1
|
Du E, Xu H, Ponkratova L. Electro-deformation spectroscopy: A unified method for simultaneous electrical and mechanical characterization of single cells. Acta Biomater 2024:S1742-7061(24)00722-0. [PMID: 39644941 DOI: 10.1016/j.actbio.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
The intrinsic electrical and mechanical properties of cells are not only valuable biophysical markers reflective of physiological conditions but also play important roles in the development and progression of human diseases. Existing single-cell techniques are restricted to assessing either mechanical or electrical properties. We introduce the development of electro-deformation spectroscopy (EDS), namely the frequency-dependent electro-deformation, as a new method for simultaneous electrical and mechanical characterization of individual cells in suspension. To facilitate the practical use of this technology, we developed a testing procedure that evaluates red blood cells (RBCs) directly from whole blood in a simple microfluidic system, employing an electric field magnitude of 34 kV/m over a frequency range of 15 MHz to 100 kHz. The EDS measurement is performed under stationary conditions without special cell stabilization, at a moderate throughput of 50-100 cells per minute. We develop an experimental-computational framework to decouple cell electromechanics by optimizing the most suitable parameters of the relative permittivity of cell membrane, cytoplasm electrical conductivity, and membrane shear modulus. This technique, tested on RBCs from 4 healthy human samples, revealed membrane relative permittivity of 3.6 - 5.8, membrane shear modulus of 2.2 - 2.8 µN/m, and cytoplasm conductivity of 0.47 - 0.81 S/m. EDS analysis identifies the marked intrasample heterogeneity and individual variability in both cellular electrical and mechanical properties. The EDS framework can be readily used to test RBCs across different species, pathological states, and other cell types of similar structures as RBCs. STATEMENT OF SIGNIFICANCE: This work introduces electro-deformation spectroscopy (EDS) as a unified method for simultaneous electrical and mechanical characterization of single cells in suspension. This is the first-of-its-kind technology for such purposes. EDS can be performed in a simple microfluidic system with minimal sample preparation, making it a convenient and powerful tool for label-free, non-invasive single-cell analysis. We validate the applicability of EDS by measuring the intrasample heterogeneity and individual variability based on the electromechanical parameters of interest for human red blood cells. Single-cell EDS has the potential to enable rapid and reliable detection of cellular changes by diseases or drug treatments and provide insights into the fundamental bioelectromechanical mechanisms of cellular adaptation and dysfunction. This work advances the field of single-cell analysis and contributes to the development of biomaterials and biotechnologies based on cellular electromechanics.
Collapse
Affiliation(s)
- E Du
- Department of Ocean and Mechanical Engineering, College of Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, United States; Department of Biomedical Engineering, College of Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, United States.
| | - Hongyuan Xu
- Department of Ocean and Mechanical Engineering, College of Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, United States
| | - Liliana Ponkratova
- Department of Ocean and Mechanical Engineering, College of Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, United States
| |
Collapse
|
2
|
Li T, Cheburkanov V, Yakovlev VV, Agarwal GS, Scully MO. Harnessing quantum light for microscopic biomechanical imaging of cells and tissues. Proc Natl Acad Sci U S A 2024; 121:e2413938121. [PMID: 39480851 PMCID: PMC11551316 DOI: 10.1073/pnas.2413938121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/24/2024] [Indexed: 11/02/2024] Open
Abstract
The biomechanical properties of cells and tissues play an important role in our fundamental understanding of the structures and functions of biological systems at both the cellular and subcellular levels. Recently, Brillouin microscopy, which offers a label-free spectroscopic means of assessing viscoelastic properties in vivo, has emerged as a powerful way to interrogate those properties on a microscopic level in living tissues. However, susceptibility to photodamage and photobleaching, particularly when high-intensity laser beams are used to induce Brillouin scattering, poses a significant challenge. This article introduces a transformative approach designed to mitigate photodamage in biological and biomedical studies, enabling nondestructive, label-free assessments of mechanical properties in live biological samples. By leveraging quantum-light-enhanced stimulated Brillouin scattering (SBS) imaging contrast, the signal-to-noise ratio is significantly elevated, thereby increasing sample viability and extending interrogation times without compromising the integrity of living samples. The tangible impact of this methodology is evidenced by a notable three-fold increase in sample viability observed after subjecting the samples to three hours of continuous squeezed-light illumination, surpassing the traditional coherent light-based approaches. The quantum-enhanced SBS imaging holds promise across diverse fields, such as cancer biology and neuroscience where preserving sample vitality is of paramount significance. By mitigating concerns regarding photodamage and photobleaching associated with high-intensity lasers, this technological breakthrough expands our horizons for exploring the mechanical properties of live biological systems, paving the way for an era of research and clinical applications.
Collapse
Affiliation(s)
- Tian Li
- Department of Chemistry and Physics, The University of Tennessee, Chattanooga, TN37403
- The University of Tennessee Research Institute, The University of Tennessee, Chattanooga, TN37403
| | - Vsevolod Cheburkanov
- Department of Biomedical Engineering, Texas A&M University, College Station, TX77843
| | - Vladislav V. Yakovlev
- Department of Biomedical Engineering, Texas A&M University, College Station, TX77843
- Institute for Quantum Science and Engineering, Department of Physics and Astronomy, Texas A&M University, College Station, TX77843
| | - Girish S. Agarwal
- Institute for Quantum Science and Engineering, Department of Physics and Astronomy, Texas A&M University, College Station, TX77843
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX77843
| | - Marlan O. Scully
- Institute for Quantum Science and Engineering, Department of Physics and Astronomy, Texas A&M University, College Station, TX77843
| |
Collapse
|
3
|
Kim SC, Kim MJ, Park JW, Shin YK, Jeong SY, Kim S, Ku JL. Effects of simulated microgravity on colorectal cancer organoids growth and drug response. Sci Rep 2024; 14:25526. [PMID: 39462078 PMCID: PMC11514040 DOI: 10.1038/s41598-024-76737-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Cellular and molecular dynamics of human cells are constantly affected by gravity. Alteration of the gravitational force disturbs the cellular equilibrium, which might modify physiological and molecular characteristics. Nevertheless, biological responses of cancer cells to reduced gravitational force remains obscure. Here, we aimed to comprehend not only transcriptomic patterns but drug responses of colorectal cancer (CRC) under simulated microgravity. We established four organoids directly from CRC patients, and organoids cultured in 3D clinostat were subjected to genome wide expression profiling and drug library screening. Our observations revealed changes in cell morphology and an increase in cell viability under simulated microgravity compared to their static controls. Transcriptomic analysis highlighted a significant dysregulation in the TBC1D3 family of genes. The upregulation of cell proliferation observed under simulated microgravity conditions was further supported by enriched cell cycle processes, as evidenced by the functional clustering of mRNA expressions using cancer hallmark and gene ontology terms. Our drug screening results indicated an enhanced response rate to 5-FU under conditions of simulated microgravity, suggesting potential implications for cancer treatment strategies in simulated microgravity.
Collapse
Affiliation(s)
- Soon-Chan Kim
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, 103, Daehak-ro, Jongno-gu, Seoul, 03080, Korea
- Cancer Research Institute, Seoul National University, Seoul, 03080, Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Min Jung Kim
- Cancer Research Institute, Seoul National University, Seoul, 03080, Korea
- Department of Surgery, Seoul National University College of Medicine, 103, Daehak-ro, Jongno-gu, Seoul, 03080, Korea
- Division of Colorectal Surgery, Department of Surgery, Seoul National University Hospital, Seoul, 03080, Korea
| | - Ji Won Park
- Cancer Research Institute, Seoul National University, Seoul, 03080, Korea
- Department of Surgery, Seoul National University College of Medicine, 103, Daehak-ro, Jongno-gu, Seoul, 03080, Korea
- Division of Colorectal Surgery, Department of Surgery, Seoul National University Hospital, Seoul, 03080, Korea
| | - Young-Kyoung Shin
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, 103, Daehak-ro, Jongno-gu, Seoul, 03080, Korea
- Cancer Research Institute, Seoul National University, Seoul, 03080, Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Seung-Yong Jeong
- Cancer Research Institute, Seoul National University, Seoul, 03080, Korea.
- Department of Surgery, Seoul National University College of Medicine, 103, Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
- Division of Colorectal Surgery, Department of Surgery, Seoul National University Hospital, Seoul, 03080, Korea.
| | - Sungwan Kim
- Department of Biomedical Engineering, Seoul National University College of Medicine, 103, Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
| | - Ja-Lok Ku
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, 103, Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea.
- Cancer Research Institute, Seoul National University, Seoul, 03080, Korea.
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, South Korea.
| |
Collapse
|
4
|
Williams AL, Bohnsack BL. Keratin 8/18a.1 Expression Influences Embryonic Neural Crest Cell Dynamics and Contributes to Postnatal Corneal Regeneration in Zebrafish. Cells 2024; 13:1473. [PMID: 39273043 PMCID: PMC11394277 DOI: 10.3390/cells13171473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
A complete understanding of neural crest cell mechanodynamics during ocular development will provide insight into postnatal neural crest cell contributions to ophthalmic abnormalities in adult tissues and inform regenerative strategies toward injury repair. Herein, single-cell RNA sequencing in zebrafish during early eye development revealed keratin intermediate filament genes krt8 and krt18a.1 as additional factors expressed during anterior segment development. In situ hybridization and immunofluorescence microscopy confirmed krt8 and krt18a.1 expression in the early neural plate border and migrating cranial neural crest cells. Morpholino oligonucleotide (MO)-mediated knockdown of K8 and K18a.1 markedly disrupted the migration of neural crest cell subpopulations and decreased neural crest cell marker gene expression in the craniofacial region and eye at 48 h postfertilization (hpf), resulting in severe phenotypic defects reminiscent of neurocristopathies. Interestingly, the expression of K18a.1, but not K8, is regulated by retinoic acid (RA) during early-stage development. Further, both keratin proteins were detected during postnatal corneal regeneration in adult zebrafish. Altogether, we demonstrated that both K8 and K18a.1 contribute to the early development and postnatal repair of neural crest cell-derived ocular tissues.
Collapse
Affiliation(s)
- Antionette L. Williams
- Division of Ophthalmology, Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 E. Chicago Ave., Chicago, IL 60611, USA;
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, 645 N. Michigan Ave., Chicago, IL 60611, USA
| | - Brenda L. Bohnsack
- Division of Ophthalmology, Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 E. Chicago Ave., Chicago, IL 60611, USA;
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, 645 N. Michigan Ave., Chicago, IL 60611, USA
| |
Collapse
|
5
|
Uemura S, Mochizuki T, Kato Y, Mioka T, Watanabe R, Fuchita M, Yamada M, Noda Y, Moriguchi T, Abe F. Mtc6/Ehg2 is a novel endoplasmic reticulum-resident glycoprotein essential for high-pressure tolerance. J Biochem 2024; 176:155-166. [PMID: 38621657 DOI: 10.1093/jb/mvae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/17/2024] Open
Abstract
Hydrostatic pressure is a common mechanical stressor that modulates metabolism and reduces cell viability. Eukaryotic cells have genetic programs to cope with hydrostatic pressure stress and maintain intracellular homeostasis. However, the mechanism underlying hydrostatic pressure tolerance remains largely unknown. We have recently demonstrated that maintenance of telomere capping protein 6 (Mtc6) plays a protective role in the survival of the budding yeast Saccharomyces cerevisiae under hydrostatic pressure stress by supporting the integrity of nutrient permeases. The current study demonstrates that Mtc6 acts as an endoplasmic reticulum (ER) membrane protein. Mtc6 comprises two transmembrane domains, a C-terminal cytoplasmic domain and a luminal region with 12 Asn (N)-linked glycans attached to it. Serial mutational analyses showed that the cytoplasmic C-terminal amino acid residues GVPS Mtc6 activity. Multiple N-linked glycans in the luminal region are involved in the structural conformation of Mtc6. Moreover, deletion of MTC6 led to increased degradation of the leucine permease Bap2 under hydrostatic pressure, suggesting that Mtc6 facilitates the proper folding of nutrient permeases in the ER under stress conditions. We propose a novel model of molecular function in which the glycosylated luminal domain and cytoplasmic GVPS sequences of Mtc6 cooperatively support the nutrient permease activity.
Collapse
Affiliation(s)
- Satoshi Uemura
- Division of Medical Biochemistry, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai, 983-8536, Japan
| | - Takahiro Mochizuki
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, 252-5258, Japan
| | - Yusuke Kato
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, 252-5258, Japan
| | - Tetsuo Mioka
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, 252-5258, Japan
| | - Riseko Watanabe
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, 252-5258, Japan
| | - Mai Fuchita
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, 252-5258, Japan
| | - Mao Yamada
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, 252-5258, Japan
| | - Yoichi Noda
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo,113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo,113-8657, Japan
| | - Takashi Moriguchi
- Division of Medical Biochemistry, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai, 983-8536, Japan
| | - Fumiyoshi Abe
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, 252-5258, Japan
| |
Collapse
|
6
|
Goldstein Y, Cohen OT, Wald O, Bavli D, Kaplan T, Benny O. Particle uptake in cancer cells can predict malignancy and drug resistance using machine learning. SCIENCE ADVANCES 2024; 10:eadj4370. [PMID: 38809990 PMCID: PMC11314625 DOI: 10.1126/sciadv.adj4370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 04/23/2024] [Indexed: 05/31/2024]
Abstract
Tumor heterogeneity is a primary factor that contributes to treatment failure. Predictive tools, capable of classifying cancer cells based on their functions, may substantially enhance therapy and extend patient life span. The connection between cell biomechanics and cancer cell functions is used here to classify cells through mechanical measurements, via particle uptake. Machine learning (ML) was used to classify cells based on single-cell patterns of uptake of particles with diverse sizes. Three pairs of human cancer cell subpopulations, varied in their level of drug resistance or malignancy, were studied. Cells were allowed to interact with fluorescently labeled polystyrene particles ranging in size from 0.04 to 3.36 μm and analyzed for their uptake patterns using flow cytometry. ML algorithms accurately classified cancer cell subtypes with accuracy rates exceeding 95%. The uptake data were especially advantageous for morphologically similar cell subpopulations. Moreover, the uptake data were found to serve as a form of "normalization" that could reduce variation in repeated experiments.
Collapse
Affiliation(s)
- Yoel Goldstein
- Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Ora T. Cohen
- Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Ori Wald
- Department of Cardiothoracic Surgery, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Danny Bavli
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Tommy Kaplan
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Department of Developmental Biology and Cancer Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Ofra Benny
- Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| |
Collapse
|
7
|
Zheng XQ, Huang J, Lin JL, Song CL. Pathophysiological mechanism of acute bone loss after fracture. J Adv Res 2023; 49:63-80. [PMID: 36115662 PMCID: PMC10334135 DOI: 10.1016/j.jare.2022.08.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 07/29/2022] [Accepted: 08/31/2022] [Indexed: 10/14/2022] Open
Abstract
BACKGROUND Acute bone loss after fracture is associated with various effects on the complete recovery process and a risk of secondary fractures among patients. Studies have reported similarities in pathophysiological mechanisms involved in acute bone loss after fractures and osteoporosis. However, given the silence nature of bone loss and bone metabolism complexities, the actual underlying pathophysiological mechanisms have yet to be fully elucidated. AIM OF REVIEW To elaborate the latest findings in basic research with a focus on acute bone loss after fracture. To briefly highlight potential therapeutic targets and current representative drugs. To arouse researchers' attention and discussion on acute bone loss after fracture. KEY SCIENTIFIC CONCEPTS OF REVIEW Bone loss after fracture is associated with immobilization, mechanical unloading, blood supply damage, sympathetic nerve regulation, and crosstalk between musculoskeletals among other factors. Current treatment strategies rely on regulation of osteoblasts and osteoclasts, therefore, there is a need to elucidate on the underlying mechanisms of acute bone loss after fractures to inform the development of efficacious and safe drugs. In addition, attention should be paid towards ensuring long-term skeletal health.
Collapse
Affiliation(s)
- Xuan-Qi Zheng
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Jie Huang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Jia-Liang Lin
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Chun-Li Song
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China; Beijing Key Laboratory of Spinal Disease Research, Beijing, China.
| |
Collapse
|
8
|
Automated measurement of cell mechanical properties using an integrated dielectrophoretic microfluidic device. iScience 2022; 25:104275. [PMID: 35602969 PMCID: PMC9114521 DOI: 10.1016/j.isci.2022.104275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 11/24/2022] Open
Abstract
Cell mechanics is closely related to and interacts with cellular functions, which has the potential to be an effective biomarker to indicate disease onset and progression. Although several techniques have been developed for measuring cell mechanical properties, the issues of limited measurement data and biological significance because of complex and labor-intensive manipulation remain to be addressed, especially for the dielectrophoresis-based approach that is difficult to utilize flow measurement techniques. In this work, a dielectrophoresis-based solution is proposed to automatically obtain mass cellular mechanical data by combining a designed microfluidic device integrated the functions of cell capture, dielectrophoretic stretching, and cell release and an automatic control scheme. Experiments using human umbilical vein endothelial cells and breast cells revealed the automation capability of this device. The proposed method provides an effective way to address the low-throughput problem of dielectrophoresis-based cell mechanical property measurements, which enhance the biostatistical significance for cellular mechanism studies. Cell capture, dielectrophoretic stretching, and release in one microfluidic chip Automatic measurement scheme to realize circularly measurement Automatic acquisition of large amounts of cell mechanical properties data Significant advances in dielectrophoretic measurement of cell mechanical properties
Collapse
|
9
|
Voeltzel T, Fossard G, Degaud M, Geistlich K, Gadot N, Jeanpierre S, Mikaelian I, Brevet M, Anginot A, Le Bousse-Kerdilès MC, Trichet V, Lefort S, Maguer-Satta V. A minimal standardized human bone marrow microphysiological system to assess resident cell behavior during normal and pathological processes. Biomater Sci 2021; 10:485-498. [PMID: 34904143 DOI: 10.1039/d1bm01098k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bone marrow is a complex and dynamic microenvironment that provides essential cues to resident cells. We developed a standardized three-dimensional (3D) model to decipher mechanisms that control human cells during hematological and non-hematological processes. Our simple 3D-model is constituted of a biphasic calcium phosphate-based scaffold and human cell lines to ensure a high reproducibility. We obtained a minimal well-organized bone marrow-like structure in which various cell types and secreted extracellular matrix can be observed and characterized by in situ imaging or following viable cell retrieval. The complexity of the system can be increased and customized, with each cellular component being independently modulated according to the issue investigated. Introduction of pathological elements in this 3D-system accurately reproduced changes observed in patient bone marrow. Hence, we have developed a handy and flexible standardized microphysiological system that mimics human bone marrow, allowing histological analysis and functional assays on collected cells.
Collapse
Affiliation(s)
- Thibault Voeltzel
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France.,Université de Lyon, 69000, Lyon, France.,Department of Cancer Initiation and Tumor cell Identity and Lyon, France.,CNRS GDR 3697 MicroNiT, Tours, France.
| | - Gaëlle Fossard
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France.,Université de Lyon, 69000, Lyon, France.,Department of Cancer Initiation and Tumor cell Identity and Lyon, France.,Hospices Civils de Lyon, Hematology Department, Centre Hospitalier Lyon Sud, F-69495 Pierre Bénite, France
| | - Michaël Degaud
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France.,Université de Lyon, 69000, Lyon, France.,Department of Cancer Initiation and Tumor cell Identity and Lyon, France.,Hospices Civils de Lyon, Hematology Department, Centre Hospitalier Lyon Sud, F-69495 Pierre Bénite, France
| | - Kevin Geistlich
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France.,Université de Lyon, 69000, Lyon, France.,Department of Cancer Initiation and Tumor cell Identity and Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Nicolas Gadot
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France.,Université de Lyon, 69000, Lyon, France.,Research Pathology Platform, Department of Translational Research and Innovation, Centre Léon Bérard, Lyon, France
| | - Sandrine Jeanpierre
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France.,Université de Lyon, 69000, Lyon, France.,Department of Cancer Initiation and Tumor cell Identity and Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Ivan Mikaelian
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France.,Université de Lyon, 69000, Lyon, France.,Department of Cancer Initiation and Tumor cell Identity and Lyon, France
| | - Marie Brevet
- Pathology Department, Hospices Civils de Lyon, Bron F-69500, France
| | - Adrienne Anginot
- UMR1197, Université Paris-Saclay, 94800 Villejuif, France.,CNRS GDR 3697 MicroNiT, Tours, France.
| | | | - Valérie Trichet
- INSERM, UMR 1238, PHYOS, Faculty of Medicine, University of Nantes, Nantes, France.,CNRS GDR 3697 MicroNiT, Tours, France.
| | - Sylvain Lefort
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France.,Université de Lyon, 69000, Lyon, France.,Department of Cancer Initiation and Tumor cell Identity and Lyon, France.,CNRS GDR 3697 MicroNiT, Tours, France.
| | - Véronique Maguer-Satta
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France.,Université de Lyon, 69000, Lyon, France.,Department of Cancer Initiation and Tumor cell Identity and Lyon, France.,CNRS GDR 3697 MicroNiT, Tours, France. .,Centre Léon Bérard, Lyon, France
| |
Collapse
|
10
|
Kim MH, Kino-Oka M. Mechanobiological conceptual framework for assessing stem cell bioprocess effectiveness. Biotechnol Bioeng 2021; 118:4537-4549. [PMID: 34460101 DOI: 10.1002/bit.27929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/22/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022]
Abstract
Fully realizing the enormous potential of stem cells requires developing efficient bioprocesses and optimizations founded in mechanobiological considerations. Here, we emphasize the importance of mechanotransduction as one of the governing principles of stem cell bioprocesses, underscoring the need to further explore the behavioral mechanisms involved in sensing mechanical cues and coordinating transcriptional responses. We identify the sources of intrinsic, extrinsic, and external noise in bioprocesses requiring further study, and discuss the criteria and indicators that may be used to assess and predict cell-to-cell variability resulting from environmental fluctuations. Specifically, we propose a conceptual framework to explain the impact of mechanical forces within the cellular environment, identify key cell state determinants in bioprocesses, and discuss downstream implementation challenges.
Collapse
Affiliation(s)
- Mee-Hae Kim
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
| | - Masahiro Kino-Oka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
| |
Collapse
|
11
|
Abstract
Cancer is a multi-step process where normal cells become transformed, grow, and may disseminate to establish new lesions within the body. In recent years, the physical properties of individual cells and the tissue microenvironment have been shown to be potent determinants of cancer progression. Biophysical tools have long been used to examine cell and tissue mechanics, morphology, and migration. However, exciting developments have linked these physical traits to gene expression changes that drive metastatic seeding, organ selectivity, and tumor growth. Here, we present some vignettes to address recent studies to show progress in harnessing biophysical tools and concepts to gain insights into metastasis.
Collapse
Affiliation(s)
- Woong Young So
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kandice Tanner
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
12
|
Höhfeld J, Benzing T, Bloch W, Fürst DO, Gehlert S, Hesse M, Hoffmann B, Hoppe T, Huesgen PF, Köhn M, Kolanus W, Merkel R, Niessen CM, Pokrzywa W, Rinschen MM, Wachten D, Warscheid B. Maintaining proteostasis under mechanical stress. EMBO Rep 2021; 22:e52507. [PMID: 34309183 PMCID: PMC8339670 DOI: 10.15252/embr.202152507] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 12/11/2022] Open
Abstract
Cell survival, tissue integrity and organismal health depend on the ability to maintain functional protein networks even under conditions that threaten protein integrity. Protection against such stress conditions involves the adaptation of folding and degradation machineries, which help to preserve the protein network by facilitating the refolding or disposal of damaged proteins. In multicellular organisms, cells are permanently exposed to stress resulting from mechanical forces. Yet, for long time mechanical stress was not recognized as a primary stressor that perturbs protein structure and threatens proteome integrity. The identification and characterization of protein folding and degradation systems, which handle force-unfolded proteins, marks a turning point in this regard. It has become apparent that mechanical stress protection operates during cell differentiation, adhesion and migration and is essential for maintaining tissues such as skeletal muscle, heart and kidney as well as the immune system. Here, we provide an overview of recent advances in our understanding of mechanical stress protection.
Collapse
Affiliation(s)
- Jörg Höhfeld
- Institute for Cell BiologyRheinische Friedrich‐Wilhelms University BonnBonnGermany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany
| | - Wilhelm Bloch
- Institute of Cardiovascular Research and Sports MedicineGerman Sport UniversityCologneGermany
| | - Dieter O Fürst
- Institute for Cell BiologyRheinische Friedrich‐Wilhelms University BonnBonnGermany
| | - Sebastian Gehlert
- Institute of Cardiovascular Research and Sports MedicineGerman Sport UniversityCologneGermany
- Department for the Biosciences of SportsInstitute of Sports ScienceUniversity of HildesheimHildesheimGermany
| | - Michael Hesse
- Institute of Physiology I, Life & Brain CenterMedical FacultyRheinische Friedrich‐Wilhelms UniversityBonnGermany
| | - Bernd Hoffmann
- Institute of Biological Information Processing, IBI‐2: MechanobiologyForschungszentrum JülichJülichGermany
| | - Thorsten Hoppe
- Institute for GeneticsCologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD) and CMMCUniversity of CologneCologneGermany
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA3Forschungszentrum JülichJülichGermany
- CECADUniversity of CologneCologneGermany
| | - Maja Köhn
- Institute of Biology IIIFaculty of Biology, and Signalling Research Centres BIOSS and CIBSSAlbert‐Ludwigs‐University FreiburgFreiburgGermany
| | - Waldemar Kolanus
- LIMES‐InstituteRheinische Friedrich‐Wilhelms University BonnBonnGermany
| | - Rudolf Merkel
- Institute of Biological Information Processing, IBI‐2: MechanobiologyForschungszentrum JülichJülichGermany
| | - Carien M Niessen
- Department of Dermatology and CECADUniversity of CologneCologneGermany
| | | | - Markus M Rinschen
- Department of Biomedicine and Aarhus Institute of Advanced StudiesAarhus UniversityAarhusDenmark
- Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Dagmar Wachten
- Institute of Innate ImmunityUniversity Hospital BonnBonnGermany
| | - Bettina Warscheid
- Institute of Biology IIFaculty of Biology, and Signalling Research Centres BIOSS and CIBSSAlbert‐Ludwigs‐University FreiburgFreiburgGermany
| |
Collapse
|
13
|
Pfannenstill V, Barbotin A, Colin-York H, Fritzsche M. Quantitative Methodologies to Dissect Immune Cell Mechanobiology. Cells 2021; 10:851. [PMID: 33918573 PMCID: PMC8069647 DOI: 10.3390/cells10040851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 12/25/2022] Open
Abstract
Mechanobiology seeks to understand how cells integrate their biomechanics into their function and behavior. Unravelling the mechanisms underlying these mechanobiological processes is particularly important for immune cells in the context of the dynamic and complex tissue microenvironment. However, it remains largely unknown how cellular mechanical force generation and mechanical properties are regulated and integrated by immune cells, primarily due to a profound lack of technologies with sufficient sensitivity to quantify immune cell mechanics. In this review, we discuss the biological significance of mechanics for immune cells across length and time scales, and highlight several experimental methodologies for quantifying the mechanics of immune cells. Finally, we discuss the importance of quantifying the appropriate mechanical readout to accelerate insights into the mechanobiology of the immune response.
Collapse
Affiliation(s)
- Veronika Pfannenstill
- Kennedy Institute for Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7LF, UK; (V.P.); (A.B.)
| | - Aurélien Barbotin
- Kennedy Institute for Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7LF, UK; (V.P.); (A.B.)
| | - Huw Colin-York
- Kennedy Institute for Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7LF, UK; (V.P.); (A.B.)
| | - Marco Fritzsche
- Kennedy Institute for Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7LF, UK; (V.P.); (A.B.)
- Rosalind Franklin Institute, Harwell Campus, Didcot OX11 0FA, UK
| |
Collapse
|
14
|
Sjöqvist M, Antfolk D, Suarez-Rodriguez F, Sahlgren C. From structural resilience to cell specification - Intermediate filaments as regulators of cell fate. FASEB J 2020; 35:e21182. [PMID: 33205514 PMCID: PMC7839487 DOI: 10.1096/fj.202001627r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/05/2020] [Accepted: 10/28/2020] [Indexed: 12/18/2022]
Abstract
During the last decades intermediate filaments (IFs) have emerged as important regulators of cellular signaling events, ascribing IFs with functions beyond the structural support they provide. The organ and developmental stage‐specific expression of IFs regulate cell differentiation within developing or remodeling tissues. Lack of IFs causes perturbed stem cell differentiation in vasculature, intestine, nervous system, and mammary gland, in transgenic mouse models. The aberrant cell fate decisions are caused by deregulation of different stem cell signaling pathways, such as Notch, Wnt, YAP/TAZ, and TGFβ. Mutations in genes coding for IFs cause an array of different diseases, many related to stem cell dysfunction, but the molecular mechanisms remain unresolved. Here, we provide a comprehensive overview of how IFs interact with and regulate the activity, localization and function of different signaling proteins in stem cells, and how the assembly state and PTM profile of IFs may affect these processes. Identifying when, where and how IFs and cell signaling congregate, will expand our understanding of IF‐linked stem cell dysfunction during development and disease.
Collapse
Affiliation(s)
- Marika Sjöqvist
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, Åbo Akademi University and University of Turku, Turku, Finland
| | - Daniel Antfolk
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, Åbo Akademi University and University of Turku, Turku, Finland
| | - Freddy Suarez-Rodriguez
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, Åbo Akademi University and University of Turku, Turku, Finland
| | - Cecilia Sahlgren
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, Åbo Akademi University and University of Turku, Turku, Finland.,Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
15
|
Abstract
Mechanotransduction, a conversion of mechanical forces into biochemical signals, is essential for human development and physiology. It is observable at all levels ranging from the whole body, organs, tissues, organelles down to molecules. Dysregulation results in various diseases such as muscular dystrophies, hypertension-induced vascular and cardiac hypertrophy, altered bone repair and cell deaths. Since mechanotransduction occurs at nanoscale, nanosciences and applied nanotechnology are powerful for studying molecular mechanisms and pathways of mechanotransduction. Atomic force microscopy, magnetic and optical tweezers are commonly used for force measurement and manipulation at the single molecular level. Force is also used to control cells, topographically and mechanically by specific types of nano materials for tissue engineering. Mechanotransduction research will become increasingly important as a sub-discipline under nanomedicine. Here we review nanotechnology approaches using force measurements and manipulations at the molecular and cellular levels during mechanotransduction, which has been increasingly play important role in the advancement of nanomedicine.
Collapse
Affiliation(s)
- Xiaowei Liu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Fumihiko Nakamura
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
16
|
Guo JB, Liang T, Che YJ, Yang HL, Luo ZP. Structure and mechanical properties of high-weight-bearing and low-weight-bearing areas of hip cartilage at the micro- and nano-levels. BMC Musculoskelet Disord 2020; 21:425. [PMID: 32616028 PMCID: PMC7333404 DOI: 10.1186/s12891-020-03468-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 06/29/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Articular cartilage has a high-weight-bearing area and a low-weight-bearing area, the macroscopic elastic moduli of the two regions are different. Chondrocytes are affected by the applied force at the microscopic level. Currently, the modulus of the two areas at the micro and nano levels is unknown, and studies on the relationship between macro-, micro- and nano-scale elastic moduli are limited. Such information may be important for further understanding of cartilage mechanics. Moreover, the surface morphology, proteoglycan content, and micro and nano structure of the two areas, which influences the mechanical properties of cartilage should be discussed. METHODS Safranin-O/Fast Green staining was used to evaluate the surface morphology and semi-quantify proteoglycan content of porcine femoral head cartilage between the two weight-bearing areas. The unconfined compression test was used to determine the macro elastic modulus. Atomic force microscope was used to measure the micro and nano compressive elastic modulus as well as the nano structure. Scanning electron microscope was employed to evaluate the micro structure. RESULTS No significant differences in the fibrillation index were observed between two areas (P = 0.5512). The Safranin-O index of the high-weight-bearing area was significantly higher than that of the low-weight-bearing area (P = 0.0387). The compressive elastic modulus of the high-weight-bearing area at the macro and micro level was significantly higher than that of the low-weight-bearing area (P = 0.0411 for macro-scale, and P = 0.0001 for micro-scale), while no statistically significant differences were observed in the elastic modulus of collagen fibrils at the nano level (P = 0.8544). The density of the collagen fibers was significantly lower in the high-weight-bearing area (P = 0.0177). No significant differences were observed in the structure and diameter of the collagen fibers between the two areas (P = 0.7361). CONCLUSIONS A higher proteoglycan content correlated with a higher compressive elastic modulus of the high-weight-bearing area at the micro level than that of the low-weight-bearing area, which was consistent with the trend observed from the macroscopic compressive elastic modulus. The weight-bearing level was not associated with the elastic modulus of individual collagen fibers and the diameter at the nano level. The micro structure of cartilage may influence the macro- and micro-scale elastic modulus.
Collapse
Affiliation(s)
- Jiang-Bo Guo
- Department of Orthopaedics, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, People's Republic of China.,Department of Orthopaedics, Orthopaedic Institute, the First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, 215006, People's Republic of China
| | - Ting Liang
- Department of Orthopaedics, Orthopaedic Institute, the First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, 215006, People's Republic of China
| | - Yan-Jun Che
- Department of Orthopaedics, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, People's Republic of China.,Department of Orthopaedics, Orthopaedic Institute, the First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, 215006, People's Republic of China
| | - Hui-Lin Yang
- Department of Orthopaedics, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, People's Republic of China.,Department of Orthopaedics, Orthopaedic Institute, the First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, 215006, People's Republic of China
| | - Zong-Ping Luo
- Department of Orthopaedics, Orthopaedic Institute, the First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, 215006, People's Republic of China.
| |
Collapse
|
17
|
Lechuga S, Ivanov AI. Actin cytoskeleton dynamics during mucosal inflammation: a view from broken epithelial barriers. CURRENT OPINION IN PHYSIOLOGY 2020; 19:10-16. [PMID: 32728653 DOI: 10.1016/j.cophys.2020.06.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Disruption of epithelial barriers is a key pathogenic event of mucosal inflammation: It ignites the exaggerated immune response and accelerates tissue damage. Loss of barrier function is attributed to the abnormal structure and permeability of epithelial adherens junctions and tight junctions, driven by inflammatory stimuli through a variety of cellular mechanisms. This review focuses on roles of the actin cytoskeleton in mediating disruption of epithelial junctions and creation of leaky barriers in inflamed tissues. We summarize recent advances in understanding the role of cytoskeletal remodeling driven by actin filament turnover and myosin II-dependent contractility in the homeostatic regulation of epithelial barriers and barrier disruption during mucosal inflammation. We also discuss how the altered biochemical and physical environment of the inflamed tissues could affect the dynamics of the junction-associated actomyosin cytoskeleton, leading to the disruption of epithelial barriers.
Collapse
Affiliation(s)
- Susana Lechuga
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Andrei I Ivanov
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic Foundation, Cleveland, OH 44195
| |
Collapse
|
18
|
Zhu B, Li W, Zhu M, Hsu PL, Sun L, Yang H. Dielectrophoresis-Based Method for Measuring the Multiangle Mechanical Properties of Biological Cells. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5358181. [PMID: 32337255 PMCID: PMC7165318 DOI: 10.1155/2020/5358181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/10/2020] [Accepted: 03/23/2020] [Indexed: 11/17/2022]
Abstract
The mechanical properties of cells are closely related to their physiological functions and states. Analyzing and measuring these properties are beneficial to understanding cell mechanisms. However, most measurement methods only involve the unidirectional analysis of cellular mechanical properties and thus result in the incomplete measurement of these properties. In this study, a microfluidic platform was established, and an innovative microfluidic chip was designed to measure the multiangle cellular mechanical properties by using dielectrophoresis (DEP) force. Three unsymmetrical indium tin oxide (ITO) microelectrodes were designed and combined with the microfluidic chip, which were utilized to generate DEP force and stretch cell from different angles. A series of experiments was performed to measure and analyze the multiangle mechanical properties of red blood cells of mice. This work provided a new tool for the comprehensive and accurate measurement of multiangle cellular mechanical properties. The results may contribute to the exploration of the internal physiological structures of cells and the building of accurate cell models.
Collapse
Affiliation(s)
- Botao Zhu
- Robotics and Microsystems Center, School of Mechanical and Electric Engineering, Soochow University, Suzhou, Jiangsu, China
| | - Wanting Li
- Robotics and Microsystems Center, School of Mechanical and Electric Engineering, Soochow University, Suzhou, Jiangsu, China
| | - Mingjie Zhu
- Robotics and Microsystems Center, School of Mechanical and Electric Engineering, Soochow University, Suzhou, Jiangsu, China
| | - Po-Lin Hsu
- Artificial Organ Technology Laboratory, School of Mechanical and Electric Engineering, Soochow University, Suzhou, Jiangsu, China
| | - Lining Sun
- Robotics and Microsystems Center, School of Mechanical and Electric Engineering, Soochow University, Suzhou, Jiangsu, China
| | - Hao Yang
- Robotics and Microsystems Center, School of Mechanical and Electric Engineering, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
19
|
Brujan EA. Shock wave emission and cavitation bubble dynamics by femtosecond optical breakdown in polymer solutions. ULTRASONICS SONOCHEMISTRY 2019; 58:104694. [PMID: 31450304 DOI: 10.1016/j.ultsonch.2019.104694] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/18/2019] [Accepted: 07/15/2019] [Indexed: 05/12/2023]
Abstract
Shock wave emission and the dynamics of micrometer-sized cavitation bubbles generated after femtosecond optical breakdown in viscoelastic fluids were investigated experimentally using high-speed photography with 5 million frames/s and acoustic measurements. The viscoelastic fluids consisted in a 0.5% polyacrylamide solution, with a strong elastic component, and a 0.5% carboxymethylcelullose, with a weak elastic component. Breakdown in water and both polymer solutions generated a purely compressive pressure wave. The maximum amplitude and the duration of the breakdown shock wave as well as the maximum bubble radius were not affected by the polymer additives. The notable influence of the polymer additives was found during the collapse phase of the bubble and is manifested by a prolongation of the oscillation time of the bubble and a reduction of the maximum pressure of the shock wave emitted during bubble collapse. A sizeable attenuation of the bubble collapse was found in the elastic polyacrylamide solution. The present results are consistent with an interpretation which invokes the effect of enhanced levels of uniaxial extensional viscosity on the collapse of micrometer-sized cavitation bubbles. The consequences for cavitation in blood are also discussed.
Collapse
|
20
|
Pei W, Chen J, Wang C, Qiu S, Zeng J, Gao M, Zhou B, Li D, Sacks MS, Han L, Shan H, Hu W, Feng Y, Zhou G. Regional biomechanical imaging of liver cancer cells. J Cancer 2019; 10:4481-4487. [PMID: 31528212 PMCID: PMC6746127 DOI: 10.7150/jca.32985] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 06/07/2019] [Indexed: 12/19/2022] Open
Abstract
Liver cancer is one of the leading cancers, especially in developing countries. Understanding the biomechanical properties of the liver cancer cells can not only help to elucidate the mechanisms behind the cancer progression, but also provide important information for diagnosis and treatment. At the cellular level, we used well-established atomic force microscopy (AFM) techniques to characterize the heterogeneity of mechanical properties of two different types of human liver cancer cells and a normal liver cell line. Stiffness maps with a resolution of 128x128 were acquired for each cell. The distributions of the indentation moduli of the cells showed significant differences between cancerous cells and healthy controls. Significantly, the variability was even greater amongst different types of cancerous cells. Fitting of the histogram of the effective moduli using a normal distribution function showed the Bel7402 cells were stiffer than the normal cells while HepG2 cells were softer. Morphological analysis of the cell structures also showed a higher cytoskeleton content among the cancerous cells. Results provided a foundation for applying knowledge of cell stiffness heterogeneity to search for tissue-level, early-stage indicators of liver cancer.
Collapse
Affiliation(s)
- Weiwei Pei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jiayao Chen
- Center for Molecular Imaging and Nuclear Medicine, School of Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Chao Wang
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - Suhao Qiu
- Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianfeng Zeng
- Center for Molecular Imaging and Nuclear Medicine, School of Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Mingyuan Gao
- Center for Molecular Imaging and Nuclear Medicine, School of Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Bin Zhou
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Dan Li
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Michael S. Sacks
- Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering & Sciences, the University of Texas at Austin, TX 78712, USA
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - Hong Shan
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yuan Feng
- Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
21
|
High-frequency microrheology in 3D reveals mismatch between cytoskeletal and extracellular matrix mechanics. Proc Natl Acad Sci U S A 2019; 116:14448-14455. [PMID: 31266897 DOI: 10.1073/pnas.1814271116] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mechanical homeostasis describes how cells sense physical cues from the microenvironment and concomitantly remodel both the cytoskeleton and the surrounding extracellular matrix (ECM). Such feedback is thought to be essential to healthy development and maintenance of tissue. However, the nature of the dynamic coupling between microscale cell and ECM mechanics remains poorly understood. Here we investigate how and whether cells remodel their cortex and basement membrane to adapt to their microenvironment. We measured both intracellular and extracellular viscoelasticity, generating a full factorial dataset on 5 cell lines in 2 ECMs subjected to 4 cytoskeletal drug treatments at 2 time points. Nonmalignant breast epithelial cells show a similar viscoelasticity to that measured for the local ECM when cultured in 3D laminin-rich ECM. In contrast, the malignant counterpart is stiffer than the local environment. We confirmed that other mammary cancer cells embedded in tissue-mimetic hydrogels are nearly 4-fold stiffer than the surrounding ECM. Perturbation of actomyosin did not yield uniform responses but instead depended on the cell type and chemistry of the hydrogel. The observed viscoelasticity of both ECM and cells were well described by power laws in a frequency range that governs single filament cytoskeletal dynamics. Remarkably, the intracellular and extracellular power law parameters for the entire dataset collectively fall onto 2 parallel master curves described by just 2 parameters. Our work shows that tumor cells are mechanically plastic to adapt to many environments and reveals dynamical scaling behavior in the microscale mechanical responses of both cells and ECM.
Collapse
|
22
|
Chen K, Fu T, Sun W, Huang Q, Zhang P, Zhao Z, Zhang X, Tan W. DNA-supramolecule conjugates in theranostics. Theranostics 2019; 9:3262-3279. [PMID: 31244953 PMCID: PMC6567960 DOI: 10.7150/thno.31885] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/28/2019] [Indexed: 12/11/2022] Open
Abstract
The elegant properties of deoxyribonucleic acid (DNA), such as accurate recognition, programmability and addressability, make it a well-defined and promising material to develop various molecular probes, drug delivery carriers and theranostic systems for cancer diagnosis and therapy. In addition, supramolecular chemistry, also termed "chemistry beyond the molecule", is a promising research field that aims to develop functional chemical systems by bringing discrete molecular components together in a manner that invokes noncovalent intermolecular forces, such as hydrophobic interaction, hydrogen bonding, metal coordination, and shape or size matching. Thus, DNA-supramolecule conjugates (DSCs) combine accurate recognition, programmability and addressability of DNA with the greater toolbox of supramolecular chemistry. This review discusses the applications of DSCs in sensing, protein activity regulation, cell behavior manipulation, and biomedicine.
Collapse
Affiliation(s)
- Kun Chen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Ting Fu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Weidi Sun
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Qin Huang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Pengge Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Zilong Zhao
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Xiaobing Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
- Institute of Molecular Medicine (IMM), Renji Hospital Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai (P. R. China)
- Department of Chemistry, Department of Physiology and Functional Genomics, Center for Research at Bio/Nano Interface, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611-7200, USA
| |
Collapse
|
23
|
Fan YL, Zhao HC, Li B, Zhao ZL, Feng XQ. Mechanical Roles of F-Actin in the Differentiation of Stem Cells: A Review. ACS Biomater Sci Eng 2019; 5:3788-3801. [PMID: 33438419 DOI: 10.1021/acsbiomaterials.9b00126] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In the development and differentiation of stem cells, mechanical forces associated with filamentous actin (F-actin) play a crucial role. The present review aims to reveal the relationship among the chemical components, microscopic structures, mechanical properties, and biological functions of F-actin. Particular attention is given to the functions of the cytoplasmic and nuclear microfilament cytoskeleton and their regulation mechanisms in the differentiation of stem cells. The distributions of different types of actin monomers in mammal cells and the functions of actin-binding proteins are summarized. We discuss how the fate of stem cells is regulated by intra/extracellular mechanical and chemical cues associated with microfilament-related proteins, intercellular adhesion molecules, etc. In addition, we also address the differentiation-induced variation in the stiffness of stem cells and the correlation between the fate and geometric shape change of stem cells. This review not only deepens our understanding of the biophysical mechanisms underlying the fates of stem cells under different culture conditions but also provides inspirations for the tissue engineering of stem cells.
Collapse
Affiliation(s)
- Yan-Lei Fan
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Hu-Cheng Zhao
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Bo Li
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Zi-Long Zhao
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
24
|
Krüger-Genge A, Dietze S, Yan W, Liu Y, Fang L, Kratz K, Lendlein A, Jung F. Endothelial cell migration, adhesion and proliferation on different polymeric substrates. Clin Hemorheol Microcirc 2019; 70:511-529. [DOI: 10.3233/ch-189317] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Anne Krüger-Genge
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Stefanie Dietze
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Wan Yan
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
- Institute of Chemistry, University of Potsdam, Potsdam, Germany
| | - Yue Liu
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
- Institute of Chemistry, University of Potsdam, Potsdam, Germany
| | - Liang Fang
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Karl Kratz
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Andreas Lendlein
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
- Institute of Chemistry, University of Potsdam, Potsdam, Germany
| | - Friedrich Jung
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| |
Collapse
|
25
|
Yang Z, Cole KLH, Qiu Y, Somorjai IML, Wijesinghe P, Nylk J, Cochran S, Spalding GC, Lyons DA, Dholakia K. Light sheet microscopy with acoustic sample confinement. Nat Commun 2019; 10:669. [PMID: 30737391 PMCID: PMC6368588 DOI: 10.1038/s41467-019-08514-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 01/08/2019] [Indexed: 11/13/2022] Open
Abstract
Contactless sample confinement would enable a whole host of new studies in developmental biology and neuroscience, in particular, when combined with long-term, wide-field optical imaging. To achieve this goal, we demonstrate a contactless acoustic gradient force trap for sample confinement in light sheet microscopy. Our approach allows the integration of real-time environmentally controlled experiments with wide-field low photo-toxic imaging, which we demonstrate on a variety of marine animal embryos and larvae. To illustrate the key advantages of our approach, we provide quantitative data for the dynamic response of the heartbeat of zebrafish larvae to verapamil and norepinephrine, which are known to affect cardiovascular function. Optical flow analysis allows us to explore the cardiac cycle of the zebrafish and determine the changes in contractile volume within the heart. Overcoming the restrictions of sample immobilisation and mounting can open up a broad range of studies, with real-time drug-based assays and biomechanical analyses.
Collapse
Affiliation(s)
- Zhengyi Yang
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, KY16 9SS, UK.
- Electron Bio-Imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK.
| | - Katy L H Cole
- Centre for Discovery Brain Sciences, MS Society Centre for Translational Research, Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Yongqiang Qiu
- School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
- Faculty of Engineering and Technology, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Ildikó M L Somorjai
- The Scottish Oceans Institute, University of St Andrews, St Andrews, KY16 8LB, UK
- Biomedical Sciences Research Complex, North Haugh, University of St Andrews, St Andrews, KY16 9ST, UK
| | - Philip Wijesinghe
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, KY16 9SS, UK
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, Perth, WA, 6009, Australia
| | - Jonathan Nylk
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, KY16 9SS, UK
| | - Sandy Cochran
- School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Gabriel C Spalding
- Department of Physics, Illinois Wesleyan University, Bloomington, IL, 61701, USA
| | - David A Lyons
- Centre for Discovery Brain Sciences, MS Society Centre for Translational Research, Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Kishan Dholakia
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, KY16 9SS, UK.
| |
Collapse
|
26
|
Dong L, Wijesinghe P, Sampson DD, Kennedy BF, Munro PRT, Oberai AA. Volumetric quantitative optical coherence elastography with an iterative inversion method. BIOMEDICAL OPTICS EXPRESS 2019; 10:384-398. [PMID: 30800487 PMCID: PMC6377890 DOI: 10.1364/boe.10.000384] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/26/2018] [Accepted: 10/26/2018] [Indexed: 05/03/2023]
Abstract
It is widely accepted that accurate mechanical properties of three-dimensional soft tissues and cellular samples are not available on the microscale. Current methods based on optical coherence elastography can measure displacements at the necessary resolution, and over the volumes required for this task. However, in converting this data to maps of elastic properties, they often impose assumptions regarding homogeneity in stress or elastic properties that are violated in most realistic scenarios. Here, we introduce novel, rigorous, and computationally efficient inverse problem techniques that do not make these assumptions, to realize quantitative volumetric elasticity imaging on the microscale. Specifically, we iteratively solve the three-dimensional elasticity inverse problem using displacement maps obtained from compression optical coherence elastography. This is made computationally feasible with adaptive mesh refinement and domain decomposition methods. By employing a transparent, compliant surface layer with known shear modulus as a reference for the measurement, absolute shear modulus values are produced within a millimeter-scale sample volume. We demonstrate the method on phantoms, on a breast cancer sample ex vivo, and on human skin in vivo. Quantitative elastography on this length scale will find wide application in cell biology, tissue engineering and medicine.
Collapse
Affiliation(s)
- Li Dong
- Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX 78705, USA
| | - Philip Wijesinghe
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia, 6009, Australia
- Optical + Biomedical Engineering Laboratory, Department of Electrical, Electronic & Computer Engineering, The University of Western Australia, Perth, Western Australia, 6009, Australia
| | - David D. Sampson
- Optical + Biomedical Engineering Laboratory, Department of Electrical, Electronic & Computer Engineering, The University of Western Australia, Perth, Western Australia, 6009, Australia
- University of Surrey, Guildford GU2 7XH, Surrey, UK
| | - Brendan F. Kennedy
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia, 6009, Australia
- Department of Electrical, Electronic & Computer Engineering, The University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Peter R. T. Munro
- Department of Electrical, Electronic & Computer Engineering, The University of Western Australia, Perth, Western Australia, 6009, Australia
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, UK
| | - Assad A. Oberai
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
27
|
Anghelina M, Butt O, Moldovan L, Petrache HI, Moldovan NI. Solvent isotope effect on leukocytes disintegration after large mechanical deformations. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/aafd0f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
28
|
Local cyclical compression modulates macrophage function in situ and alleviates immobilization-induced muscle atrophy. Clin Sci (Lond) 2018; 132:2147-2161. [PMID: 30209036 DOI: 10.1042/cs20180432] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 01/10/2023]
Abstract
Physical inactivity gives rise to numerous diseases and organismal dysfunctions, particularly those related to aging. Musculoskeletal disorders including muscle atrophy, which can result from a sedentary lifestyle, aggravate locomotive malfunction and evoke a vicious circle leading to severe functional disruptions of vital organs such as the brain and cardiovascular system. Although the significance of physical activity is evident, molecular mechanisms behind its beneficial effects are poorly understood. Here, we show that massage-like mechanical interventions modulate immobilization-induced pro-inflammatory responses of macrophages in situ and alleviate muscle atrophy. Local cyclical compression (LCC) on mouse calves, which generates intramuscular pressure waves with amplitude of 50 mmHg, partially restores the myofiber thickness and contracting forces of calf muscles that are decreased by hindlimb immobilization. LCC tempers the increase in the number of cells expressing pro-inflammatory proteins, tumor necrosis factor-α and monocyte chemoattractant protein-1 (MCP-1), including macrophages in situ The reversing effect of LCC on immobilization-induced thinning of myofibers is almost completely nullified when macrophages recruited from circulating blood are depleted by administration of clodronate liposomes. Furthermore, application of pulsatile fluid shear stress, but not hydrostatic pressure, reduces the expression of MCP-1 in macrophages in vitro Together with the LCC-induced movement of intramuscular interstitial fluid detected by µCT analysis, these results suggest that mechanical modulation of macrophage function is involved in physical inactivity-induced muscle atrophy and inflammation. Our findings uncover the implication of mechanosensory function of macrophages in disuse muscle atrophy, thereby opening a new path to develop a novel therapeutic strategy utilizing mechanical interventions.
Collapse
|
29
|
Hosseini ZF, Nelson DA, Moskwa N, Sfakis LM, Castracane J, Larsen M. FGF2-dependent mesenchyme and laminin-111 are niche factors in salivary gland organoids. J Cell Sci 2018; 131:jcs.208728. [PMID: 29361536 DOI: 10.1242/jcs.208728] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 01/03/2018] [Indexed: 12/12/2022] Open
Abstract
Epithelial progenitor cells are dependent upon a complex 3D niche to promote their proliferation and differentiation during development, which can be recapitulated in organoids. The specific requirements of the niche remain unclear for many cell types, including the proacinar cells that give rise to secretory acinar epithelial cells that produce saliva. Here, using ex vivo cultures of E16 primary mouse submandibular salivary gland epithelial cell clusters, we investigated the requirement for mesenchymal cells and other factors in producing salivary organoids in culture. Native E16 salivary mesenchyme, but not NIH3T3 cells or mesenchymal cell conditioned medium, supported robust protein expression of the progenitor marker Kit and the acinar/proacinar marker AQP5, with a requirement for FGF2 expression by the mesenchyme. Enriched salivary epithelial clusters that were grown in laminin-enriched basement membrane extract or laminin-111 together with exogenous FGF2, but not with EGF, underwent morphogenesis to form organoids that displayed robust expression of AQP5 in terminal buds. Knockdown of FGF2 in the mesenchyme or depletion of mesenchyme cells from the organoids significantly reduced AQP5 levels even in the presence of FGF2, suggesting a requirement for autocrine FGF2 signaling in the mesenchyme cells for AQP5 expression. We conclude that basement membrane proteins and mesenchyme cells function as niche factors in salivary organoids.
Collapse
Affiliation(s)
- Zeinab F Hosseini
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA.,Graduate Program in Molecular, Cellular, Developmental and Neural Biology, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Deirdre A Nelson
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Nicholas Moskwa
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA.,Graduate Program in Molecular, Cellular, Developmental and Neural Biology, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Lauren M Sfakis
- Colleges of Nanoscale Sciences and Engineering, SUNY Polytechnic Institute, 257 Fuller Rd, Albany, NY 12203, USA
| | - James Castracane
- Colleges of Nanoscale Sciences and Engineering, SUNY Polytechnic Institute, 257 Fuller Rd, Albany, NY 12203, USA
| | - Melinda Larsen
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
| |
Collapse
|
30
|
Jang AT, Chen L, Shimotake AR, Landis W, Altoe V, Aloni S, Ryder M, Ho SP. A Force on the Crown and Tug of War in the Periodontal Complex. J Dent Res 2018; 97:241-250. [PMID: 29364757 DOI: 10.1177/0022034517744556] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The load-bearing dentoalveolar fibrous joint is composed of biomechanically active periodontal ligament (PDL), bone, cementum, and the synergistic entheses of PDL-bone and PDL-cementum. Physiologic and pathologic loads on the dentoalveolar fibrous joint prompt natural shifts in strain gradients within mineralized and fibrous tissues and trigger a cascade of biochemical events within the widened and narrowed sites of the periodontal complex. This review highlights data from in situ biomechanical simulations that provide tooth movements relative to the alveolar socket. The methods and subsequent results provide a reasonable approximation of strain-regulated biochemical events resulting in mesial mineral formation and distal resorption events within microanatomical regions at the ligament-tethered/enthesial ends. These biochemical events, including expressions of biglycan, decorin, chondroitin sulfated neuroglial 2, osteopontin, and bone sialoprotein and localization of various hypertrophic progenitors, are observed at the alkaline phosphatase-positive widened site, resulting in mineral formation and osteoid/cementoid layers. On the narrowed side, tartrate-resistant acid phosphatase regions can lead to a sequence of clastic activities resulting in resorption pits in bone and cementum. These strain-regulated biochemical and subsequently biomineralization events in the load-bearing periodontal complex are critical for maintenance of the periodontal space and overall macroscale joint biomechanics.
Collapse
Affiliation(s)
- A T Jang
- 1 Division of Biomaterials and Bioengineering, Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, USA
| | - L Chen
- 1 Division of Biomaterials and Bioengineering, Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, USA
| | - A R Shimotake
- 1 Division of Biomaterials and Bioengineering, Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, USA
| | - W Landis
- 1 Division of Biomaterials and Bioengineering, Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, USA
| | - V Altoe
- 2 Materials Science Division, The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - S Aloni
- 2 Materials Science Division, The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - M Ryder
- 3 Division of Periodontics, Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, USA
| | - S P Ho
- 1 Division of Biomaterials and Bioengineering, Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, USA.,4 Department of Urology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
31
|
Wijesinghe P, Johansen NJ, Curatolo A, Sampson DD, Ganss R, Kennedy BF. Ultrahigh-Resolution Optical Coherence Elastography Images Cellular-Scale Stiffness of Mouse Aorta. Biophys J 2018; 113:2540-2551. [PMID: 29212007 DOI: 10.1016/j.bpj.2017.09.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/22/2017] [Accepted: 09/19/2017] [Indexed: 01/08/2023] Open
Abstract
Cellular-scale imaging of the mechanical properties of tissue has helped to reveal the origins of disease; however, cellular-scale resolution is not readily achievable in intact tissue volumes. Here, we demonstrate volumetric imaging of Young's modulus using ultrahigh-resolution optical coherence elastography, and apply it to characterizing the stiffness of mouse aortas. We achieve isotropic resolution of better than 15 μm over a 1-mm lateral field of view through the entire depth of an intact aortic wall. We employ a method of quasi-static compression elastography that measures volumetric axial strain and uses a compliant, transparent layer to measure surface axial stress. This combination is used to estimate Young's modulus throughout the volume. We demonstrate differentiation by stiffness of individual elastic lamellae and vascular smooth muscle. We observe stiffening of the aorta in regulator of G protein signaling 5-deficient mice, a model that is linked to vascular remodeling and fibrosis. We observe increased stiffness with proximity to the heart, as well as regions with micro-structural and micro-mechanical signatures characteristic of fibrous and lipid-rich tissue. High-resolution imaging of Young's modulus with optical coherence elastography may become an important tool in vascular biology and in other fields concerned with understanding the role of mechanics within the complex three-dimensional architecture of tissue.
Collapse
Affiliation(s)
- Philip Wijesinghe
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia; Optical+Biomedical Engineering Laboratory, School of Electrical, Electronic and Computer Engineering, The University of Western Australia, Perth, Western Australia, Australia.
| | - Niloufer J Johansen
- Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia; Research Department, St John of God Subiaco Hospital, Subiaco, Western Australia, Australia
| | - Andrea Curatolo
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia; School of Electrical, Electronic and Computer Engineering, The University of Western Australia, Perth, Western Australia, Australia
| | - David D Sampson
- Optical+Biomedical Engineering Laboratory, School of Electrical, Electronic and Computer Engineering, The University of Western Australia, Perth, Western Australia, Australia; Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, Western Australia, Australia
| | - Ruth Ganss
- Vascular Biology and Stromal Targeting, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia
| | - Brendan F Kennedy
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia; School of Electrical, Electronic and Computer Engineering, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
32
|
Korayem MH, Shahali S, Rastegar Z. Experimental determination of folding factor of benign breast cancer cell (MCF10A) and its effect on contact models and 3D manipulation of biological particles. Biomech Model Mechanobiol 2017; 17:745-761. [DOI: 10.1007/s10237-017-0990-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 11/20/2017] [Indexed: 10/18/2022]
|
33
|
Huang G, Li F, Zhao X, Ma Y, Li Y, Lin M, Jin G, Lu TJ, Genin GM, Xu F. Functional and Biomimetic Materials for Engineering of the Three-Dimensional Cell Microenvironment. Chem Rev 2017; 117:12764-12850. [PMID: 28991456 PMCID: PMC6494624 DOI: 10.1021/acs.chemrev.7b00094] [Citation(s) in RCA: 486] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cell microenvironment has emerged as a key determinant of cell behavior and function in development, physiology, and pathophysiology. The extracellular matrix (ECM) within the cell microenvironment serves not only as a structural foundation for cells but also as a source of three-dimensional (3D) biochemical and biophysical cues that trigger and regulate cell behaviors. Increasing evidence suggests that the 3D character of the microenvironment is required for development of many critical cell responses observed in vivo, fueling a surge in the development of functional and biomimetic materials for engineering the 3D cell microenvironment. Progress in the design of such materials has improved control of cell behaviors in 3D and advanced the fields of tissue regeneration, in vitro tissue models, large-scale cell differentiation, immunotherapy, and gene therapy. However, the field is still in its infancy, and discoveries about the nature of cell-microenvironment interactions continue to overturn much early progress in the field. Key challenges continue to be dissecting the roles of chemistry, structure, mechanics, and electrophysiology in the cell microenvironment, and understanding and harnessing the roles of periodicity and drift in these factors. This review encapsulates where recent advances appear to leave the ever-shifting state of the art, and it highlights areas in which substantial potential and uncertainty remain.
Collapse
Affiliation(s)
- Guoyou Huang
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Fei Li
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Department of Chemistry, School of Science,
Xi’an Jiaotong University, Xi’an 710049, People’s Republic
of China
| | - Xin Zhao
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Interdisciplinary Division of Biomedical
Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong,
People’s Republic of China
| | - Yufei Ma
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Yuhui Li
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Min Lin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Guorui Jin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Tian Jian Lu
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- MOE Key Laboratory for Multifunctional Materials
and Structures, Xi’an Jiaotong University, Xi’an 710049,
People’s Republic of China
| | - Guy M. Genin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Department of Mechanical Engineering &
Materials Science, Washington University in St. Louis, St. Louis 63130, MO,
USA
- NSF Science and Technology Center for
Engineering MechanoBiology, Washington University in St. Louis, St. Louis 63130,
MO, USA
| | - Feng Xu
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| |
Collapse
|
34
|
3D Microstructure Inhibits Mesenchymal Stem Cells Homing to the Site of Liver Cancer Cells on a Microchip. Genes (Basel) 2017; 8:genes8090218. [PMID: 28862651 PMCID: PMC5615351 DOI: 10.3390/genes8090218] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 12/13/2022] Open
Abstract
The cell microenvironment consists of multiple types of biophysical and biochemical factors, and represents a complex integrated system that is variable in both time and space. Studies show that changes in biochemical and biophysical factors in cell microenvironments result in significant changes in cellular forms and functions, especially for stem cells. Mesenchymal stem cells (MSCs) are derived from adult stem cells of the mesoderm and play an important role in tissue engineering, regenerative medicine and even cancer therapy. Furthermore, it is found that MSCs can interact with multiple types of tumor cells. The interaction is reflected as two totally different aspects. The negative aspect is that MSCs manifest as tumor-associated fibroblasts and could induce migration of cancer cells and promote tumor formation. On the other hand, MSCs can home to sites of the tumor microenvironment, directionally migrate toward tumor cells and cause tumor cell apoptosis. In this study, we designed and made a simple microfluidic chip for cell co-culture, and studied stem cell homing behavior in the interaction between MSCs and liver cancer cells. Moreover, by etching a three-dimensional microstructure on the base and adding transforming growth factor-β (TGF-β) in the co-culture environment, we studied the impact of biophysical and biochemical factors on stem cell homing behavior, and the causes of such impact.
Collapse
|
35
|
Kobiela T, Milner-Krawczyk M, Łukowska E, Dobrzyński P, Pastusiak M, Smola-Dmochowska A, Lukes J, Bobecka-Wesołowska K, Chwojnowski A. The effect of polymeric membrane surface on HaCaT cell properties. Micron 2017; 101:162-169. [PMID: 28759806 DOI: 10.1016/j.micron.2017.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 07/12/2017] [Accepted: 07/17/2017] [Indexed: 12/15/2022]
Abstract
The control of the surface properties is an important issue for applicability of polymer membranes interacting with cells. In this work, the influence of surface roughness and stiffness of two polymer membranes on viability and mechanical properties of keratinocytes was studied. Terpolimer polyglicolide, polycaprolactone and polylactide, (PGA-PCL-PLA) and copolymer polycaprolactone, polyglicolide (PGA-PCL) substrates were used for membranes fabrication. Surface modification - the hydrolysis of the obtained membranes was carried out. The analysis of membranes' surface properties revealed that RMS surface roughness and roughness factor of PGA-PCL-PLA membrane decreased after hydrolysis while its stiffness increased. In contrast, the PGA-PCL membrane stiffness was only slightly affected by NaOH treatment. Immortalized human keratinocytes (HaCaT) were grown under standard conditions on the surface of the studied membranes and characterized by means of atomic force microscopy and fluorescence microcopy. The results showed the substrate-dependent effect on cells' properties.
Collapse
Affiliation(s)
- Tomasz Kobiela
- Institute of Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.
| | - Małgorzata Milner-Krawczyk
- Institute of Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Ewa Łukowska
- Nałęcz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Trojdena 4, 109-02 Warsaw, Poland
| | - Piotr Dobrzyński
- Centre of Polymer and Carbon Materials Polish Academy of Sciences, M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland
| | - Małgorzata Pastusiak
- Centre of Polymer and Carbon Materials Polish Academy of Sciences, M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland
| | - Anna Smola-Dmochowska
- Centre of Polymer and Carbon Materials Polish Academy of Sciences, M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland
| | - Jaroslav Lukes
- Czech Technical University in Prague, Faculty of Mechanical Engineering, Technicka 4, 16607 Praha, Czechia
| | - Konstancja Bobecka-Wesołowska
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland
| | - Andrzej Chwojnowski
- Nałęcz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Trojdena 4, 109-02 Warsaw, Poland
| |
Collapse
|
36
|
Arun RP, Sivanesan D, Vidyasekar P, Verma RS. PTEN/FOXO3/AKT pathway regulates cell death and mediates morphogenetic differentiation of Colorectal Cancer Cells under Simulated Microgravity. Sci Rep 2017; 7:5952. [PMID: 28729699 PMCID: PMC5519599 DOI: 10.1038/s41598-017-06416-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/13/2017] [Indexed: 02/08/2023] Open
Abstract
Gravity is a major physical factor determining the stress and strain around cells. Both in space experiments and ground simulation, change in gravity impacts the viability and function of various types of cells as well as in vivo conditions. Cancer cells have been shown to die under microgravity. This can be exploited for better understanding of the biology and identification of novel avenues for therapeutic intervention. Here, we described the effect of microgravity simulated using Rotational Cell Culture System-High Aspect Ratio Vessel (RCCS-HARV) on the viability and morphological changes of colorectal cancer cells. We observed DLD1, HCT116 and SW620 cells die through apoptosis under simulated microgravity (SM). Gene expression analysis on DLD1 cells showed upregulation of tumor suppressors PTEN and FOXO3; leading to AKT downregulation and further induction of apoptosis, through upregulation of CDK inhibitors CDKN2B, CDKN2D. SM induced cell clumps had elevated hypoxia and mitochondrial membrane potential that led to adaptive responses like morphogenetic changes, migration and deregulated autophagy, when shifted to normal culture conditions. This can be exploited to understand the three-dimensional (3D) biology of cancer in the aspect of stress response. This study highlights the regulation of cell function and viability under microgravity through PTEN/FOXO3/AKT pathway.
Collapse
Affiliation(s)
- Raj Pranap Arun
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Divya Sivanesan
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036, India
| | | | - Rama Shanker Verma
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036, India.
| |
Collapse
|
37
|
Qiang Y, Liu J, Du E. Dynamic fatigue measurement of human erythrocytes using dielectrophoresis. Acta Biomater 2017; 57:352-362. [PMID: 28526627 DOI: 10.1016/j.actbio.2017.05.037] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 05/15/2017] [Accepted: 05/15/2017] [Indexed: 11/27/2022]
Abstract
Erythrocytes must undergo severe deformation to pass through narrow capillaries and submicronic splenic slits for several hundred thousand times in their normal lifespan. Studies of erythrocyte biomechanics have been mainly focused on cell deformability and rheology measured from a single application of stress and mostly under a static or quasi-static state using classical biomechanical techniques, such as optical tweezers and micropipette aspiration. Dynamic behavior of erythrocytes in response to cyclic stresses that contributes to the membrane failure in blood circulation is not fully understood. This paper presents a new experimental method for dynamic fatigue analysis of erythrocytes, using amplitude modulated electrokinetic force field in a microfluidic platform. We demonstrate the capability of this new technique using a low cycle fatigue analysis of normal human erythrocytes and ATP-depleted erythrocytes. Cyclic tensile stresses are generated to induce repeated uniaxial stretching and extensional recovery of single erythrocytes. Results of morphological and biomechanical parameters of individually tracked erythrocytes show strong correlations with the number of the loading cycles. Under a same strength of electric field, after 180 stress cycles, for normal erythrocytes, maximum stretch ratio decreases from 3.80 to 2.86, characteristic time of cellular extensional recovery increases from 0.16s to 0.37s, membrane shear viscosity increases from 1.0(µN/m)s to 1.6(µN/m)s. Membrane deformation in a small number of erythrocytes becomes irreversible after large deformation for about 200 cyclic loads. ATP-depleted cells show similar trends in decreased deformation and increased characteristic time with the loading cycles. These results show proof of concept of the new microfluidics technique for dynamic fatigue analysis of human erythrocytes. STATEMENT OF SIGNIFICANCE Red blood cells (RBCs) experience a tremendous number of deformation in blood circulation before losing their mechanical deformability and eventually being degraded in the reticuloendothelial system. Prior efforts in RBC biomechanics have mostly focused on a single-application of stress, or quasi-static loading through physical contact to deform cell membranes, thus with limited capabilities in probing cellular dynamic responses to cyclic stresses. We present a unique electrokinetic microfluidic system for the study of dynamic fatigue behavior of RBCs subjected to cyclic loads. Our work shows quantitatively how the cyclic stretching loads cause membrane mechanical degradation and irreversibly deformed cells. This new technique can be useful to identify biomechanical markers for prediction of the mechanical stability and residual lifespan of circulating RBCs.
Collapse
|
38
|
Shams H, Soheilypour M, Peyro M, Moussavi-Baygi R, Mofrad MRK. Looking "Under the Hood" of Cellular Mechanotransduction with Computational Tools: A Systems Biomechanics Approach across Multiple Scales. ACS Biomater Sci Eng 2017; 3:2712-2726. [PMID: 33418698 DOI: 10.1021/acsbiomaterials.7b00117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Signal modulation has been developed in living cells throughout evolution to promote utilizing the same machinery for multiple cellular functions. Chemical and mechanical modules of signal transmission and transduction are interconnected and necessary for organ development and growth. However, due to the high complexity of the intercommunication of physical intracellular connections with biochemical pathways, there are many missing details in our overall understanding of mechanotransduction processes, i.e., the process by which mechanical signals are converted to biochemical cascades. Cell-matrix adhesions are mechanically coupled to the nucleus through the cytoskeleton. This modulated and tightly integrated network mediates the transmission of mechanochemical signals from the extracellular matrix to the nucleus. Various experimental and computational techniques have been utilized to understand the basic mechanisms of mechanotransduction, yet many aspects have remained elusive. Recently, in silico experiments have made important contributions to the field of mechanobiology. Herein, computational modeling efforts devoted to understanding integrin-mediated mechanotransduction pathways are reviewed, and an outlook is presented for future directions toward using suitable computational approaches and developing novel techniques for addressing important questions in the field of mechanotransduction.
Collapse
Affiliation(s)
- Hengameh Shams
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California 94720-1762, United States
| | - Mohammad Soheilypour
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California 94720-1762, United States
| | - Mohaddeseh Peyro
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California 94720-1762, United States
| | - Ruhollah Moussavi-Baygi
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California 94720-1762, United States
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California 94720-1762, United States
| |
Collapse
|
39
|
Liu B, McNally S, Kilpatrick JI, Jarvis SP, O'Brien CJ. Aging and ocular tissue stiffness in glaucoma. Surv Ophthalmol 2017; 63:56-74. [PMID: 28666629 DOI: 10.1016/j.survophthal.2017.06.007] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 06/20/2017] [Accepted: 06/22/2017] [Indexed: 12/27/2022]
Abstract
Glaucoma is a progressive and chronic neurodegenerative disorder characterized by damage to the inner layers of the retina and deformation of the optic nerve head. The degeneration of retinal ganglion cells and their axons results in an irreversible loss of vision and is correlated with increasing age. Extracellular matrix changes related to natural aging generate a stiffer extracellular environment throughout the body. Altered age-associated ocular tissue stiffening plays a major role in a significant number of ophthalmic pathologies. In glaucoma, both the trabecular meshwork and the optic nerve head undergo extensive extracellular matrix remodeling, characterized by fibrotic changes associated with cellular and molecular events (including myofibroblast activation) that drive further tissue fibrosis and stiffening. Here, we review the literature concerning the role of age-related ocular stiffening in the trabecular meshwork, lamina cribrosa, sclera, cornea, retina, and Bruch membrane/choroid and discuss their potential role in glaucoma progression. Because both trabecular meshwork and lamina cribrosa cells are mechanosensitive, we then describe molecular mechanisms underlying tissue stiffening and cell mechanotransduction and how these cellular activities can drive further fibrotic changes within ocular tissues. An improved understanding of the interplay between age-related tissue stiffening and biological responses in the trabecular meshwork and optic nerve head could potentially lead to novel therapeutic strategies for glaucoma treatment.
Collapse
Affiliation(s)
- Baiyun Liu
- School of Physics, Conway Institute, University College Dublin, Dublin, Ireland; Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Sara McNally
- Department of Ophthalmology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Jason I Kilpatrick
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Suzanne P Jarvis
- School of Physics, Conway Institute, University College Dublin, Dublin, Ireland; Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Colm J O'Brien
- Department of Ophthalmology, Mater Misericordiae University Hospital, Dublin, Ireland; School of Medicine and Medical Science, University College Dublin, Dublin, Ireland.
| |
Collapse
|
40
|
Marzban B, Yuan H. The Effect of Thermal Fluctuation on the Receptor-Mediated Adhesion of a Cell Membrane to an Elastic Substrate. MEMBRANES 2017; 7:E24. [PMID: 28448443 PMCID: PMC5489858 DOI: 10.3390/membranes7020024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/14/2017] [Accepted: 04/25/2017] [Indexed: 12/22/2022]
Abstract
Mechanics of the bilayer membrane play an important role in many biological and bioengineering problems such as cell-substrate and cell-nanomaterial interactions. In this work, we study the effect of thermal fluctuation and the substrate elasticity on the cell membrane-substrate adhesion. We model the adhesion of a fluctuating membrane on an elastic substrate as a two-step reaction comprised of the out-of-plane membrane fluctuation and the receptor-ligand binding. The equilibrium closed bond ratio as a function of substrate rigidity was computed by developing a coupled Fourier space Brownian dynamics and Monte Carlo method. The simulation results show that there exists a crossover value of the substrate rigidity at which the closed bond ratio is maximal.
Collapse
Affiliation(s)
- Bahador Marzban
- Department of Mechanical, Industrial & Systems Engineering, University of Rhode Island, Kingston, RI 02881, USA.
| | - Hongyan Yuan
- Department of Mechanical, Industrial & Systems Engineering, University of Rhode Island, Kingston, RI 02881, USA.
| |
Collapse
|
41
|
Wijesinghe P, Sampson DD, Kennedy BF. Computational optical palpation: a finite-element approach to micro-scale tactile imaging using a compliant sensor. J R Soc Interface 2017; 14:20160878. [PMID: 28250098 PMCID: PMC5378127 DOI: 10.1098/rsif.2016.0878] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/02/2017] [Indexed: 12/11/2022] Open
Abstract
High-resolution tactile imaging, superior to the sense of touch, has potential for future biomedical applications such as robotic surgery. In this paper, we propose a tactile imaging method, termed computational optical palpation, based on measuring the change in thickness of a thin, compliant layer with optical coherence tomography and calculating tactile stress using finite-element analysis. We demonstrate our method on test targets and on freshly excised human breast fibroadenoma, demonstrating a resolution of up to 15-25 µm and a field of view of up to 7 mm. Our method is open source and readily adaptable to other imaging modalities, such as ultrasonography and confocal microscopy.
Collapse
Affiliation(s)
- Philip Wijesinghe
- Optical+Biomedical Engineering Laboratory, School of Electrical, Electronic and Computer Engineering, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia 6009, Australia
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, 6 Verdun Street, Nedlands, Western Australia 6009, Australia
| | - David D Sampson
- Optical+Biomedical Engineering Laboratory, School of Electrical, Electronic and Computer Engineering, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia 6009, Australia
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia 6009, Australia
| | - Brendan F Kennedy
- School of Electrical, Electronic and Computer Engineering, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia 6009, Australia
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, 6 Verdun Street, Nedlands, Western Australia 6009, Australia
| |
Collapse
|
42
|
Merkher Y, Weihs D. Proximity of Metastatic Cells Enhances Their Mechanobiological Invasiveness. Ann Biomed Eng 2017; 45:1399-1406. [DOI: 10.1007/s10439-017-1814-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/11/2017] [Indexed: 12/23/2022]
|
43
|
|
44
|
Fojecki GL, Tiessen S, Osther PJS. Effect of Low-Energy Linear Shockwave Therapy on Erectile Dysfunction-A Double-Blinded, Sham-Controlled, Randomized Clinical Trial. J Sex Med 2016; 14:106-112. [PMID: 27938990 DOI: 10.1016/j.jsxm.2016.11.307] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/09/2016] [Accepted: 11/10/2016] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Previous studies have shown that focal low-energy extracorporeal shockwave therapy (Li-ESWT) can have a positive effect in men with erectile dysfunction (ED). Linear Li-ESWT (LLi-ESWT) for ED has not been previously assessed in a randomized trial. AIM To evaluate the treatment outcome of LLi-ESWT for ED. METHODS Men with ED (n = 126) and a score lower than 25 points on the International Index of Erectile Function erectile function domain (IIEF-EF) were included. Subjects were allocated to receive LLi-ESWT once a week for 5 weeks or sham treatment once a week for 5 weeks. After a 4-week break, the two groups received active treatment once a week for 5 weeks. Subjects completed the IIEF, Erection Hardness Scale (EHS), Sexual Quality of Life-Men, and the Erectile Dysfunction Inventory of Treatment Satisfaction at baseline, after 9 weeks, and after 18 weeks. MAIN OUTCOME MEASURES The primary outcome measurement was an increase of at least five points on the IIEF-EF score. The secondary outcome measurement was an increased EHS score to at least 3 in men with a score no higher than 2 at baseline. Data were analyzed by linear and logistic regression. RESULTS Mean IIEF-EF scores were 11.5 at baseline (95% CI = 9.8-13.2), 13.0 after five sessions (95% CI = 11.0-15.0), and 12.6 after 10 sessions (95% CI = 11.0-14.2) in the sham group and correspondingly 10.9 (95% CI = 9.1-12.7), 13.1 (95% CI = 9.3-13.4), and 11.8 (95% CI = 10.1-13.4) in the ESWT group. Success rates based on IIEF-EF score were 38.3% in the sham group and 37.9% in the ESWT group (odds ratio = 0.95, 95% CI = 0.45-2.02, P = .902). Success rates based on EHS score were 6.7% in the sham group and 3.5% in the ESWT group (odds ratio = 0.44, 95% CI = 0.08-2.61, P = .369). A limitation of this study is that device settings (number of shockwaves and penetration depth) were estimated based on an existing trial on focused ESWT. CONCLUSION No clinically relevant effect of LLi-ESWT on ED was found.
Collapse
Affiliation(s)
- Grzegorz L Fojecki
- Department of Urology, Hospital of Southern Jutland, University of Southern Denmark, Sønderborg, Denmark
| | - Stefan Tiessen
- Department of Urology, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Palle J S Osther
- Urological Research Center, Department of Urology, Lillebaelt Hospital, University of Southern Denmark, Fredericia, Denmark.
| |
Collapse
|
45
|
Greiner AM, Sales A, Chen H, Biela SA, Kaufmann D, Kemkemer R. Nano- and microstructured materials for in vitro studies of the physiology of vascular cells. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2016; 7:1620-1641. [PMID: 28144512 PMCID: PMC5238670 DOI: 10.3762/bjnano.7.155] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 10/04/2016] [Indexed: 05/21/2023]
Abstract
The extracellular environment of vascular cells in vivo is complex in its chemical composition, physical properties, and architecture. Consequently, it has been a great challenge to study vascular cell responses in vitro, either to understand their interaction with their native environment or to investigate their interaction with artificial structures such as implant surfaces. New procedures and techniques from materials science to fabricate bio-scaffolds and surfaces have enabled novel studies of vascular cell responses under well-defined, controllable culture conditions. These advancements are paving the way for a deeper understanding of vascular cell biology and materials-cell interaction. Here, we review previous work focusing on the interaction of vascular smooth muscle cells (SMCs) and endothelial cells (ECs) with materials having micro- and nanostructured surfaces. We summarize fabrication techniques for surface topographies, materials, geometries, biochemical functionalization, and mechanical properties of such materials. Furthermore, various studies on vascular cell behavior and their biological responses to micro- and nanostructured surfaces are reviewed. Emphasis is given to studies of cell morphology and motility, cell proliferation, the cytoskeleton and cell-matrix adhesions, and signal transduction pathways of vascular cells. We finalize with a short outlook on potential interesting future studies.
Collapse
Affiliation(s)
- Alexandra M Greiner
- Karlsruhe Institute of Technology (KIT), Institute of Zoology, Department of Cell and Neurobiology, Haid-und-Neu-Strasse 9, 76131 Karlsruhe, Germany
- now at: Pforzheim University, School of Engineering, Tiefenbronner Strasse 65, 75175 Pforzheim, Germany
| | - Adria Sales
- Max Planck Institute for Intelligent Systems, Department of New Materials and Biosystems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Hao Chen
- Karlsruhe Institute of Technology (KIT), Institute of Zoology, Department of Cell and Neurobiology, Haid-und-Neu-Strasse 9, 76131 Karlsruhe, Germany
| | - Sarah A Biela
- Max Planck Institute for Intelligent Systems, Department of New Materials and Biosystems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Dieter Kaufmann
- Universitätsklinikum Ulm, Institut für Humangenetik, Albert Einstein Allee 11, 89070 Ulm, Germany
| | - Ralf Kemkemer
- Max Planck Institute for Intelligent Systems, Department of New Materials and Biosystems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Reutlingen University, Faculty of Applied Chemistry, Alteburgstrasse 150, 72762 Reutlingen, Germany
| |
Collapse
|
46
|
Cavo M, Fato M, Peñuela L, Beltrame F, Raiteri R, Scaglione S. Microenvironment complexity and matrix stiffness regulate breast cancer cell activity in a 3D in vitro model. Sci Rep 2016; 6:35367. [PMID: 27734939 PMCID: PMC5062115 DOI: 10.1038/srep35367] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 09/20/2016] [Indexed: 12/18/2022] Open
Abstract
Three-dimensional (3D) cell cultures represent fundamental tools for the comprehension of cellular phenomena both in normal and in pathological conditions. In particular, mechanical and chemical stimuli play a relevant role on cell fate, cancer onset and malignant evolution. Here, we use mechanically-tuned alginate hydrogels to study the role of substrate elasticity on breast adenocarcinoma cell activity. The hydrogel elastic modulus (E) was measured via atomic force microscopy (AFM) and a remarkable range (150-4000 kPa) was obtained. A breast cancer cell line, MCF-7, was seeded within the 3D gels, on standard Petri and alginate-coated dishes (2D controls). Cells showed dramatic morphological differences when cultured in 3D versus 2D, exhibiting a flat shape in both 2D conditions, while maintaining a circular, spheroid-organized (cluster) conformation within the gels, similar to those in vivo. Moreover, we observed a strict correlation between cell viability and substrate elasticity; in particular, the number of MCF-7 cells decreased constantly with increasing hydrogel elasticity. Remarkably, the highest cellular proliferation rate, associated with the formation of cell clusters, occurred at two weeks only in the softest hydrogels (E = 150-200 kPa), highlighting the need to adopt more realistic and a priori defined models for in vitro cancer studies.
Collapse
Affiliation(s)
- Marta Cavo
- National Council of Research (CNR) – IEIIT Institute, Genoa, 16149, Italy
- University of Genoa – Department of Biophysical and Electronic Engineering (DIBRIS), Genoa, 16145, Italy
| | - Marco Fato
- National Council of Research (CNR) – IEIIT Institute, Genoa, 16149, Italy
- University of Genoa – Department of Biophysical and Electronic Engineering (DIBRIS), Genoa, 16145, Italy
| | - Leonardo Peñuela
- University of Genoa – Department of Biophysical and Electronic Engineering (DIBRIS), Genoa, 16145, Italy
| | - Francesco Beltrame
- National Council of Research (CNR) – IEIIT Institute, Genoa, 16149, Italy
- University of Genoa – Department of Biophysical and Electronic Engineering (DIBRIS), Genoa, 16145, Italy
| | - Roberto Raiteri
- University of Genoa – Department of Biophysical and Electronic Engineering (DIBRIS), Genoa, 16145, Italy
- National Council of Research (CNR) – IBF Institute, Genoa, 16149, Italy
| | - Silvia Scaglione
- National Council of Research (CNR) – IEIIT Institute, Genoa, 16149, Italy
| |
Collapse
|
47
|
Cui M, VAN Hoorn CH, Iannuzzi D. Miniaturized fibre-top cantilevers on etched fibres. J Microsc 2016; 264:370-374. [PMID: 27490285 DOI: 10.1111/jmi.12452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 05/04/2016] [Accepted: 07/05/2016] [Indexed: 12/01/2022]
Abstract
Fibre-top probes are self-aligned, all optical devices obtained by carving a cantilever on top of a 125-μm diameter single-mode optical fibre. In this paper, we show that this design can be adapted to smaller fibres as well. We evaluated the performance of a 20-μm diameter probe in contact mode atomic force microscopy (AFM) and that of a 50-μm diameter probe in nanoindentation measurements. AFM images proved to be accurate both in air and water, although some distortion was observed because of the mechanical bending of the fibre during scanning. Indentation curves resembled those obtained with larger devices. The maximum indentation depth, however, is limited by the small dimensions of the cantilever.
Collapse
Affiliation(s)
- Moxi Cui
- Department of Physics and Astronomy and LaserLab Amsterdam, VU University, Amsterdam, the Netherlands
| | - Camiel H VAN Hoorn
- Department of Physics and Astronomy and LaserLab Amsterdam, VU University, Amsterdam, the Netherlands
| | - Davide Iannuzzi
- Department of Physics and Astronomy and LaserLab Amsterdam, VU University, Amsterdam, the Netherlands
| |
Collapse
|
48
|
Huang J, Wang L, Xiong C, Yuan F. Elastic hydrogel as a sensor for detection of mechanical stress generated by single cells grown in three-dimensional environment. Biomaterials 2016; 98:103-12. [DOI: 10.1016/j.biomaterials.2016.04.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/20/2016] [Accepted: 04/22/2016] [Indexed: 12/12/2022]
|
49
|
Meng Z, Bustamante Lopez SC, Meissner KE, Yakovlev VV. Subcellular measurements of mechanical and chemical properties using dual Raman-Brillouin microspectroscopy. JOURNAL OF BIOPHOTONICS 2016; 9:201-7. [PMID: 26929086 DOI: 10.1002/jbio.201500163] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/01/2015] [Accepted: 09/16/2015] [Indexed: 05/27/2023]
Abstract
Brillouin microspectroscopy is a powerful technique for noninvasive optical imaging. In particular, Brillouin microspectroscopy uniquely allows assessing a sample's mechanical properties with microscopic spatial resolution. Recent advances in background-free Brillouin microspectroscopy make it possible to image scattering samples without substantial degradation of the data quality. However, measurements at the cellular- and subcellular-level have never been performed to date due to the limited signal strength. In this report, by adopting our recently optimized VIPA-based Brillouin spectrometer, we probed the microscopic viscoelasticity of individual red blood cells. These measurements were supplemented by chemically specific measurements using Raman microspectroscopy.
Collapse
Affiliation(s)
- Zhaokai Meng
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843-3120, USA.
| | | | - Kenith E Meissner
- College of Engineering, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, United Kingdom
| | - Vladislav V Yakovlev
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843-3120, USA
| |
Collapse
|
50
|
Lownes Urbano R, Morss Clyne A. An inverted dielectrophoretic device for analysis of attached single cell mechanics. LAB ON A CHIP 2016; 16:561-73. [PMID: 26738543 PMCID: PMC4734981 DOI: 10.1039/c5lc01297j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Dielectrophoresis (DEP), the force induced on a polarizable body by a non-uniform electric field, has been widely used to manipulate single cells in suspension and analyze their stiffness. However, most cell types do not naturally exist in suspension but instead require attachment to the tissue extracellular matrix in vivo. Cells alter their cytoskeletal structure when they attach to a substrate, which impacts cell stiffness. It is therefore critical to be able to measure mechanical properties of cells attached to a substrate. We present a novel inverted quadrupole dielectrophoretic device capable of measuring changes in the mechanics of single cells attached to a micropatterned polyacrylamide gel. The device is positioned over a cell of defined size, a directed DEP pushing force is applied, and cell centroid displacement is dynamically measured by optical microscopy. Using this device, single endothelial cells showed greater centroid displacement in response to applied DEP pushing force following actin cytoskeleton disruption by cytochalasin D. In addition, transformed mammary epithelial cell (MCF10A-NeuT) showed greater centroid displacement in response to applied DEP pushing force compared to untransformed cells (MCF10A). DEP device measurements were confirmed by showing that the cells with greater centroid displacement also had a lower elastic modulus by atomic force microscopy. The current study demonstrates that an inverted DEP device can determine changes in single attached cell mechanics on varied substrates.
Collapse
Affiliation(s)
- Rebecca Lownes Urbano
- Drexel University, Department of Mechanical Engineering and Mechanics, 3141 Chestnut Street, Philadelphia, PA 19104, USA.
| | - Alisa Morss Clyne
- Drexel University, Department of Mechanical Engineering and Mechanics, 3141 Chestnut Street, Philadelphia, PA 19104, USA.
| |
Collapse
|