1
|
Yu Y, Leng Y, Song X, Mu J, Ma L, Yin L, Zheng Y, Lu Y, Li Y, Qiu X, Zhu H, Li J, Wang D. Extracellular Matrix Stiffness Regulates Microvascular Stability by Controlling Endothelial Paracrine Signaling to Determine Pericyte Fate. Arterioscler Thromb Vasc Biol 2023; 43:1887-1899. [PMID: 37650330 DOI: 10.1161/atvbaha.123.319119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 08/15/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND The differentiation of pericytes into myofibroblasts causes microvascular degeneration, ECM (extracellular matrix) accumulation, and tissue stiffening, characteristics of fibrotic diseases. It is unclear how pericyte-myofibroblast differentiation is regulated in the microvascular environment. Our previous study established a novel 2-dimensional platform for coculturing microvascular endothelial cells (ECs) and pericytes derived from the same tissue. This study investigated how ECM stiffness regulated microvascular ECs, pericytes, and their interactions. METHODS Primary microvessels were cultured in the TGM2D medium (tubular microvascular growth medium on 2-dimensional substrates). Stiff ECM was prepared by incubating ECM solution in regular culture dishes for 1 hour followed by PBS wash. Soft ECM with Young modulus of ≈6 kPa was used unless otherwise noted. Bone grafts were prepared from the rat skull. Immunostaining, RNA sequencing, RT-qPCR (real-time quantitative polymerase chain reaction), Western blotting, and knockdown experiments were performed on the cells. RESULTS Primary microvascular pericytes differentiated into myofibroblasts (NG2+αSMA+) on stiff ECM, even with the TGFβ (transforming growth factor beta) signaling inhibitor A83-01. Soft ECM and A83-01 cooperatively maintained microvascular stability while inhibiting pericyte-myofibroblast differentiation (NG2+αSMA-/low). We thus defined 2 pericyte subpopulations: primary (NG2+αSMA-/low) and activated (NG2+αSMA+) pericytes. Soft ECM promoted microvascular regeneration and inhibited fibrosis in bone graft transplantation in vivo. As integrins are the major mechanosensor, we performed RT-qPCR screening of integrin family members and found Itgb1 (integrin β1) was the major subunit downregulated by soft ECM and A83-01 treatment. Knocking down Itgb1 suppressed myofibroblast differentiation on stiff ECM. Interestingly, ITGB1 phosphorylation (Y783) was mainly located on microvascular ECs on stiff ECM, which promoted EC secretion of paracrine factors, including CTGF (connective tissue growth factor), to induce pericyte-myofibroblast differentiation. CTGF knockdown or monoclonal antibody treatment partially reduced myofibroblast differentiation, implying the participation of multiple pathways in fibrosis formation. CONCLUSIONS ECM stiffness and TGFβ signaling cooperatively regulate microvascular stability and pericyte-myofibroblast differentiation. Stiff ECM promotes EC ITGB1 phosphorylation (Y783) and CTGF secretion, which induces pericyte-myofibroblast differentiation.
Collapse
Affiliation(s)
- Yali Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, China (Y.Y., Y. Leng, X.S., J.M., L.M., L.Y., Y.Z., J.L., D.W.)
- School of Basic Medicine, Qingdao University, China (Y.Y., Y. Leng, X.S., L.M., L.Y., Y.Z.)
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, Jinan, China (Y.Y., L.M., D.W.)
| | - Yu Leng
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, China (Y.Y., Y. Leng, X.S., J.M., L.M., L.Y., Y.Z., J.L., D.W.)
- School of Basic Medicine, Qingdao University, China (Y.Y., Y. Leng, X.S., L.M., L.Y., Y.Z.)
| | - Xiuyue Song
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, China (Y.Y., Y. Leng, X.S., J.M., L.M., L.Y., Y.Z., J.L., D.W.)
- School of Basic Medicine, Qingdao University, China (Y.Y., Y. Leng, X.S., L.M., L.Y., Y.Z.)
| | - Jie Mu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, China (Y.Y., Y. Leng, X.S., J.M., L.M., L.Y., Y.Z., J.L., D.W.)
- College of Life Sciences and School of Pharmacy, Medical College, Qingdao University, China (J.M.)
| | - Lei Ma
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, China (Y.Y., Y. Leng, X.S., J.M., L.M., L.Y., Y.Z., J.L., D.W.)
- School of Basic Medicine, Qingdao University, China (Y.Y., Y. Leng, X.S., L.M., L.Y., Y.Z.)
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, Jinan, China (Y.Y., L.M., D.W.)
| | - Lin Yin
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, China (Y.Y., Y. Leng, X.S., J.M., L.M., L.Y., Y.Z., J.L., D.W.)
- School of Basic Medicine, Qingdao University, China (Y.Y., Y. Leng, X.S., L.M., L.Y., Y.Z.)
| | - Yu Zheng
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, China (Y.Y., Y. Leng, X.S., J.M., L.M., L.Y., Y.Z., J.L., D.W.)
- School of Basic Medicine, Qingdao University, China (Y.Y., Y. Leng, X.S., L.M., L.Y., Y.Z.)
- Department of Urology, Qingdao Municipal Hospital Affiliated to Qingdao University, China (Y.Z., Y. Lu, H.Z.)
| | - Yi Lu
- Department of Urology, Qingdao Municipal Hospital Affiliated to Qingdao University, China (Y.Z., Y. Lu, H.Z.)
| | - Yuanming Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y. Li, X.Q.)
| | - Xuefeng Qiu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y. Li, X.Q.)
| | - Hai Zhu
- Department of Urology, Qingdao Municipal Hospital Affiliated to Qingdao University, China (Y.Z., Y. Lu, H.Z.)
| | - Jing Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, China (Y.Y., Y. Leng, X.S., J.M., L.M., L.Y., Y.Z., J.L., D.W.)
| | - Dong Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, China (Y.Y., Y. Leng, X.S., J.M., L.M., L.Y., Y.Z., J.L., D.W.)
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, Jinan, China (Y.Y., L.M., D.W.)
- Shandong Provincial Institute of Cancer Prevention, Jinan, China (D.W.)
| |
Collapse
|
2
|
Ketabat F, Maris T, Duan X, Yazdanpanah Z, Kelly ME, Badea I, Chen X. Optimization of 3D printing and in vitro characterization of alginate/gelatin lattice and angular scaffolds for potential cardiac tissue engineering. Front Bioeng Biotechnol 2023; 11:1161804. [PMID: 37304145 PMCID: PMC10248470 DOI: 10.3389/fbioe.2023.1161804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/15/2023] [Indexed: 06/13/2023] Open
Abstract
Background: Engineering cardiac tissue that mimics the hierarchical structure of cardiac tissue remains challenging, raising the need for developing novel methods capable of creating structures with high complexity. Three-dimensional (3D)-printing techniques are among promising methods for engineering complex tissue constructs with high precision. By means of 3D printing, this study aims to develop cardiac constructs with a novel angular structure mimicking cardiac architecture from alginate (Alg) and gelatin (Gel) composite. The 3D-printing conditions were optimized and the structures were characterized in vitro, with human umbilical vein endothelial cells (HUVECs) and cardiomyocytes (H9c2 cells), for potential cardiac tissue engineering. Methods: We synthesized the composites of Alg and Gel with varying concentrations and examined their cytotoxicity with both H9c2 cells and HUVECs, as well as their printability for creating 3D structures of varying fibre orientations (angular design). The 3D-printed structures were characterized in terms of morphology by both scanning electron microscopy (SEM) and synchrotron radiation propagation-based imaging computed tomography (SR-PBI-CT), and elastic modulus, swelling percentage, and mass loss percentage as well. The cell viability studies were conducted via measuring the metabolic activity of the live cells with MTT assay and visualizing the cells with live/dead assay kit. Results: Among the examined composite groups of Alg and Gel, two combinations with ratios of 2 to 1 and 3 to 1 (termed as Alg2Gel1 and Alg3Gel1) showed the highest cell survival; they accordingly were used to fabricate two different structures: a novel angular and a conventional lattice structure. Scaffolds made of Alg3Gel1 showed higher elastic modulus, lower swelling percentage, less mass loss, and higher cell survival compared to that of Alg2Gel1. Although the viability of H9c2 cells and HUVECs on all scaffolds composed of Alg3Gel1 was above 99%, the group of the constructs with the angular design maintained significantly more viable cells compared to other investigated groups. Conclusion: The group of angular 3D-ptinted constructs has illustrated promising properties for cardiac tissue engineering by providing high cell viability for both endothelial and cardiac cells, high mechanical strength as well as appropriate swelling, and degradation properties during 21 days of incubation. Statement of Significance: 3D-printing is an emerging method to create complex constructs with high precision in a large scale. In this study, we have demonstrated that 3D-printing can be used to create compatible constructs from the composite of Alg and Gel with endothelial cells and cardiac cells. Also, we have demonstrated that these constructs are able to enhance the viability of cardiac and endothelial cells via creating a 3D structure mimicking the alignment and orientation of the fibers in the native heart.
Collapse
Affiliation(s)
- Farinaz Ketabat
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Titouan Maris
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- Institut Catholique des arts et métiers (ICAM)- Site de Toulouse, Toulouse, France
| | - Xiaoman Duan
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Zahra Yazdanpanah
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Michael E. Kelly
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ildiko Badea
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
3
|
Whole-Heart Tissue Engineering and Cardiac Patches: Challenges and Promises. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010106. [PMID: 36671678 PMCID: PMC9855348 DOI: 10.3390/bioengineering10010106] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/15/2023]
Abstract
Despite all the advances in preventing, diagnosing, and treating cardiovascular disorders, they still account for a significant part of mortality and morbidity worldwide. The advent of tissue engineering and regenerative medicine has provided novel therapeutic approaches for the treatment of various diseases. Tissue engineering relies on three pillars: scaffolds, stem cells, and growth factors. Gene and cell therapy methods have been introduced as primary approaches to cardiac tissue engineering. Although the application of gene and cell therapy has resulted in improved regeneration of damaged cardiac tissue, further studies are needed to resolve their limitations, enhance their effectiveness, and translate them into the clinical setting. Scaffolds from synthetic, natural, or decellularized sources have provided desirable characteristics for the repair of cardiac tissue. Decellularized scaffolds are widely studied in heart regeneration, either as cell-free constructs or cell-seeded platforms. The application of human- or animal-derived decellularized heart patches has promoted the regeneration of heart tissue through in vivo and in vitro studies. Due to the complexity of cardiac tissue engineering, there is still a long way to go before cardiac patches or decellularized whole-heart scaffolds can be routinely used in clinical practice. This paper aims to review the decellularized whole-heart scaffolds and cardiac patches utilized in the regeneration of damaged cardiac tissue. Moreover, various decellularization methods related to these scaffolds will be discussed.
Collapse
|
4
|
Ghofrani A, Taghavi L, Khalilivavdareh B, Rohani Shirvan A, Nouri A. Additive manufacturing and advanced functionalities of cardiac patches: A review. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
Xu C, Okpokwasili C, Huang Y, Shi X, Wu J, Liao J, Tang L, Hong Y. Optimizing Anisotropic Polyurethane Scaffolds to Mechanically Match with Native Myocardium. ACS Biomater Sci Eng 2020; 6:2757-2769. [PMID: 33313394 PMCID: PMC7725265 DOI: 10.1021/acsbiomaterials.9b01860] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biodegradable cardiac patch is desirable to possess mechanical properties mimicking native myocardium for heart infarction treatment. We fabricated a series of anisotropic and biodegradable polyurethane porous scaffolds via thermally induced phase separation (TIPS) and tailored their mechanical properties by using various polyurethanes with different soft segments and varying polymer concentrations. The uniaxial mechanical properties, suture retention strength, ball-burst strength, and biaxial mechanical properties of the anisotropic porous scaffolds were optimized to mechanically match native myocardium. The optimal anisotropic scaffold had a ball burst strength (20.7 ± 1.5 N) comparable to that of native porcine myocardium (20.4 ± 6.0 N) and showed anisotropic behavior close to biaxial stretching behavior of the native porcine myocardium. Furthermore, the optimized porous scaffold was combined with a porcine myocardium-derived hydrogel to form a biohybrid scaffold. The biohybrid scaffold showed morphologies similar to the decellularized porcine myocardial matrix. This combination did not affect the mechanical properties of the synthetic scaffold alone. After in vivo rat subcutaneous implantation, the biohybrid scaffolds showed minimal immune response and exhibited higher cell penetration than the polyurethane scaffold alone. This biohybrid scaffold with biomimetic mechanics and good tissue compatibility would have great potential to be applied as a biodegradable acellular cardiac patch for myocardial infarction treatment.
Collapse
Affiliation(s)
- Cancan Xu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chuka Okpokwasili
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yihui Huang
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaodan Shi
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jinglei Wu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jun Liao
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Liping Tang
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
6
|
Jan MI, Ali T, Ishtiaq A, Mushtaq I, Murtaza I. Prospective Advances in Non-coding RNAs Investigation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1229:385-426. [PMID: 32285426 DOI: 10.1007/978-981-15-1671-9_24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Non-coding RNAs (ncRNAs) play significant roles in numerous physiological cellular processes and molecular alterations during pathological conditions including heart diseases, cancer, immunological disorders and neurological diseases. This chapter is focusing on the basis of ncRNA relation with their functions and prospective advances in non-coding RNAs particularly miRNAs investigation in the cardiovascular disease management.The field of ncRNAs therapeutics is a very fascinating and challenging too. Scientists have opportunity to develop more advanced therapeutics as well as diagnostic approaches for cardiovascular conditions. Advanced studies are critically needed to deepen the understanding of the molecular biology, mechanism and modulation of ncRNAs and chemical formulations for managing CVDs.
Collapse
Affiliation(s)
- Muhammad Ishtiaq Jan
- Department of Biochemistry, Signal Transduction Laboratory, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Tahir Ali
- Department of Biochemistry, Signal Transduction Laboratory, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ayesha Ishtiaq
- Department of Biochemistry, Signal Transduction Laboratory, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Iram Mushtaq
- Department of Biochemistry, Signal Transduction Laboratory, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Iram Murtaza
- Department of Biochemistry, Signal Transduction Laboratory, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
7
|
Xing Y, Shi S, Zhang Y, Liu F, Zhu L, Shi B, Wang J. Construction of engineered myocardial tissues in vitro with cardiomyocyte‑like cells and a polylactic‑co‑glycolic acid polymer. Mol Med Rep 2019; 20:2403-2409. [PMID: 31257537 DOI: 10.3892/mmr.2019.10434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 02/28/2019] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to explore the feasibility of the construction of engineered myocardial tissues in vitro with cardiomyocyte‑like cells derived from bone marrow mesenchymal stem cells (BMMSCs) and a polylactic‑co‑glycolic acid (PLGA) polymer. The PLGA polymer was sheared into square pieces (10x10x1 mm), sterilized by Co60 irradiation, and hydrated in Dulbecco's modified Eagle's medium for 1 h. BMMSCs were isolated from the bone marrow of Sprague‑Dawley rats and the third passage cells were induced by 5‑azacytidine (5‑aza). Following successful induction, the cells were trypsinized and suspended at a density of 1x109/ml. Then, the cell suspension was added to the PLGA scaffold and cultured for 14 days. The morphological changes of BMMSCs were observed using phase contrast microscopy. Immunofluorescence staining was used to identify the cardiomyocyte‑like cells. Hematoxylin and eosin (H&E) and immunohistochemical staining were used to observe the morphology of the engineered myocardial tissues. The cell adhesion rates and scanning electron microscopy were used to observe the compatibility of the cardiomyocyte‑like cells and PLGA. Transmission electron microscopy was used to view the ultrastructure of the engineered myocardial tissues. BMMSCs in primary culture presented round or short spindle cell morphologies. Following induction by 5‑aza, the cells exhibited a long spindle shape and a parallel arrangement. Analysis of the cell adhesion rates demonstrated that the majority of the cardiomyocyte‑like cells had adhered to the PLGA scaffolds at 24 h. H&E staining suggested that the cardiomyocyte‑like cells with spindle nuclei were evenly distributed in the PLGA scaffold. Immunofluorescence staining revealed that the cardiomyocyte‑like cells were positive for cardiac troponin I. Scanning electron microscopy demonstrated that the inoculated cells were well attached to the PLGA scaffold. Transmission electron microscopy indicated that the engineered myocardial tissues contained well‑arranged myofilaments, desmosomes, gap junction and Z line‑like structures. The present study successfully constructed engineered myocardial tissues in vitro with a PLGA polymer and cardiomyocyte‑like cells derived from BMMSCs, which are likely to share various structural similarities with the original heart tissue.
Collapse
Affiliation(s)
- Yujie Xing
- First Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Shuang Shi
- First Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Yong Zhang
- First Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Fuqiang Liu
- First Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Ling Zhu
- First Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Binya Shi
- Medical Affairs Department, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Junkui Wang
- First Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| |
Collapse
|
8
|
Spector M. An interview with Joyce Y Wong: ensuring all voices in biomaterials community are heard. ACTA ACUST UNITED AC 2019; 14:030201. [PMID: 30916043 DOI: 10.1088/1748-605x/ab08d3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Myron Spector
- Harvard Medical School, Brigham and Women's Hospital, VA Boston Healthcare System, Boston, MA, United States of America
| |
Collapse
|
9
|
Roberts EG, Piekarski BL, Huang K, Emani S, Wong JY, Emani SM. Evaluation of Placental Mesenchymal Stem Cell Sheets for Myocardial Repair and Regeneration. Tissue Eng Part A 2018; 25:867-877. [PMID: 30122114 DOI: 10.1089/ten.tea.2018.0035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
IMPACT STATEMENT This work explores placental tissue as a cell source for fabrication of tissue-engineered surgical patches for myocardial repair of congenital heart defects. This study demonstrates promising findings for the clinically driven evaluation of the cell source as defined by potential cardiac benefit, compatibility, cell source availability, and implant deliverability. It documents methods for the isolation of mesenchymal stem cells from human placental amnion and chorion tissues, characterization of these cells, and eventual cell sheet growth that can be leveraged going forward for patch fabrication. It establishes support to continue pursuing the placenta as a valuable cell source for myocardial repair.
Collapse
Affiliation(s)
- Erin G Roberts
- 1 Department of Materials Science and Engineering, Boston University, Boston, Massachusetts.,2 Department of Cardiovascular Surgery, Children's Hospital, Boston, Massachusetts
| | - Breanna L Piekarski
- 2 Department of Cardiovascular Surgery, Children's Hospital, Boston, Massachusetts
| | - Kevin Huang
- 3 Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Sirisha Emani
- 2 Department of Cardiovascular Surgery, Children's Hospital, Boston, Massachusetts
| | - Joyce Y Wong
- 1 Department of Materials Science and Engineering, Boston University, Boston, Massachusetts.,3 Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Sitaram M Emani
- 2 Department of Cardiovascular Surgery, Children's Hospital, Boston, Massachusetts
| |
Collapse
|
10
|
Rim NG, Yih A, Hsi P, Wang Y, Zhang Y, Wong JY. Micropatterned cell sheets as structural building blocks for biomimetic vascular patches. Biomaterials 2018; 181:126-139. [PMID: 30081303 DOI: 10.1016/j.biomaterials.2018.07.047] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/21/2018] [Accepted: 07/25/2018] [Indexed: 02/07/2023]
Abstract
To successfully develop a functional tissue-engineered vascular patch, recapitulating the hierarchical structure of vessel is critical to mimic mechanical properties. Here, we use a cell sheet engineering strategy with micropatterning technique to control structural organization of bovine aortic vascular smooth muscle cell (VSMC) sheets. Actin filament staining and image analysis showed clear cellular alignment of VSMC sheets cultured on patterned substrates. Viability of harvested VSMC sheets was confirmed by Live/Dead® cell viability assay after 24 and 48 h of transfer. VSMC sheets stacked to generate bilayer VSMC patches exhibited strong inter-layer bonding as shown by lap shear test. Uniaxial tensile testing of monolayer VSMC sheets and bilayer VSMC patches displayed nonlinear, anisotropic stress-stretch response similar to the biomechanical characteristic of a native arterial wall. Collagen content and structure were characterized to determine the effects of patterning and stacking on extracellular matrix of VSMC sheets. Using finite-element modeling to simulate uniaxial tensile testing of bilayer VSMC patches, we found the stress-stretch response of bilayer patterned VSMC patches under uniaxial tension to be predicted using an anisotropic hyperelastic constitutive model. Thus, our cell sheet harvesting system combined with biomechanical modeling is a promising approach to generate building blocks for tissue-engineered vascular patches with structure and mechanical behavior mimicking native tissue.
Collapse
Affiliation(s)
- Nae Gyune Rim
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Alice Yih
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Peter Hsi
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Yunjie Wang
- Department of Mechanical Engineering, and Boston University, Boston, MA 02215, USA
| | - Yanhang Zhang
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Department of Mechanical Engineering, and Boston University, Boston, MA 02215, USA; Division of Materials Science and Engineering, Boston University, Boston, MA 02215, USA
| | - Joyce Y Wong
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Division of Materials Science and Engineering, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
11
|
|
12
|
Agladze NN, Halaidych OV, Tsvelaya VA, Bruegmann T, Kilgus C, Sasse P, Agladze KI. Synchronization of excitable cardiac cultures of different origin. Biomater Sci 2018. [PMID: 28643840 DOI: 10.1039/c7bm00171a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the present work, we investigated the synchronization of electrical activity in cultured cardiac cells of different origin put in direct contact. In the first set of experiments synchronization was studied in the primary culture cells of neonatal rats taken at different developmental ages, and in the second - in the neonatal rat cardiomyocytes and HL-1 cells. The electrical excitation of cells was recorded using the calcium transient marker Fluor-4. In the confluent cell layers created with the aid of a specially devised mask, the excitation waves and their propagation between areas occupied by cells of different origin were observed. On the level of individual cells, their contact and synchronization was monitored with the aid of scanning fluorescence microscopy. It was found that populations of cultured cells of different origin are able to synchronize, suggesting the formation of electrical coupling between them. The results obtained may be considered as a proof of concept that implanted alien grafted cells are able to create electrical coupling with the host cardiac tissue.
Collapse
Affiliation(s)
- N N Agladze
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia.
| | | | | | | | | | | | | |
Collapse
|
13
|
Gut colonization with extended-spectrum β-lactamase-producing Enterobacteriaceae may increase disease activity in biologic-naive outpatients with ulcerative colitis: an interim analysis. Eur J Gastroenterol Hepatol 2018; 30:92-100. [PMID: 29076938 DOI: 10.1097/meg.0000000000000989] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Certain Enterobacteriaceae strains have been associated with the development of ulcerative colitis (UC). Extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae are the most commonly found multi-drug-resistant (MDR) bacteria colonizing the gut in UC patients and might trigger a more severe disease activity in UC patients. OBJECTIVE The aim of this study was to evaluate whether disease activity is higher in UC patients with gut colonization with ESBL-producing Enterobacteriaceae. MATERIALS AND METHODS A cross-sectional, pilot study was carried out in a tertiary medical center in Latvia. Demographic data were collected; UC disease activity and extent were evaluated according to the full Mayo score, Montreal classification, and adapted Truelove and Witt's index. Rectal swabs with fecal biomaterial were collected, ESBL-producing Enterobacteriaceae were isolated, and bacterial plasmid genes responsible for ESBL production, blaCTX-M, blaTEM, and blaSHV, were detected. UC disease activity was compared in patients with and without gut colonization with ESBL-producing Enterobacteriaceae. RESULTS A total of 65 patients with UC were included in the initial analysis. Gut colonization with ESBL-producing Enterobacteriaceae was found in seven (11%) patients - mostly Escherichia coli [5 (71%)] containing the blaCTX-M bacterial plasmid gene. Patients with gut colonization with ESBL-producing Enterobacteriaceae had more severe disease compared with patients without gut colonization according to the full Mayo score (5.86 vs. 3.40; P=0.015), Montreal classification (moderate disease vs. clinical remission; P=0.031), and adapted Truelove and Witt's index (moderate disease vs. mild disease; P=0.008). CONCLUSION Gut colonization with ESBL-producing Enterobacteriaceae may increase UC disease activity. Further research is needed to analyze the possible confounding factors that could contribute toward this outcome.
Collapse
|
14
|
Backman DE, LeSavage BL, Shah SB, Wong JY. A Robust Method to Generate Mechanically Anisotropic Vascular Smooth Muscle Cell Sheets for Vascular Tissue Engineering. Macromol Biosci 2017; 17:10.1002/mabi.201600434. [PMID: 28207187 PMCID: PMC5568633 DOI: 10.1002/mabi.201600434] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/22/2016] [Indexed: 12/11/2022]
Abstract
In arterial tissue engineering, mimicking native structure and mechanical properties is essential because compliance mismatch can lead to graft failure and further disease. With bottom-up tissue engineering approaches, designing tissue components with proper microscale mechanical properties is crucial to achieve the necessary macroscale properties in the final implant. This study develops a thermoresponsive cell culture platform for growing aligned vascular smooth muscle cell (VSMC) sheets by photografting N-isopropylacrylamide (NIPAAm) onto micropatterned poly(dimethysiloxane) (PDMS). The grafting process is experimentally and computationally optimized to produce PNIPAAm-PDMS substrates optimal for VSMC attachment. To allow long-term VSMC sheet culture and increase the rate of VSMC sheet formation, PNIPAAm-PDMS surfaces were further modified with 3-aminopropyltriethoxysilane yielding a robust, thermoresponsive cell culture platform for culturing VSMC sheets. VSMC cell sheets cultured on patterned thermoresponsive substrates exhibit cellular and collagen alignment in the direction of the micropattern. Mechanical characterization of patterned, single-layer VSMC sheets reveals increased stiffness in the aligned direction compared to the perpendicular direction whereas nonpatterned cell sheets exhibit no directional dependence. Structural and mechanical anisotropy of aligned, single-layer VSMC sheets makes this platform an attractive microstructural building block for engineering a vascular graft to match the in vivo mechanical properties of native arterial tissue.
Collapse
Affiliation(s)
- Daniel E Backman
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA
| | - Bauer L LeSavage
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA
| | - Shivem B Shah
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA
| | - Joyce Y Wong
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA
- Division of Materials Science and Engineering, Boston University, 15 Saint Mary's Street, Boston, MA, 02215, USA
| |
Collapse
|
15
|
Backman DE, LeSavage BL, Wong JY. Versatile and inexpensive Hall-Effect force sensor for mechanical characterization of soft biological materials. J Biomech 2016; 51:118-122. [PMID: 27923480 DOI: 10.1016/j.jbiomech.2016.11.065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/29/2016] [Accepted: 11/21/2016] [Indexed: 12/13/2022]
Abstract
Mismatch of hierarchical structure and mechanical properties between tissue-engineered implants and native tissue may result in signal cues that negatively impact repair and remodeling. With bottom-up tissue engineering approaches, designing tissue components with proper microscale mechanical properties is crucial to achieve necessary macroscale properties in the final implant. However, characterizing microscale mechanical properties is challenging, and current methods do not provide the versatility and sensitivity required to measure these fragile, soft biological materials. Here, we developed a novel, highly sensitive Hall-Effect based force sensor that is capable of measuring mechanical properties of biological materials over wide force ranges (μN to N), allowing its use at all steps in layer-by-layer fabrication of engineered tissues. The force sensor design can be easily customized to measure specific force ranges, while remaining easy to fabricate using inexpensive, commercial materials. Although we used the force sensor to characterize mechanics of single-layer cell sheets and silk fibers, the design can be easily adapted for different applications spanning larger force ranges (>N). This platform is thus a novel, versatile, and practical tool for mechanically characterizing biological and biomimetic materials.
Collapse
Affiliation(s)
- Daniel E Backman
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Bauer L LeSavage
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Joyce Y Wong
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Division of Materials Science & Engineering, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
16
|
Alapan Y, Younesi M, Akkus O, Gurkan UA. Anisotropically Stiff 3D Micropillar Niche Induces Extraordinary Cell Alignment and Elongation. Adv Healthc Mater 2016; 5:1884-92. [PMID: 27191679 PMCID: PMC4982772 DOI: 10.1002/adhm.201600096] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/10/2016] [Indexed: 12/30/2022]
Abstract
A microfabricated pillar substrate is developed to confine, align, and elongate cells, allowing decoupled analysis of stiffness and directionality in 3D. Mesenchymal stem cells and cardiomyocytes are successfully confined in a 3D environment with precisely tunable stiffness anisotropy. It is discovered that anisotropically stiff micropillar substrates provide cellular confinement in 3D, aligning cells in the stiffer direction with extraordinary elongation.
Collapse
Affiliation(s)
- Yunus Alapan
- Mechanical and Aerospace Engineering Department Case, Western Reserve University, Cleveland, OH 44106, USA
| | - Mousa Younesi
- Mechanical and Aerospace Engineering Department Case, Western Reserve University, Cleveland, OH 44106, USA
| | - Ozan Akkus
- Mechanical and Aerospace Engineering Department Case, Western Reserve University, Cleveland, OH 44106, USA. Biomedical Engineering Department, Case Western Reserve University, Cleveland, OH 44106, USA. Department of Orthopedics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Umut A. Gurkan
- Mechanical and Aerospace Engineering Department Case, Western Reserve University, Cleveland, OH 44106, USA. Biomedical Engineering Department, Case Western Reserve University, Cleveland, OH 44106, USA. Department of Orthopedics, Case Western Reserve University, Cleveland, OH 44106, USA. Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
17
|
Li M, Humayun M, Hughes B, Kozinski JA, Hwang DK. A microfluidic approach for the synthesis and assembly of multi-scale porous membranes. RSC Adv 2015. [DOI: 10.1039/c5ra21200f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Polymeric porous membranes with multiscale pores and heterogeneous functions are synthesized in a one-step fashion using a microfluidic approach.
Collapse
Affiliation(s)
- Minggan Li
- Department of Chemical Engineering
- Ryerson University
- Toronto
- Canada
| | - Mouhita Humayun
- Department of Chemical Engineering
- Ryerson University
- Toronto
- Canada
| | - Bethany Hughes
- Department of Chemical Engineering
- Ryerson University
- Toronto
- Canada
| | | | - Dae Kun Hwang
- Department of Chemical Engineering
- Ryerson University
- Toronto
- Canada
| |
Collapse
|