1
|
Animated organic-inorganic hybrid materials and their use as catalyst scaffolds. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
2
|
Sunny NE, Mathew SS, Chandel N, Saravanan P, Rajeshkannan R, Rajasimman M, Vasseghian Y, Rajamohan N, Kumar SV. Green synthesis of titanium dioxide nanoparticles using plant biomass and their applications- A review. CHEMOSPHERE 2022; 300:134612. [PMID: 35430203 DOI: 10.1016/j.chemosphere.2022.134612] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/25/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Biosynthesized nanoparticles have sparked a lot of interest as rapidly growing classes of materials for different applications. Plants are considered to be one of the most suitable sources for Green synthesis (GS) as they follow the environment-friendly route of biosynthesis of nanoparticles (NPs). This article focuses on the excavation of Titanium dioxide (TiO2) NP from different parts of plants belonging to a distinct classification of taxonomic groups. During the process of biological synthesis of titanium NPs from plants, the extract derived from plant sources such as from root, stem, leaves, seeds, flowers, and latex possesses phytocompounds that tend to serve as both capping as well as reducing agents. TiO2NP is one of the most commonly used engineered nanomaterials in nanotechnology-based consumer products. This article will provide an overview of the GS and characterization of TiO2NPs from plant extracts of different taxonomic groups. Lastly, this review summarizes the current applications of TiO2NPs.
Collapse
Affiliation(s)
- Nisha Elizabeth Sunny
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, India
| | - Sneha Susan Mathew
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, India
| | - Nandita Chandel
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, India
| | - Panchamoorthy Saravanan
- Department of Petro Chemical Technology, University College of Engineering-BIT Campus, Anna University, Tiruchirappalli, 620 024, India
| | - R Rajeshkannan
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar, Chidambaram, India
| | - M Rajasimman
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar, Chidambaram, India
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea; The University of Johannesburg, Department of Chemical Engineering, P.O. Box 17011, Doornfontein 2088, South Africa; Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - N Rajamohan
- Chemical Engineering Section, Faculty of Engineering, Sohar University, Sohar, Oman
| | - S Venkat Kumar
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, India.
| |
Collapse
|
3
|
Tabassum H, Ahmad IZ. Applications of metallic nanomaterials for the treatment of water. Lett Appl Microbiol 2021; 75:731-743. [PMID: 34687554 DOI: 10.1111/lam.13588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/06/2021] [Accepted: 10/17/2021] [Indexed: 12/01/2022]
Abstract
Water scarcity is not a novel issue. It has already affected almost every continent in this blue planet. It is driven by two primary sources: increasing demand for fresh water due to the increase in population and overexhaustion of the available freshwater resources. During the past decade, stress has been given to extract fresh, clean and safe potable elixir of life from the bountiful stores of sea water by exploiting various technologies. As nanomaterials are providing promising solutions to almost all our problems, they are again being accessed in order to combat the problem of global freshwater scarcity. Desalination methods have marvellously improved under the impact of nanomaterials. Different metallic nanomaterials are being used to serve this purpose; for example, silver, iron, zinc, titanium dioxide in addition to natural and synthetically derived polymeric bionanomaterials. In the present paper, a brief account of all the metallic nanomaterials which are being used for treatment of water has been provided by thorough investigation on the research done till now. It strives to throw light on various materials and methods which are based on the exploitation of nanotechnology for the treatment of water.
Collapse
Affiliation(s)
- H Tabassum
- Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Pune, India.,Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, India
| | - I Z Ahmad
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
4
|
Irshad MA, Nawaz R, Rehman MZU, Adrees M, Rizwan M, Ali S, Ahmad S, Tasleem S. Synthesis, characterization and advanced sustainable applications of titanium dioxide nanoparticles: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 212:111978. [PMID: 33561774 DOI: 10.1016/j.ecoenv.2021.111978] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/17/2021] [Accepted: 01/21/2021] [Indexed: 05/20/2023]
Abstract
Nanotechnology is capturing great interest worldwide due to their stirring applications in various fields. Among nanoparticles (NPs), titanium dioxide (TiO2) NPs have been widely used in daily life and can be synthesized through various physical, chemical, and green methods. Green synthesis is a non-toxic, cost-effective, and eco-friendly route for the synthesis of NPs. Plenty of work has been reported on the green, chemical, physical and biological synthesis of TiO2 NPs and these NPs can be characterized through high tech. instruments. In the present review, dense data have been presented on the comparative synthesis of TiO2 NPs with different characteristics and their wide range of applications. Among the TiO2 NPs synthesis techniques, the green methods have been proven to be efficient than chemical synthesis methods because of the less use of precursors, time-effectiveness, and energy-efficiency during the green synthesis procedures. Moreover, this review describes the types of plants (shrubs, herbs and trees), microorganisms (bacteria, fungi and algae), biological derivatives (proteins, peptides, and starches) employed for the synthesis of TiO2 NPs. The TiO2 NPs can be effectively used for the treatment of polluted water and positively affected the plant physiology especially under abiotic stresses but the response varied with types, size, shapes, doses, duration of exposure, metal species along with other factors. This review also highlights the regulating features and future standpoints for the measurable enrichment in TiO2 NPs product and perspectives of TiO2 NPs reliable application.
Collapse
Affiliation(s)
- Muhammad Atif Irshad
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad 38000, Pakistan; Department of Environmental Sciences, The University of Lahore, Lahore 54590, Pakistan
| | - Rab Nawaz
- Department of Environmental Sciences, The University of Lahore, Lahore 54590, Pakistan
| | - Muhammad Zia Ur Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | - Muhammad Adrees
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad 38000, Pakistan.
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad 38000, Pakistan.
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan.
| | - Sajjad Ahmad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-Campus, 61100 Vehari, Pakistan
| | | |
Collapse
|
5
|
Celik G, Ailawar SA, Gunduz S, Miller JT, Edmiston PL, Ozkan US. Aqueous-Phase Hydrodechlorination of Trichloroethylene over Pd-Based Swellable Organically Modified Silica: Catalyst Deactivation Due to Sulfur Species. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b05979] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gokhan Celik
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 W. Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Saurabh A. Ailawar
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 W. Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Seval Gunduz
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 W. Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Jeffrey T. Miller
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907-2100, United States
| | - Paul L. Edmiston
- Department of Chemistry, The College of Wooster, 943 College Mall, Wooster, Ohio 44691, United States
| | - Umit S. Ozkan
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 W. Woodruff Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
6
|
Atasoy M, Owusu-Agyeman I, Plaza E, Cetecioglu Z. Bio-based volatile fatty acid production and recovery from waste streams: Current status and future challenges. BIORESOURCE TECHNOLOGY 2018; 268:773-786. [PMID: 30030049 DOI: 10.1016/j.biortech.2018.07.042] [Citation(s) in RCA: 205] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/06/2018] [Accepted: 07/08/2018] [Indexed: 05/28/2023]
Abstract
Bio-based volatile fatty acid (VFA) production from waste-stream is getting attention due to increasing market demand and wide range usage area as well as its cost-effective and environmentally friendly approach. The aim of this paper is to give a comprehensive review of bio-based VFA production and recovery methods and to give an opinion on future research outlook. Effects of operation conditions including pH, temperature, retention time, type of substrate and mixed microbial cultures on VFA production and composition were reviewed. The recovery methods in terms of gas stripping with absorption, adsorption, solvent extraction, electrodialysis, reverse osmosis, nanofiltration, and membrane contractor of VFA were evaluated. Furthermore, strategies to enhance bio-based VFA production and recovery from waste streams, specifically, in-line VFA recovery and bioaugmentation, which are currently not used in common practice, are seen as some of the approaches to enhance bio-based VFA production.
Collapse
Affiliation(s)
- Merve Atasoy
- Department of Chemical Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Isaac Owusu-Agyeman
- Department of Chemical Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Elzbieta Plaza
- Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Zeynep Cetecioglu
- Department of Chemical Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| |
Collapse
|
7
|
Celik G, Ailawar SA, Sohn H, Tang Y, Tao FF, Miller JT, Edmiston PL, Ozkan US. Swellable Organically Modified Silica (SOMS) as a Catalyst Scaffold for Catalytic Treatment of Water Contaminated with Trichloroethylene. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01700] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gokhan Celik
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 W. Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Saurabh A. Ailawar
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 W. Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Hyuntae Sohn
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 W. Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Yu Tang
- Department of Chemical and Petroleum Engineering and Department of Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Franklin Feng Tao
- Department of Chemical and Petroleum Engineering and Department of Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Jeffrey T. Miller
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907-2100, United States
| | - Paul L. Edmiston
- Department of Chemistry, The College of Wooster, 943 College Mall, Wooster, Ohio 44691, United States
| | - Umit S. Ozkan
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 W. Woodruff Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|