1
|
Ma J, Dong Y, Liu J, Gao S, Quan J. The role of GRB2 in diabetes, diabetes complications and related disorders. Diabetes Obes Metab 2025; 27:23-34. [PMID: 39478285 DOI: 10.1111/dom.16015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 12/06/2024]
Abstract
Growth factor receptor-bound protein 2 (GRB2) is a key adaptor protein involved in multiple signalling pathways, and its dysregulation is associated with various diseases. Type 2 diabetes is a systemic condition characterized by insulin resistance and impaired β-cell function. The complications of diabetes significantly reduce life expectancy and quality of life, imposing a substantial burden on society. However, the role of GRB2 in diabetes and associated complications is largely unknown. Emerging evidence suggests that GRB2 plays a crucial role in insulin resistance, inflammation, immune activation and the regulation of cellular processes such as cell proliferation, growth, metabolism, angiogenesis, apoptosis and differentiation. Dysregulation of GRB2-mediated pathways contributes to the progression of diabetic neuropathy, cognitive dysfunction, nephropathy, retinopathy and related disorders. This review provides a comprehensive overview of the current understanding of the role of GRB2 in diabetes, diabetes complications and related disorders, alongside recent advances in the development of GRB2-targeted therapies. Elucidating the complex role of GRB2 in these disorders provides valuable insights into potential therapeutic strategies targeting GRB2-mediated pathways.
Collapse
Affiliation(s)
- Jing Ma
- Department of Endocrinology and Metabolism, Gansu Provincial Hospital, The First Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of Endocrinology and Metabolism, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Endocrine and Metabolic Diseases of Gansu Province, Lanzhou, China
| | - Yuyan Dong
- Clinical College of Ningxia Medical University, Yinchuan, China
| | - Juxiang Liu
- Department of Endocrinology and Metabolism, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Endocrine and Metabolic Diseases of Gansu Province, Lanzhou, China
| | - Shuo Gao
- Department of Endocrinology and Metabolism, Gansu Provincial Hospital, The First Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Jinxing Quan
- Department of Endocrinology and Metabolism, Gansu Provincial Hospital, The First Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of Endocrinology and Metabolism, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Endocrine and Metabolic Diseases of Gansu Province, Lanzhou, China
| |
Collapse
|
2
|
Bottoni L, Minetti A, Realini G, Pio E, Giustarini D, Rossi R, Rocchio C, Franci L, Salvini L, Catona O, D'Aurizio R, Rasa M, Giurisato E, Neri F, Orlandini M, Chiariello M, Galvagni F. NRF2 activation by cysteine as a survival mechanism for triple-negative breast cancer cells. Oncogene 2024; 43:1701-1713. [PMID: 38600165 PMCID: PMC11136656 DOI: 10.1038/s41388-024-03025-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Triple-negative breast cancer (TNBC) is a very aggressive and heterogeneous group of tumors. In order to develop effective therapeutic strategies, it is therefore essential to identify the subtype-specific molecular mechanisms underlying disease progression and resistance to chemotherapy. TNBC cells are highly dependent on exogenous cystine, provided by overexpression of the cystine/glutamate antiporter SLC7A11/xCT, to fuel glutathione synthesis and promote an oxidative stress response consistent with their high metabolic demands. Here we show that TNBC cells of the mesenchymal stem-like subtype (MSL) utilize forced cystine uptake to induce activation of the transcription factor NRF2 and promote a glutathione-independent mechanism to defend against oxidative stress. Mechanistically, we demonstrate that NRF2 activation is mediated by direct cysteinylation of the inhibitor KEAP1. Furthermore, we show that cystine-mediated NRF2 activation induces the expression of important genes involved in oxidative stress response, but also in epithelial-to-mesenchymal transition and stem-like phenotype. Remarkably, in survival analysis, four upregulated genes (OSGIN1, RGS17, SRXN1, AKR1B10) are negative prognostic markers for TNBC. Finally, expression of exogenous OSGIN1, similarly to expression of exogenous NRF2, can prevent cystine depletion-dependent death of MSL TNBC cells. The results suggest that the cystine/NRF2/OSGIN1 axis is a potential target for effective treatment of MSL TNBCs.
Collapse
Affiliation(s)
- Laura Bottoni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy
| | - Alberto Minetti
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Giulia Realini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy
| | - Elena Pio
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy
| | - Daniela Giustarini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy
- Center for Colloid and Surface Science (CSGI), University of Florence, Sesto Fiorentino, 50019, Florence, Italy
| | - Ranieri Rossi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy
- Center for Colloid and Surface Science (CSGI), University of Florence, Sesto Fiorentino, 50019, Florence, Italy
| | - Chiara Rocchio
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy
| | - Lorenzo Franci
- Istituto di Fisiologia Clinica (IFC), Consiglio Nazionale delle Ricerche (CNR) and Core Research Laboratory, Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), 53100, Siena, Italy
| | | | - Orazio Catona
- Institute of Informatics and Telematics (IIT), CNR, Pisa, Italy
| | | | - Mahdi Rasa
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
- Institute of Immunology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Emanuele Giurisato
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy
| | - Francesco Neri
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
- Molecular Biotechnology Center, University of Turin, Torino, Italy
| | - Maurizio Orlandini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy
| | - Mario Chiariello
- Istituto di Fisiologia Clinica (IFC), Consiglio Nazionale delle Ricerche (CNR) and Core Research Laboratory, Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), 53100, Siena, Italy
| | - Federico Galvagni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy.
| |
Collapse
|
3
|
Lyssenko V, Vaag A. Genetics of diabetes-associated microvascular complications. Diabetologia 2023; 66:1601-1613. [PMID: 37452207 PMCID: PMC10390394 DOI: 10.1007/s00125-023-05964-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/27/2023] [Indexed: 07/18/2023]
Abstract
Diabetes is associated with excess morbidity and mortality due to both micro- and macrovascular complications, as well as a range of non-classical comorbidities. Diabetes-associated microvascular complications are those considered most closely related to hyperglycaemia in a causal manner. However, some individuals with hyperglycaemia (even those with severe hyperglycaemia) do not develop microvascular diseases, which, together with evidence of co-occurrence of microvascular diseases in families, suggests a role for genetics. While genome-wide association studies (GWASs) produced firm evidence of multiple genetic variants underlying differential susceptibility to type 1 and type 2 diabetes, genetic determinants of microvascular complications are mostly suggestive. Identified susceptibility variants of diabetic kidney disease (DKD) in type 2 diabetes mirror variants underlying chronic kidney disease (CKD) in individuals without diabetes. As for retinopathy and neuropathy, reported risk variants currently lack large-scale replication. The reported associations between type 2 diabetes risk variants and microvascular complications may be explained by hyperglycaemia. More extensive phenotyping, along with adjustments for unmeasured confounding, including both early (fetal) and late-life (hyperglycaemia, hypertension, etc.) environmental factors, are urgently needed to understand the genetics of microvascular complications. Finally, genetic variants associated with reduced glycolysis, mitochondrial dysfunction and DNA damage and sustained cell regeneration may protect against microvascular complications, illustrating the utility of studies in individuals who have escaped these complications.
Collapse
Affiliation(s)
- Valeriya Lyssenko
- Department of Clinical Science, Mohn Research Center for Diabetes Precision Medicine, University of Bergen, Bergen, Norway.
- Department of Clinical Sciences, Lund University Diabetes Center, Lund University, Lund, Sweden.
| | - Allan Vaag
- Department of Clinical Sciences, Lund University Diabetes Center, Lund University, Lund, Sweden
- Steno Diabetes Center Copenhagen, Herlev, Denmark
| |
Collapse
|
4
|
Escudero-Flórez M, Torres-Hoyos D, Miranda-Brand Y, Boudreau RL, Gallego-Gómez JC, Vicente-Manzanares M. Dengue Virus Infection Alters Inter-Endothelial Junctions and Promotes Endothelial-Mesenchymal-Transition-Like Changes in Human Microvascular Endothelial Cells. Viruses 2023; 15:1437. [PMID: 37515125 PMCID: PMC10386726 DOI: 10.3390/v15071437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/19/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Dengue virus (DENV) is a pathogenic arbovirus that causes human disease. The most severe stage of the disease (severe dengue) is characterized by vascular leakage, hypovolemic shock, and organ failure. Endothelial dysfunction underlies these phenomena, but the causal mechanisms of endothelial dysfunction are poorly characterized. This study investigated the role of c-ABL kinase in DENV-induced endothelial dysfunction. Silencing c-ABL with artificial miRNA or targeting its catalytic activity with imatinib revealed that c-ABL is required for the early steps of DENV infection. DENV-2 infection and conditioned media from DENV-infected cells increased endothelial expression of c-ABL and CRKII phosphorylation, promoted expression of mesenchymal markers, e.g., vimentin and N-cadherin, and decreased the levels of endothelial-specific proteins, e.g., VE-cadherin and ZO-1. These effects were reverted by silencing or inhibiting c-ABL. As part of the acquisition of a mesenchymal phenotype, DENV infection and treatment with conditioned media from DENV-infected cells increased endothelial cell motility in a c-ABL-dependent manner. In conclusion, DENV infection promotes a c-ABL-dependent endothelial phenotypic change that leads to the loss of intercellular junctions and acquisition of motility.
Collapse
Affiliation(s)
- Manuela Escudero-Flórez
- Molecular and Translation Medicine Group, University of Antioquia, Medellin 050010, Colombia; (M.E.-F.); (D.T.-H.); (Y.M.-B.)
| | - David Torres-Hoyos
- Molecular and Translation Medicine Group, University of Antioquia, Medellin 050010, Colombia; (M.E.-F.); (D.T.-H.); (Y.M.-B.)
| | - Yaneth Miranda-Brand
- Molecular and Translation Medicine Group, University of Antioquia, Medellin 050010, Colombia; (M.E.-F.); (D.T.-H.); (Y.M.-B.)
| | - Ryan L. Boudreau
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA;
| | - Juan Carlos Gallego-Gómez
- Molecular and Translation Medicine Group, University of Antioquia, Medellin 050010, Colombia; (M.E.-F.); (D.T.-H.); (Y.M.-B.)
| | - Miguel Vicente-Manzanares
- Molecular Mechanisms Program, Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
5
|
Dong Y, Liu J, Ma J, Quan J, Bao Y, Cui Y. The possible correlation between serum GRB2 levels and carotid atherosclerosis in patients with type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2022; 13:963191. [PMID: 36176460 PMCID: PMC9513061 DOI: 10.3389/fendo.2022.963191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Background and purpose Growth factor receptor-bound protein 2(GRB2), a bridging protein. An animal study showed that downregulation of GRB2 inhibited the activation of PI3K/AKT/NF-kB pathway which improved lipid accumulation and inflammatory infiltration in rats with atherosclerosis (AS), resulting in an anti-AS effect. This was the first study to investigate blood GRB2 levels in type 2 diabetes mellitus(T2DM) patients with carotid atherosclerosis (CAS), exploring its relationship with various metabolic indicators, and further, examining whether GRB2 has an AS effect in patients with T2DM. Methods A total of 203 participants were recruited in the study, including 69 T2DM patients without CAS (T2DM group), 67 T2DM patients with CAS (CAS group), and 67 in the age-sex-matched healthy subjects (Control group). Serum GRB2 levels were measured using enzyme-linked immunosorbent assay (ELISA) in 203 subjects who had received carotid ultrasonography. In addition, cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), fasting plasma glucose (FPG), glycosylated hemoglobin (HBA1c), fasting insulin (FINS), hypersensitive C-reactive protein (Hs-CRP), and Interleukin 6 (IL-6) were also tested. The correlation between serum GRB2 levels and other indexes was analyzed. Finally, we analyzed the risk factors affecting carotid intima-media thickness (CIMT) in T2DM patients. Results Serum GRB2 levels were increased in the T2DM group than in the control group, and further elevated in the CAS group (median 3.05 vs 4.40 vs 7.09 ng/ml, P<0.001). Spearman correlation analysis showed that GRB2 concentrations were negatively correlated with HDL-C, and positively associated with duration of diabetes, waist-to-hip ratio (WHR), TC, HBA1c, FPG, FINS, homeostasis model assessment-insulin resistance index (HOMA-IR), Hs-CRP, IL-6 and CIMT (P<0.01). Furthermore, serum GRB2 levels (P<0.001) remained independently related to CIMT after adjusting for the age, sex, duration of diabetes, and Body Mass Index (BMI) variables. Stepwise multiple linear regression analysis showed that IL-6, HDL-C, HBA1c, and CIMT are independent correlation factors of serum GRB2 (P<0.01). Univariate logistic regression suggested that disease duration, WHR, systolic blood pressure (SBP), TG, HDL-C, HBA1c, FPG, HOMA-IR, IL-6, Hs-CRP, and GRB2 independently associated with T2DM is combined with CAS(P<0.05). And multivariate logistic regression analysis showed that duration of diabetes, IL-6, and serum GRB2 levels were independent risk factors for T2DM combined with CAS (P<0.05), and serum GRB2 levels were a highly sensitive indicator of early AS (OR=1.405, 95% CI: 1.192-1.658 P<0.001). Moreover, the ROC curve AUC area of serum GRB2 expression levels was 0.80 (95%CI: 0.7291-0.8613, P < 0.001), with a sensitivity of 83.58% and specificity of 70.59%. The risk of CAS was substantially higher in patients with T2DM whose serum GRB2 concentration was >4.59 ng/ml. Conclusions Serum GRB2 concentrations were significantly increased in T2DM combined with CAS, and serum GRB2 levels were linearly correlated with CIMT, suggesting that GRB2 may be involved in the occurrence and development of T2DM with CAS, which can be used as a predictor of whether T2DM is combined with CAS.
Collapse
Affiliation(s)
- Yuyan Dong
- Clinical Medical College, Ningxia Medical University, Yinchuan, China
| | - Juxiang Liu
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, China
| | - Jing Ma
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, China
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Jinxing Quan
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, China
| | - Yanxia Bao
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yaqiang Cui
- Clinical Medical College, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
6
|
Elia I, Realini G, Di Mauro V, Borghi S, Bottoni L, Tornambè S, Vitiello L, Weiss SJ, Chiariello M, Tamburrini A, Oliviero S, Neri F, Orlandini M, Galvagni F. SNAI1 is upregulated during muscle regeneration and represses FGF21 and ATF3 expression by directly binding their promoters. FASEB J 2022; 36:e22401. [PMID: 35726676 DOI: 10.1096/fj.202200215r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/19/2022] [Accepted: 05/26/2022] [Indexed: 11/11/2022]
Abstract
During skeletal myogenesis, the zinc-finger transcription factors SNAI1 and SNAI2, are expressed in proliferating myoblasts and regulate the transition to terminally differentiated myotubes while repressing pro-differentiation genes. Here, we demonstrate that SNAI1 is upregulated in vivo during the early phase of muscle regeneration induced by bupivacaine injury. Using shRNA-mediated gene silencing in C2C12 myoblasts and whole-transcriptome microarray analysis, we identified a collection of genes belonging to the endoplasmic reticulum (ER) stress pathway whose expression, induced by myogenic differentiation, was upregulated in absence of SNAI1. Among these, key ER stress genes, such as Atf3, Ddit3/Chop, Hspa5/Bip, and Fgf21, a myokine involved in muscle differentiation, were strongly upregulated. Furthermore, by promoter mutant analysis and Chromatin immune precipitation assay, we demonstrated that SNAI1 represses Fgf21 and Atf3 in proliferating myoblasts by directly binding to multiple E boxes in their respective promoter regions. Together, these data describe a new regulatory mechanism of myogenic differentiation involving the direct repressive action of SNAI1 on ER stress and Fgf21 expression, ultimately contributing to maintaining the proliferative and undifferentiated state of myoblasts.
Collapse
Affiliation(s)
- Ines Elia
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Giulia Realini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Vittoria Di Mauro
- IRCCS-Humanitas Research Hospital, Rozzano, Italy.,Institute of Genetic and Biomedical Research (IRGB), Milan Unit, National Research Council, Via Fantoli 16/15, Milan, 20138, Italy
| | - Sara Borghi
- Department of Pathology, NYU Grossman School of Medicine, New York, New York, USA.,Immune Monitoring Laboratory, NYU Langone Health, 550 First Avenue, New York, NY, 10016, USA
| | - Laura Bottoni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Salvatore Tornambè
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | | | - Stephen J Weiss
- Division of Genetic Medicine, Department of Internal Medicine, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Mario Chiariello
- Istituto di Fisiologia Clinica (IFC), Consiglio Nazionale delle Ricerche (CNR) and Core Research Laboratory (CRL), Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Siena, Italy
| | - Annalaura Tamburrini
- Department of Life Science and Systems Biology, Università degli Studi di Torino, Turin, Italy.,IIGM - Italian Institute for Genomic Medicine, c/o IRCCS, Candiolo, Italy
| | - Salvatore Oliviero
- Department of Life Science and Systems Biology, Università degli Studi di Torino, Turin, Italy.,IIGM - Italian Institute for Genomic Medicine, c/o IRCCS, Candiolo, Italy
| | - Francesco Neri
- Department of Life Science and Systems Biology, Università degli Studi di Torino, Turin, Italy
| | - Maurizio Orlandini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Federico Galvagni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| |
Collapse
|
7
|
Griffith AA, Callahan KP, King NG, Xiao Q, Su X, Salomon AR. SILAC Phosphoproteomics Reveals Unique Signaling Circuits in CAR-T Cells and the Inhibition of B Cell-Activating Phosphorylation in Target Cells. J Proteome Res 2022; 21:395-409. [PMID: 35014847 PMCID: PMC8830406 DOI: 10.1021/acs.jproteome.1c00735] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chimeric antigen receptor (CAR) is a single-pass transmembrane receptor designed to specifically target and eliminate cancers. While CARs prove highly efficacious against B cell malignancies, the intracellular signaling events which promote CAR T cell activity remain elusive. To gain further insight into both CAR T cell signaling and the potential signaling response of cells targeted by CAR, we analyzed phosphopeptides captured by two separate phosphoenrichment strategies from third generation CD19-CAR T cells cocultured with SILAC labeled Raji B cells by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Here, we report that CD19-CAR T cells upregulated several key phosphorylation events also observed in canonical T cell receptor (TCR) signaling, while Raji B cells exhibited a significant decrease in B cell receptor-signaling related phosphorylation events in response to coculture. Our data suggest that CD19-CAR stimulation activates a mixture of unique CD19-CAR-specific signaling pathways and canonical TCR signaling, while global phosphorylation in Raji B cells is reduced after association with the CD19-CAR T cells.
Collapse
Affiliation(s)
- Alijah A. Griffith
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI, 02912
| | - Kenneth P. Callahan
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI, 02912
| | - Nathan Gordo King
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI, 02912
| | - Qian Xiao
- Department of Cell Biology, Yale School of Medicine, Yale University, New Haven, CT, 06520
| | - Xiaolei Su
- Department of Cell Biology, Yale School of Medicine, Yale University, New Haven, CT, 06520
| | - Arthur R. Salomon
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI, 02912,
| |
Collapse
|
8
|
He P, Sheng J, Qi J, Bai X, Li J, Wang F, Yuan Y, Zheng X. STAT3-induced NCK1 elevation promotes migration of triple-negative breast cancer cells via regulating ERK1/2 signaling. Mol Biol Rep 2021; 49:267-278. [PMID: 34846647 DOI: 10.1007/s11033-021-06868-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/21/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Noncatalytic region of tyrosine kinase 1 (NCK1) plays a key role in extracellular matrix degradation, which is required for the metastasis of triple-negative breast cancer (TNBC). However, the role NCK1 plays in the metastatic progression of TNBC is unknown. METHODS AND RESULTS Based on online databases, NCK1 was found to be highly expressed in TNBC as compared to normal breast-like subjects, which was also confirmed using TNBC cells and a tissue microarray. NCK1 expression gradually decreased with increased tumor stage. High NCK1 expression displayed a poor prognosis in lymph node-positive metastatic TNBC patients, but not in lymph node-negative patients. Using transwell assays and immunoblotting, we confirmed that NCK1 overexpression promoted, while NCK1 downregulation inhibited migration capabilities, as well as the expression of matrix metalloproteinases (MMP2/9), uridylyl phosphate adenosine, and plasminogen activator inhibitor-1 in TNBC cells. Mechanistically, NCK1 upregulation mediated the activation of MMP2/9 through ERK1/2 activity. Signal transducer and activator of transcription 3 (STAT3) was positively correlated with NCK1. STAT3 could directly bind to the promoter region of NCK1 to promote its expression and was accompanied by the elevation of MMP2/9 and ERK1/2 signaling, which were partially abolished by the knockdown of NCK1 in TNBC cells. CONCLUSIONS NCK1 may serve as a diagnostic and prognostic marker of metastatic TNBC. STAT3 upregulation promoted the expression of NCK1, which subsequently induced the migration and activity of MMPs in a ERK1/2 signaling-dependent manner in TNBC cells. NCK1 is a promising target for improving TNBC migration.
Collapse
Affiliation(s)
- Peina He
- Department of Medicine, Pingdingshan University, Chongwen Rd., Xincheng District, Pingdingshan, 467092, China
| | - Jianyun Sheng
- Department of Gynecotokology, Pingdingshan First People's Hospital, Pingdingshan, 410402, China
| | - Jinxu Qi
- Department of Medicine, Pingdingshan University, Chongwen Rd., Xincheng District, Pingdingshan, 467092, China
| | - Xianguang Bai
- Department of Medicine, Pingdingshan University, Chongwen Rd., Xincheng District, Pingdingshan, 467092, China
| | - Jiaxin Li
- Department of Medicine, Pingdingshan University, Chongwen Rd., Xincheng District, Pingdingshan, 467092, China
| | - Fubao Wang
- Department of Gynecotokology, Pingdingshan First People's Hospital, Pingdingshan, 410402, China
| | - Yamin Yuan
- Department of Medicine, Pingdingshan University, Chongwen Rd., Xincheng District, Pingdingshan, 467092, China
| | - Xinhua Zheng
- Department of Medicine, Pingdingshan University, Chongwen Rd., Xincheng District, Pingdingshan, 467092, China.
| |
Collapse
|
9
|
Abstract
The non-catalytic region of tyrosine kinase (Nck) family of adaptors, consisting of Nck1 and Nck2, contributes to selectivity and specificity in the flow of cellular information by recruiting components of signaling networks. Known to play key roles in cytoskeletal remodeling, Nck adaptors modulate host cell-pathogen interactions, immune cell receptor activation, cell adhesion and motility, and intercellular junctions in kidney podocytes. Genetic inactivation of both members of the Nck family results in embryonic lethality; however, viability of mice lacking either one of these adaptors suggests partial functional redundancy. In this Cell Science at a Glance and the accompanying poster, we highlight the molecular organization and functions of the Nck family, focusing on key interactions and pathways, regulation of cellular processes, development, homeostasis and pathogenesis, as well as emerging and non-redundant functions of Nck1 compared to those of Nck2. This article thus aims to provide a timely perspective on the biology of Nck adaptors and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Briana C. Bywaters
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 7783, USA
| | - Gonzalo M. Rivera
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 7783, USA
| |
Collapse
|
10
|
Neuropilin 1 Regulation of Vascular Permeability Signaling. Biomolecules 2021; 11:biom11050666. [PMID: 33947161 PMCID: PMC8146136 DOI: 10.3390/biom11050666] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/24/2021] [Accepted: 04/28/2021] [Indexed: 12/18/2022] Open
Abstract
The vascular endothelium acts as a selective barrier to regulate macromolecule exchange between the blood and tissues. However, the integrity of the endothelium barrier is compromised in an array of pathological settings, including ischemic disease and cancer, which are the leading causes of death worldwide. The resulting vascular hyperpermeability to plasma molecules as well as leukocytes then leads to tissue damaging edema formation and inflammation. The vascular endothelial growth factor A (VEGFA) is a potent permeability factor, and therefore a desirable target for impeding vascular hyperpermeability. However, VEGFA also promotes angiogenesis, the growth of new blood vessels, which is required for reperfusion of ischemic tissues. Moreover, edema increases interstitial pressure in poorly perfused tumors, thereby affecting the delivery of therapeutics, which could be counteracted by stimulating the growth of new functional blood vessels. Thus, targets must be identified to accurately modulate the barrier function of blood vessels without affecting angiogenesis, as well as to develop more effective pro- or anti-angiogenic therapies. Recent studies have shown that the VEGFA co-receptor neuropilin 1 (NRP1) could be playing a fundamental role in steering VEGFA-induced responses of vascular endothelial cells towards angiogenesis or vascular permeability. Moreover, NRP1 is involved in mediating permeability signals induced by ligands other than VEGFA. This review therefore focuses on current knowledge on the role of NRP1 in the regulation of vascular permeability signaling in the endothelium to provide an up-to-date landscape of the current knowledge in this field.
Collapse
|
11
|
Tosi GM, Regoli M, Altera A, Galvagni F, Arcuri C, Bacci T, Elia I, Realini G, Orlandini M, Bertelli E. Heat Shock Protein 90 Involvement in the Development of Idiopathic Epiretinal Membranes. Invest Ophthalmol Vis Sci 2021; 61:34. [PMID: 32716502 PMCID: PMC7425702 DOI: 10.1167/iovs.61.8.34] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Purpose This work was aimed to further characterize cells of idiopathic epiretinal membranes (iERMs). We wanted to determine the contribution of 90-kDa heat shock protein (HSP90) to sustain the transforming growth factor-β (TGF-β)-mediated signal transduction pathway in iERM. Methods Immunofluorescence and confocal microscopy were carried out on deplasticized sections from 36 epiretinal membranes processed for electron microscopy and on frozen sections from five additional samples with antibodies against α-smooth muscle actin (αSMA), vimentin, glial fibrillary acidic protein (GFAP), SMAD2, HSP90α, type-II TGF-β1 receptor (TβRII), type-I collagen, and type-IV collagen. In addition, Müller MIO-M1 cells were transfected with HSP90 and challenged with TGF-β1. Results Double and triple labeling experiments showed that a variable number of TβRII+ cells were present in 94.1% of tested iERMs and they were mostly GFAP-/αSMA+/vimentin+/HSP90α+. In almost half of the cases these cells contained type-I collagen, suggesting their involvement in matrix deposition. HSP90 overexpressing MIO-M1 cells challenged with TGF-β1 showed increased levels of TβRII, SMAD2, SMAD3, and phosphor-SMAD2. Nuclear SMAD2 staining could be observed in HSP90α+ cells on frozen sections of iERMs. Conclusions Cells in iERMs that express TβRII are also HSP90α+ and show the antigenic profile of myofibroblast-like cells as they are GFAP-/αSMA+/vimentin+. HSP90α-overexpressing MIO-M1 cells challenged with TGF-β1 showed an increased activation of the SMAD pathway implying that HSP90α might play a role in sustaining the TGF-β1-induced fibrotic response of iERM cells.
Collapse
|
12
|
Barbera S, Nardi F, Elia I, Realini G, Lugano R, Santucci A, Tosi GM, Dimberg A, Galvagni F, Orlandini M. The small GTPase Rab5c is a key regulator of trafficking of the CD93/Multimerin-2/β1 integrin complex in endothelial cell adhesion and migration. Cell Commun Signal 2019; 17:55. [PMID: 31138217 PMCID: PMC6537425 DOI: 10.1186/s12964-019-0375-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/20/2019] [Indexed: 02/06/2023] Open
Abstract
Background In the endothelium, the single-pass membrane protein CD93, through its interaction with the extracellular matrix protein Multimerin-2, activates signaling pathways that are critical for vascular development and angiogenesis. Trafficking of adhesion molecules through endosomal compartments modulates their signaling output. However, the mechanistic basis coordinating CD93 recycling and its implications for endothelial cell (EC) function remain elusive. Methods Human umbilical vein ECs (HUVECs) and human dermal blood ECs (HDBEC) were used in this study. Fluorescence confocal microscopy was employed to follow CD93 retrieval, recycling, and protein colocalization in spreading cells. To better define CD93 trafficking, drug treatments and transfected chimeric wild type and mutant CD93 proteins were used. The scratch assay was used to evaluate cell migration. Gene silencing strategies, flow citometry, and quantification of migratory capability were used to determine the role of Rab5c during CD93 recycling to the cell surface. Results Here, we identify the recycling pathway of CD93 following EC adhesion and migration. We show that the cytoplasmic domain of CD93, by its interaction with Moesin and F-actin, is instrumental for CD93 retrieval in adhering and migrating cells and that aberrant endosomal trafficking of CD93 prevents its localization at the leading edge of migration. Moreover, the small GTPase Rab5c turns out to be a key component of the molecular machinery that is able to drive CD93 recycling to the EC surface. Finally, in the Rab5c endosomal compartment CD93 forms a complex with Multimerin-2 and active β1 integrin, which is recycled back to the basolaterally-polarized cell surface by clathrin-independent endocytosis. Conclusions Our findings, focusing on the pro-angiogenic receptor CD93, unveil the mechanisms of its polarized trafficking during EC adhesion and migration, opening novel therapeutic opportunities for angiogenic diseases. Electronic supplementary material The online version of this article (10.1186/s12964-019-0375-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stefano Barbera
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro, 2, 53100, Siena, Italy
| | - Federica Nardi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro, 2, 53100, Siena, Italy
| | - Ines Elia
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro, 2, 53100, Siena, Italy
| | - Giulia Realini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro, 2, 53100, Siena, Italy
| | - Roberta Lugano
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Annalisa Santucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro, 2, 53100, Siena, Italy
| | - Gian Marco Tosi
- Department of Medicine, Surgery and Neuroscience, Ophthalmology Unit, University of Siena, Policlinico "Le Scotte", Viale Bracci, 53100, Siena, Italy
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Federico Galvagni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro, 2, 53100, Siena, Italy.
| | - Maurizio Orlandini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro, 2, 53100, Siena, Italy.
| |
Collapse
|
13
|
Merő B, Radnai L, Gógl G, Tőke O, Leveles I, Koprivanacz K, Szeder B, Dülk M, Kudlik G, Vas V, Cserkaszky A, Sipeki S, Nyitray L, Vértessy BG, Buday L. Structural insights into the tyrosine phosphorylation-mediated inhibition of SH3 domain-ligand interactions. J Biol Chem 2019; 294:4608-4620. [PMID: 30659095 DOI: 10.1074/jbc.ra118.004732] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 01/17/2019] [Indexed: 01/01/2023] Open
Abstract
Src homology 3 (SH3) domains bind proline-rich linear motifs in eukaryotes. By mediating inter- and intramolecular interactions, they regulate the functions of many proteins involved in a wide variety of signal transduction pathways. Phosphorylation at different tyrosine residues in SH3 domains has been reported previously. In several cases, the functional consequences have also been investigated. However, a full understanding of the effects of tyrosine phosphorylation on the ligand interactions and cellular functions of SH3 domains requires detailed structural, atomic-resolution studies along with biochemical and biophysical analyses. Here, we present the first crystal structures of tyrosine-phosphorylated human SH3 domains derived from the Abelson-family kinases ABL1 and ABL2 at 1.6 and 1.4 Å resolutions, respectively. The structures revealed that simultaneous phosphorylation of Tyr89 and Tyr134 in ABL1 or the homologous residues Tyr116 and Tyr161 in ABL2 induces only minor structural perturbations. Instead, the phosphate groups sterically blocked the ligand-binding grooves, thereby strongly inhibiting the interaction with proline-rich peptide ligands. Although some crystal contact surfaces involving phosphotyrosines suggested the possibility of tyrosine phosphorylation-induced dimerization, we excluded this possibility by using small-angle X-ray scattering (SAXS), dynamic light scattering (DLS), and NMR relaxation analyses. Extensive analysis of relevant databases and literature revealed not only that the residues phosphorylated in our model systems are well-conserved in other human SH3 domains, but that the corresponding tyrosines are known phosphorylation sites in vivo in many cases. We conclude that tyrosine phosphorylation might be a mechanism involved in the regulation of the human SH3 interactome.
Collapse
Affiliation(s)
| | | | - Gergő Gógl
- the Department of Biochemistry, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest H-1117, Hungary
| | - Orsolya Tőke
- Laboratory for NMR Spectroscopy, Research Center for Natural Sciences (RCNS), Hungarian Academy of Sciences, Magyar tudósok körútja 2, Budapest H-1117, Hungary
| | - Ibolya Leveles
- From the Institute of Enzymology and.,the Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Szt. Gellért tér 4, Budapest H-1111, Hungary, and
| | | | | | | | | | - Virág Vas
- From the Institute of Enzymology and
| | | | - Szabolcs Sipeki
- the Department of Medical Chemistry, Semmelweis University Medical School, Tűzoltó u. 37-47, Budapest H-1094, Hungary
| | - László Nyitray
- the Department of Biochemistry, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest H-1117, Hungary
| | - Beáta G Vértessy
- From the Institute of Enzymology and.,the Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Szt. Gellért tér 4, Budapest H-1111, Hungary, and
| | - László Buday
- From the Institute of Enzymology and .,the Department of Medical Chemistry, Semmelweis University Medical School, Tűzoltó u. 37-47, Budapest H-1094, Hungary
| |
Collapse
|
14
|
Imatinib mesylate elicits extracellular signal-related kinase (ERK) activation and enhances the survival of γ-irradiated epithelial cells. Biochem Biophys Res Commun 2018; 506:939-943. [DOI: 10.1016/j.bbrc.2018.10.095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/15/2018] [Indexed: 01/08/2023]
|
15
|
Keck M, van Dijk RM, Deeg CA, Kistler K, Walker A, von Rüden EL, Russmann V, Hauck SM, Potschka H. Proteomic profiling of epileptogenesis in a rat model: Focus on cell stress, extracellular matrix and angiogenesis. Neurobiol Dis 2018; 112:119-135. [PMID: 29413716 DOI: 10.1016/j.nbd.2018.01.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 01/11/2018] [Accepted: 01/17/2018] [Indexed: 12/26/2022] Open
Abstract
Information about epileptogenesis-associated changes in protein expression patterns is of particular interest for future selection of target and biomarker candidates. Bioinformatic analysis of proteomic data sets can increase our knowledge about molecular alterations characterizing the different phases of epilepsy development following an initial epileptogenic insult. Here, we report findings from a focused analysis of proteomic data obtained for the hippocampus and parahippocampal cortex samples collected during the early post-insult phase, latency phase, and chronic phase of a rat model of epileptogenesis. The study focused on proteins functionally associated with cell stress, cell death, extracellular matrix (ECM) remodeling, cell-ECM interaction, cell-cell interaction, angiogenesis, and blood-brain barrier function. The analysis revealed prominent pathway enrichment providing information about the complex expression alterations of the respective protein groups. In the hippocampus, the number of differentially expressed proteins declined over time during the course of epileptogenesis. In contrast, a peak in the regulation of proteins linked with cell stress and death as well as ECM and cell-cell interaction became evident at later phases during epileptogenesis in the parahippocampal cortex. The data sets provide valuable information about the time course of protein expression patterns during epileptogenesis for a series of proteins. Moreover, the findings provide comprehensive novel information about expression alterations of proteins that have not been discussed yet in the context of epileptogenesis. These for instance include different members of the lamin protein family as well as the fermitin family member 2 (FERMT2). Induction of FERMT2 and other selected proteins, CD18 (ITGB2), CD44 and Nucleolin were confirmed by immunohistochemistry. Taken together, focused bioinformatic analysis of the proteomic data sets completes our knowledge about molecular alterations linked with cell death and cellular plasticity during epileptogenesis. The analysis provided can guide future selection of target and biomarker candidates.
Collapse
Affiliation(s)
- Michael Keck
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Roelof Maarten van Dijk
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Cornelia A Deeg
- Institute of Animal Physiology, Department of Veterinary Sciences, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Katharina Kistler
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Andreas Walker
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Eva-Lotta von Rüden
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Vera Russmann
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Center Munich, Neuherberg, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany.
| |
Collapse
|
16
|
Fantin A, Lampropoulou A, Senatore V, Brash JT, Prahst C, Lange CA, Liyanage SE, Raimondi C, Bainbridge JW, Augustin HG, Ruhrberg C. VEGF165-induced vascular permeability requires NRP1 for ABL-mediated SRC family kinase activation. J Exp Med 2017; 214:1049-1064. [PMID: 28289053 PMCID: PMC5379968 DOI: 10.1084/jem.20160311] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 12/07/2016] [Accepted: 01/20/2017] [Indexed: 01/13/2023] Open
Abstract
Fantin et al. show that the VEGF isoform VEGF165 signals through a complex of VEGFR2 and NRP1, in which the NRP1 cytoplasmic domain promotes the ABL-mediated activation of SRC family kinases to evoke a hyperpermeability response, a known cause of pathological edema. The vascular endothelial growth factor (VEGF) isoform VEGF165 stimulates vascular growth and hyperpermeability. Whereas blood vessel growth is essential to sustain organ health, chronic hyperpermeability causes damaging tissue edema. By combining in vivo and tissue culture models, we show here that VEGF165-induced vascular leakage requires both VEGFR2 and NRP1, including the VEGF164-binding site of NRP1 and the NRP1 cytoplasmic domain (NCD), but not the known NCD interactor GIPC1. In the VEGF165-bound receptor complex, the NCD promotes ABL kinase activation, which in turn is required to activate VEGFR2-recruited SRC family kinases (SFKs). These results elucidate the receptor complex and signaling hierarchy of downstream kinases that transduce the permeability response to VEGF165. In a mouse model with choroidal neovascularisation akin to age-related macular degeneration, NCD loss attenuated vessel leakage without affecting neovascularisation. These findings raise the possibility that targeting NRP1 or its NCD interactors may be a useful therapeutic strategy in neovascular disease to reduce VEGF165-induced edema without compromising vessel growth.
Collapse
Affiliation(s)
- Alessandro Fantin
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, England, UK
| | | | - Valentina Senatore
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, England, UK
| | - James T Brash
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, England, UK
| | - Claudia Prahst
- Yale Cardiovascular Research Center, New Haven, CT 06511
| | - Clemens A Lange
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, England, UK
| | - Sidath E Liyanage
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, England, UK
| | - Claudio Raimondi
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, England, UK
| | - James W Bainbridge
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, England, UK
| | - Hellmut G Augustin
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), 69120 Heidelberg, Germany.,Department of Vascular Biology and Tumor Angiogenesis (CBTM), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Christiana Ruhrberg
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, England, UK
| |
Collapse
|
17
|
Galvagni F, Nardi F, Maida M, Bernardini G, Vannuccini S, Petraglia F, Santucci A, Orlandini M. CD93 and dystroglycan cooperation in human endothelial cell adhesion and migration adhesion and migration. Oncotarget 2017; 7:10090-103. [PMID: 26848865 PMCID: PMC4891106 DOI: 10.18632/oncotarget.7136] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 01/22/2016] [Indexed: 02/07/2023] Open
Abstract
CD93 is a transmembrane glycoprotein predominantly expressed in endothelial cells. Although CD93 displays proangiogenic activity, its molecular function in angiogenesis still needs to be clarified. To get molecular insight into the biological role of CD93 in the endothelium, we performed proteomic analyses to examine changes in the protein profile of endothelial cells after CD93 silencing. Among differentially expressed proteins, we identified dystroglycan, a laminin-binding protein involved in angiogenesis, whose expression is increased in vascular endothelial cells within malignant tumors. Using immunofluorescence, FRET, and proximity ligation analyses, we observed a close interaction between CD93 and β-dystroglycan. Moreover, silencing experiments showed that CD93 and dystroglycan promoted endothelial cell migration and organization into capillary-like structures. CD93 proved to be phosphorylated on tyrosine 628 and 644 following cell adhesion on laminin through dystroglycan. This phosphorylation was shown to be necessary for a proper endothelial migratory phenotype. Moreover, we showed that during cell spreading phosphorylated CD93 recruited the signaling protein Cbl, which in turn was phosphorylated on tyrosine 774. Altogether, our results identify a new signaling pathway which is activated by the cooperation between CD93 and dystroglycan and involved in the control of endothelial cell function.
Collapse
Affiliation(s)
- Federico Galvagni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Federica Nardi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Marco Maida
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Giulia Bernardini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Silvia Vannuccini
- Department of Molecular and Developmental Medicine, Obstetrics and Gynecology, University of Siena, 53100 Siena, Italy
| | - Felice Petraglia
- Department of Molecular and Developmental Medicine, Obstetrics and Gynecology, University of Siena, 53100 Siena, Italy
| | - Annalisa Santucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Maurizio Orlandini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| |
Collapse
|
18
|
Burdon KP, Fogarty RD, Shen W, Abhary S, Kaidonis G, Appukuttan B, Hewitt AW, Sharma S, Daniell M, Essex RW, Chang JH, Klebe S, Lake SR, Pal B, Jenkins A, Govindarjan G, Sundaresan P, Lamoureux EL, Ramasamy K, Pefkianaki M, Hykin PG, Petrovsky N, Brown MA, Gillies MC, Craig JE. Genome-wide association study for sight-threatening diabetic retinopathy reveals association with genetic variation near the GRB2 gene. Diabetologia 2015; 58:2288-97. [PMID: 26188370 DOI: 10.1007/s00125-015-3697-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 07/03/2015] [Indexed: 10/23/2022]
Abstract
AIMS/HYPOTHESIS Diabetic retinopathy is a serious complication of diabetes mellitus and can lead to blindness. A genetic component, in addition to traditional risk factors, has been well described although strong genetic factors have not yet been identified. Here, we aimed to identify novel genetic risk factors for sight-threatening diabetic retinopathy using a genome-wide association study. METHODS Retinopathy was assessed in white Australians with type 2 diabetes mellitus. Genome-wide association analysis was conducted for comparison of cases of sight-threatening diabetic retinopathy (n = 336) with diabetic controls with no retinopathy (n = 508). Top ranking single nucleotide polymorphisms were typed in a type 2 diabetes replication cohort, a type 1 diabetes cohort and an Indian type 2 cohort. A mouse model of proliferative retinopathy was used to assess differential expression of the nearby candidate gene GRB2 by immunohistochemistry and quantitative western blot. RESULTS The top ranked variant was rs3805931 with p = 2.66 × 10(-7), but no association was found in the replication cohort. Only rs9896052 (p = 6.55 × 10(-5)) was associated with sight-threatening diabetic retinopathy in both the type 2 (p = 0.035) and the type 1 (p = 0.041) replication cohorts, as well as in the Indian cohort (p = 0.016). The study-wide meta-analysis reached genome-wide significance (p = 4.15 × 10(-8)). The GRB2 gene is located downstream of this variant and a mouse model of retinopathy showed increased GRB2 expression in the retina. CONCLUSIONS/INTERPRETATION Genetic variation near GRB2 on chromosome 17q25.1 is associated with sight-threatening diabetic retinopathy. Several genes in this region are promising candidates and in particular GRB2 is upregulated during retinal stress and neovascularisation.
Collapse
Affiliation(s)
- Kathryn P Burdon
- Department of Ophthalmology, Flinders Medical Centre, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia.
- Menzies Institute for Medical Research, University of Tasmania, Private bag 23, Hobart, TAS, 7000, Australia.
| | - Rhys D Fogarty
- Department of Ophthalmology, Flinders Medical Centre, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia
| | - Weiyong Shen
- Save Sight Institute, Clinical Ophthalmology and Eye Health, The University of Sydney, Sydney, NSW, Australia
| | - Sotoodeh Abhary
- Department of Ophthalmology, Flinders Medical Centre, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia
| | - Georgia Kaidonis
- Department of Ophthalmology, Flinders Medical Centre, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia
| | - Binoy Appukuttan
- Department of Ophthalmology, Flinders Medical Centre, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia
| | - Alex W Hewitt
- Centre for Eye Research Australia, University of Melbourne, East Melbourne, VIC, Australia
| | - Shiwani Sharma
- Department of Ophthalmology, Flinders Medical Centre, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia
| | - Mark Daniell
- Department of Ophthalmology, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Rohan W Essex
- Academic Unit of Ophthalmology, Australian National University, Canberra, ACT, Australia
| | - John H Chang
- School of Medical Sciences, University of NSW, Sydney, NSW, Australia
- Medical Retina Service, Moorfields Eye Hospital, London, UK
| | - Sonja Klebe
- Department of Anatomical Pathology, Flinders Medical Centre, Flinders University, Adelaide, SA, Australia
| | - Stewart R Lake
- Department of Ophthalmology, Flinders Medical Centre, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia
| | - Bishwanath Pal
- Medical Retina Service, Moorfields Eye Hospital, London, UK
| | | | - Gowthaman Govindarjan
- Department of Genetics, Aravind Medical Research Foundation, Madurai, Tamil Nadu, India
| | - Periasamy Sundaresan
- Department of Genetics, Aravind Medical Research Foundation, Madurai, Tamil Nadu, India
| | - Ecosse L Lamoureux
- Centre for Eye Research Australia, University of Melbourne, East Melbourne, VIC, Australia
- Department of Population Health, Singapore Eye Research Institute, Singapore, Singapore
| | - Kim Ramasamy
- Retina Clinic, Aravind Eye Hospital, Madurai, Tamil Nadu, India
| | | | - Philip G Hykin
- Medical Retina Service, Moorfields Eye Hospital, London, UK
| | - Nikolai Petrovsky
- Department of Endocrinology, Flinders Medical Centre, Flinders University, Adelaide, SA, Australia
| | - Matthew A Brown
- Diamantina Institute, The University of Queensland, Translational Research Institute Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Mark C Gillies
- Save Sight Institute, Clinical Ophthalmology and Eye Health, The University of Sydney, Sydney, NSW, Australia
| | - Jamie E Craig
- Department of Ophthalmology, Flinders Medical Centre, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia.
| |
Collapse
|
19
|
Hem CD, Sundvold-Gjerstad V, Granum S, Koll L, Abrahamsen G, Buday L, Spurkland A. T cell specific adaptor protein (TSAd) promotes interaction of Nck with Lck and SLP-76 in T cells. Cell Commun Signal 2015; 13:31. [PMID: 26163016 PMCID: PMC4499191 DOI: 10.1186/s12964-015-0109-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 07/03/2015] [Indexed: 11/12/2022] Open
Abstract
Background The Lck and Src binding adaptor protein TSAd (T cell specific adaptor) regulates actin polymerization in T cells and endothelial cells. The molecular details as to how TSAd regulates this process remain to be elucidated. Results To identify novel interaction partners for TSAd, we used a scoring matrix-assisted ligand algorithm (SMALI), and found that the Src homology 2 (SH2) domain of the actin regulator Non-catalytic region of tyrosine kinase adaptor protein (Nck) potentially binds to TSAd phosphorylated on Tyr280 (pTyr280) and pTyr305. These predictions were confirmed by peptide array analysis, showing direct binding of recombinant Nck SH2 to both pTyr280 and pTyr305 on TSAd. In addition, the SH3 domains of Nck interacted with the proline rich region (PRR) of TSAd. Pull-down and immunoprecipitation experiments further confirmed the Nck-TSAd interactions through Nck SH2 and SH3 domains. In line with this Nck and TSAd co-localized in Jurkat cells as assessed by confocal microscopy and imaging flow cytometry. Co-immunoprecipitation experiments in Jurkat TAg cells lacking TSAd revealed that TSAd promotes interaction of Nck with Lck and SLP-76, but not Vav1. TSAd expressing Jurkat cells contained more polymerized actin, an effect dependent on TSAd exon 7, which includes interactions sites for both Nck and Lck. Conclusions TSAd binds to and co-localizes with Nck. Expression of TSAd increases both Nck-Lck and Nck-SLP-76 interaction in T cells. Recruitment of Lck and SLP-76 to Nck by TSAd could be one mechanism by which TSAd promotes actin polymerization in activated T cells.
Collapse
Affiliation(s)
- Cecilie Dahl Hem
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, 0317, Norway.
| | - Vibeke Sundvold-Gjerstad
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, 0317, Norway.
| | - Stine Granum
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, 0317, Norway.
| | - Lise Koll
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, 0317, Norway.
| | - Greger Abrahamsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, 0317, Norway.
| | - Laszlo Buday
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, 1117, Hungary.
| | - Anne Spurkland
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, 0317, Norway. .,Institute of Basal Medical Sciences, University of Oslo, PB 1105, Blindern, Oslo, 0317, Norway.
| |
Collapse
|
20
|
Chaki SP, Barhoumi R, Rivera GM. Actin remodeling by Nck regulates endothelial lumen formation. Mol Biol Cell 2015; 26:3047-60. [PMID: 26157164 PMCID: PMC4551318 DOI: 10.1091/mbc.e15-06-0338] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 07/01/2015] [Indexed: 01/03/2023] Open
Abstract
Nck-dependent actin remodeling enables endothelial morphogenesis by promoting cell elongation and proper organization of VE-cadherin intercellular junctions. Nck determines spatiotemporal patterns of Cdc42/aPKC activation to regulate endothelial apical-basal polarity and lumen formation. Multiple angiogenic cues modulate phosphotyrosine signaling to promote vasculogenesis and angiogenesis. Despite its functional and clinical importance, how vascular cells integrate phosphotyrosine-dependent signaling to elicit cytoskeletal changes required for endothelial morphogenesis remains poorly understood. The family of Nck adaptors couples phosphotyrosine signals with actin dynamics and therefore is well positioned to orchestrate cellular processes required in vascular formation and remodeling. Culture of endothelial cells in three-dimensional collagen matrices in the presence of VEGF stimulation was combined with molecular genetics, optical imaging, and biochemistry to show that Nck-dependent actin remodeling promotes endothelial cell elongation and proper organization of VE-cadherin intercellular junctions. Major morphogenetic defects caused by abrogation of Nck signaling included loss of endothelial apical-basal polarity and impaired lumenization. Time-lapse imaging using a Förster resonance energy transfer biosensor, immunostaining with phospho-specific antibodies, and GST pull-down assays showed that Nck determines spatiotemporal patterns of Cdc42/aPKC activation during endothelial morphogenesis. Our results demonstrate that Nck acts as an important hub integrating angiogenic cues with cytoskeletal changes that enable endothelial apical-basal polarization and lumen formation. These findings point to Nck as an emergent target for effective antiangiogenic therapy.
Collapse
Affiliation(s)
- Sankar P Chaki
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843-4467
| | - Rola Barhoumi
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4467
| | - Gonzalo M Rivera
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843-4467
| |
Collapse
|
21
|
Ahmed Z, Timsah Z, Suen KM, Cook NP, Lee GR, Lin CC, Gagea M, Marti AA, Ladbury JE. Grb2 monomer-dimer equilibrium determines normal versus oncogenic function. Nat Commun 2015; 6:7354. [PMID: 26103942 PMCID: PMC4491180 DOI: 10.1038/ncomms8354] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 04/29/2015] [Indexed: 01/09/2023] Open
Abstract
The adaptor protein growth factor receptor-bound protein 2 (Grb2) is ubiquitously expressed in eukaryotic cells and involved in a multitude of intracellular protein interactions. Grb2 plays a pivotal role in tyrosine kinase-mediated signal transduction including linking receptor tyrosine kinases to the Ras/mitogen-activated protein (MAP) kinase pathway, which is implicated in oncogenic outcome. Grb2 exists in a constitutive equilibrium between monomeric and dimeric states. Here we show that only monomeric Grb2 is capable of binding to SOS and upregulating MAP kinase signalling and that the dimeric state is inhibitory to this process. Phosphorylation of tyrosine 160 (Y160) on Grb2, or binding of a tyrosylphosphate-containing ligand to the SH2 domain of Grb2, results in dimer dissociation. Phosphorylation of Y160 on Grb2 is readily detectable in the malignant forms of human prostate, colon and breast cancers. The self-association/dissociation of Grb2 represents a switch that regulates MAP kinase activity and hence controls cancer progression.
Collapse
Affiliation(s)
- Zamal Ahmed
- 1] Department of Biochemistry and Molecular Biology, University of Texas, M.D. Anderson Cancer Center, Unit 1000, 1515 Holcombe Boulevard, Houston, Texas 77030, USA [2] Center for Biomolecular Structure and Function, University of Texas, M.D. Anderson Cancer Center, Unit 1000, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| | - Zahra Timsah
- 1] Department of Biochemistry and Molecular Biology, University of Texas, M.D. Anderson Cancer Center, Unit 1000, 1515 Holcombe Boulevard, Houston, Texas 77030, USA [2] School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Kin M Suen
- 1] Department of Biochemistry and Molecular Biology, University of Texas, M.D. Anderson Cancer Center, Unit 1000, 1515 Holcombe Boulevard, Houston, Texas 77030, USA [2] School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Nathan P Cook
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
| | - Gilbert R Lee
- Center for Biomolecular Structure and Function, University of Texas, M.D. Anderson Cancer Center, Unit 1000, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| | - Chi-Chuan Lin
- 1] Department of Biochemistry and Molecular Biology, University of Texas, M.D. Anderson Cancer Center, Unit 1000, 1515 Holcombe Boulevard, Houston, Texas 77030, USA [2] School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Mihai Gagea
- Department of Veterinary Medicine and Surgery, University of Texas, M.D. Anderson Cancer Center, Unit 63, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| | - Angel A Marti
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
| | - John E Ladbury
- 1] Department of Biochemistry and Molecular Biology, University of Texas, M.D. Anderson Cancer Center, Unit 1000, 1515 Holcombe Boulevard, Houston, Texas 77030, USA [2] Center for Biomolecular Structure and Function, University of Texas, M.D. Anderson Cancer Center, Unit 1000, 1515 Holcombe Boulevard, Houston, Texas 77030, USA [3] School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
22
|
Kurochkina N, Guha U, Lu Z. SH Domains and Epidermal Growth Factor Receptors. SH DOMAINS 2015:133-158. [DOI: 10.1007/978-3-319-20098-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
23
|
Raimondi C, Fantin A, Lampropoulou A, Denti L, Chikh A, Ruhrberg C. Imatinib inhibits VEGF-independent angiogenesis by targeting neuropilin 1-dependent ABL1 activation in endothelial cells. ACTA ACUST UNITED AC 2014; 211:1167-83. [PMID: 24863063 PMCID: PMC4042645 DOI: 10.1084/jem.20132330] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Neuropilin 1 regulates angiogenesis in a VEGF-independent manner via association with ABL1, suggesting that Imatinib represents a novel opportunity for anti-angiogenic therapy. To enable new blood vessel growth, endothelial cells (ECs) express neuropilin 1 (NRP1), and NRP1 associates with the receptor tyrosine kinase VEGFR2 after binding the vascular endothelial growth factor A (VEGF) to enhance arteriogenesis. We report that NRP1 contributes to angiogenesis through a novel mechanism. In human and mouse ECs, the integrin ligand fibronectin (FN) stimulated actin remodeling and phosphorylation of the focal adhesion component paxillin (PXN) in a VEGF/VEGFR2-independent but NRP1-dependent manner. NRP1 formed a complex with ABL1 that was responsible for FN-dependent PXN activation and actin remodeling. This complex promoted EC motility in vitro and during angiogenesis on FN substrates in vivo. Accordingly, both physiological and pathological angiogenesis in the retina were inhibited by treatment with Imatinib, a small molecule inhibitor of ABL1 which is widely used to prevent the proliferation of tumor cells that express BCR-ABL fusion proteins. The finding that NRP1 regulates angiogenesis in a VEGF- and VEGFR2-independent fashion via ABL1 suggests that ABL1 inhibition provides a novel opportunity for anti-angiogenic therapy to complement VEGF or VEGFR2 blockade in eye disease or solid tumor growth.
Collapse
Affiliation(s)
- Claudio Raimondi
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, England UK
| | - Alessandro Fantin
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, England UK
| | | | - Laura Denti
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, England UK
| | - Anissa Chikh
- Centre for Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary London University, London E1 2AT, England UK
| | - Christiana Ruhrberg
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, England UK
| |
Collapse
|
24
|
Chislock EM, Pendergast AM. Abl family kinases regulate endothelial barrier function in vitro and in mice. PLoS One 2013; 8:e85231. [PMID: 24367707 PMCID: PMC3868616 DOI: 10.1371/journal.pone.0085231] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 11/25/2013] [Indexed: 12/22/2022] Open
Abstract
The maintenance of endothelial barrier function is essential for normal physiology, and increased vascular permeability is a feature of a wide variety of pathological conditions, leading to complications including edema and tissue damage. Use of the pharmacological inhibitor imatinib, which targets the Abl family of non-receptor tyrosine kinases (Abl and Arg), as well as other tyrosine kinases including the platelet-derived growth factor receptor (PDGFR), Kit, colony stimulating factor 1 receptor (CSF1R), and discoidin domain receptors, has shown protective effects in animal models of inflammation, sepsis, and other pathologies characterized by enhanced vascular permeability. However, the imatinib targets involved in modulation of vascular permeability have not been well-characterized, as imatinib inhibits multiple tyrosine kinases not only in endothelial cells and pericytes but also immune cells important for disorders associated with pathological inflammation and abnormal vascular permeability. In this work we employ endothelial Abl knockout mice to show for the first time a direct role for Abl in the regulation of vascular permeability in vivo. Using both Abl/Arg-specific pharmacological inhibition and endothelial Abl knockout mice, we demonstrate a requirement for Abl kinase activity in the induction of endothelial permeability by vascular endothelial growth factor both in vitro and in vivo. Notably, Abl kinase inhibition also impaired endothelial permeability in response to the inflammatory mediators thrombin and histamine. Mechanistically, we show that loss of Abl kinase activity was accompanied by activation of the barrier-stabilizing GTPases Rac1 and Rap1, as well as inhibition of agonist-induced Ca2+ mobilization and generation of acto-myosin contractility. In all, these findings suggest that pharmacological targeting of the Abl kinases may be capable of inhibiting endothelial permeability induced by a broad range of agonists and that use of Abl kinase inhibitors may have potential for the treatment of disorders involving pathological vascular leakage.
Collapse
Affiliation(s)
- Elizabeth M. Chislock
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Ann Marie Pendergast
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
25
|
Shaik-Dasthagirisaheb YB, Varvara G, Murmura G, Saggini A, Potalivo G, Caraffa A, Antinolfi P, Tete' S, Tripodi D, Conti F, Cianchetti E, Toniato E, Rosati M, Conti P, Speranza L, Pantalone A, Saggini R, Theoharides TC, Pandolfi F. Vascular endothelial growth factor (VEGF), mast cells and inflammation. Int J Immunopathol Pharmacol 2013; 26:327-35. [PMID: 23755748 DOI: 10.1177/039463201302600206] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) is one of the most important inducers of angiogenesis, therefore blocking angiogenesis has led to great promise in the treatment of various cancers and inflammatory diseases. VEGF, expressed in response to soluble mediators such as cytokines and growth factors, is important in the physiological development of blood vessels as well as development of vessels in tumors. In cancer patients VEGF levels are increased, and the expression of VEGF is associated with poor prognosis in diseases. VEGF is a mediator of angiogenesis and inflammation which are closely integrated processes in a number of physiological and pathological conditions including obesity, psoriasis, autoimmune diseases and tumor. Mast cells can be activated by anti-IgE to release potent mediators of inflammation and can also respond to bacterial or viral antigens, cytokines, growth factors and hormones, leading to differential release of distinct mediators without degranulation. Substance P strongly induces VEGF in mast cells, and IL-33 contributes to the stimulation and release of VEGF in human mast cells in a dose-dependent manner and acts synergistically in combination with Substance P. Here we report a strong link between VEGF and mast cells and we depict their role in inflammation and immunity.
Collapse
|
26
|
Insights in dynamic kinome reprogramming as a consequence of MEK inhibition in MLL-rearranged AML. Leukemia 2013; 28:589-99. [PMID: 24240200 DOI: 10.1038/leu.2013.342] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 10/30/2013] [Accepted: 11/07/2013] [Indexed: 01/12/2023]
Abstract
Single kinase-targeted cancer therapies often failed prolonged responses because cancer cells bypass through alternative routes. In this study, high-throughput kinomic and proteomic approaches enabled to identify aberrant activity profiles in mixed lineage leukemia (MLL)-rearranged acute myeloid leukemia (AML) that defined druggable targets. This approach revealed impaired activity of proteins belonging to the mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) pathway. Pharmacological druggable MAPK pathway targets tested in primary MLL-rearranged AML included MAPKK1/2 (MEK), cyclic AMP-responsive element-binding protein (CREB) and MAPK8/9 (JNK). MEK inhibition showed to severely decrease MLL-rearranged AML cell survival without showing cytotoxicity in normal controls, whereas inhibition of CREB and JNK failed to exhibit MLL selectivity. Exploring the working mechanism of MEK inhibition, we assessed proteome activity in response to MEK inhibition in THP-1. MAPK1/3 (Erk) phosphorylation was instantly decreased in concurrence with a sustained Akt/mammalian target of rapamycin (mTOR) phosphorylation that enabled a subpopulation of cells to survive MEK inhibition. After exhaustion of MEK inhibition the AML cells recovered via increased activity of vascular endothelial growth factor receptor-2 (VEGFR-2) and Erk proteins to resume their proliferative state. Combined MEK and VEGFR-2 inhibition strengthened the reduction in MLL-rearranged AML cell survival by blocking the Akt/mTOR and MAPK pathways simultaneously. The generation of insights in cancerous altered activity profiles and alternative escape mechanisms upon targeted therapy allows the rational design of novel combination strategies.
Collapse
|
27
|
Quinazoline-based multi-tyrosine kinase inhibitors: Synthesis, modeling, antitumor and antiangiogenic properties. Eur J Med Chem 2013; 67:373-83. [DOI: 10.1016/j.ejmech.2013.06.057] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 06/27/2013] [Accepted: 06/29/2013] [Indexed: 12/16/2022]
|
28
|
Jin F, Gao D, Wu Q, Liu F, Chen Y, Tan C, Jiang Y. Exploration of N-(2-aminoethyl)piperidine-4-carboxamide as a potential scaffold for development of VEGFR-2, ERK-2 and Abl-1 multikinase inhibitor. Bioorg Med Chem 2013; 21:5694-706. [DOI: 10.1016/j.bmc.2013.07.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 07/11/2013] [Accepted: 07/11/2013] [Indexed: 01/09/2023]
|
29
|
Abstract
In this review we summarize the current understanding of signal transduction downstream of vascular endothelial growth factor A (VEGFA) and its receptor VEGFR2, and the relationship between these signal transduction pathways and the hallmark responses of VEGFA, angiogenesis and vascular permeability. These physiological responses involve a number of effectors, including extracellular signal-regulated kinases (ERKs), Src, phosphoinositide 3 kinase (PI3K)/Akt, focal adhesion kinase (FAK), Rho family GTPases, endothelial NO and p38 mitogen-activated protein kinase (MAPK). Several of these factors are involved in the regulation of both angiogenesis and vascular permeability. Tumour angiogenesis primarily relies on VEGFA-driven responses, which to a large extent result in a dysfunctional vasculature. The reason for this remains unclear, although it appears that certain aspects of the VEGFA-stimulated angiogenic milieu (high level of microvascular density and permeability) promote tumour expansion. The high degree of redundancy and complexity of VEGFA-driven tumour angiogenesis may explain why tumours commonly develop resistance to anti-angiogenic therapy targeting VEGFA signal transduction.
Collapse
Affiliation(s)
- L Claesson-Welsh
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.
| | | |
Collapse
|