1
|
Okuno M, Enokida M, Nagira K, Nagashima H. Intra-Articular Injection of Chitin Nanofiber Attenuates Osteoarthritis: An Experimental Study in a Rat Model of Osteoarthritis. Yonago Acta Med 2024; 67:22-30. [PMID: 38371277 PMCID: PMC10867235 DOI: 10.33160/yam.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/20/2023] [Indexed: 02/20/2024]
Abstract
Background This study aimed to evaluate the effect of chitin nanofibers (CNF) produced from crab shells as a medical material for the knee in an osteoarthritic rat model. Methods The effect of intra-articular CNF injection was evaluated histologically among three groups: saline, hyaluronic acid (HA), and CNF injection groups. The Osteoarthritis Research Society International (OARSI) cartilage, subchondral bone, synovial, and meniscus scores were used for scoring. Results At 4 weeks, the CNF group had significantly lower scores than the saline group. The Synovial score was lower in HA and CNF groups at 4 weeks than in the saline group. At 4 weeks post-treatment, the thickening of the subchondral bone plate and angiogenesis were significantly reduced in the CNF treatment group compared to those in the saline treatment group (P = 0.02). Conclusion The anti-inflammatory effects of CNF on knee osteoarthritis were comparable to that of HA in the early stages.
Collapse
Affiliation(s)
- Masayuki Okuno
- Division of Orthopedic Surgery, Department of Sensory and Motor Organs, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Makoto Enokida
- Division of Orthopedic Surgery, Department of Sensory and Motor Organs, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Keita Nagira
- Division of Orthopedic Surgery, Department of Sensory and Motor Organs, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Hideki Nagashima
- Division of Orthopedic Surgery, Department of Sensory and Motor Organs, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| |
Collapse
|
2
|
Wu G, Hussain SA, Daddam JR, Yu Z. Anti-osteoarthritis, Bone Protective and Antiinflammatory Effect of Lusianthridin against Monosodium Iodoacetate Induced Osteoarthritis via Suppression of Inflammatory Pathway. J Oleo Sci 2024; 73:85-98. [PMID: 38171734 DOI: 10.5650/jos.ess23127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
Osteoarthritis (OA) is characterized by the gradual deterioration and worsening of the knee joint, leading to both pain and deformity. The current research exhibited the anti-osteoarthritis effect of lusianthridin against monosodium iodoacetate (MIA) induced OA in rats. RAW cells were used for the cell viability. The inflammatory cytokines and mediators were estimated in the cell lines after the lipopolysaccharide (LPS) treatment. For the in vivo study, the rats were received the intraperitoneal administration of MIA (3 mg/kg) for the induction of OA. The rats were received the oral administration of lusianthridin (5, 10 and 20 mg/kg) and the body and organ weight estimated. Antioxidant, cytokines, inflammatory and matrix metalloproteinases (MMP) level were also estimated. The mRNA expression of MMP were also estimated. The lusianthridin treatment remarkably suppressed the cell viability. LPS induced RAW cell suppressed the level of nitrate, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), cyclooxygenase-2 (COX-2), prostaglandin (PGE2), MMP-2 and MMP-9 level. Lusianthridin remarkably altered the level of body weight and organ weight (liver, spleen, renal and heart weight). lusianthridin suppressed the oxidative stress via altered the level of antioxidant parameters. Lusianthridin significantly (p < 0.001) decreased the level of cartilage oligometrix matrix protein (COMP) and c-reactive protein (CRP); cytokines such as TNF-α, IL-1β, IL-6, IL-10; inflammatory parameters include 5- Lipoxygenase (5-LOX), COX-2, leukotriene B4 (LTB4), PGE2; transforming growth factor beta (TGF-β); MMP level like MMP-1, 3, 9, 13, respectively. Lusianthridin significantly suppressed the mRNA expression of MMP. Collectively, the result of the study showed that antiosteoarthritis effect of lusianthridin via suppression of inflammatory parameters.
Collapse
Affiliation(s)
- Guozhong Wu
- Department of Orthopaedics, Xi'an International Medical Center Hospital
| | | | | | - Zhou Yu
- The Third Department of Orthopedicsy, Ankang Central Hospital
| |
Collapse
|
3
|
Ciaffaglione V, Rizzarelli E. Carnosine, Zinc and Copper: A Menage a Trois in Bone and Cartilage Protection. Int J Mol Sci 2023; 24:16209. [PMID: 38003398 PMCID: PMC10671046 DOI: 10.3390/ijms242216209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Dysregulated metal homeostasis is associated with many pathological conditions, including arthritic diseases. Osteoarthritis and rheumatoid arthritis are the two most prevalent disorders that damage the joints and lead to cartilage and bone destruction. Recent studies show that the levels of zinc (Zn) and copper (Cu) are generally altered in the serum of arthritis patients. Therefore, metal dyshomeostasis may reflect the contribution of these trace elements to the disease's pathogenesis and manifestations, suggesting their potential for prognosis and treatment. Carnosine (Car) also emerged as a biomarker in arthritis and exerts protective and osteogenic effects in arthritic joints. Notably, its zinc(II) complex, polaprezinc, has been recently proposed as a drug-repurposing candidate for bone fracture healing. On these bases, this review article aims to provide an overview of the beneficial roles of Cu and Zn in bone and cartilage health and their potential application in tissue engineering. The effects of Car and polaprezinc in promoting cartilage and bone regeneration are also discussed. We hypothesize that polaprezinc could exchange Zn for Cu, present in the culture media, due to its higher sequestering ability towards Cu. However, future studies should unveil the potential contribution of Cu in the beneficial effects of polaprezinc.
Collapse
Affiliation(s)
- Valeria Ciaffaglione
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy
| | - Enrico Rizzarelli
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| |
Collapse
|
4
|
Aldrich JL, Panicker A, Ovalle R, Sharma B. Drug Delivery Strategies and Nanozyme Technologies to Overcome Limitations for Targeting Oxidative Stress in Osteoarthritis. Pharmaceuticals (Basel) 2023; 16:1044. [PMID: 37513955 PMCID: PMC10383173 DOI: 10.3390/ph16071044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/26/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Oxidative stress is an important, but elusive, therapeutic target for osteoarthritis (OA). Antioxidant strategies that target oxidative stress through the elimination of reactive oxygen species (ROS) have been widely evaluated for OA but are limited by the physiological characteristics of the joint. Current hallmarks in antioxidant treatment strategies include poor bioavailability, poor stability, and poor retention in the joint. For example, oral intake of exogenous antioxidants has limited access to the joint space, and intra-articular injections require frequent dosing to provide therapeutic effects. Advancements in ROS-scavenging nanomaterials, also known as nanozymes, leverage bioactive material properties to improve delivery and retention. Material properties of nanozymes can be tuned to overcome physiological barriers in the knee. However, the clinical application of these nanozymes is still limited, and studies to understand their utility in treating OA are still in their infancy. The objective of this review is to evaluate current antioxidant treatment strategies and the development of nanozymes as a potential alternative to conventional small molecules and enzymes.
Collapse
Affiliation(s)
| | | | | | - Blanka Sharma
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA; (J.L.A.)
| |
Collapse
|
5
|
Mancino C, Pasto A, De Rosa E, Dolcetti L, Rasponi M, McCulloch P, Taraballi F. Immunomodulatory biomimetic nanoparticles target articular cartilage trauma after systemic administration. Heliyon 2023; 9:e16640. [PMID: 37313169 PMCID: PMC10258364 DOI: 10.1016/j.heliyon.2023.e16640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/15/2023] Open
Abstract
Post-traumatic osteoarthritis (PTOA) is one of the leading causes of disability in developed countries and accounts for 12% of all osteoarthritis cases in the United States. After trauma, inflammatory cells (macrophages amongst others) are quickly recruited within the inflamed synovium and infiltrate the joint space, initiating dysregulation of cartilage tissue homeostasis. Current therapeutic strategies are ineffective, and PTOA remains an open clinical challenge. Here, the targeting potential of liposome-based nanoparticles (NPs) is evaluated in a PTOA mouse model, during the acute phase of inflammation, in both sexes. NPs are composed of biomimetic phospholipids or functionalized with macrophage membrane proteins. Intravenous administration of NPs in the acute phase of PTOA and advanced in vivo imaging techniques reveal preferential accumulation of NPs within the injured joint for up to 7 days post injury, in comparison to controls. Finally, imaging mass cytometry uncovers an extraordinary immunomodulatory effect of NPs that are capable of decreasing the amount of immune cells infiltrating the joint and conditioning their phenotype. Thus, biomimetic NPs could be a powerful theranostic tool for PTOA as their accumulation in injury sites allows their identification and they have an intrinsic immunomodulatory effect.
Collapse
Affiliation(s)
- Chiara Mancino
- Center for Musculoskeletal Regeneration, Houston Methodist Academic Institute, Houston, TX, USA
- Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, USA
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Anna Pasto
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - Enrica De Rosa
- Center for Musculoskeletal Regeneration, Houston Methodist Academic Institute, Houston, TX, USA
- Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Luigi Dolcetti
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Patrick McCulloch
- Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist Academic Institute, Houston, TX, USA
- Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
6
|
Haq Khan ZU, Khan TM, Khan A, Shah NS, Muhammad N, Tahir K, Iqbal J, Rahim A, Khasim S, Ahmad I, Shabbir K, Gul NS, Wu J. Brief review: Applications of nanocomposite in electrochemical sensor and drugs delivery. Front Chem 2023; 11:1152217. [PMID: 37007050 PMCID: PMC10060975 DOI: 10.3389/fchem.2023.1152217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
The recent advancement of nanoparticles (NPs) holds significant potential for treating various ailments. NPs are employed as drug carriers for diseases like cancer because of their small size and increased stability. In addition, they have several desirable properties that make them ideal for treating bone cancer, including high stability, specificity, higher sensitivity, and efficacy. Furthermore, they might be taken into account to permit the precise drug release from the matrix. Drug delivery systems for cancer treatment have progressed to include nanocomposites, metallic NPs, dendrimers, and liposomes. Materials’ mechanical strength, hardness, electrical and thermal conductivity, and electrochemical sensors are significantly improved using nanoparticles (NPs). New sensing devices, drug delivery systems, electrochemical sensors, and biosensors can all benefit considerably from the NPs’ exceptional physical and chemical capabilities. Nanotechnology is discussed in this article from a variety of angles, including its recent applications in the medical sciences for the effective treatment of bone cancers and its potential as a promising option for treating other complex health anomalies via the use of anti-tumour therapy, radiotherapy, the delivery of proteins, antibiotics, and vaccines, and other methods. This also brings to light the role that model simulations can play in diagnosing and treating bone cancer, an area where Nanomedicine has recently been formulated. There has been a recent uptick in using nanotechnology to treat conditions affecting the skeleton. Consequently, it will pave the door for more effective utilization of cutting-edge technology, including electrochemical sensors and biosensors, and improved therapeutic outcomes.
Collapse
Affiliation(s)
- Zia Ul Haq Khan
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
- *Correspondence: Zia Ul Haq Khan, ; Noor Shad Gul,
| | - Taj Malook Khan
- Drug Discovery Research Center, Southwest Medical University, Luzhou, China
- Department of Pharmacology, Laboratory of Cardiovascular Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Amjad Khan
- Department of Zoology, University of Lakki Marwat, Lakki Marwat, Pakistan
| | - Noor Samad Shah
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Nawshad Muhammad
- Department of Dental Materials, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Kamran Tahir
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan, Pakistan
| | - Jibran Iqbal
- College of Natural and Health Sciences, Zayed University, Abu Dhabi, United Arab Emirates
| | - Abdur Rahim
- Department of Chemistry, COMSATS University Islamabad, Islamabad, Pakistan
| | - Syed Khasim
- Nanotechnology Research Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Department of Physics, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Iftikhar Ahmad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Khadija Shabbir
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Noor Shad Gul
- Drug Discovery Research Center, Southwest Medical University, Luzhou, China
- Department of Pharmacology, Laboratory of Cardiovascular Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, China
- *Correspondence: Zia Ul Haq Khan, ; Noor Shad Gul,
| | - Jianbo Wu
- Drug Discovery Research Center, Southwest Medical University, Luzhou, China
- Department of Pharmacology, Laboratory of Cardiovascular Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
7
|
Zerrillo L, Gigliobianco MR, D’Atri D, Garcia JP, Baldazzi F, Ridwan Y, Fuentes G, Chan A, Creemers LB, Censi R, Di Martino P, Cruz LJ. PLGA Nanoparticles Grafted with Hyaluronic Acid to Improve Site-Specificity and Drug Dose Delivery in Osteoarthritis Nanotherapy. NANOMATERIALS 2022; 12:nano12132248. [PMID: 35808084 PMCID: PMC9268068 DOI: 10.3390/nano12132248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 12/12/2022]
Abstract
Nanoparticles (NPs) have a tremendous potential in medicinal applications, and recent studies have pushed the boundaries in nanotherapy, including in osteoarthritis treatments. The aim of this study was to develop new poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs) surfaces decorated with hyaluronic acid (HA) to enhance targeted drug specificity to the osteoarthritic knee joint. HA was selected since it binds to specific receptors expressed in many cells, such as the cluster determinant 44 (CD44), a major receptor of chondrocytes, and because of its function in the synovial fluid (SF), such as maintenance of high fluid viscosity. The PLGA polymer was grafted to sodium hyaluronate using dimethoxy-PEG (PLGA-HA) and compared with control PLGA NPs (not grafted). NPs were characterized by 1H-NMR and IR spectroscopy. Then, near-infrared (NIR) dye and gold (20 nm) were encapsulated in the formulated NPs and used to access NPs’ performance in in vitro, in vivo, and ex vivo experiments. To test the NPs’ CD44 receptor specificity, an antibody assay was performed. All NPs presented a size in the range viable for cell-uptake, no cytotoxicity to chondrocytes was registered. Although all the NPs had a high capacity to be absorbed by the cells, PLGA-HA NPs showed significantly higher affinity towards the chondrocytic C28/I2 cell line. In conclusion, PLGA NPs grafted to sodium hyaluronate showed increased binding to cartilage cells and tissue and enhanced accumulation at the target site. Thus, this study presents a safe drug-delivery system with improved receptor specificity, which may represent an advantageous alternative to current nanotherapies.
Collapse
Affiliation(s)
- Luana Zerrillo
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Centrum, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (L.Z.); (F.B.); (G.F.)
- Percuros B.V., Zernikedreef 8, 2333CL Leiden, The Netherlands; (M.R.G.); (A.C.)
| | - Maria Rosa Gigliobianco
- Percuros B.V., Zernikedreef 8, 2333CL Leiden, The Netherlands; (M.R.G.); (A.C.)
- School of Pharmacy, University of Camerino, Via Madonna delle Carceri 9, 62032 Macerata, Italy;
| | - Domenico D’Atri
- Department of Biotechnology and Food Engineering, Technion Israel Institute of Technology, Haifa 3200, Israel;
| | - Joao Pedro Garcia
- Department of Orthopedics, Utrecht Medical Center, Heidelberglaan 100, 3584CX Utrecht, The Netherlands; (J.P.G.); (L.B.C.)
| | - Fabio Baldazzi
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Centrum, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (L.Z.); (F.B.); (G.F.)
- Percuros B.V., Zernikedreef 8, 2333CL Leiden, The Netherlands; (M.R.G.); (A.C.)
| | - Yanto Ridwan
- Department of Radiology & Nuclear Medicine and Department of Molecular Genetics, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands;
| | - Gastón Fuentes
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Centrum, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (L.Z.); (F.B.); (G.F.)
- Department of Ceramic and Metallic Biomaterials, Biomaterials Center, University of Havana, Ave. Universidad e/G y Ronda, Vedado, Plaza, La Habana 10400, Cuba
| | - Alan Chan
- Percuros B.V., Zernikedreef 8, 2333CL Leiden, The Netherlands; (M.R.G.); (A.C.)
- Department of Orthopedics, Utrecht Medical Center, Heidelberglaan 100, 3584CX Utrecht, The Netherlands; (J.P.G.); (L.B.C.)
| | - Laura B. Creemers
- Department of Orthopedics, Utrecht Medical Center, Heidelberglaan 100, 3584CX Utrecht, The Netherlands; (J.P.G.); (L.B.C.)
| | - Roberta Censi
- School of Pharmacy, University of Camerino, Via Madonna delle Carceri 9, 62032 Macerata, Italy;
| | - Piera Di Martino
- Department of Pharmacy, Università “G. d’Annunzio” di Chieti e Pescara, Via dei Vestini 1, 66100 Chieti, Italy;
| | - Luis J. Cruz
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Centrum, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (L.Z.); (F.B.); (G.F.)
- Correspondence:
| |
Collapse
|
8
|
Siefen T, Bjerregaard S, Borglin C, Lamprecht A. Assessment of joint pharmacokinetics and consequences for the intraarticular delivery of biologics. J Control Release 2022; 348:745-759. [PMID: 35714731 DOI: 10.1016/j.jconrel.2022.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 01/15/2023]
Abstract
Intraarticular (IA) injections provide the opportunity to deliver biologics directly to their site of action for a local and efficient treatment of osteoarthritis. However, the synovial joint is a challenging site of administration since the drug is rapidly eliminated across the synovial membrane and has limited distribution into cartilage, resulting in unsatisfactory therapeutic efficacy. In order to rationally develop appropriate drug delivery systems, it is essential to thoroughly understand the unique biopharmaceutical environments and kinetics in the joint to adequately simulate them in relevant experimental models. This review presents a detailed view on articular kinetics and drug-tissue interplay of IA administered drugs and summarizes how these can be translated into reasonable formulation strategies by identification of key factors through which the joint residence time can be prolonged and specific structures can be targeted. In this way, pros and cons of the delivery approaches for biologics will be evaluated and the extent to which biorelevant models are applicable to gain mechanistic insights and ameliorate formulation design is discussed.
Collapse
Affiliation(s)
- Tobias Siefen
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany
| | | | | | - Alf Lamprecht
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany; PEPITE (EA4267), University of Burgundy/Franche-Comté, Besançon, France.
| |
Collapse
|
9
|
Ramot Y, Dolkart O, Steiner M, Jahn S, Goldberg R, Cacical O, Lavie Y, Ezov N, Agar G, Nyska A. Preclinical In Vivo Safety of Poly-Phosphorylated Superlubrication Vectors for the Treatment of Osteoarthritis. Toxicol Pathol 2022; 50:787-792. [PMID: 35726637 DOI: 10.1177/01926233221105393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Osteoarthritis (OA) can lead to a significant functional disability. Poly[2-(methacryloyloxy)ethyl phosphorylcholine] (pMPC) liposomes are a novel treatment modality for OA, intended to restore the natural lubrication properties of articular cartilage. Here, we report on two studies aimed to assess the local and systemic safety and toxicity of pMPCylated liposomes in comparison with physiological saline, in Sprague-Dawley (SD) rats and in sheep after a single intra-articular (IA) injection. The animals were sacrificed after 1 and 6 weeks (rats) and 3 and 6 weeks (sheep). No signs of toxicity or abnormal clinical findings were observed. Histopathological evaluation revealed no signs of reactivity or abnormal findings in the injected joints or in any other organs. In conclusion, a single IA injection of the pMPCylated liposomes demonstrated an excellent safety profile and did not result in local reactivity or systemic toxicity, thus supporting its further development for use in humans.
Collapse
Affiliation(s)
- Yuval Ramot
- The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Department of Dermatology, Hadassah Medical Center, Jerusalem, Israel
| | | | | | | | | | | | | | - Nati Ezov
- Envigo CRS (Israel), Ness Ziona, Israel
| | - Gabi Agar
- Liposphere Ltd., Givat-Shmuel, Israel
| | - Abraham Nyska
- Consultant in Toxicologic Pathology, Tel Aviv, Israel.,Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
10
|
Choi SY, Rhim J, Han WJ, Park H, Noh JW, Han J, Ha CW. Associations between biomarkers and histological assessment in individual animals in a destabilization of the medial meniscus (DMM) model of osteoarthritis (OA). Acta Orthop Belg 2022; 87:713-721. [PMID: 35172438 DOI: 10.52628/87.4.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To date, the use of biomarkers for assessing individual severity of osteoarthritis (OA) is limited, and the correlation of histological scores with biomarkers for individual animals in the destabilization of the medial meniscus (DMM) model of OA has not been well investigated. Accordingly, this study investigated how well representative biomarkers in the DMM model reflected specific changes in individual animals. Rats were randomly divided into the OA group and the sham group. OA model was established by destabilization of the medial meniscus (DMM). After 2,4,6,8,10 and 12 weeks (n=14, each week), the concentrations of CTXII, COMP, C2C, and OC in serum were measured, and cartilage degeneration, osteophytes, and synovial membrane inflammation, typical of OA, were scored using Osteoarthritis Research Society International (OARSI) scoring system. Additionally, the correlation between each biomarker and the specific changes in osteoarthritis was analyzed for individual animals using the Generalized Estimating Equation (GEE). Statistical analysis showed a low correlation between CTXII and osteophyte score of the medial femur (coefficient = -0.0088, p= 0.0103), COMP and osteophyte score of the medial tibia (coefficient = -0.0911, p= 0.0003), and C2C and synovial membrane inflammation scores of the medial femoral (coefficient = 0.054, p= 0.0131). These results suggest that representative OA bio- markers in individual animals in the DMM model did not reflect histological scores well.
Collapse
|
11
|
Pape E, Parent M, Pinzano A, Sapin-Minet A, Henrionnet C, Gillet P, Scala-Bertola J, Gambier N. Rapamycin-loaded Poly(lactic-co-glycolic) acid nanoparticles: Preparation, characterization, and in vitro toxicity study for potential intra-articular injection. Int J Pharm 2021; 609:121198. [PMID: 34662644 DOI: 10.1016/j.ijpharm.2021.121198] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/29/2021] [Accepted: 10/10/2021] [Indexed: 12/11/2022]
Abstract
Osteoarthritis (OA) is the most common degenerative joint disease. Rapamycin is a potential candidate for OA treatment by increasing the autophagy process implicated in its physiopathology. To optimize Rapamycin profit and avoid systemic side effects, intra-articular (i.a.) administration appeared helpful. However, Rapamycin's highly hydrophobic nature and low bioavailability made it challenging to develop purpose-made drug delivery systems to overcome these limitations. We developed Rapamycin-loaded nanoparticles (NPs) using poly (lactic-co-glycolic acid) by emulsion/evaporation method. We evaluated these NPs' cytocompatibility towards cartilage (chondrocytes) and synovial membrane cells (synoviocytes) for a potential i.a. administration. The in vitro characterization of Rapamycin-loaded NPs had shown a suitable profile for an i.a. administration. In vitro biocompatibility of NPs was highlighted to 10 µM of Rapamycin for both synoviocytes and chondrocytes, but significant toxicity was observed with higher concentrations. Besides, synoviocytes are more sensitive to Rapamycin-loaded NPs than chondrocytes. Finally, we observed in vitro that an adapted formulated Rapamycin-loaded NPs could be safe at suitable i.a. injection concentrations. The toxic effect of Rapamycin encapsulated in these NPs on both articular cells was dose-dependent. After Rapamycin-loaded NPs i.a. administration, local retention, in situ safety, and systemic release should be evaluated with experimental in vivo models.
Collapse
Affiliation(s)
- Elise Pape
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France; Laboratoire de Pharmacologie, Toxicologie et Pharmacovigilance, Bâtiment de Biologie Médicale et de Biopathologie, CHRU de Nancy-Brabois, 5 Rue du Morvan, F54511 Vandœuvre-Lès-Nancy, France.
| | | | - Astrid Pinzano
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France.
| | | | | | - Pierre Gillet
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France; Laboratoire de Pharmacologie, Toxicologie et Pharmacovigilance, Bâtiment de Biologie Médicale et de Biopathologie, CHRU de Nancy-Brabois, 5 Rue du Morvan, F54511 Vandœuvre-Lès-Nancy, France.
| | - Julien Scala-Bertola
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France; Laboratoire de Pharmacologie, Toxicologie et Pharmacovigilance, Bâtiment de Biologie Médicale et de Biopathologie, CHRU de Nancy-Brabois, 5 Rue du Morvan, F54511 Vandœuvre-Lès-Nancy, France.
| | - Nicolas Gambier
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France; Laboratoire de Pharmacologie, Toxicologie et Pharmacovigilance, Bâtiment de Biologie Médicale et de Biopathologie, CHRU de Nancy-Brabois, 5 Rue du Morvan, F54511 Vandœuvre-Lès-Nancy, France.
| |
Collapse
|
12
|
Abo-zalam HB, Abdelsalam RM, Abdel-Rahman RF, Abd-Ellah MF, Khattab MM. In Vivo Investigation of the Ameliorating Effect of Tempol against MIA-Induced Knee Osteoarthritis in Rats: Involvement of TGF-β1/SMAD3/NOX4 Cue. Molecules 2021; 26:molecules26226993. [PMID: 34834085 PMCID: PMC8618489 DOI: 10.3390/molecules26226993] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/09/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022] Open
Abstract
Osteoarthritis (OA) is a complex disease characterized by structural, functional, and metabolic deteriorations of the whole joint and periarticular tissues. In the current study, we aimed to investigate the possible effects of tempol on knee OA induced by the chemical chondrotoxic monosodium iodoacetate (MIA) which closely mimics both the pain and structural changes associated with human OA. Rats were administrated oral tempol (100 mg/kg) one week post-MIA injection (3 mg/50 μL saline) at the right knee joints for 21 consecutive days. Tempol improved motor performance and debilitated the MIA-related radiological and histological alterations. Moreover, it subsided the knee joint swelling. Tempol decreased the cartilage degradation-related biomarkers as matrix metalloproteinase-13, bone alkaline phosphatase (bone ALP), and fibulin-3. The superoxide dismutase mimetic effect of tempol was accompanied by decreased NADPH oxidase 4 (NOX4), inflammatory mediators, nuclear factor-kappa B (NF-κB), over-released transforming growth factor-β1 (TGF-β1). Tempol decreased the expression of chemokine (C-C motif) ligand 2 (CCL2). On the molecular level, tempol reduced the phosphorylated protein levels of p38 mitogen-activated protein kinase (MAPK), and small mother against decapentaplegic 3 homologs (SMAD3). These findings suggest the promising role of tempol in ameliorating MIA-induced knee OA in rats via collateral suppression of the catabolic signaling cascades including TGF-β1/SMAD3/NOX4, and NOX4/p38MAPK/NF-κB and therefore modulation of oxidative stress, catabolic inflammatory cascades, chondrocyte metabolic homeostasis.
Collapse
Affiliation(s)
- Hagar B. Abo-zalam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt
- Correspondence: or ; Tel.: +20-102-082-9562
| | - Rania M. Abdelsalam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (R.M.A.); (M.M.K.)
- Department of Biology, Faculty of Pharmacy, New Giza University, Cairo 12613, Egypt
| | - Rehab F. Abdel-Rahman
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza 12622, Egypt;
| | - Mohamed F. Abd-Ellah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11651, Egypt;
| | - Mahmoud M. Khattab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (R.M.A.); (M.M.K.)
| |
Collapse
|
13
|
Wang D, Zhang P, Mei X, Chen Z. Repair calvarial defect of osteoporotic rats by berberine functionalized porous calcium phosphate scaffold. Regen Biomater 2021; 8:rbab022. [PMID: 34211732 PMCID: PMC8240619 DOI: 10.1093/rb/rbab022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/15/2021] [Accepted: 05/03/2021] [Indexed: 12/21/2022] Open
Abstract
In this article, we propose a simple scheme of using berberine (BBR) to modify porous calcium phosphate ceramics (named PCPC). These BBR molecules regulate the crystallization of hydroxyapatite nanorods on PCPC. We found that these nanorods and the adsorbed BBR changed the interface micro-environment of PCPC by SEM images. The microenvironment of PCPC surface is essential for promoting BMSCs’ proliferation and differentiation. These results demonstrated that PCPC/BBR markedly improved the bone regeneration of osteoporosis rats. Moreover, PCPC/BBR had significantly increased the expression levels of ALP, osteocalcin and bone morphogenetic protein2 and RUNX2 in BMSCs originated from osteoporosis rats.
Collapse
Affiliation(s)
- Dahao Wang
- Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
| | - Peng Zhang
- Jinzhou Medical University, Jinzhou 121001, China
| | - Xifan Mei
- Jinzhou Medical University, Jinzhou 121001, China
| | - Zhenhua Chen
- Jinzhou Medical University, Jinzhou 121001, China
| |
Collapse
|
14
|
Rabiei M, Kashanian S, Samavati SS, Derakhshankhah H, Jamasb S, McInnes SJ. Nanotechnology application in drug delivery to osteoarthritis (OA), rheumatoid arthritis (RA), and osteoporosis (OSP). J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102011] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
15
|
He Y, Ren E, Lu Z, Chen H, Qin Z, Wang J, He M, Liu G, Zheng L, Zhao J. Rational engineering of ferritin nanocages for targeted therapy of osteoarthritis. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 28:102210. [DOI: 10.1016/j.nano.2020.102210] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 02/08/2020] [Accepted: 04/10/2020] [Indexed: 12/26/2022]
|
16
|
Adebayo OO, Holyoak DT, van der Meulen MCH. Mechanobiological Mechanisms of Load-Induced Osteoarthritis in the Mouse Knee. J Biomech Eng 2020; 141:2736041. [PMID: 31209459 DOI: 10.1115/1.4043970] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Indexed: 12/18/2022]
Abstract
Osteoarthritis (OA) is a degenerative joint disease that affects millions of people worldwide, yet its disease mechanism is not clearly understood. Animal models have been established to study disease progression by initiating OA through modified joint mechanics or altered biological activity within the joint. However, animal models often do not have the capability to directly relate the mechanical environment to joint damage. This review focuses on a novel in vivo approach based on controlled, cyclic tibial compression to induce OA in the mouse knee. First, we discuss the development of the load-induced OA model, its different loading configurations, and other techniques used by research laboratories around the world. Next, we review the lessons learned regarding the mechanobiological mechanisms of load-induced OA and relate these findings to the current understanding of the disease. Then, we discuss the role of specific genetic and cellular pathways involved in load-induced OA progression and the contribution of altered tissue properties to the joint response to mechanical loading. Finally, we propose using this approach to test the therapeutic efficacy of novel treatment strategies for OA. Ultimately, elucidating the mechanobiological mechanisms of load-induced OA will aid in developing targeted treatments for this disabling disease.
Collapse
Affiliation(s)
| | - Derek T Holyoak
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
| | - Marjolein C H van der Meulen
- Meinig School of Biomedical Engineering, Cornell University, 113 Weill Hall, Ithaca, NY 14853.,Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853.,Research Division, Hospital for Special Surgery, New York, NY 10021 e-mail:
| |
Collapse
|
17
|
Steering the Clinical Translation of Delivery Systems for Drugs and Health Products. Pharmaceutics 2020; 12:pharmaceutics12040350. [PMID: 32294939 PMCID: PMC7238002 DOI: 10.3390/pharmaceutics12040350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 03/17/2020] [Indexed: 11/21/2022] Open
Abstract
Besides the feasibility for industrial scale-up, accelerating the translation from bench to bedside of new technological strategies for controlled delivery and targeting of drugs and other actives relevant for health management, such as medical devices and nutraceuticals, would benefit from an even earlier evaluation in pre-clinical models and clinical settings. At the same time, translational medicine also performs in the opposite direction, incorporating clinical needs and observations into scientific hypotheses and innovative technological proposals. With these aims, the sessions proposed for the 2019 CRS Italy Chapter Workshop will introduce the experience of Italian and worldwide researchers on how to foster the actual work in controlled release and drug delivery towards a reliable pre-clinical and clinical assessment.
Collapse
|
18
|
Mohammadinejad R, Ashrafizadeh M, Pardakhty A, Uzieliene I, Denkovskij J, Bernotiene E, Janssen L, Lorite GS, Saarakkala S, Mobasheri A. Nanotechnological Strategies for Osteoarthritis Diagnosis, Monitoring, Clinical Management, and Regenerative Medicine: Recent Advances and Future Opportunities. Curr Rheumatol Rep 2020; 22:12. [PMID: 32248371 PMCID: PMC7128005 DOI: 10.1007/s11926-020-0884-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW In this review article, we discuss the potential for employing nanotechnological strategies for the diagnosis, monitoring, and clinical management of osteoarthritis (OA) and explore how nanotechnology is being integrated rapidly into regenerative medicine for OA and related osteoarticular disorders. RECENT FINDINGS We review recent advances in this rapidly emerging field and discuss future opportunities for innovations in enhanced diagnosis, prognosis, and treatment of OA and other osteoarticular disorders, the smart delivery of drugs and biological agents, and the development of biomimetic regenerative platforms to support cell and gene therapies for arresting OA and promoting cartilage and bone repair. Nanotubes, magnetic nanoparticles, and other nanotechnology-based drug and gene delivery systems may be used for targeting molecular pathways and pathogenic mechanisms involved in OA development. Nanocomposites are also being explored as potential tools for promoting cartilage repair. Nanotechnology platforms may be combined with cell, gene, and biological therapies for the development of a new generation of future OA therapeutics. Graphical Abstract.
Collapse
Affiliation(s)
- Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ilona Uzieliene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406, Vilnius, Lithuania
| | - Jaroslav Denkovskij
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406, Vilnius, Lithuania
| | - Eiva Bernotiene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406, Vilnius, Lithuania
| | - Lauriane Janssen
- Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, PL 4500, 3FI-90014, Oulu, Finland
| | - Gabriela S Lorite
- Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, PL 4500, 3FI-90014, Oulu, Finland
| | - Simo Saarakkala
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Ali Mobasheri
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406, Vilnius, Lithuania.
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland.
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.
- Centre for Sport, Exercise and Osteoarthritis Versus Arthritis, Queen's Medical Centre, Nottingham, UK.
- Sheik Salem Bin Mahfouz Scientific Chair for Treatment of Osteoarthritis with Stem Cells, King AbdulAziz University, Jeddah, Saudi Arabia.
- University Medical Center Utrecht, Department of Orthopedics and Department of Rheumatology & Clinical Immunology, 508 GA, Utrecht, The Netherlands.
| |
Collapse
|
19
|
Shreffler JW, Pullan JE, Dailey KM, Mallik S, Brooks AE. Overcoming Hurdles in Nanoparticle Clinical Translation: The Influence of Experimental Design and Surface Modification. Int J Mol Sci 2019; 20:E6056. [PMID: 31801303 PMCID: PMC6928924 DOI: 10.3390/ijms20236056] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/11/2019] [Accepted: 11/23/2019] [Indexed: 12/12/2022] Open
Abstract
Nanoparticles are becoming an increasingly popular tool for biomedical imaging and drug delivery. While the prevalence of nanoparticle drug-delivery systems reported in the literature increases yearly, relatively little translation from the bench to the bedside has occurred. It is crucial for the scientific community to recognize this shortcoming and re-evaluate standard practices in the field, to increase clinical translatability. Currently, nanoparticle drug-delivery systems are designed to increase circulation, target disease states, enhance retention in diseased tissues, and provide targeted payload release. To manage these demands, the surface of the particle is often modified with a variety of chemical and biological moieties, including PEG, tumor targeting peptides, and environmentally responsive linkers. Regardless of the surface modifications, the nano-bio interface, which is mediated by opsonization and the protein corona, often remains problematic. While fabrication and assessment techniques for nanoparticles have seen continued advances, a thorough evaluation of the particle's interaction with the immune system has lagged behind, seemingly taking a backseat to particle characterization. This review explores current limitations in the evaluation of surface-modified nanoparticle biocompatibility and in vivo model selection, suggesting a promising standardized pathway to clinical translation.
Collapse
Affiliation(s)
| | | | | | | | - Amanda E. Brooks
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105, USA; (J.W.S.); (J.E.P.); (K.M.D.); (S.M.)
| |
Collapse
|
20
|
Neidlin M, Dimitrakopoulou S, Alexopoulos LG. Multi-tissue network analysis for drug prioritization in knee osteoarthritis. Sci Rep 2019; 9:15176. [PMID: 31645614 PMCID: PMC6811565 DOI: 10.1038/s41598-019-51627-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/02/2019] [Indexed: 01/17/2023] Open
Abstract
Knee osteoarthritis (OA) is a joint disease that affects several tissues: cartilage, synovium, meniscus and subchondral bone. The pathophysiology of this complex disease is still not completely understood and existing pharmaceutical strategies are limited to pain relief treatments. Therefore, a computational method was developed considering the diverse mechanisms and the multi-tissue nature of OA in order to suggest pharmaceutical compounds. Specifically, weighted gene co-expression network analysis (WGCNA) was utilized to identify gene modules that were preserved across four joint tissues. The driver genes of these modules were selected as an input for a network-based drug discovery approach. WGCNA identified two preserved modules that described functions related to extracellular matrix physiology and immune system responses. Compounds that affected various anti-inflammatory pathways and drugs targeted at coagulation pathways were suggested. 9 out of the top 10 compounds had a proven association with OA and significantly outperformed randomized approaches not including WGCNA. The method presented herein is a viable strategy to identify overlapping molecular mechanisms in multi-tissue diseases such as OA and employ this information for drug discovery and compound prioritization.
Collapse
Affiliation(s)
- Michael Neidlin
- Department of Mechanical Engineering, National Technical University of Athens, Athens, Greece
| | | | - Leonidas G Alexopoulos
- Department of Mechanical Engineering, National Technical University of Athens, Athens, Greece.
| |
Collapse
|
21
|
Intra-articular targeting of nanomaterials for the treatment of osteoarthritis. Acta Biomater 2019; 93:239-257. [PMID: 30862551 DOI: 10.1016/j.actbio.2019.03.010] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/28/2019] [Accepted: 03/06/2019] [Indexed: 12/31/2022]
Abstract
Osteoarthritis is a prevalent and debilitating disease that involves pathological contributions from numerous joint tissues and cells. The joint is a challenging arena for drug delivery, since the joint has poor bioavailability for systemically administered drugs and experiences rapid clearance of therapeutics after intra-articular injection. Moreover, each tissue within the joint presents unique barriers to drug localization. In this review, the various applications of nanotechnology to overcome these drug delivery limitations are investigated. Nanomaterials have reliably shown improvements to retention profiles of drugs within the joint space relative to injected free drugs. Additionally, nanomaterials have been modified through active and passive targeting strategies to facilitate interactions with and localization within specific joint tissues such as cartilage and synovium. Last, the limitations of drawing cross-study comparisons, the implications of synovial fluid, and the potential importance of multi-modal therapeutic strategies are discussed. As emerging, cell-specific disease modifying osteoarthritis drugs continue to be developed, the need for targeted nanomaterial delivery will likely become critical for effective clinical translation of therapeutics for osteoarthritis. STATEMENT OF SIGNIFICANCE: Improving drug delivery to the joint is a pressing clinical need. Over 27 million Americans live with osteoarthritis, and this figure is continuously expanding. Numerous drugs have been investigated but have failed in clinical trials, likely related to poor bioavailability to target cells. This article comprehensively reviews the advances in nano-scale delivery vehicles designed to overcome the delivery barriers in the joint. This is the first review to analyze active and passive targeting strategies systematically for different target sites while also delineating between tissue homing and whole joint retention. By bringing together the lessons learned across numerous nano-scale platforms, researchers may be able to hone future nanomaterial designs, allowing emerging therapeutics to perform with clinically relevant efficacy and disease modifying potential.
Collapse
|
22
|
Agas D, Laus F, Lacava G, Marchegiani A, Deng S, Magnoni F, Silva GG, Di Martino P, Sabbieti MG, Censi R. Thermosensitive hybrid hyaluronan/p(HPMAm-lac)-PEG hydrogels enhance cartilage regeneration in a mouse model of osteoarthritis. J Cell Physiol 2019; 234:20013-20027. [PMID: 30968404 DOI: 10.1002/jcp.28598] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/16/2019] [Accepted: 03/19/2019] [Indexed: 02/06/2023]
Abstract
Osteoarthritis (OA), due to cartilage degeneration, is one of the leading causes of disability worldwide. Currently, there are not efficacious therapies to reverse cartilage degeneration. In this study we evaluated the potential of hybrid hydrogels, composed of a biodegradable and thermosensitive triblock copolymer cross-linked via Michael addition to thiolated hyaluronic acid, in contrasting inflammatory processes underlying OA. Hydrogels composed of different w/w % concentrations of hyaluronan were investigated for their degradation behavior and capacity to release the polysaccharide in a sustained fashion. It was found that hyaluronic acid was controllably released during network degradation with a zero-order release kinetics, and the release rate depended on cross-link density and degradation kinetics of the hydrogels. When locally administered in vivo in an OA mouse model, the hydrogels demonstrated the ability to restore, to some extent, bone remineralization, proteoglycan production, levels of Sox-9 and Runx-2. Furthermore, the downregulation of proinflammatory mediators, such as TNF-α, NFkB, and RANKL and proinflammatory cytokines was observed. In summary, the investigated hydrogel technology represents an ideal candidate for the potential encapsulation and release of drugs relevant in the field of OA. In this context, the hydrogel matrix could act in synergy with the drug, in reversing phenomena of inflammation, cartilage disruption, and bone demineralization associated with OA.
Collapse
Affiliation(s)
- Dimitrios Agas
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Macerata, Italy
| | - Fulvio Laus
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Macerata, Italy
| | - Giovanna Lacava
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Macerata, Italy
| | - Andrea Marchegiani
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Macerata, Italy
| | - Siyuan Deng
- School of Pharmacy, University of Camerino, Camerino, Macerata, Italy
| | - Federico Magnoni
- School of Pharmacy, University of Camerino, Camerino, Macerata, Italy
| | - Guilherme Gusmão Silva
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Macerata, Italy.,Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Piera Di Martino
- School of Pharmacy, University of Camerino, Camerino, Macerata, Italy
| | - Maria Giovanna Sabbieti
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Macerata, Italy
| | - Roberta Censi
- School of Pharmacy, University of Camerino, Camerino, Macerata, Italy
| |
Collapse
|
23
|
Lima AC, Cunha C, Carvalho A, Ferreira H, Neves NM. Interleukin-6 Neutralization by Antibodies Immobilized at the Surface of Polymeric Nanoparticles as a Therapeutic Strategy for Arthritic Diseases. ACS APPLIED MATERIALS & INTERFACES 2018; 10:13839-13850. [PMID: 29614225 DOI: 10.1021/acsami.8b01432] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Arthritic diseases are disabling conditions affecting millions of patients worldwide. Pro-inflammatory cytokines, particularly interleukin-6 (IL-6), plays a crucial role in inflammation and cartilage destruction. Although the beneficial effects of antibody therapy, its efficacy is limited. Therefore, this work proposes the immobilization of antibodies at the surface of biodegradable polymeric nanoparticles (NPs) to capture and neutralize IL-6. Our system is intended to protect, extend and enhance the therapeutic efficacy after delivery. Chitosan-hyaluronic acid NPs are synthesized as a stable monodisperse population. After determining the maximum immobilization capacity (10 μg/mL), the capture ability was confirmed. Biological assays demonstrate the NPs cytocompatibility with human articular chondrocytes (hACs) and human macrophages. hACs stimulated with macrophage conditioned medium shows the beneficial role of IL-6 capture and neutralization. Biofunctionalized NPs exhibit a prolonged action and stronger efficacy than the free antibody. In conclusion, this system can be an effective and long lasting treatment for arthritic diseases.
Collapse
Affiliation(s)
- Ana Cláudia Lima
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics , University of Minho , Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark , 4805-017 Barco, Guimarães , Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Braga/Guimarães , Portugal
| | - Cristina Cunha
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Braga/Guimarães , Portugal
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences , University of Minho , Campus de Gualtar , 4710-057 Braga , Portugal
| | - Agostinho Carvalho
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Braga/Guimarães , Portugal
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences , University of Minho , Campus de Gualtar , 4710-057 Braga , Portugal
| | - Helena Ferreira
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics , University of Minho , Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark , 4805-017 Barco, Guimarães , Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Braga/Guimarães , Portugal
| | - Nuno M Neves
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics , University of Minho , Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark , 4805-017 Barco, Guimarães , Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Braga/Guimarães , Portugal
- The Discoveries Centre for Regenerative and Precision Medicine , Headquarters at University of Minho , Avepark 4805-017 Barco, Guimarães , Portugal
| |
Collapse
|
24
|
Role of subchondral bone properties and changes in development of load-induced osteoarthritis in mice. Osteoarthritis Cartilage 2017; 25:2108-2118. [PMID: 28919430 PMCID: PMC5688000 DOI: 10.1016/j.joca.2017.08.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 08/25/2017] [Accepted: 08/30/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Animal models recapitulating post-traumatic osteoarthritis (OA) suggest that subchondral bone (SCB) properties and remodeling may play major roles in disease initiation and progression. Thus, we investigated the role of SCB properties and its effects on load-induced OA progression by applying a tibial loading model on two distinct mouse strains treated with alendronate (ALN). DESIGN Cyclic compression was applied to the left tibia of 26-week-old male C57Bl/6 (B6, low bone mass) and FVB (high bone mass) mice. Mice were treated with ALN (26 μg/kg/day) or vehicle (VEH) for loading durations of 1, 2, or 6 weeks. Changes in articular cartilage and subchondral and epiphyseal cancellous bone were analyzed using histology and microcomputed tomography. RESULTS FVB mice exhibited thicker cartilage, a thicker SCB plate, and higher epiphyseal cancellous bone mass and tissue mineral density than B6 mice. Loading induced cartilage pathology, osteophyte formation, and SCB changes; however, lower initial SCB mass and stiffness in B6 mice did not attenuate load-induced OA severity compared to FVB mice. By contrast, FVB mice exhibited less cartilage damage, and slower-growing and less mature osteophytes. In B6 mice, inhibiting bone remodeling via ALN treatment exacerbated cartilage pathology after 6 weeks of loading, while in FVB mice, inhibiting bone remodeling protected limbs from load-induced cartilage loss. CONCLUSIONS Intrinsically lower SCB properties were not associated with attenuated load-induced cartilage loss. However, inhibiting bone remodeling produced differential patterns of OA pathology in animals with low compared to high SCB properties, indicating that these factors do influence load-induced OA progression.
Collapse
|
25
|
Rudnik-Jansen I, Colen S, Berard J, Plomp S, Que I, van Rijen M, Woike N, Egas A, van Osch G, van Maarseveen E, Messier K, Chan A, Thies J, Creemers L. Prolonged inhibition of inflammation in osteoarthritis by triamcinolone acetonide released from a polyester amide microsphere platform. J Control Release 2017; 253:64-72. [PMID: 28284832 DOI: 10.1016/j.jconrel.2017.03.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 01/15/2023]
Abstract
Controlled biomaterial-based corticosteroid release might circumvent multiple injections and the accompanying risks, such as hormone imbalance and muscle weakness, in osteoarthritic (OA) patients. For this purpose, microspheres were prepared from an amino acid-based polyester amide (PEA) platform and loaded with triamcinolone acetonide (TAA). TAA loaded microspheres were shown to release TAA for over 60days in PBS. Furthermore, the bioactivity lasted at least 28days, demonstrated by a 80-95% inhibition of PGE2 production using TNFα-stimulated chondrocyte culture, indicating inhibition of inflammation. Microspheres loaded with the near infrared marker NIR780-iodide injected in healthy rat joints or joints with mild collagenase-induced OA showed retention of the microspheres up till 70days after injection. After intra-articular injection of TAA-loaded microspheres, TAA was detectable in the serum until day seven. Synovial inflammation was significantly lower in OA joints injected with TAA-loaded microspheres based on histological Krenn scores. Injection of TAA-loaded nor empty microspheres had no effect on cartilage integrity as determined by Mankin scoring. In conclusion, the PEA platform shows safety and efficacy upon intra-articular injection, and its extended degradation and release profiles compared to the currently used PLGA platforms may render it a good alternative. Even though further in vivo studies may need to address dosing and readout parameters such as pain, no effect on cartilage pathology was found and inflammation was effectively lowered in OA joints.
Collapse
Affiliation(s)
- Imke Rudnik-Jansen
- Department of Orthopaedics, University Medical Center Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - Sascha Colen
- Department of Orthopaedics, University Medical Center Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - Julien Berard
- DSM Biomedical, Koestraat 1, 6167 RA Geleen, The Netherlands
| | - Saskia Plomp
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80163, 3508 TD Utrecht, The Netherlands
| | - Ivo Que
- Department of Radiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Mattie van Rijen
- Department of Orthopaedics, University Medical Center Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - Nina Woike
- DSM Biomedical, Koestraat 1, 6167 RA Geleen, The Netherlands
| | - Annelies Egas
- Division Laboratory and Pharmacy, Clinical Pharmacy, University Medical Center Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - Gerjo van Osch
- Department of Orthopaedics & Otorhinolaryngology, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Erik van Maarseveen
- Division Laboratory and Pharmacy, Clinical Pharmacy, University Medical Center Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - Ken Messier
- DSM Biomedical, Koestraat 1, 6167 RA Geleen, The Netherlands
| | - Alan Chan
- Department of Radiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Jens Thies
- DSM Biomedical, Koestraat 1, 6167 RA Geleen, The Netherlands
| | - Laura Creemers
- Department of Orthopaedics, University Medical Center Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands.
| |
Collapse
|
26
|
Roohani-Esfahani SI, Zreiqat H. Nanoparticles: a promising new therapeutic platform for bone regeneration? Nanomedicine (Lond) 2017; 12:419-422. [DOI: 10.2217/nnm-2016-0423] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Seyed-Iman Roohani-Esfahani
- Tissue Engineering & Biomaterials Research Unit, School of Aerospace, Mechanical & Mechatronic Engineering Faculty of Engineering and Information Technologies University of Sydney, Australia
| | - Hala Zreiqat
- Tissue Engineering & Biomaterials Research Unit, School of Aerospace, Mechanical & Mechatronic Engineering Faculty of Engineering and Information Technologies University of Sydney, Australia
| |
Collapse
|