1
|
Hou Y, Zhou H, Li Y, Mao T, Luo J, Yang J. Hemodynamic Force Based on Cardiac Magnetic Resonance Imaging: State of the Art and Perspective. J Magn Reson Imaging 2024. [PMID: 38958118 DOI: 10.1002/jmri.29483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 07/04/2024] Open
Abstract
Intracardiac blood flow has long been proposed to play a significant role in cardiac morphology and function. However, absolute blood pressure within the heart has mainly been measured by invasive catheterization, which limits its application. Hemodynamic force (HDF) is the global force of intracavitary blood flow acquired by integrating the intraventricular pressure gradient over the entire ventricle and thus may be a promising tool for accurately characterizing cardiac function. Recent advances in magnetic resonance imaging technology allow for a noninvasive measurement of HDF through both 4D flow cardiac MRI and cine cardiac MRI. The HDF time curve provides comprehensive data for both qualitative and quantitative analysis. In this review, a series of HDF parameters is introduced and a summary of the current literature regarding HDF in clinical practice is presented. Additionally, the current dilemmas and future prospects are discussed in order to contribute to the future research. LEVEL OF EVIDENCE: 5. TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Yangzhen Hou
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Zhou
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yajuan Li
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ting Mao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Luo
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ji Yang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
De Lazzari B, Badagliacca R, Filomena D, Papa S, Vizza CD, Capoccia M, De Lazzari C. CARDIOSIM©: The First Italian Software Platform for Simulation of the Cardiovascular System and Mechanical Circulatory and Ventilatory Support. Bioengineering (Basel) 2022; 9:bioengineering9080383. [PMID: 36004908 PMCID: PMC9404951 DOI: 10.3390/bioengineering9080383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
This review is devoted to presenting the history of the CARDIOSIM© software simulator platform, which was developed in Italy to simulate the human cardiovascular and respiratory systems. The first version of CARDIOSIM© was developed at the Institute of Biomedical Technologies of the National Research Council in Rome. The first platform version published in 1991 ran on a PC with a disk operating system (MS-DOS) and was developed using the Turbo Basic language. The latest version runs on PC with Microsoft Windows 10 operating system; it is implemented in Visual Basic and C++ languages. The platform has a modular structure consisting of seven different general sections, which can be assembled to reproduce the most important pathophysiological conditions. One or more zero-dimensional (0-D) modules have been implemented in the platform for each section. The different modules can be assembled to reproduce part or the whole circulation according to Starling’s law of the heart. Different mechanical ventilatory and circulatory devices have been implemented in the platform, including thoracic artificial lungs, ECMO, IABPs, pulsatile and continuous right and left ventricular assist devices, biventricular pacemakers and biventricular assist devices. CARDIOSIM© is used in clinical and educational environments.
Collapse
Affiliation(s)
- Beatrice De Lazzari
- Department of Human Movement and Sport Sciences, “Foro Italico” 4th University of Rome, 00135 Rome, Italy
- Correspondence:
| | - Roberto Badagliacca
- Department of Clinical, Internal Anesthesiology and Cardiovascular Sciences, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Domenico Filomena
- Department of Clinical, Internal Anesthesiology and Cardiovascular Sciences, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Silvia Papa
- Department of Clinical, Internal Anesthesiology and Cardiovascular Sciences, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Carmine Dario Vizza
- Department of Clinical, Internal Anesthesiology and Cardiovascular Sciences, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Massimo Capoccia
- Department of Cardiac Surgery, Leeds General Infirmary, Leeds Teaching Hospitals NHS Trust, Leeds LS1 3EX, UK
- Department of Biomedical Engineering, University of Strathclyde, Glasgow G4 0NW, UK
| | - Claudio De Lazzari
- National Research Council, Institute of Clinical Physiology (IFC-CNR), 00185 Rome, Italy
- Faculty of Medicine, Teaching University Geomedi, Tbilisi 0114, Georgia
| |
Collapse
|
3
|
Hu LW, Xiang Y, Qin SY, Ouyang RZ, Liu JL, Peng YF, Xie WH, Zhang Y, Liu H, Zhong YM. Vortex formation time as an index of left ventricular filling efficiency: comparison between children volunteers and patients with tetralogy of Fallot. Transl Pediatr 2022; 11:869-881. [PMID: 35800277 PMCID: PMC9253934 DOI: 10.21037/tp-22-67] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/02/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Vortex formation time (VFT) had been considered a useful marker for assessing diastolic performance. the VFT assessment of diastolic function using four-dimensional (4D) flow cardiovascular magnetic resonance (CMR) has not been used in repair of tetralogy of Fallot (rTOF) patient. The aims of this study were as follows: (I) establish reference ranges for VFT measurements in healthy children and adolescents using 4D flow CMR imaging; and (II) analyze VFT parameters to assess diastole dysfunction in rTOF patients group. METHODS We acquired the CMR data was of 62 healthy participants (aged 6-18 years; male: 40, female: 22) and 20 patients with rTOF (aged 10-13 years; male: 15, female: 5) using 4D flow and cine sequence in routine chamber view. The VFT was calculated based on comparison of different algorithms from cine measurements (VFTvolume) and 4D flow measurements (VFTblood). Then, VFT measurements were compared to subject peak filling rate (PFR), age, and cardiac mass using simple linear regression and multiple regression analyses. Data were also categorized according to age for VFT and cardiac functional assessment comparisons between 3 age groups (Group 1: 6-9 years; Group 2: 10-13 years; Group 3: 14-18 years). The correlation of VFT and cardiac function parameters were analyzed in the rTOF group. RESULTS Normal mean value of VFTvolume and VFTblood were 4.25±0.92 and 3.77±1.11 in healthy children participants. The VFTvolume was correlated with VFTblood (r=0.61, P<0.001). There was a moderately significant correlation between VFTvolume and PFR (r=0.46, P<0.001) and between VFTblood and PFR (r=0.47, P<0.001), age (r=0.41, P=0.002) and left ventricular (LV) mass (r=0.48, P<0.001). Multiple regression analyses demonstrated that VFTvolume was independently associated with PFR (T=2.239; P<0.05) and VFTblood (T=4.361; P<0.001). There was a significant difference in VFTvolume between healthy controls and rTOF patients (5.44±1.93 vs. 4.27±0.88, P=0.018). CONCLUSIONS The VFT measurements showed that the LV that had appropriate space to form the optimal vortex ring in normal children and adolescents aged 6-18 years old. The VFTvolume could potentially be helpful in improving our understanding of LV diastolic dysfunction in rTOF patients.
Collapse
Affiliation(s)
- Li-Wei Hu
- Diagnostic Imaging Center, Shanghai Children's Medical Center Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Xiang
- J.C. Wu Center for Aerodynamics, School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai, China
| | - Su-Yang Qin
- J.C. Wu Center for Aerodynamics, School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai, China
| | - Rong-Zhen Ouyang
- Diagnostic Imaging Center, Shanghai Children's Medical Center Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin-Long Liu
- Department of Cardiovascular and Thoracic Surgery, Shanghai Children's Medical Center Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ya-Feng Peng
- Diagnostic Imaging Center, Shanghai Children's Medical Center Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Hui Xie
- Diagnostic Imaging Center, Shanghai Children's Medical Center Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Zhang
- MR Research, GE Healthcare, Shanghai, China
| | - Hong Liu
- J.C. Wu Center for Aerodynamics, School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai, China
| | - Yu-Min Zhong
- Diagnostic Imaging Center, Shanghai Children's Medical Center Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Surrogate models provide new insights on metrics based on blood flow for the assessment of left ventricular function. Sci Rep 2022; 12:8695. [PMID: 35610287 PMCID: PMC9130265 DOI: 10.1038/s41598-022-12560-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/19/2022] [Indexed: 11/09/2022] Open
Abstract
Recent developments on the grading of cardiac pathologies suggest flow-related metrics for a deeper evaluation of cardiac function. Blood flow evaluation employs space-time resolved cardiovascular imaging tools, possibly integrated with direct numerical simulation (DNS) of intraventricular fluid dynamics in individual patients. If a patient-specific analysis is a promising method to reproduce flow details or to assist virtual therapeutic solutions, it becomes impracticable in nearly-real-time during a routine clinical activity. At the same time, the need to determine the existence of relationships between advanced flow-related quantities of interest (QoIs) and the diagnostic metrics used in the standard clinical practice requires the adoption of techniques able to generalize evidences emerging from a finite number of single cases. In this study, we focus on the left ventricular function and use a class of reduced-order models, relying on the Polynomial Chaos Expansion (PCE) technique to learn the dynamics of selected QoIs based on a set of synthetic cases analyzed with a high-fidelity model (DNS). The selected QoIs describe the left ventricle blood transit and the kinetic energy and vorticity at the peak of diastolic filling. The PCE-based surrogate models provide straightforward approximations of these QoIs in the space of widely used diagnostic metrics embedding relevant information on left ventricle geometry and function. These surrogates are directly employable in the clinical analysis as we demonstrate by assessing their robustness against independent patient-specific cases ranging from healthy to diseased conditions. The surrogate models are used to perform global sensitivity analysis at a negligible computational cost and provide insights on the impact of each diagnostic metric on the QoIs. Results also suggest how common flow transit parameters are principally dictated by ejection fraction.
Collapse
|
5
|
Riva A, Sturla F, Pica S, Camporeale A, Tondi L, Saitta S, Caimi A, Giese D, Palladini G, Milani P, Castelvecchio S, Menicanti L, Redaelli A, Lombardi M, Votta E. Comparison of Four-Dimensional Magnetic Resonance Imaging Analysis of Left Ventricular Fluid Dynamics and Energetics in Ischemic and Restrictive Cardiomyopathies. J Magn Reson Imaging 2022; 56:1157-1170. [PMID: 35075711 PMCID: PMC9541919 DOI: 10.1002/jmri.28076] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 01/07/2023] Open
Abstract
Background Time‐resolved three‐directional velocity‐encoded (4D flow) magnetic resonance imaging (MRI) enables the quantification of left ventricular (LV) intracavitary fluid dynamics and energetics, providing mechanistic insight into LV dysfunctions. Before becoming a support to diagnosis and patient stratification, this analysis should prove capable of discriminating between clearly different LV derangements. Purpose To investigate the potential of 4D flow in identifying fluid dynamic and energetics derangements in ischemic and restrictive LV cardiomyopathies. Study Type Prospective observational study. Population Ten patients with post‐ischemic cardiomyopathy (ICM), 10 patients with cardiac light‐chain cardiac amyloidosis (AL‐CA), and 10 healthy controls were included. Field Strength/Sequence 1.5 T/balanced steady‐state free precession cine and 4D flow sequences. Assessment Flow was divided into four components: direct flow (DF), retained inflow, delayed ejection flow, and residual volume (RV). Demographics, LV morphology, flow components, global and regional energetics (volume‐normalized kinetic energy [KEV] and viscous energy loss [ELV]), and pressure‐derived hemodynamic force (HDF) were compared between the three groups. Statistical Tests Intergroup differences in flow components were tested by one‐way analysis of variance (ANOVA); differences in energetic variables and peak HDF were tested by two‐way ANOVA. A P‐value of <0.05 was considered significant. Results ICM patients exhibited the following statistically significant alterations vs. controls: reduced KEV, mostly in the basal region, in systole (−44%) and in diastole (−37%); altered flow components, with reduced DF (−33%) and increased RV (+26%); and reduced basal–apical HDF component on average by 63% at peak systole. AL‐CA patients exhibited the following alterations vs. controls: significantly reduced KEV at the E‐wave peak in the basal segment (−34%); albeit nonstatistically significant, increased peaks and altered time‐course of the HDF basal–apical component in diastole and slightly reduced HDF components in systole. Data Conclusion The analysis of multiple 4D flow‐derived parameters highlighted fluid dynamic alterations associated with systolic and diastolic dysfunctions in ICM and AL‐CA patients, respectively. Level of Evidence 2 Technical Efficacy Stage 3
Collapse
Affiliation(s)
- Alessandra Riva
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy.,3D and Computer Simulation Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Francesco Sturla
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy.,3D and Computer Simulation Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Silvia Pica
- Multimodality Cardiac Imaging, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Antonia Camporeale
- Multimodality Cardiac Imaging, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Lara Tondi
- Multimodality Cardiac Imaging, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Simone Saitta
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Alessandro Caimi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | | | - Giovanni Palladini
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Paolo Milani
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Lorenzo Menicanti
- Cardiac Surgery Department, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Alberto Redaelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Massimo Lombardi
- Multimodality Cardiac Imaging, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Emiliano Votta
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy.,3D and Computer Simulation Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| |
Collapse
|
6
|
Agafonov AV, Talygin EA, Bockeria LA, Gorodkov AY. The Hydrodynamics of a Swirling Blood Flow in the Left Heart and Aorta. Acta Naturae 2021; 13:4-16. [PMID: 35127142 PMCID: PMC8807531 DOI: 10.32607/actanaturae.11439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/12/2021] [Indexed: 11/20/2022] Open
Abstract
This paper proposes a new approach to the quantitative analysis of the hydrodynamic structure of a blood flow in the flow channel running from the left atrium to the end of the aorta. This approach is based on the concept of the structural organization of tornado-like swirling jets in channels with a given geometric configuration. Considering the large amount of experimental data in our possession, it was shown that along the entire length of the flow channel, conditions exist for the generation and maintenance of a swirling structure of the jet throughout the entire cardiac cycle. This study has given rise to a new direction in research in fundamental physiology and medicine, which is of great practical importance for diagnosing and treating circulatory disorders accompanied by changes in the geometric configuration and biomechanical characteristics of the heart and great vessels.
Collapse
Affiliation(s)
- A. V. Agafonov
- Bakulev National Medical Research Center of Cardiovascular Surgery, Ministry of Health of the Russian Federation, Moscow, 121552 Russia
| | - E. A. Talygin
- Bakulev National Medical Research Center of Cardiovascular Surgery, Ministry of Health of the Russian Federation, Moscow, 121552 Russia
| | - L. A. Bockeria
- Bakulev National Medical Research Center of Cardiovascular Surgery, Ministry of Health of the Russian Federation, Moscow, 121552 Russia
| | - A. Yu. Gorodkov
- Bakulev National Medical Research Center of Cardiovascular Surgery, Ministry of Health of the Russian Federation, Moscow, 121552 Russia
| |
Collapse
|
7
|
Collia D, Zovatto L, Tonti G, Pedrizzetti G. Comparative Analysis of Right Ventricle Fluid Dynamics. Front Bioeng Biotechnol 2021; 9:667408. [PMID: 34295879 PMCID: PMC8290199 DOI: 10.3389/fbioe.2021.667408] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/26/2021] [Indexed: 12/02/2022] Open
Abstract
The right and left sides of the human heart operate with a common timing and pump the same amount of blood. Therefore, the right ventricle (RV) presents a function that is comparable to the left ventricle (LV) in terms of flow generation; nevertheless, the RV operates against a much lower arterial pressure (afterload) and requires a lower muscular strength. This study compares the fluid dynamics of the normal right and left ventricles to better understand the role of the RV streamlined geometry and provide some physics-based ground for the construction of clinical indicators for the right side. The analysis is performed by image-based direct numerical simulation, using the immersed boundary technique including the simplified models of tricuspid and mitral valves. Results demonstrated that the vortex formation process during early diastole is similar in the two ventricles, then the RV vorticity rapidly dissipates in the subvalvular region while the LV sustains a weak circulatory pattern at the center of the chamber. Afterwards, during the systolic contraction, the RV geometry allows an efficient transfer of mechanical work to the propelled blood; differently from the LV, this work is non-negligible in the global energetic balance. The varying behavior of the RV, from reservoir to conduct, during the different phases of the heartbeat is briefly discussed in conjunction to the development of possible dysfunctions.
Collapse
Affiliation(s)
- Dario Collia
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Luigino Zovatto
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Giovanni Tonti
- Institute of Cardiology and Center of Excellence on Aging, “G. D'Annunzio” University of Chieti, Chieti, Italy
| | - Gianni Pedrizzetti
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| |
Collapse
|
8
|
Bailoor S, Seo JH, Dasi LP, Schena S, Mittal R. A computational study of the hemodynamics of bioprosthetic aortic valves with reduced leaflet motion. J Biomech 2021; 120:110350. [PMID: 33743394 DOI: 10.1016/j.jbiomech.2021.110350] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 02/22/2021] [Indexed: 01/25/2023]
Abstract
We employ a reduced degree-of-freedom aortic valve model to investigate the flow physics associated with early-stage reduced leaflet motion in bioprosthetic aortic valves. The model is coupled with a sharp-interface immersed boundary based incompressible flow solver to efficiently simulate the fluid-structure interaction. A total of 19 cases of flow through aortic valves with varying degrees of reduced leaflet motion (RLM) are considered. The characteristics of the aortic jet and the consequent aorta wall loading patterns are analyzed. Our results show that asymmetric RLM tilts the aortic jet and leads to large reverse and recirculating flow regions downstream from leaflets with restricted mobility. The changes in flow patterns increase wall pressure and shear stress fluctuations, and result in asymmetric oscillating shear on the aorta wall. These findings have implications for auscultation based diagnosis of this condition as well as the health of the aorta.
Collapse
|
9
|
Pedrizzetti G, Faganello G, Croatto E, Di Lenarda A. The hemodynamic power of the heart differentiates normal from diseased right ventricles. J Biomech 2021; 119:110312. [PMID: 33609983 DOI: 10.1016/j.jbiomech.2021.110312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 12/15/2022]
Abstract
Cardiac mechanics is primarily described by the pressure-volume relationship. The ventricular pressure-volume loop displays the instantaneous relationship between intraventricular pressure and volume throughout the cardiac cycle; however, it does not consider the shape of the ventricles, their spatiotemporal deformation patterns, and how these balance with the flowing blood. Our study demonstrates that the pressure-volume relationship represents a first level of approximation for the mechanical power of the ventricles, while, at a further level of approximation, the importance of hemodynamic power emerges through the balance between deformation patterns and fluid dynamics. The analysis is preliminarily tested in a healthy subject's right ventricle and two patients. Moreover, patients' geometry was then rescaled to present a normal volumetric profile to verify whether results were affected by volume size or by the spatiotemporal pattern of how that volume profile was achieved. Results show that alterations of hemodynamic power were found in the abnormal ventricles and that they were not directly caused by the ventricular size but by changes in the ability of intraventricular pressure gradient to generate blood flow. Therefore, hemodynamic power represents a physics-based measure that takes into account the dynamics of the space-time shape changes in combination with blood flow. Hemodynamic power is assessed non-invasively using cardiac imaging techniques and can be an early indicator of cardiac dysfunction before changes occur in volumetric measurements. These preliminary results provide a physical ground to evaluate its diagnostic or prognostic significance in future clinical studies.
Collapse
Affiliation(s)
- Gianni Pedrizzetti
- Department of Engineering and Architecture, University of Trieste, Italy.
| | - Giorgio Faganello
- Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
| | - Elisa Croatto
- Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
| | - Andrea Di Lenarda
- Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
| |
Collapse
|
10
|
Di Labbio G, Ben Assa E, Kadem L. Experimental Investigation of the Effect of Heart Rate on Flow in the Left Ventricle in Health and Disease-Aortic Valve Regurgitation. J Biomech Eng 2020; 142:051005. [PMID: 31701119 DOI: 10.1115/1.4045400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Indexed: 11/08/2022]
Abstract
There is much debate in the literature surrounding the effects of heart rate on aortic regurgitation (AR). Despite the contradictory information, it is still widely believed that an increase in heart rate is beneficial due to the disproportionate shortening of the duration of diastole relative to systole, permitting less time for the left ventricle to fill from regurgitation. This in vitro work investigates how a change in heart rate affects the left ventricular fluid dynamics in the absence and presence of acute AR. The experiments are performed on a novel double-activation left heart simulator previously used for the study of chronic AR. The intraventricular velocity fields are acquired via time-resolved planar particle image velocimetry (PIV) in a clinically relevant plane. Considering fluid dynamic factors, an increase in heart rate was observed to have a limited benefit in the case of mild AR and a detrimental effect for more severe AR. With increasing heart rate, mild AR was associated with a decrease in regurgitant volume, a negligible change in regurgitant volume per diastolic second, and a limited reduction in the fraction of retained regurgitant inflow. More severe AR was accompanied by an increase in both regurgitant volume and the fraction of retained regurgitant inflow, implying a less effective pumping efficiency and a longer relative residence time of blood in the ventricle. Globally, the left ventricle's capacity to compensate for the increase in energy dissipation associated with an increase in heart rate diminishes considerably with severity, a phenomenon which may be exploited further as a method of noninvasive assessment of the severity of AR. These findings may affect the clinical belief that tachycardia is preferred in acute AR and should be investigated further in the clinical setting.
Collapse
Affiliation(s)
- Giuseppe Di Labbio
- Department of Mechanical, Industrial & Aerospace Engineering, Concordia University, 1455 Blvd. De Maisonneuve W., Montréal, QC H3G 1M8, Canada
| | - Eyal Ben Assa
- Cardiology Division, Sackler Faculty of Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv 6997801, Israel; Institute for Medical Engineering and Science, Massachusetts Institute of Technology,77 Massachusetts Avenue, Cambridge, MA 02139
| | - Lyes Kadem
- Department of Mechanical, Industrial & Aerospace Engineering, Concordia University, 1455 Blvd. De Maisonneuve W., Montréal, QC H3G 1M8, Canada
| |
Collapse
|
11
|
Diagnostic and prognostic significance of cardiovascular vortex formation. J Cardiol 2019; 74:403-411. [DOI: 10.1016/j.jjcc.2019.05.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 05/07/2019] [Indexed: 12/16/2022]
|
12
|
Collia D, Zovatto L, Pedrizzetti G. Analysis of mitral valve regurgitation by computational fluid dynamics. APL Bioeng 2019; 3:036105. [PMID: 31893254 PMCID: PMC6932856 DOI: 10.1063/1.5097245] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 07/31/2019] [Indexed: 02/05/2023] Open
Abstract
The clinical syndrome of mitral insufficiency is a common consequence of mitral valve (MV) prolapse, when the MV leaflets do not seal the closed orifice and blood regurgitates back to the atrium during ventricular contraction. There are different types of MV prolapse that may influence the degree of regurgitation also in relation to the left ventricle (LV) geometry. This study aims to provide some insight into the fluid dynamics of MV insufficiency in view of improving the different measurements available in the clinical setting. The analysis is performed by a computational fluid dynamics model coupled with an asymptotic model of the MV motion. The computational fluid dynamics solution uses the immersed boundary method that is efficiently integrated with clinical imaging technologies. Healthy and dilated LVs obtained by multislice cardiac MRI are combined with simplified models of healthy and pathological MVs deduced from computed tomography and 4D-transesophageal echocardiography. The results demonstrated the properties of false regurgitation, blood that did not cross the open MV orifice and returns into the atrium during the backward motion of the MV leaflets, whose entity should be accounted when evaluating small regurgitation. The regurgitating volume is found to be proportional to the effective orifice area, with the limited dependence of the LV geometry and type of prolapse. These affect the percentage of old blood returning to the atrium which may be associated with thrombogenic risk.
Collapse
Affiliation(s)
- Dario Collia
- Department of Engineering and Architecture, University of Trieste, P. Europa 1, 34127 Trieste, Italy
| | - Luigino Zovatto
- Department of Engineering and Architecture, University of Trieste, P. Europa 1, 34127 Trieste, Italy
| | - Gianni Pedrizzetti
- Department of Engineering and Architecture, University of Trieste, P. Europa 1, 34127 Trieste, Italy
| |
Collapse
|
13
|
Abstract
Patients with heart failure show myocardial, valvular, and electrical dysfunction, which results in enlarged cardiac chambers and increased intracardiac volume and pressure. Intracardiac flow analysis can provide information regarding the shape and wall properties, chamber dimensions, and flow efficiency throughout the cardiac cycle. There is increasing interest in vortex flow analysis for patients with heart failure to overcome limitations of conventional parameters. In conjunction with the conventional structural and functional parameters, vortex flow analysis-guided treatment in heart failure might be a novel option for cardiac physicians.
Collapse
Affiliation(s)
- In-Cheol Kim
- Division of Cardiology, Keimyung University Dongsan Medical Center, 56 Dalsung-ro Jung-gu, Daegu 41931, Republic of Korea
| | - Geu-Ru Hong
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, 50 Yonsei-ro, Seodae mun-gu, Seoul 03722, Republic of Korea.
| |
Collapse
|
14
|
Voorneveld J, Muralidharan A, Hope T, Vos HJ, Kruizinga P, van der Steen AFW, Gijsen FJH, Kenjeres S, de Jong N, Bosch JG. High Frame Rate Ultrasound Particle Image Velocimetry for Estimating High Velocity Flow Patterns in the Left Ventricle. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:2222-2232. [PMID: 29990263 DOI: 10.1109/tuffc.2017.2786340] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Echocardiographic determination of multicomponent blood flow dynamics in the left ventricle remains a challenge. In this paper, we compare contrast enhanced, high frame rate (HFR) (1000 frames/s) echo-particle image velocimetry (ePIV) against optical particle image velocimetry (oPIV, gold standard), in a realistic left ventricular (LV) phantom. We find that ePIV compares well to oPIV, even for the high velocity inflow jet (normalized RMSE = 9% ± 1%). In addition, we perform the method of proper orthogonal decomposition, to better qualify and quantify the differences between the two modalities. We show that ePIV and oPIV resolve very similar flow structures, especially for the lowest order mode with a cosine similarity index of 86%. The coarser resolution of ePIV does result in increased variance and blurring of smaller flow structures when compared to oPIV. However, both modalities are in good agreement with each other for the modes that constitute the bulk of the kinetic energy. We conclude that HFR ePIV can accurately estimate the high velocity diastolic inflow jet and the high energy flow structures in an LV setting.
Collapse
|
15
|
Morisawa D, Falahatpisheh A, Avenatti E, Little SH, Kheradvar A. Intraventricular Vortex Interaction between Transmitral Flow and Paravalvular Leak. Sci Rep 2018; 8:15657. [PMID: 30353062 PMCID: PMC6199255 DOI: 10.1038/s41598-018-33648-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 09/21/2018] [Indexed: 01/19/2023] Open
Abstract
Paravalvular leak (PVL) is a complication of transcatheter aortic valve replacement. Despite its marked clinical impact, no previous study has reported how PVL affects the intraventricular fluid dynamics. This study aims to delineate vortex interaction between PVL and transmitral flow and the influence of PVL orifice location on intraventricular fluid dynamics using Echocardiographic Particle Image Velocimetry. Three different conditions of no PVL, anterior PVL and posterior PVL were experimentally studied and clinically compared. Circulation, impulse, kinetic energy (KE) and change in KE (ΔKE) were calculated. As well, vortex formation analyses and streamline description were performed to study vortex interactions. The anterior PVL jet streamed into the LV and interfered with the transmitral flow. Posterior PVL jet formed a large clockwise vortex and collided with transmitral flow, which resulted in flow disturbance. Compared to no PVL condition, average circulation, impulse, KE and ΔKE increased in presence of PVL. In conclusion, we found that PVL jets lead to abnormal vortex formation that interfere with natural advancement of transmitral flow, and negatively affect the LV fluid dynamics parameters. PVL orifice location strongly affects the intraventricular vortex formation, and posterior PVL may have more negative effects compared to anterior PVL.
Collapse
Affiliation(s)
- Daisuke Morisawa
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, CA, USA
| | - Ahmad Falahatpisheh
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, CA, USA
| | - Eleonora Avenatti
- The Houston Methodist DeBakey Heart and Vascular Center, Houston, TX, USA
| | - Stephen H Little
- The Houston Methodist DeBakey Heart and Vascular Center, Houston, TX, USA
| | - Arash Kheradvar
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, CA, USA.
| |
Collapse
|
16
|
Vellguth K, Brüning J, Goubergrits L, Tautz L, Hennemuth A, Kertzscher U, Degener F, Kelm M, Sündermann S, Kuehne T. Development of a modeling pipeline for the prediction of hemodynamic outcome after virtual mitral valve repair using image-based CFD. Int J Comput Assist Radiol Surg 2018; 13:1795-1805. [DOI: 10.1007/s11548-018-1821-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 07/05/2018] [Indexed: 12/15/2022]
|
17
|
Zhong L, Zhang JM, Su B, Tan RS, Allen JC, Kassab GS. Application of Patient-Specific Computational Fluid Dynamics in Coronary and Intra-Cardiac Flow Simulations: Challenges and Opportunities. Front Physiol 2018; 9:742. [PMID: 29997520 PMCID: PMC6028770 DOI: 10.3389/fphys.2018.00742] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/28/2018] [Indexed: 12/13/2022] Open
Abstract
The emergence of new cardiac diagnostics and therapeutics of the heart has given rise to the challenging field of virtual design and testing of technologies in a patient-specific environment. Given the recent advances in medical imaging, computational power and mathematical algorithms, patient-specific cardiac models can be produced from cardiac images faster, and more efficiently than ever before. The emergence of patient-specific computational fluid dynamics (CFD) has paved the way for the new field of computer-aided diagnostics. This article provides a review of CFD methods, challenges and opportunities in coronary and intra-cardiac flow simulations. It includes a review of market products and clinical trials. Key components of patient-specific CFD are covered briefly which include image segmentation, geometry reconstruction, mesh generation, fluid-structure interaction, and solver techniques.
Collapse
Affiliation(s)
- Liang Zhong
- National Heart Centre Singapore, National Heart Research Institute of Singapore, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| | - Jun-Mei Zhang
- National Heart Centre Singapore, National Heart Research Institute of Singapore, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| | - Boyang Su
- National Heart Centre Singapore, National Heart Research Institute of Singapore, Singapore, Singapore
| | - Ru San Tan
- National Heart Centre Singapore, National Heart Research Institute of Singapore, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| | | | - Ghassan S Kassab
- California Medical Innovations Institute, San Diego, CA, United States
| |
Collapse
|
18
|
Meyers BA, Goergen CJ, Vlachos PP. Development and Validation of a Phase-Filtered Moving Ensemble Correlation for Echocardiographic Particle Image Velocimetry. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:477-488. [PMID: 29195751 DOI: 10.1016/j.ultrasmedbio.2017.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 09/09/2017] [Accepted: 10/15/2017] [Indexed: 06/07/2023]
Abstract
A new processing method for echocardiographic particle image velocimetry (EchoPIV) using moving ensemble (ME) correlation with dynamic phase correlation filtering was developed to improve velocity measurement accuracy for routine clinical evaluation of cardiac function. The proposed method was tested using computationally generated echocardiogram images. Error analysis indicated that ME EchoPIV yields a twofold improvement in bias and random error over the current standard correlation method (βPairwise = -0.15 vs. βME = -0.06; σPairwise = 1.00 vs. σME = 0.49). Subsequently a cohort of eight patients with impaired diastolic filling underwent similar evaluation. Comparison of patient EchoPIV velocity time series with corresponding color M-mode velocity time series revealed better agreement for ME EchoPIV compared with standard PIV processing (RME = 0.90 vs. RPairwise = 0.70). Further time series analysis was performed to measure filling propagation velocity and 1-D intraventricular pressure gradients. Comparison against CMM values indicated that both measurements are completely decorrelated for pairwise processing (R2Vp = 0.15, R2IVPD = 0.07), whereas ME processing correlates decently (R2Vp = 0.69, R2IVPD = 0.69). This new approach enables more robust processing of routine clinical scans and can increase the utility of EchoPIV for the assessment of left ventricular function.
Collapse
Affiliation(s)
- Brett A Meyers
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Pavlos P Vlachos
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|
19
|
Tang C, Zhu Y, Zhang J, Niu C, Liu D, Liao Y, Zhu L, Peng Q. Analysis of left ventricular fluid dynamics in dilated cardiomyopathy by echocardiographic particle image velocimetry. Echocardiography 2017; 35:56-63. [PMID: 29082600 DOI: 10.1111/echo.13732] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Chouchou Tang
- Imaging and Nuclear Medicine; Ultrasound Department; the Second Xiangya Hospital of Central South University; Changsha Hunan Province China
- Imaging and Nuclear Medicine, Ultrasound Room; Infection Department; the Second Xiangya Hospital of Central South University; Changsha Hunan Province China
| | - Yizhong Zhu
- Internal Medicine; First Affiliated Hospital of Sun Yat-sen University; Guangzhou Guangdong Province China
| | - Jing Zhang
- Imaging and Nuclear Medicine; Ultrasound Department; the Second Xiangya Hospital of Central South University; Changsha Hunan Province China
| | - Chengcheng Niu
- Imaging and Nuclear Medicine; Ultrasound Department; the Second Xiangya Hospital of Central South University; Changsha Hunan Province China
| | - Dan Liu
- Imaging and Nuclear Medicine; Ultrasound Department; the Second Xiangya Hospital of Central South University; Changsha Hunan Province China
| | - Yacong Liao
- Imaging and Nuclear Medicine; Ultrasound Department; the Second Xiangya Hospital of Central South University; Changsha Hunan Province China
| | - Lijun Zhu
- Imaging and Nuclear Medicine; the First Affiliated Hospital of Southern Medical University; Guangzhou Guangdong Province China
| | - Qinghai Peng
- Imaging and Nuclear Medicine; Ultrasound Department; the Second Xiangya Hospital of Central South University; Changsha Hunan Province China
| |
Collapse
|
20
|
Vedula V, Lee J, Xu H, Kuo CCJ, Hsiai TK, Marsden AL. A method to quantify mechanobiologic forces during zebrafish cardiac development using 4-D light sheet imaging and computational modeling. PLoS Comput Biol 2017; 13:e1005828. [PMID: 29084212 PMCID: PMC5679653 DOI: 10.1371/journal.pcbi.1005828] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 11/09/2017] [Accepted: 10/15/2017] [Indexed: 01/09/2023] Open
Abstract
Blood flow and mechanical forces in the ventricle are implicated in cardiac development and trabeculation. However, the mechanisms of mechanotransduction remain elusive. This is due in part to the challenges associated with accurately quantifying mechanical forces in the developing heart. We present a novel computational framework to simulate cardiac hemodynamics in developing zebrafish embryos by coupling 4-D light sheet imaging with a stabilized finite element flow solver, and extract time-dependent mechanical stimuli data. We employ deformable image registration methods to segment the motion of the ventricle from high resolution 4-D light sheet image data. This results in a robust and efficient workflow, as segmentation need only be performed at one cardiac phase, while wall position in the other cardiac phases is found by image registration. Ventricular hemodynamics are then quantified by numerically solving the Navier-Stokes equations in the moving wall domain with our validated flow solver. We demonstrate the applicability of the workflow in wild type zebrafish and three treated fish types that disrupt trabeculation: (a) chemical treatment using AG1478, an ErbB2 signaling inhibitor that inhibits proliferation and differentiation of cardiac trabeculation; (b) injection of gata1a morpholino oligomer (gata1aMO) suppressing hematopoiesis and resulting in attenuated trabeculation; (c) weak-atriumm58 mutant (wea) with inhibited atrial contraction leading to a highly undeveloped ventricle and poor cardiac function. Our simulations reveal elevated wall shear stress (WSS) in wild type and AG1478 compared to gata1aMO and wea. High oscillatory shear index (OSI) in the grooves between trabeculae, compared to lower values on the ridges, in the wild type suggest oscillatory forces as a possible regulatory mechanism of cardiac trabeculation development. The framework has broad applicability for future cardiac developmental studies focused on quantitatively investigating the role of hemodynamic forces and mechanotransduction during morphogenesis.
Collapse
Affiliation(s)
- Vijay Vedula
- Department of Pediatrics (Cardiology), Stanford University, Stanford, California, United States of America
| | - Juhyun Lee
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Hao Xu
- Department of Electrical Engineering, University of Southern California, Los Angeles, California, United States of America
| | - C.-C. Jay Kuo
- Department of Electrical Engineering, University of Southern California, Los Angeles, California, United States of America
| | - Tzung K. Hsiai
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Alison L. Marsden
- Department of Pediatrics (Cardiology), Stanford University, Stanford, California, United States of America
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
- Institute for Computational and Mathematical Engineering (ICME), Stanford University, Stanford, California, United States of America
| |
Collapse
|
21
|
Londono-Hoyos FJ, Swillens A, Van Cauwenberge J, Meyers B, Koppula MR, Vlachos P, Chirinos JA, Segers P. Assessment of methodologies to calculate intraventricular pressure differences in computational models and patients. Med Biol Eng Comput 2017; 56:469-481. [PMID: 28812203 DOI: 10.1007/s11517-017-1704-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/03/2017] [Indexed: 12/29/2022]
Abstract
Intraventricular pressure differences (IVPDs) govern left ventricular (LV) efficient filling and are a significant determinant of LV diastolic function. Our primary aim is to assess the performance of available methods (color M-mode (CMM) and 1D/2D MRI-based methods) to determine IVPDs from intracardiac flow measurements. Performance of three methods to calculate IVPDs was first investigated via an LV computational fluid dynamics (CFD) model. CFD velocity data were derived along a modifiable scan line, mimicking ultrasound/MRI acquisition of 1D (IVPDCMM/IVPD1D MRI) and 2D (IVPD2D MRI) velocity-based IVPD information. CFD pressure data (IVPDCFD) was used as a ground truth. Methods were also compared in a small cohort (n = 13) of patients with heart failure with preserved ejection fraction (HFpEF). In silico data showed a better performance of the IVPD2D MRI approach: RMSE values for a well-aligned scan line were 0.2550 mmHg (IVPD1D MRI), 0.0798 mmHg (IVPD2D MRI), and 0.2633 mmHg (IVPDCMM). In vivo data exhibited moderate correlation between techniques. Considerable differences found may be attributable to different timing of measurements and/or integration path. CFD modeling demonstrated an advantage using 2D velocity information to compute IVPDs, and therefore, a 2D MRI-based method should be favored. However, further studies are needed to support the clinical significance of MRI-based computation of IVPDs over CMM.
Collapse
Affiliation(s)
- Francisco J Londono-Hoyos
- bioMMeda Research Group, Institute of Biomedical Technology (IBiTech), iMinds Ghent University, Ghent, Belgium. .,Hospital of the University of Pennsylvania, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Abigail Swillens
- bioMMeda Research Group, Institute of Biomedical Technology (IBiTech), iMinds Ghent University, Ghent, Belgium
| | - Joris Van Cauwenberge
- bioMMeda Research Group, Institute of Biomedical Technology (IBiTech), iMinds Ghent University, Ghent, Belgium
| | - Brett Meyers
- Department of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Maheswara Reddy Koppula
- Hospital of the University of Pennsylvania, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Pavlos Vlachos
- Department of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Julio A Chirinos
- Hospital of the University of Pennsylvania, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Patrick Segers
- bioMMeda Research Group, Institute of Biomedical Technology (IBiTech), iMinds Ghent University, Ghent, Belgium
| |
Collapse
|
22
|
Aortic Regurgitation Generates a Kinematic Obstruction Which Hinders Left Ventricular Filling. Ann Biomed Eng 2017; 45:1305-1314. [PMID: 28091966 DOI: 10.1007/s10439-017-1790-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 01/03/2017] [Indexed: 10/20/2022]
Abstract
An incompetent aortic valve (AV) results in aortic regurgitation (AR), where retrograde flow of blood into the left ventricle (LV) is observed. In this work, we parametrically characterized the detailed changes in intra-ventricular flow during diastole as a result of AR in a physiological in vitro left-heart simulator (LHS). The loss of energy within the LV as the level of AR increased was also assessed. The validated LHS consisted of an optically-clear, flexible wall LV and a modular AV holder. Two-component, planar, digital particle image velocimetry was used to visualize and quantify intra-ventricular flow. A large coherent vortical structure which engulfed the whole LV was observed under control conditions. In the cases with AR, the regurgitant jet was observed to generate a "kinematic obstruction" between the mitral valve and the LV apex, preventing the trans-mitral jet from generating a coherent vortical structure. The regurgitant jet was also observed to impinge on the inferolateral wall of the LV. Energy dissipation rate (EDR) for no, trace, mild, and moderate AR were found to be 1.15, 2.26, 3.56, and 5.99 W/m3, respectively. This study has, for the first time, performed an in vitro characterization of intra-ventricular flow in the presence of AR. Mechanistically, the formation of a "kinematic obstruction" appears to be the cause of the increased EDR (a metric quantifiable in vivo) during AR. EDR increases non-linearly with AR fraction and could potentially be used as a metric to grade severity of AR and develop clinical interventional timing strategies for patients.
Collapse
|
23
|
Bavo AM, Pouch AM, Degroote J, Vierendeels J, Gorman JH, Gorman RC, Segers P. Patient-specific CFD models for intraventricular flow analysis from 3D ultrasound imaging: Comparison of three clinical cases. J Biomech 2016; 50:144-150. [PMID: 27866678 DOI: 10.1016/j.jbiomech.2016.11.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 11/02/2016] [Indexed: 11/17/2022]
Abstract
BACKGROUND As the intracardiac flow field is affected by changes in shape and motility of the heart, intraventricular flow features can provide diagnostic indications. Ventricular flow patterns differ depending on the cardiac condition and the exploration of different clinical cases can provide insights into how flow fields alter in different pathologies. METHODS In this study, we applied a patient-specific computational fluid dynamics model of the left ventricle and mitral valve, with prescribed moving boundaries based on transesophageal ultrasound images for three cardiac pathologies, to verify the abnormal flow patterns in impaired hearts. One case (P1) had normal ejection fraction but low stroke volume and cardiac output, P2 showed low stroke volume and reduced ejection fraction, P3 had a dilated ventricle and reduced ejection fraction. RESULTS The shape of the ventricle and mitral valve, together with the pathology influence the flow field in the left ventricle, leading to distinct flow features. Of particular interest is the pattern of the vortex formation and evolution, influenced by the valvular orifice and the ventricular shape. The base-to-apex pressure difference of maximum 2mmHg is consistent with reported data. CONCLUSION We used a CFD model with prescribed boundary motion to describe the intraventricular flow field in three patients with impaired diastolic function. The calculated intraventricular flow dynamics are consistent with the diagnostic patient records and highlight the differences between the different cases. The integration of clinical images and computational techniques, therefore, allows for a deeper investigation intraventricular hemodynamics in patho-physiology.
Collapse
Affiliation(s)
- A M Bavo
- IBiTech-bioMMeda, ELIS Department, Ghent University, Ghent, Belgium.
| | - A M Pouch
- Gorman Cardiovascular Research Group, University of Pennsylvania, PA, United States
| | - J Degroote
- Department of Flow, Heat and Combustion Mechanics, Ghent University, Belgium
| | - J Vierendeels
- Department of Flow, Heat and Combustion Mechanics, Ghent University, Belgium
| | - J H Gorman
- Gorman Cardiovascular Research Group, University of Pennsylvania, PA, United States
| | - R C Gorman
- Gorman Cardiovascular Research Group, University of Pennsylvania, PA, United States
| | - P Segers
- IBiTech-bioMMeda, ELIS Department, Ghent University, Ghent, Belgium
| |
Collapse
|
24
|
Doost SN, Ghista D, Su B, Zhong L, Morsi YS. Heart blood flow simulation: a perspective review. Biomed Eng Online 2016; 15:101. [PMID: 27562639 PMCID: PMC5000510 DOI: 10.1186/s12938-016-0224-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/15/2016] [Indexed: 02/03/2023] Open
Abstract
Cardiovascular disease (CVD), the leading cause of death today, incorporates a wide range of cardiovascular system malfunctions that affect heart functionality. It is believed that the hemodynamic loads exerted on the cardiovascular system, the left ventricle (LV) in particular, are the leading cause of CVD initiation and propagation. Moreover, it is believed that the diagnosis and prognosis of CVD at an early stage could reduce its high mortality and morbidity rate. Therefore, a set of robust clinical cardiovascular assessment tools has been introduced to compute the cardiovascular hemodynamics in order to provide useful insights to physicians to recognize indicators leading to CVD and also to aid the diagnosis of CVD. Recently, a combination of computational fluid dynamics (CFD) and different medical imaging tools, image-based CFD (IB-CFD), has been widely employed for cardiovascular functional assessment by providing reliable hemodynamic parameters. Even though the capability of CFD to provide reliable flow dynamics in general fluid mechanics problems has been widely demonstrated for many years, up to now, the clinical implications of the IB-CFD patient-specific LVs have not been applicable due to its limitations and complications. In this paper, we review investigations conducted to numerically simulate patient-specific human LV over the past 15 years using IB-CFD methods. Firstly, we divide different studies according to the different LV types (physiological and different pathological conditions) that have been chosen to reconstruct the geometry, and then discuss their contributions, methodologies, limitations, and findings. In this regard, we have studied CFD simulations of intraventricular flows and related cardiology insights, for (i) Physiological patient-specific LV models, (ii) Pathological heart patient-specific models, including myocardial infarction, dilated cardiomyopathy, hypertrophic cardiomyopathy and hypoplastic left heart syndrome. Finally, we discuss the current stage of the IB-CFD LV simulations in order to mimic realistic hemodynamics of patient-specific LVs. We can conclude that heart flow simulation is on the right track for developing into a useful clinical tool for heart function assessment, by (i) incorporating most of heart structures' (such as heart valves) operations, and (ii) providing useful diagnostic indices based hemodynamic parameters, for routine adoption in clinical usage.
Collapse
Affiliation(s)
- Siamak N Doost
- Biomechanics and Tissue Engineering Lab, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, Australia
| | | | - Boyang Su
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, 169609, Singapore, Singapore
| | - Liang Zhong
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, 169609, Singapore, Singapore. .,Duke-NUS Medical School, Singapore, Singapore.
| | - Yosry S Morsi
- Biomechanics and Tissue Engineering Lab, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, Australia
| |
Collapse
|
25
|
Tan SGD, Kim S, Hon JKF, Leo HL. A D-Shaped Bileaflet Bioprosthesis which Replicates Physiological Left Ventricular Flow Patterns. PLoS One 2016; 11:e0156580. [PMID: 27258099 PMCID: PMC4892640 DOI: 10.1371/journal.pone.0156580] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/17/2016] [Indexed: 11/18/2022] Open
Abstract
Prior studies have shown that in a healthy heart, there exist a large asymmetric vortex structure that aids in establishing a steady flow field in the left ventricle. However, the implantation of existing artificial heart valves at the mitral position is found to have a negative effect on this physiological flow pattern. In light of this, a novel D-shaped bileaflet porcine bioprosthesis (GD valve) has been designed based on the native geometry mitral valve, with the hypothesis that biomimicry in valve design can restore physiological left ventricle flow patterns after valve implantation. An in-vitro experiment using two dimensional particle velocimetry imaging was carried out to determine the hemodynamic performance of the new bileaflet design and then compared to that of the well-established St. Jude Epic valve which functioned as a control in the experiment. Although both valves were found to have similar Reynolds shear stress and Turbulent Kinetic Energy levels, the novel D-shape valve was found to have lower turbulence intensity and greater mean kinetic energy conservation.
Collapse
Affiliation(s)
- Sean Guo-Dong Tan
- Department of Biomedical Engineering, National University of Singapore, Faculty of Engineering, Block E4, #04–08, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Sangho Kim
- Department of Biomedical Engineering, National University of Singapore, Faculty of Engineering, Block E4, #04–08, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Jimmy Kim Fatt Hon
- Department of Surgery, National University of Singapore, Yong Loo Lin School of Medicine, Kent Ridge Road, Singapore 119228, Singapore
| | - Hwa Liang Leo
- Department of Biomedical Engineering, National University of Singapore, Faculty of Engineering, Block E4, #04–08, 4 Engineering Drive 3, Singapore 117583, Singapore
- * E-mail:
| |
Collapse
|
26
|
Gürel E, Prinz C, Van Casteren L, Gao H, Willems R, Voigt JU. The Impact of Function-Flow Interaction on Left Ventricular Efficiency in Patients with Conduction Abnormalities: A Particle Image Velocimetry and Tissue Doppler Study. J Am Soc Echocardiogr 2016; 29:431-40. [DOI: 10.1016/j.echo.2016.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Indexed: 10/22/2022]
|
27
|
Chnafa C, Mendez S, Nicoud F. Image-Based Simulations Show Important Flow Fluctuations in a Normal Left Ventricle: What Could be the Implications? Ann Biomed Eng 2016; 44:3346-3358. [DOI: 10.1007/s10439-016-1614-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/06/2016] [Indexed: 10/22/2022]
|
28
|
de Vecchi A, Gomez A, Pushparajah K, Schaeffter T, Simpson JM, Razavi R, Penney GP, Smith NP, Nordsletten DA. A novel methodology for personalized simulations of ventricular hemodynamics from noninvasive imaging data. Comput Med Imaging Graph 2016; 51:20-31. [PMID: 27108088 PMCID: PMC4907311 DOI: 10.1016/j.compmedimag.2016.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 01/18/2016] [Accepted: 03/29/2016] [Indexed: 11/17/2022]
Abstract
Current state-of-the-art imaging techniques can provide quantitative information to characterize ventricular function within the limits of the spatiotemporal resolution achievable in a realistic acquisition time. These imaging data can be used to personalize computer models, which in turn can help treatment planning by quantifying biomarkers that cannot be directly imaged, such as flow energy, shear stress and pressure gradients. To date, computer models have typically relied on invasive pressure measurements to be made patient-specific. When these data are not available, the scope and validity of the models are limited. To address this problem, we propose a new methodology for modeling patient-specific hemodynamics based exclusively on noninvasive velocity and anatomical data from 3D+t echocardiography or Magnetic Resonance Imaging (MRI). Numerical simulations of the cardiac cycle are driven by the image-derived velocities prescribed at the model boundaries using a penalty method that recovers a physical solution by minimizing the energy imparted to the system. This numerical approach circumvents the mathematical challenges due to the poor conditioning that arises from the imposition of boundary conditions on velocity only. We demonstrate that through this technique we are able to reconstruct given flow fields using Dirichlet only conditions. We also perform a sensitivity analysis to investigate the accuracy of this approach for different images with varying spatiotemporal resolution. Finally, we examine the influence of noise on the computed result, showing robustness to unbiased noise with an average error in the simulated velocity approximately 7% for a typical voxel size of 2mm(3) and temporal resolution of 30ms. The methodology is eventually applied to a patient case to highlight the potential for a direct clinical translation.
Collapse
Affiliation(s)
- A de Vecchi
- Division of Imaging Sciences and Biomedical Engineering, King's College London, St. Thomas' Hospital, London SE1 7EH, UK.
| | - A Gomez
- Division of Imaging Sciences and Biomedical Engineering, King's College London, St. Thomas' Hospital, London SE1 7EH, UK
| | - K Pushparajah
- Evelina London Children's Hospital, London SE1 7EH, UK
| | - T Schaeffter
- Division of Imaging Sciences and Biomedical Engineering, King's College London, St. Thomas' Hospital, London SE1 7EH, UK
| | - J M Simpson
- Evelina London Children's Hospital, London SE1 7EH, UK
| | - R Razavi
- Division of Imaging Sciences and Biomedical Engineering, King's College London, St. Thomas' Hospital, London SE1 7EH, UK; Evelina London Children's Hospital, London SE1 7EH, UK
| | - G P Penney
- Division of Imaging Sciences and Biomedical Engineering, King's College London, St. Thomas' Hospital, London SE1 7EH, UK
| | - N P Smith
- Division of Imaging Sciences and Biomedical Engineering, King's College London, St. Thomas' Hospital, London SE1 7EH, UK
| | - D A Nordsletten
- Division of Imaging Sciences and Biomedical Engineering, King's College London, St. Thomas' Hospital, London SE1 7EH, UK
| |
Collapse
|
29
|
Su B, Tan RS, Tan JL, Guo KWQ, Zhang JM, Leng S, Zhao X, Allen JC, Zhong L. Cardiac MRI based numerical modeling of left ventricular fluid dynamics with mitral valve incorporated. J Biomech 2016; 49:1199-1205. [PMID: 26993615 DOI: 10.1016/j.jbiomech.2016.03.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 03/01/2016] [Accepted: 03/03/2016] [Indexed: 11/27/2022]
Abstract
Recent numerical studies were focused on the modeling of flow in patient-specific left ventricle (LV); however, the mitral valve (MV) was usually excluded. In this study, both patient-specific LV and MV were modeled to achieve a more realistic intraventricular flow. Cardiac MRI images were acquired from a pulmonary arterial hypertension (PAH) patient and a healthy volunteer, and manual segmentation was conducted to reconstruct three-dimensional (3D) LV and MV geometries at each frame. Based on these 3D geometries, vortex formation time (VFT) was derived, and the values were 4.0 and 6.5 for the normal subject and the PAH patient, respectively. Based on studies in the literature, VTF in the healthy subject fell within the normal range, while that in the PAH patient exceeded the threshold for normality. The vortex structures in the LV clearly showed that the vortex ring was initiated from the tips of the MV instead of the mitral annulus. The excessive VFT during the rapid filling phase in the PAH patient resulted in a trailing flow structure behind the primary vortex ring, which was not observed in the normal subject. It can be deduced from this study that incorporating the MV into a patient-specific model is necessary to produce more reasonable VFT and intraventricular flow.
Collapse
Affiliation(s)
- Boyang Su
- National Heart Centre Singapore, 5 Hospital Drive, 169609, Singapore
| | - Ru San Tan
- National Heart Centre Singapore, 5 Hospital Drive, 169609, Singapore; Duke-NUS Graduate Medical School Singapore, Singapore
| | - Ju Le Tan
- National Heart Centre Singapore, 5 Hospital Drive, 169609, Singapore
| | | | - Jun Mei Zhang
- National Heart Centre Singapore, 5 Hospital Drive, 169609, Singapore; Duke-NUS Graduate Medical School Singapore, Singapore
| | - Shuang Leng
- National Heart Centre Singapore, 5 Hospital Drive, 169609, Singapore
| | - Xiaodan Zhao
- National Heart Centre Singapore, 5 Hospital Drive, 169609, Singapore
| | | | - Liang Zhong
- National Heart Centre Singapore, 5 Hospital Drive, 169609, Singapore; Duke-NUS Graduate Medical School Singapore, Singapore.
| |
Collapse
|
30
|
WIPUTRA H, LIM GL, CHIA DAK, MATTAR CNZ, BISWAS A, YAP CH. Methods for fluid dynamics simulations of human fetal cardiac chambers based on patient-specific 4D ultrasound scans. ACTA ACUST UNITED AC 2016. [DOI: 10.1299/jbse.15-00608] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hadi WIPUTRA
- Department of Biomedical Engineering, National University of Singapore
| | - Guat Ling LIM
- Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health Systems
| | - Dawn Ah Kiow CHIA
- Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health Systems
| | - Citra Nurfarah Zaini MATTAR
- Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health Systems
| | - Arijit BISWAS
- Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health Systems
| | - Choon Hwai YAP
- Department of Biomedical Engineering, National University of Singapore
| |
Collapse
|
31
|
Lai CQ, Lim GL, Jamil M, Mattar CNZ, Biswas A, Yap CH. Fluid mechanics of blood flow in human fetal left ventricles based on patient-specific 4D ultrasound scans. Biomech Model Mechanobiol 2015; 15:1159-72. [DOI: 10.1007/s10237-015-0750-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 12/01/2015] [Indexed: 11/28/2022]
|
32
|
Song Z, Borazjani I. The Role of Shape and Heart Rate on the Performance of the Left Ventricle. J Biomech Eng 2015; 137:114501. [PMID: 26312776 DOI: 10.1115/1.4031468] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Indexed: 11/08/2022]
Abstract
The left ventricle function is to pump the oxygenated blood through the circulatory system. Ejection fraction is the main noninvasive parameter for detecting heart disease (healthy >55%), and it is thought to be the main parameter affecting efficiency. However, the effects of other parameters on efficiency have yet to be investigated. We investigate the effect of heart rate and left ventricle shape by carrying out 3D numerical simulations of a left ventricle at different heart rates and perturbed geometries under constant, normal ejection fraction. The simulation using the immersed boundary method provide the 3D flow and pressure fields, which enable direct calculation of a new hemodynamic efficiency (H-efficiency) parameter, which does not depend on any reference pressure. The H-efficiency is defined as the ratio of flux of kinetic energy (useful power) to the total cardiac power into the left ventricle control volume. Our simulations show that H-efficiency is not that sensitive to heart rate but is maximized at around normal heart rate (72 bpm). Nevertheless, it is more sensitive to the shape of the left ventricle, which affects the H-efficiency by as much as 15% under constant ejection fraction.
Collapse
|