reactive oxygen species (ROS) scavenging to improve Mn tolerance. The activation of ATP-binding cassette (ABC) transporter gene expression especially ABCB1 after AP10 stimulation, explained the elevation of metal ion binding or transport related to enhanced Mn accumulation in plants. Futhermore, AP10 might alleviate Mn toxicity through enhancing abscisic acid (ABA) responsive gene expression and ABA biosynthesis. These findings provide new insights into the functions and regulatory mechanism of Bacillus sp. AP10 in promoting plant growth, and tolerance, improving Mn accumulation and alleviating Mn2+ toxicity in plants. The application of Bacillus sp. AP10 as potential phytoremediators may be a promising strategy in Mn2+ contaminated fields. AVAILABILITY OF DATA AND MATERIALS: The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.
Collapse
Affiliation(s)
- Qingtao Wu
- School of Life and Health Sciences, Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal Polluted Soils, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Xianjing Lin
- School of Life and Health Sciences, Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal Polluted Soils, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Shaoqing Li
- School of Life and Health Sciences, Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal Polluted Soils, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Zhenting Liang
- School of Life and Health Sciences, Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal Polluted Soils, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Haihua Wang
- School of Life and Health Sciences, Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal Polluted Soils, Hunan University of Science and Technology, Xiangtan 411201, China.
| | - Ting Tang
- School of Life and Health Sciences, Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal Polluted Soils, Hunan University of Science and Technology, Xiangtan 411201, China.
| |
Collapse
|
3
|
Otunola BO, Aghoghovwia MP, Thwala M, Gómez-Arias A, Jordaan R, Hernandez JC, Ololade OO. Improving capacity for phytoremediation of Vetiver grass and Indian mustard in heavy metal (Al and Mn) contaminated water through the application of clay minerals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:53577-53588. [PMID: 36859642 PMCID: PMC10119195 DOI: 10.1007/s11356-023-26083-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
One of the consequences of mining is the release of heavy metals into the environment, especially water bodies. Phytoremediation of areas contaminated by heavy metals using Vetiver grass and Indian mustard is cost-effective and environmentally friendly. This study aimed at enhancing remediation of heavy metal contaminated water through the simultaneous hybrid application of clay minerals (attapulgite and bentonite) and Vetiver grass or Indian mustard. A 21-day greenhouse experiment was carried out to investigate the effectiveness of the clay minerals to improve heavy metal phytoremediation. The highest accumulation of aluminium (Al) by Vetiver grass was 371.8 mg/kg in the BT2.5VT treatment, while for Mn, the highest accumulation of 34.71 mg/kg was observed in the AT1VT treatment. However, Indian mustard showed no significant uptake of heavy metals, but suffered heavy metal toxicity despite the addition of clay minerals. From this study, it was evident that bentonite added at 2.5% (w/v) could improve the phytoremediation capacity of Vetiver grass for Al and Mn polluted water. The current laboratory-scale findings provided a basis for field trials earmarked for remediation in a post-mining coal environment in South Africa. This remediation approach can also be adopted in other places.
Collapse
Affiliation(s)
- Beatrice Omonike Otunola
- Centre for Environmental Management, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa.
| | - Makhosazana P Aghoghovwia
- Department of Soil, Crop and Climate Sciences, University of the Free State, Bloemfontein, South Africa
| | - Melusi Thwala
- Centre for Environmental Management, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa
- Science Advisory and Strategic Partnerships, Academy of Science of South Africa, Pretoria, South Africa
| | - Alba Gómez-Arias
- Centre for Mineral Biogeochemistry, University of the Free State, Bloemfontein, South Africa
| | - Rian Jordaan
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa
| | - Julio Castillo Hernandez
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Olusola Oluwayemisi Ololade
- Centre for Environmental Management, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa
| |
Collapse
|
4
|
Soran ML, Sîrb AN, Lung I, Opriş O, Culicov O, Stegarescu A, Nekhoroshkov P, Gligor DM. A Multi-Method Approach for Impact Assessment of Some Heavy Metals on Lactuca sativa L. Molecules 2023; 28:759. [PMID: 36677817 PMCID: PMC9863620 DOI: 10.3390/molecules28020759] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Heavy metals represent a large category of pollutants. Heavy metals are the focus of researchers around the world, mainly due to their harmful effects on plants. In this paper, the influence of copper, cadmium, manganese, nickel, zinc and lead, present in soil in different concentrations (below the permissible limit, the maximum permissible concentration and a concentration higher than the maximum permissible limit) on lettuce (Lactuca sativa L.) was evaluated. For this purpose, the authors analyzed the variation of photosynthetic pigments, total polyphenols, antioxidant activity and the elemental content in the studied plants. The experimental results showed that the variation of the content of biologically active compounds, elemental content and the antioxidant activity in the plants grown in contaminated soil, compared to the control plants, depends on the type and concentration of the metal added to the soil. The biggest decrease was recorded for plants grown in soil treated with Ni I (-42.38%) for chlorophyll a, Zn II (-32.92%) for chlorophyll b, Ni I (-40.46%) for carotenoids, Pb I (-40.95%) for polyphenols and Cu III (-29.42%) for DPPH. On the other hand, the largest increase regarding the amount of biologically active compounds was registered for Mn I (88.24%) in the case of the chlorophyll a, Mn I (65.56%) for chlorophyll b, Pb I (116.03%) for carotenoids, Ni III (1351.23%) for polyphenols and Ni III (1149.35%) for DPPH.
Collapse
Affiliation(s)
- Maria-Loredana Soran
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Aura Nicoleta Sîrb
- Faculty of Environmental Science and Engineering, Babeș-Bolyai University, 30 Fântânele, 400294 Cluj-Napoca, Romania
| | - Ildiko Lung
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Ocsana Opriş
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Otilia Culicov
- Joint Institute for Nuclear Research, 6 Joliot-Curie, 1419890 Dubna, Russia
- National Institute for Research and Development in Electrical Engineering ICPE-CA, 313 Splaiul Unirii, 030138 Bucharest, Romania
| | - Adina Stegarescu
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Pavel Nekhoroshkov
- Joint Institute for Nuclear Research, 6 Joliot-Curie, 1419890 Dubna, Russia
| | - Delia-Maria Gligor
- Faculty of Environmental Science and Engineering, Babeș-Bolyai University, 30 Fântânele, 400294 Cluj-Napoca, Romania
| |
Collapse
|
5
|
Li H, Wu Y, Tang Y, Fang B, Luo P, Yang L, Jiang Q. A manganese-oxidizing bacterium-Enterobacter hormaechei strain DS02Eh01: Capabilities of Mn(II) immobilization, plant growth promotion and biofilm formation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119775. [PMID: 35843452 DOI: 10.1016/j.envpol.2022.119775] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/06/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
While biogenic Mn oxides (BioMnOx) generated by Mn(II)-oxidizing bacteria (MOB) have attracted increasing attention, a MOB strain isolated from Mn-polluted sediments was identified and assigned as Enterobacter hormaechei DS02Eh01. Its Mn(II) immobilization activity, plant growth-promoting traits, and biofilm formation capability were investigated. The results showed that strain DS02Eh01 was found to be able to tolerate Mn(II) up to 122 mM. The strain immobilized Mn(II) in aquatic media mainly through extracellular adsorption, bio-oxidation and pH-induced precipitation as well as manganese oxidation. DS02Eh01-derived BioMnOx are negatively charged and have a larger specific surface area (86.70 m2/g) compared to the previously reported BioMnOx. The strain can immobilize Mn(II) at extreme levels, for instance, when it was exposed to 20 mM Mn(II), about 59% of Mn(II) were found immobilized and 17% of Mn(II) were converted to MnOx. The SEM and TEM observation revealed that the DS02Eh01-derived BioMnOx were aggregates doped with granules and microbial pellets. The precipitated Mn(II) and the Mn(III)/Mn(IV) oxides co-existed in BioMnOx, in which Mn(II) and Mn(IV) were found dominant with Mn(II) accounting for 49.6% and Mn(IV) accounting for 41.3%. DS02Eh01 possesses plant growth-promoting traits and biofilm formation capacity even under Mn(II) exposure. Mn(II) exposure at 5 mM was found to stimulate strain DS02Eh01 to form biofilms, from which, the extracted EPS was mainly composed of aromatic proteins. This study reveals that E. hormaechei strain DS02Eh01 possesses the potential in environmental ecoremediation via coupling processes of macrophytes extraction, biochemical immobilization and biosorption.
Collapse
Affiliation(s)
- Huilan Li
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials & MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China; Key Laboratory of Environmental Protection (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530004, China
| | - Yu Wu
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials & MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China; Key Laboratory of Environmental Protection (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530004, China
| | - Yankui Tang
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials & MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China; Key Laboratory of Environmental Protection (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530004, China.
| | - Bo Fang
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials & MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China; Key Laboratory of Environmental Protection (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530004, China
| | - Penghong Luo
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials & MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China; Key Laboratory of Environmental Protection (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530004, China
| | - Luling Yang
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials & MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China; Key Laboratory of Environmental Protection (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530004, China
| | - Qiming Jiang
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials & MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China; Key Laboratory of Environmental Protection (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530004, China
| |
Collapse
|
6
|
Heng YY, Asad I, Coleman B, Menard L, Benki-Nugent S, Hussein Were F, Karr CJ, McHenry MS. Heavy metals and neurodevelopment of children in low and middle-income countries: A systematic review. PLoS One 2022; 17:e0265536. [PMID: 35358213 PMCID: PMC8970501 DOI: 10.1371/journal.pone.0265536] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 03/03/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The presence of harmful environmental exposures, which disproportionately affects low-and-middle income countries (LMICs), contributes to >25% of deaths and diseases worldwide and detrimentally affects child neurodevelopment. Few resources succinctly summarize the existing literature on this topic. Our objective is to systematically review and characterize the evidence regarding the relationship between heavy metals and neurodevelopment of children in LMICs. METHODS We conducted a medical librarian-curated search on multiple online databases to identify articles that included individuals <18 years living in a LMIC, quantitatively measured exposure to a heavy metal (either prenatal or postnatal), and used a standardized measurement of neurodevelopment (i.e. cognitive, language, motor, and behavior). Reviews, editorials, or case studies were excluded. Results were analyzed qualitatively, and quality was assessed. RESULTS Of the 18,043 screened articles, 298 full-text articles were reviewed, and 100 articles met inclusion criteria. The included studies represented data from 19 LMICs, only one of which was classified as a low-income country. Ninety-four percent of postnatal lead and all postnatal manganese studies showed a negative association with metal exposure and neurodevelopment, which were the strongest relationships among the metals studied. Postnatal exposure of mercury was associated with poor neurodevelopment in only half of studies. Limited data on postnatal arsenic and cadmium suggests an association with worse neurodevelopment. Findings were mixed for prenatal arsenic and lead, although some evidence supports that the neurotoxicity of lead was amplified in the presence of manganese. CONCLUSIONS AND POTENTIAL IMPACT We found that lead and manganese appear to consistently have a detrimental effect on the neurodevelopment of children, and more evidence is needed for mercury, arsenic, and cadmium. Better characterization of these effects can motivate and inform prioritization of much needed international policies and programs to reduce heavy metal exposures for young children within LMICs.
Collapse
Affiliation(s)
- Yi Yan Heng
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Iqra Asad
- School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Bailey Coleman
- School of Health and Human Sciences, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Laura Menard
- Ruth Lilly Medical Library, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Sarah Benki-Nugent
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Faridah Hussein Were
- Department of Chemistry, College of Biological and Physical Sciences of the University of Nairobi, Nairobi, Kenya
| | - Catherine J. Karr
- Department of Environmental and Occupational Health Sciences, Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
| | - Megan S McHenry
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| |
Collapse
|
7
|
Dórea JG. Neurodevelopment and exposure to neurotoxic metal(loid)s in environments polluted by mining, metal scrapping and smelters, and e-waste recycling in low and middle-income countries. ENVIRONMENTAL RESEARCH 2021; 197:111124. [PMID: 33861977 DOI: 10.1016/j.envres.2021.111124] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
This review covers a wide body of literature to gain an understanding of the impacts of informal activities related to metal extraction (primary mining and recycling) on early life exposure to neurotoxicants and on neurodevelopment. In primary mining, gold extraction with Hg amalgamation is the main environmental cause of Hg pollution in most artisanal small-scale gold mining (ASGM) activities around the world. Nevertheless, in Sub-Saharan Africa (SSA), Pb disrupted from gold-related ores, mining, and artisanal cookware production are an important neurotoxicant that seriously contaminates the affected population, with devastating effects on children. In e-waste recycling settings, the range of neurotoxic substances that contaminate mothers and children is wider than in primary mining environments. Thus, Hg and Pb are major pre- and postnatal neurotoxicants affecting children in the informal metal extraction activities and SSA countries show the highest record of human contamination and of neurotoxic effects on children. There are additional sources of neurotoxic contamination from mining and metal processing activities (cyanide tailing in South America and SSA) and/or co-exposure to Hg-containing products such as cosmetics (soaps and Hg-based skin lightning creams in Africa) and pediatric Thimerosal-containing vaccines (TCVs, that breaks down to ethyl-mercury) in current use in middle and low income countries. However, the action of these neurotoxicants (per se or in combination) on children needs more attention and research. Studies show a negative association between biomarkers of all environmental metal(loid)s (As, Cd, Hg, Mn, and Pb) studied and neurodevelopment in young children. Sadly, in many unregulated activities, child labor is widely employed, thus presenting an additional occupational exposure. Children living in polluted environments related to metal processing are disproportionately exposed to a wide range of co-occurring neurotoxic substances. The review showed compelling evidence from highly representative parts of the world (Africa, Asia, and Latin America) that the studied neurotoxic substances negatively affected areas of the brain associated with language, memory and executive function, as well as psychosocial behavior. Protecting the environment and children from unregulated and highly polluting metal extraction and processing are inextricably intertwined and deserve urgent attention.
Collapse
Affiliation(s)
- José G Dórea
- Universidade de Brasília, Brasília, 70919-970, DF, Brazil.
| |
Collapse
|
8
|
Dórea JG. Neurodevelopment in mining environments entails different types of exposure and non-essential element interactions: Broadening the significance of the Nyanza et al study in Tanzania. ENVIRONMENT INTERNATIONAL 2021; 149:106407. [PMID: 33508535 DOI: 10.1016/j.envint.2021.106407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Affiliation(s)
- José G Dórea
- Faculty of Health Sciences, Universidade de Brasília, 70919-970 DF Brasília, Brazil.
| |
Collapse
|
9
|
Dórea JG. Exposure to environmental neurotoxic substances and neurodevelopment in children from Latin America and the Caribbean. ENVIRONMENTAL RESEARCH 2021; 192:110199. [PMID: 32941839 DOI: 10.1016/j.envres.2020.110199] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 05/24/2023]
Abstract
Environmental (and occupational) exposure to neurotoxic substances is a worldwide problem that can affect children's neurodevelopment (ND). In Latin American and Caribbean (LAC) countries there are over 300 million children living under the threat of neurodevelopmental delays due to toxic environmental exposure. Large industrial centers, intense mining and agricultural activities, along with changing complex ecosystems constitute a mosaic that drives contamination of air, water and the food chain. Neurotoxic contaminants such as pesticides (organochlorines, organophosphates, carbamates, pyrethroids, neonicotinoids, and manganese fungicides), chemicals of industrial use (phthalates), and metals (Hg, Pb, Al, As, F, Cd, Mo, Mn) are at the center of environmental exposure studies. Exposure to neurotoxic substances singly or in combination with other compounds or socioeconomic stressors (maternal education, socio-economic and nutritional status) intertwined with occupational and para-occupational exposure can affect ND (motor, cognition, behavior) of children. Significant negative effects of pesticides and neurotoxic elements on ND were found in all studied countries, affecting especially the less-privileged children from laboring families. Studies showed that exposures to the neurotoxicants in human milk are secondary to their more lasting effects during prenatal exposure. This review integrates exposure (prenatal and breastfeeding), metabolism, and ND effects of neurotoxicants. It highlights the overwhelming evidence showing that current levels of exposures are hazardous and detrimental to children's ND in LAC countries. The evidence indicates that a reduction in neurotoxicant exposure is essential to protect children's ND. Therefore, it is urgent to adopt policies and actions that prevent and remediate region-specific children's ND issues.
Collapse
Affiliation(s)
- José G Dórea
- Universidade de Brasília, Brasília, 70919-970, DF, Brazil.
| |
Collapse
|
10
|
Liu W, Xin Y, Li Q, Shang Y, Ping Z, Min J, Cahill CM, Rogers JT, Wang F. Biomarkers of environmental manganese exposure and associations with childhood neurodevelopment: a systematic review and meta-analysis. Environ Health 2020; 19:104. [PMID: 33008482 PMCID: PMC7531154 DOI: 10.1186/s12940-020-00659-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/22/2020] [Indexed: 05/17/2023]
Abstract
BACKGROUND Although prior studies showed a correlation between environmental manganese (Mn) exposure and neurodevelopmental disorders in children, the results have been inconclusive. There has yet been no consistent biomarker of environmental Mn exposure. Here, we summarized studies that investigated associations between manganese in biomarkers and childhood neurodevelopment and suggest a reliable biomarker. METHODS We searched PubMed and Web of Science for potentially relevant articles published until December 31th 2019 in English. We also conducted a meta-analysis to quantify the effects of manganese exposure on Intelligence Quotient (IQ) and the correlations of manganese in different indicators. RESULTS Of 1754 citations identified, 55 studies with 13,388 subjects were included. Evidence from cohort studies found that higher manganese exposure had a negative effect on neurodevelopment, mostly influencing cognitive and motor skills in children under 6 years of age, as indicated by various metrics. Results from cross-sectional studies revealed that elevated Mn in hair (H-Mn) and drinking water (W-Mn), but not blood (B-Mn) or teeth (T-Mn), were associated with poorer cognitive and behavioral performance in children aged 6-18 years old. Of these cross-sectional studies, most papers reported that the mean of H-Mn was more than 0.55 μg/g. The meta-analysis concerning H-Mn suggested that a 10-fold increase in hair manganese was associated with a decrease of 2.51 points (95% confidence interval (CI), - 4.58, - 0.45) in Full Scale IQ, while the meta-analysis of B-Mn and W-Mn generated no such significant effects. The pooled correlation analysis revealed that H-Mn showed a more consistent correlation with W-Mn than B-Mn. Results regarding sex differences of manganese associations were inconsistent, although the preliminary meta-analysis found that higher W-Mn was associated with better Performance IQ only in boys, at a relatively low water manganese concentrations (most below 50 μg/L). CONCLUSIONS Higher manganese exposure is adversely associated with childhood neurodevelopment. Hair is the most reliable indicator of manganese exposure for children at 6-18 years of age. Analysis of the publications demonstrated sex differences in neurodevelopment upon manganese exposure, although a clear pattern has not yet been elucidated for this facet of our study.
Collapse
Affiliation(s)
- Weiwei Liu
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yongjuan Xin
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Qianwen Li
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yanna Shang
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Zhiguang Ping
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Junxia Min
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Catherine M. Cahill
- Neurochemistry Laboratory, Department of Psychiatry-Neuroscience, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA USA
| | - Jack T. Rogers
- Neurochemistry Laboratory, Department of Psychiatry-Neuroscience, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA USA
| | - Fudi Wang
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou, China
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
11
|
Borja-Serrano P, Ochoa-Herrera V, Maurice L, Morales G, Quilumbaqui C, Tejera E, Machado A. Determination of the Microbial and Chemical Loads in Rivers from the Quito Capital Province of Ecuador (Pichincha)-A Preliminary Analysis of Microbial and Chemical Quality of the Main Rivers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E5048. [PMID: 32674286 PMCID: PMC7400137 DOI: 10.3390/ijerph17145048] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 11/23/2022]
Abstract
Contamination of natural water sources is one of the main health problems worldwide, which could be caused by chemicals, metals, or microbial agents. This study aimed to analyze the quality of 18 rivers located in Quito, the capital province of Pichincha, Ecuador, through physico-chemical and microbial parameters. The E. coli and total coliforms assessments were performed by a counting procedure in growth media. Polymerase chain reaction (PCR) was realized to detect several microbial genera, as well as Candida albicans, two parasites (Cryptosporidium and Giardia spp.) and E. coli pathotypes: enterohemorrhagic E. coli (EHEC), enteroaggregative E. coli (EAEC), enteroinvasive E. coli (EIEC) and enteropathogenic E. coli (EPEC). Additionally, physico-chemical parameters and major and trace metals were analyzed in each surface water sample. Our results demonstrated that most of the rivers analyzed do not comply with the microbial, physico-chemical, and metal requirements established by the Ecuadorian legislation. In terms of microbial pollution, the most polluted rivers were Monjas, Machángara, Pisque, and Pita Rivers. Furthermore, three out of four analyzed E. coli pathotypes (EIEC, EHEC, and EAEC) were detected in certain rivers, specifically: Monjas River showed the presence of EIEC and EHEC; in the Machángara River, EAEC and EIEC were detected; and finally, EIEC was present in the Guayllabamba River. Several physico-chemical parameters, such as pH, CODtotal, and TSS values, were higher than the Ecuadorian guidelines in 11, 28, and 28% of the rivers, respectively. Regarding heavy metals, Zn, Cu, Ni, Pb, Cd, and Mn surpassed the established values in 94, 89, 61, 22, 22, and 17% of the rivers, respectively. Machangara River was the only one that registered higher Cr concentrations than the national guidelines. The values of Al and Fe were above the recommended values in 83 and 72% of the rivers. Overall, based on the physical-chemical and microbiological parameters the most contaminated rivers were Machángara and Monjas. This study revealed severe contaminations in Ecuadorean Rivers; further studies should evaluate the sources of contamination and their impact on public health.
Collapse
Affiliation(s)
- Pamela Borja-Serrano
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales (COCIBA), Universidad San Francisco de Quito (USFQ), Diego de Robles y Vía Interoceánica, Campus Cumbayá, Casilla Postal 17-1200-841, Quito 170901, Ecuador; (P.B.-S.); (V.O.-H.)
| | - Valeria Ochoa-Herrera
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales (COCIBA), Universidad San Francisco de Quito (USFQ), Diego de Robles y Vía Interoceánica, Campus Cumbayá, Casilla Postal 17-1200-841, Quito 170901, Ecuador; (P.B.-S.); (V.O.-H.)
- Colegio de Ciencias e Ingeniería, El Politécnico, Instituto Biósfera, Universidad San Francisco de Quito, Quito 170901, Ecuador; (G.M.); (C.Q.)
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Laurence Maurice
- Geosciences Environnement Toulouse, CNRS/IRD/CNES/Université Paul Sabatier, 14 avenue Edouard Belin, 31400 Toulouse, France;
- Área de Salud de la Universidad Andina Simón Bolívar, Toledo N22-80, P.O. Box 17-12-569, Quito 170143, Ecuador
| | - Gabriela Morales
- Colegio de Ciencias e Ingeniería, El Politécnico, Instituto Biósfera, Universidad San Francisco de Quito, Quito 170901, Ecuador; (G.M.); (C.Q.)
| | - Cristian Quilumbaqui
- Colegio de Ciencias e Ingeniería, El Politécnico, Instituto Biósfera, Universidad San Francisco de Quito, Quito 170901, Ecuador; (G.M.); (C.Q.)
| | - Eduardo Tejera
- Facultad de Ingeniería y Ciencias Aplicadas, Grupo de Bioquimioinformática, Universidad de Las Américas, Quito 170125, Ecuador;
| | - António Machado
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales (COCIBA), Universidad San Francisco de Quito (USFQ), Diego de Robles y Vía Interoceánica, Campus Cumbayá, Casilla Postal 17-1200-841, Quito 170901, Ecuador; (P.B.-S.); (V.O.-H.)
| |
Collapse
|
12
|
Balachandran RC, Mukhopadhyay S, McBride D, Veevers J, Harrison FE, Aschner M, Haynes EN, Bowman AB. Brain manganese and the balance between essential roles and neurotoxicity. J Biol Chem 2020; 295:6312-6329. [PMID: 32188696 PMCID: PMC7212623 DOI: 10.1074/jbc.rev119.009453] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Manganese (Mn) is an essential micronutrient required for the normal development of many organs, including the brain. Although its roles as a cofactor in several enzymes and in maintaining optimal physiology are well-known, the overall biological functions of Mn are rather poorly understood. Alterations in body Mn status are associated with altered neuronal physiology and cognition in humans, and either overexposure or (more rarely) insufficiency can cause neurological dysfunction. The resultant balancing act can be viewed as a hormetic U-shaped relationship for biological Mn status and optimal brain health, with changes in the brain leading to physiological effects throughout the body and vice versa. This review discusses Mn homeostasis, biomarkers, molecular mechanisms of cellular transport, and neuropathological changes associated with disruptions of Mn homeostasis, especially in its excess, and identifies gaps in our understanding of the molecular and biochemical mechanisms underlying Mn homeostasis and neurotoxicity.
Collapse
Affiliation(s)
| | - Somshuvra Mukhopadhyay
- Division of Pharmacology and Toxicology, College of Pharmacy, Institute for Cellular and Molecular Biology, and Institute for Neuroscience, University of Texas, Austin, Texas 78712
| | - Danielle McBride
- College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267
| | - Jennifer Veevers
- College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267
| | - Fiona E Harrison
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | | | - Erin N Haynes
- College of Public Health, University of Kentucky, Lexington, Kentucky 40536
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
13
|
Reuben A, Frischtak H, Berky A, Ortiz EJ, Morales AM, Hsu‐Kim H, Pendergast LL, Pan WK. Elevated Hair Mercury Levels Are Associated With Neurodevelopmental Deficits in Children Living Near Artisanal and Small-Scale Gold Mining in Peru. GEOHEALTH 2020; 4:e2019GH000222. [PMID: 32490301 PMCID: PMC7240868 DOI: 10.1029/2019gh000222] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 02/10/2020] [Accepted: 03/11/2020] [Indexed: 05/08/2023]
Abstract
Children living near artisanal and small-scale gold mining (ASGM) are at risk of exposure to mercury, a neurotoxicant. It is not certain whether such exposures are harming development, as they occur in underresourced contexts entwined with other stressors, such as malnutrition and enteric infection. This study sought to investigate the association between hair-mercury levels and visual-motor, cognitive, and physical development among children living near ASGM in the Peruvian Amazon. Total hair-mercury levels were measured in 164 children ages 5-12 living in Madre de Dios, Peru. Primary outcomes included Visual-Motor Integration assessed via the Beery-VMI Developmental Test, General Cognitive Ability assessed via the Batería-III Woodcock-Munoz (Spanish-language Woodcock-Johnson Tests of Cognitive Abilities), and Physical Health assessed via anthropometry/hemoglobin counts. Mean (SD) hair-mercury level was 2.06 (2.43) μg/g. Fifty-four children (32.9%) had hair-mercury levels above the World Health Organization reference level of 2.0 μg/g. After controlling for sex, child age, maternal education, and family socioeconomic status, each one unit increase in log hair-mercury level was associated with a 1.01 unit decrease in Visual-Motor Integration (95%CI: -2.06, 0.05, p = 0.061), a 2.59 unit decrease in General Cognitive Ability (95%CI: -4.52, -0.66, p = 0.012), and a 2.43 unit decrease in Physical Health (95%CI: -5.34, 0.49, p = 0.096). After adjustment for covariates, children with hair-mercury levels exceeding the World Health Organization reference level scored 4.68 IQ points lower in Cognitive Ability than their peers. Mercury exposures related to ASGM may be harming child development in the Peruvian Amazon. Children in this region may benefit from intervention to reach their full developmental potential.
Collapse
Affiliation(s)
- Aaron Reuben
- Department of Psychology and NeuroscienceDuke UniversityDurhamNCUSA
| | | | - Axel Berky
- Global Health InstituteDuke UniversityDurhamNCUSA
- Nicholas School of the EnvironmentDuke UniversityDurhamNCUSA
| | - Ernesto J. Ortiz
- Global Health InstituteDuke UniversityDurhamNCUSA
- Nicholas School of the EnvironmentDuke UniversityDurhamNCUSA
| | - Ana Maria Morales
- Centro de Estudios, Investigaciones y Servicios en Salud Publica (CENSAP)Puerto MaldonadoPeru
| | - Heileen Hsu‐Kim
- Nicholas School of the EnvironmentDuke UniversityDurhamNCUSA
| | - Laura L. Pendergast
- Department of Psychological Studies in EducationTemple UniversityPhiladelphiaPAUSA
| | - William K. Pan
- Global Health InstituteDuke UniversityDurhamNCUSA
- Nicholas School of the EnvironmentDuke UniversityDurhamNCUSA
| |
Collapse
|
14
|
Tang Y, Kang H, Qin Z, Zhang K, Zhong Y, Li H, Mo L. Significance of manganese resistant bacillus cereus strain WSE01 as a bioinoculant for promotion of plant growth and manganese accumulation in Myriophyllum verticillatum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:135867. [PMID: 31865081 DOI: 10.1016/j.scitotenv.2019.135867] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 10/21/2019] [Accepted: 11/28/2019] [Indexed: 06/10/2023]
Abstract
Endophytic bacteria are generally helpful for plant growth and protection. Strain WSE01, which was identified as bacillus cereus, was isolated from the stem of Myriophyllum verticillatum and it displayed a high tolerance to Mn (1500 mg/L). The strain was found to be able to produce indole-3-acetic acid (IAA) and siderophores, fix the atmospheric nitrogen and dissolve potassium from insoluble K-bearing minerals. In hydroponic culture experiments, the inoculation of strain WSE01 significantly promoted the growth and increased the leaf enzyme activity in the inoculated plant M. verticillatum. Furthermore, the manganese content was increased by 36.4% in stems and by 54.7% in leaves of the inoculated plant under Mn stress at 400 mg/L, compared to the non-inoculated group. This study suggests that the strain WSE01 has the potential to be used as biocontrol and/or biofertilizing agents for application in macrophyte M. verticillatum and conduces to achieving more effective phytoremediation of metal-contaminated waters.
Collapse
Affiliation(s)
- Yankui Tang
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, China.
| | - Houyao Kang
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Zhiyi Qin
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Kaixuan Zhang
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Yaxuan Zhong
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Huilan Li
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Lihong Mo
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| |
Collapse
|
15
|
Frisbie SH, Mitchell EJ, Roudeau S, Domart F, Carmona A, Ortega R. Manganese levels in infant formula and young child nutritional beverages in the United States and France: Comparison to breast milk and regulations. PLoS One 2019; 14:e0223636. [PMID: 31689314 PMCID: PMC6830775 DOI: 10.1371/journal.pone.0223636] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/20/2019] [Indexed: 11/27/2022] Open
Abstract
Exposure to high levels of manganese (Mn) in children has recently been associated with adverse neurodevelopmental effects. Current infant formula regulations for Mn content were set between 1981 (United States), 2006 (European Union, France), and 2007 (Codex Alimentarius) prior to the publication of much of the growing body of research on the developmental neurotoxicity of Mn. In this study, we sought to measure the concentrations of Mn in some infant formulas and young child nutritional beverages available on the United States (US) and French markets using ion beam analysis by particle induced X-ray emission (PIXE) spectrometry and then compare the analytical results to concentrations reported in the literature for breast milk and applicable infant formula regulations and guidelines. We were particularly interested in measuring Mn concentrations in product types for which there is very little data from previous surveys, especially soy-based, rice-based, goat-milk based, chocolate-flavored, and nutritional beverages for young children that are not regulated as infant or follow-on formulas (e.g. “toddler formulas” and “toddler powders”). We purchased 44 infant formulas and young child nutritional beverage products in the US and France with varying protein sources (cow-milk, goat-milk, soy, rice) labelled for birth to 3 years. We selected these samples using maximum variation sampling to explore market extremes to facilitate comparisons to regulatory limits. Since this sampling method is non-probabilistic, other inferences cannot be made beyond this set of samples to the overall markets. We used ion beam analysis to measure the concentrations of Mn in each product. The range of measured Mn concentrations in the products is 160–2,800 μg/L, substantially higher than the 3–6 μg/L mean Mn concentration reported in human breast milk. All products satisfied national and Codex Alimentarius Commission (CAC) international standards for minimum Mn content in infant formulas; however, 7/25 of the products purchased in the US exceeded the CAC Guidance Upper Level of 100 μg Mn/kcal for infant formula.
Collapse
Affiliation(s)
- Seth H. Frisbie
- Department of Chemistry and Biochemistry, Norwich University, Northfield, VT, United States of America
- * E-mail:
| | - Erika J. Mitchell
- Better Life Laboratories, Incorporated, East Calais, VT, United States of America
| | - Stéphane Roudeau
- University of Bordeaux, Centre d’Etudes Nucléaires de Bordeaux Gradignan (CENBG), Gradignan, France
- Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), CENBG, Gradignan, France
| | - Florelle Domart
- University of Bordeaux, Centre d’Etudes Nucléaires de Bordeaux Gradignan (CENBG), Gradignan, France
- Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), CENBG, Gradignan, France
| | - Asuncion Carmona
- University of Bordeaux, Centre d’Etudes Nucléaires de Bordeaux Gradignan (CENBG), Gradignan, France
- Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), CENBG, Gradignan, France
| | - Richard Ortega
- University of Bordeaux, Centre d’Etudes Nucléaires de Bordeaux Gradignan (CENBG), Gradignan, France
- Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), CENBG, Gradignan, France
| |
Collapse
|
16
|
Manganese Exposure and Cognition Across the Lifespan: Contemporary Review and Argument for Biphasic Dose-Response Health Effects. Curr Environ Health Rep 2018; 3:392-404. [PMID: 27722879 DOI: 10.1007/s40572-016-0108-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Manganese (Mn) is both an essential micronutrient and potential neurotoxicant. This dual role underlies a growing body of literature demonstrating that Mn exhibits a biphasic dose-response relationship with neurocognitive outcomes. We reviewed recent epidemiologic studies from 2007 to 2016 that investigated the relationship between Mn exposure and cognitive outcomes across the lifespan: early life, school-aged children, and adulthood. In total, 27 research articles were included in this review: 12 pediatric and 15 adult studies (10 occupational and five environmental exposures). The majority of these studies provided evidence of the negative effects of Mn exposure on cognition. The pediatric literature provides evidence that both high and low levels of Mn are negatively associated with intellectual development. Future Mn research should include examination of non-linear relationships and multiple neurotoxicants across the lifespan and particularly during critical developmental windows.
Collapse
|
17
|
Pavilonis B, Grassman J, Johnson G, Diaz Y, Caravanos J. Characterization and risk of exposure to elements from artisanal gold mining operations in the Bolivian Andes. ENVIRONMENTAL RESEARCH 2017; 154:1-9. [PMID: 27992737 DOI: 10.1016/j.envres.2016.12.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 12/01/2016] [Accepted: 12/03/2016] [Indexed: 06/06/2023]
Abstract
Artisanal and small-scale gold mining (ASGM) offers low-skilled workers an opportunity to elevate themselves out of poverty. However, this industry operates with little to no pollution controls and the cost to the environment and human health can be large. The objectives of this study were to measure levels of arsenic (As), manganese (Mn), cobalt (Co), lead (Pb), and mercury (Hg) in the environment and characterize health risks to miners and residents in an area with active ASGM operations. An exposure assessment was conducted at two different mining sites and a nearby village in the Bolivian Anders. The resulting measurements were then used to quantify cancerous and noncancerous health risks to children and adults working at and living near ASGM areas. Soil concentrations of As were well above background levels and showed great variations between the village and mining area. Mercury vapor levels at the two mining sites were approximately 30 times larger than the EPA reference concentration. The risk of developing non-cancerous health effects were primarily due to exposure to As and Hg. The probability of individuals developing cancer was considerably increased with adult miners having a probability of 1.3 out of 100. Cancer potential was driven by exposure to As, with de minimus cancer risk from all other elements. Based on the environmental characterization of elements in soils and Hg vapors, the risk of developing cancerous and non-cancerous health outcomes were above a level of concern based on EPA risk assessment guidance. Personal protective equipment was not worn by workers and Hg amalgam is commonly heated in workers' homes. Better education of the risks of ASGM is needed as well as simple controls to reduce exposure.
Collapse
Affiliation(s)
- Brian Pavilonis
- City University of New York School of Public Health, 55 W 125th St, New York, NY 10027, USA.
| | - Jean Grassman
- City University of New York School of Public Health, 55 W 125th St, New York, NY 10027, USA
| | - Glen Johnson
- City University of New York School of Public Health, 55 W 125th St, New York, NY 10027, USA
| | - Yilmael Diaz
- City University of New York School of Public Health, 55 W 125th St, New York, NY 10027, USA
| | - Jack Caravanos
- City University of New York School of Public Health, 55 W 125th St, New York, NY 10027, USA
| |
Collapse
|
18
|
González-Merizalde MV, Menezes-Filho JA, Cruz-Erazo CT, Bermeo-Flores SA, Sánchez-Castillo MO, Hernández-Bonilla D, Mora A. Manganese and Mercury Levels in Water, Sediments, and Children Living Near Gold-Mining Areas of the Nangaritza River Basin, Ecuadorian Amazon. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 71:171-82. [PMID: 27173830 DOI: 10.1007/s00244-016-0285-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 04/30/2016] [Indexed: 05/24/2023]
Abstract
Artisanal and small-scale gold-mining activities performed in mountain areas of the Southern Ecuadorian Amazon have incorporated several heavy metals into the aquatic systems, thus increasing the risk of exposure in populations living in adjacent zones. Therefore, the objective of this study was to evaluate the contamination levels of mercury (Hg) and manganese (Mn) in several rivers of the Nangaritza River basin and assess the exposure in school-aged children residing near the gold-mining zones. River water and sediment samples were collected from a highly contaminated (HEx) and a moderately contaminated (MEx) zones. Hair Mn (MnH) and urinary Hg (HgU) levels were determined in school-aged children living in both zones. High concentrations of dissolved Mn were found in river waters of the HEx zone (between 2660 and 3990 µg l(-1)); however, Hg levels, in general, were lower than the detection limit (DL; <1.0 µg l(-1)). Similarly, Mn levels in sediments were also increased (3090 to 4086 µg g(-1)). Median values of MnH in children of the HEx and MEx zones were 5.5 and 3.4 µg g(-1), respectively, whereas the median values of HgU concentrations in children living in the HEx and MEx zones were 4.4 and 0.62 µg g-creat(-1), respectively. Statistically significant differences were observed between both biomarkers in children from the HEx and MEx zones. In addition, boys presented significantly greater MnH levels in both zones. The greater MnH values were found in children living in alluvial areas, whereas children living in the high mountain areas, where some ore-processing plants are located close to or inside houses and schools, had the greater HgU concentrations. In summary, the data reported in this paper highlights that artisanal and small-scale gold-mining activities can not only produce mercurial contamination, that can also release other heavy metals (such as Mn) that may pose a risk to human health.
Collapse
Affiliation(s)
| | - José A Menezes-Filho
- Laboratory of Toxicology, College of Pharmacy, Federal University of Bahia, Salvador, Bahia, 40170-115, Brazil
| | | | | | | | | | - Abrahan Mora
- Investigador Prometeo, Universidad Nacional de Loja, La Argelia, Loja, Ecuador.
| |
Collapse
|
19
|
Nascimento S, Baierle M, Göethel G, Barth A, Brucker N, Charão M, Sauer E, Gauer B, Arbo MD, Altknecht L, Jager M, Dias ACG, de Salles JF, Saint' Pierre T, Gioda A, Moresco R, Garcia SC. Associations among environmental exposure to manganese, neuropsychological performance, oxidative damage and kidney biomarkers in children. ENVIRONMENTAL RESEARCH 2016; 147:32-43. [PMID: 26844420 DOI: 10.1016/j.envres.2016.01.035] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/21/2016] [Accepted: 01/24/2016] [Indexed: 05/06/2023]
Abstract
Environmental exposure to manganese (Mn) results in several toxic effects, mainly neurotoxicity. This study investigated associations among Mn exposure, neuropsychological performance, biomarkers of oxidative damage and early kidney dysfunction in children aged 6-12 years old. Sixty-three children were enrolled in this study, being 43 from a rural area and 20 from an urban area. Manganese was quantified in blood (B-Mn), hair (H-Mn) and drinking water using inductively coupled plasma mass spectrometry (ICP-MS). The neuropsychological functions assessed were attention, perception, working memory, phonological awareness and executive functions - inhibition. The Intelligence quotient (IQ) was also evaluated. The biomarkers malondialdehyde (MDA), protein carbonyls (PCO), δ-aminolevulinate dehydratase (ALA-D), reactivation indexes with dithiothreitol (ALA-RE/DTT) and ZnCl2 (ALA-RE/ZnCl2), non-protein thiol groups, as well as microalbuminuria (mALB) level and N-acetyl-β-D-glucosaminidase (NAG) activity were assessed. The results demonstrated that Mn levels in blood, hair and drinking water were higher in rural children than in urban children (p<0.01). Adjusted for potential confounding factors, IQ, age, gender and parents' education, significant associations were observed mainly between B-Mn and visual attention (β=0.649; p<0.001). Moreover, B-Mn was negatively associated with visual perception and phonological awareness. H-Mn was inversely associated with working memory, and Mn levels from drinking water with written language and executive functions - inhibition. Rural children showed a significant increase in oxidative damage to proteins and lipids, as well as alteration in kidney function biomarkers (p<0.05). Moreover, significant associations were found between B-Mn, H-Mn and Mn levels in drinking water and biomarkers of oxidative damage and kidney function, besides between some oxidative stress biomarkers and neuropsychological tasks (p<0.05). The findings of this study suggest an important association between environmental exposure to Mn and toxic effects on neuropsychological function, oxidative damage and kidney function in children.
Collapse
Affiliation(s)
- Sabrina Nascimento
- Laboratory of Toxicology (LATOX), Department of Analyses, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Post-graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Marília Baierle
- Laboratory of Toxicology (LATOX), Department of Analyses, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Gabriela Göethel
- Laboratory of Toxicology (LATOX), Department of Analyses, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Post-graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Anelise Barth
- Laboratory of Toxicology (LATOX), Department of Analyses, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Natália Brucker
- Laboratory of Toxicology (LATOX), Department of Analyses, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Mariele Charão
- Laboratory of Toxicology (LATOX), Department of Analyses, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Institute of Health Sciences, Feevale University, Novo Hamburgo, RS, Brazil
| | - Elisa Sauer
- Laboratory of Toxicology (LATOX), Department of Analyses, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Post-graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Bruna Gauer
- Laboratory of Toxicology (LATOX), Department of Analyses, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Post-graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Marcelo Dutra Arbo
- Laboratory of Toxicology (LATOX), Department of Analyses, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Louise Altknecht
- Laboratory of Toxicology (LATOX), Department of Analyses, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Institute of Cardiology, University Cardiology Foundation (FUC), Porto Alegre, RS, Brazil
| | - Márcia Jager
- Post-graduate Program in Psychology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Ana Cristina Garcia Dias
- Post-graduate Program in Psychology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Jerusa Fumagalli de Salles
- Post-graduate Program in Psychology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Tatiana Saint' Pierre
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil
| | - Adriana Gioda
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil
| | - Rafael Moresco
- Laboratory of Clinical Biochemistry, Department of Clinical and Toxicological Analyses, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Solange Cristina Garcia
- Laboratory of Toxicology (LATOX), Department of Analyses, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Post-graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Institute of Cardiology, University Cardiology Foundation (FUC), Porto Alegre, RS, Brazil.
| |
Collapse
|