1
|
Schwarz N, Yadegari H. Potentials of Endothelial Colony-Forming Cells: Applications in Hemostasis and Thrombosis Disorders, from Unveiling Disease Pathophysiology to Cell Therapy. Hamostaseologie 2023; 43:325-337. [PMID: 37857295 DOI: 10.1055/a-2101-5936] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
Endothelial colony-forming cells (ECFCs) are endothelial progenitor cells circulating in a limited number in peripheral blood. They can give rise to mature endothelial cells (ECs) and, with intrinsically high proliferative potency, contribute to forming new blood vessels and restoring the damaged endothelium in vivo. ECFCs can be isolated from peripheral blood or umbilical cord and cultured to generate large amounts of autologous ECs in vitro. Upon differentiation in culture, ECFCs are excellent surrogates for mature ECs showing the same phenotypic, genotypic, and functional features. In the last two decades, the ECFCs from various vascular disease patients have been widely used to study the diseases' pathophysiology ex vivo and develop cell-based therapeutic approaches, including vascular regenerative therapy, tissue engineering, and gene therapy. In the current review, we will provide an updated overview of past studies, which have used ECFCs to elucidate the molecular mechanisms underlying the pathogenesis of hemostatic disorders in basic research. Additionally, we summarize preceding studies demonstrating the utility of ECFCs as cellular tools for diagnostic or therapeutic clinical applications in thrombosis and hemostasis.
Collapse
Affiliation(s)
- Nadine Schwarz
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
| | - Hamideh Yadegari
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
2
|
Francomano D, Sanguigni V, Capogrosso P, Deho F, Antonini G. New Insight into Molecular and Hormonal Connection in Andrology. Int J Mol Sci 2021; 22:ijms222111908. [PMID: 34769341 PMCID: PMC8584869 DOI: 10.3390/ijms222111908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022] Open
Abstract
Hormones and cytokines are known to regulate cellular functions in the testes. These biomolecules induce a broad spectrum of effects on various level of spermatogenesis, and among them is the modulation of cell junction restructuring between Sertoli cells and germ cells in the seminiferous epithelium. Cytokines and androgens are closely related, and both correct testicular development and the maintenance of spermatogenesis depend on their function. Cytokines also play a crucial role in the immune testicular system, activating and directing leucocytes across the endothelial barrier to the inflammatory site, as well as in increasing their adhesion to the vascular wall. The purpose of this review is to revise the most recent findings on molecular mechanisms that play a key role in male sexual function, focusing on three specific molecular patterns, namely, cytokines, miRNAs, and endothelial progenitor cells. Numerous reports on the interactions between the immune and endocrine systems can be found in the literature. However, there is not yet a multi-approach review of the literature underlying the role between molecular patterns and testicular and sexual function.
Collapse
Affiliation(s)
- Davide Francomano
- Division of Internal Medicine and Endocrinology, Madonna delle Grazie Hospital, 00049 Rome, Italy
- GCS Point Medical Center, 0010 Rome, Italy
- Correspondence:
| | - Valerio Sanguigni
- Department of Medicine of Systems, University of Rome Tor Vergata, 00100 Rome, Italy;
| | - Paolo Capogrosso
- ASST-Sette Laghi, Circolo & Fondazione Macchi Hospital, University of Insurbria, 21100 Varese, Italy; (P.C.); (F.D.)
| | - Federico Deho
- ASST-Sette Laghi, Circolo & Fondazione Macchi Hospital, University of Insurbria, 21100 Varese, Italy; (P.C.); (F.D.)
| | | |
Collapse
|
3
|
Flow-through isolation of human first trimester umbilical cord endothelial cells. Histochem Cell Biol 2021; 156:363-375. [PMID: 34169358 PMCID: PMC8550006 DOI: 10.1007/s00418-021-02007-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2021] [Indexed: 11/30/2022]
Abstract
Human umbilical vein and artery endothelial cells (HUVEC; HUAEC), placental endothelial cells (fpAEC), and endothelial colony-forming cells (ECFC) from cord blood are a widely used model for researching placental vascular development, fetal and placental endothelial function, and the effect of adverse conditions in pregnancy thereon. However, placental vascular development and angiogenesis start in the first weeks of gestation, and adverse conditions in pregnancy may also affect endothelial function before term, suggesting that endothelial cells from early pregnancy may respond differently. Thus, we established a novel, gentle flow-through method to isolate pure human umbilical endothelial cells from first trimester (FTUEC). FTUEC were characterized and their phenotype was compared to the umbilical endothelium in situ as well as to other fetal endothelial cell models from term of gestation, i.e. HUVEC, fpAEC, ECFC. FTUEC possess a CD34-positive, juvenile endothelial phenotype, and can be expanded and passaged. We regard FTUEC as a valuable tool to study developmental processes as well as the effect of adverse insults in pregnancy in vitro.
Collapse
|
4
|
Rossi E, Poirault-Chassac S, Bieche I, Chocron R, Schnitzler A, Lokajczyk A, Bourdoncle P, Dizier B, Bacha NC, Gendron N, Blandinieres A, Guerin CL, Gaussem P, Smadja DM. Human Endothelial Colony Forming Cells Express Intracellular CD133 that Modulates their Vasculogenic Properties. Stem Cell Rev Rep 2020; 15:590-600. [PMID: 30879244 DOI: 10.1007/s12015-019-09881-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Stem cells at the origin of endothelial progenitor cells and in particular endothelial colony forming cells (ECFCs) subtype have been largely supposed to be positive for the CD133 antigen, even though no clear correlation has been established between its expression and function in ECFCs. We postulated that CD133 in ECFCs might be expressed intracellularly, and could participate to vasculogenic properties. ECFCs extracted from cord blood were used either fresh (n = 4) or frozen (n = 4), at culture days <30, to investigate the intracellular presence of CD133 by flow cytometry and confocal analysis. Comparison with HUVEC and HAEC mature endothelial cells was carried out. Then, CD133 was silenced in ECFCs using specific siRNA (siCD133-ECFCs) or scramble siRNA (siCtrl-ECFCs). siCD133-ECFCs (n = 12), siCtrl-ECFCs (n = 12) or PBS (n = 12) were injected in a hind-limb ischemia nude mouse model and vascularization was quantified at day 14 with H&E staining and immunohistochemistry for CD31. Results of flow cytometry and confocal microscopy evidenced the positivity of CD133 in ECFCs after permeabilization compared with not permeabilized ECFCs (p < 0.001) and mature endothelial cells (p < 0.03). In the model of mouse hind-limb ischemia, silencing of CD133 in ECFCs significantly abolished post-ischemic revascularization induced by siCtrl-ECFCs; indeed, a significant reduction in cutaneous blood flows (p = 0.03), capillary density (CD31) (p = 0.01) and myofiber regeneration (p = 0.04) was observed. Also, a significant necrosis (p = 0.02) was observed in mice receiving siCD133-ECFCs compared to those treated with siCtrl-ECFCs. In conclusion, our work describes for the first time the intracellular expression of the stemness marker CD133 in ECFCs. This feature could resume the discrepancies found in the literature concerning CD133 positivity and ontogeny in endothelial progenitors.
Collapse
Affiliation(s)
- Elisa Rossi
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Inserm UMR-S1140, Paris, France
| | - Sonia Poirault-Chassac
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Inserm UMR-S1140, Paris, France
| | - Ivan Bieche
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Department of genetics, Pharmacogenomics Unit, Institut Curie, Paris, France
| | - Richard Chocron
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Inserm UMR-S970, Paris, France.,AP-HP, Emergency Medicine Department, Hôpital Européen Georges Pompidou, Paris, France
| | - Anne Schnitzler
- Department of genetics, Pharmacogenomics Unit, Institut Curie, Paris, France
| | - Anna Lokajczyk
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Inserm UMR-S1140, Paris, France
| | - Pierre Bourdoncle
- Plate-forme IMAG'IC Institut Cochin Inserm U1016-CNRS UMR8104, Université Paris Descartes, Paris, France
| | - Blandine Dizier
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Inserm UMR-S1140, Paris, France
| | - Nour C Bacha
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Inserm UMR-S1140, Paris, France
| | - Nicolas Gendron
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Inserm UMR-S1140, Paris, France.,AP-HP, Hematology Department, Hôpital Européen Georges Pompidou, Paris, France
| | - Adeline Blandinieres
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Inserm UMR-S1140, Paris, France.,AP-HP, Hematology Department, Hôpital Européen Georges Pompidou, Paris, France
| | - Coralie L Guerin
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Inserm UMR-S1140, Paris, France.,Cytometry Unit, Institut Curie, Paris, France
| | - Pascale Gaussem
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Inserm UMR-S1140, Paris, France.,AP-HP, Hematology Department, Hôpital Européen Georges Pompidou, Paris, France
| | - David M Smadja
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France. .,Inserm UMR-S1140, Paris, France. .,AP-HP, Hematology Department, Hôpital Européen Georges Pompidou, Paris, France. .,Laboratory of Biosurgical Research, Carpentier Foundation, Hôpital Européen Georges Pompidou, Paris, France.
| |
Collapse
|
5
|
Sherman SE, Kuljanin M, Cooper TT, Lajoie GA, Hess DA. Purification and Functional Characterization of CD34-Expressing Cell Subsets Following Ex Vivo Expansion of Umbilical Cord Blood-Derived Endothelial Colony-Forming Cells. Stem Cells Dev 2020; 29:895-910. [DOI: 10.1089/scd.2020.0008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Stephen E. Sherman
- Molecular Medicine Research Group, Krembil Centre for Stem Cell Biology, Robarts Research Institute, London, Ontario, Canada
- Department of Physiology and Pharmacology, Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Miljan Kuljanin
- Don Rix Protein Identification Facility, Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Tyler T. Cooper
- Molecular Medicine Research Group, Krembil Centre for Stem Cell Biology, Robarts Research Institute, London, Ontario, Canada
- Department of Physiology and Pharmacology, Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- Don Rix Protein Identification Facility, Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Gilles A. Lajoie
- Don Rix Protein Identification Facility, Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - David A. Hess
- Molecular Medicine Research Group, Krembil Centre for Stem Cell Biology, Robarts Research Institute, London, Ontario, Canada
- Department of Physiology and Pharmacology, Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
6
|
Cui N, Han K, Li M, Wang J, Qian J. Pure polylysine-based foamy scaffolds and their interaction with MC3T3-E1 cells and osteogenesis. ACTA ACUST UNITED AC 2020; 15:025004. [PMID: 31778985 DOI: 10.1088/1748-605x/ab5cfc] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Polypeptide-derived copolymers have widely been exploited for drug/gene delivery due to their pendant functional groups and non-toxic degradation products. However, fabrication of polypeptide-based scaffolds for tissue engineering has seldom been reported. In this study, foamy poly(N ε -benzyl formateoxycarbonyl-L-Lysine) (PZL) and poly(N ε -benzyl formateoxycarbonyl-L-lysine-co-L-phenylalanine) (PZLP) scaffolds were successfully prepared by a combination of ring-opening polymerization of α-amino acid N-carboxyanhydride and negative porous NaCl templating approach. The physicochemical properties of these scaffolds including glass transition temperature, contact angle, compression modulus and degradation behavior were characterized. Both in vitro and in vivo biocompatibility of the scaffolds were evaluated by MC3T3-E1 cell culture and SD subcutaneous model, respectively. The results from live-dead staining, MTT and ALP activity assays indicated that PZL scaffolds were more conducive to the adhesion, proliferation and osteoblastic differentiation of MC3T3-E1 cells compared to PZLP scaffolds in the initial culture period due to their specific surface properties. While porous structure rather than surface properties of scaffolds played a decisive role in the later stage of cell culture. The results of in vivo studies including H&E, Masson's trichrome and CD34 staining further demonstrated that PZL scaffolds supported the ingrowth of microvessels than PZLP scaffolds due to their surface property difference. Collectively, PZL scaffolds displayed good biocompatibility and could be a promising candidate for tissue engineering application.
Collapse
Affiliation(s)
- Ning Cui
- Key Laboratory of Space Bioscience and Biotechnology, School of Life Science, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China. State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | | | | | | | | |
Collapse
|
7
|
Elkhodiry MA, Boulanger MD, Bashth O, Tanguay JF, Laroche G, Hoesli CA. Isolating and expanding endothelial progenitor cells from peripheral blood on peptide-functionalized polystyrene surfaces. Biotechnol Bioeng 2019; 116:2598-2609. [PMID: 31286475 DOI: 10.1002/bit.27107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/19/2019] [Accepted: 07/01/2019] [Indexed: 11/11/2022]
Abstract
The expansion of human peripheral blood endothelial progenitor cells to obtain therapeutically relevant endothelial colony-forming cells (ECFCs) has been commonly performed on xeno-derived extracellular matrix proteins. For cellular therapy applications, xeno-free culture conditions are desirable to improve product safety and reduce process variability. We have previously described a novel fluorophore-tagged RGD peptide (RGD-TAMRA) that enhanced the adhesion of mature endothelial cells in vitro. To investigate whether this peptide can replace animal-derived extracellular matrix proteins in the isolation and expansion of ECFCs, peripheral blood mononuclear cells from 22 healthy adult donors were seeded on RGD-TAMRA-modified polystyrene culture surfaces. Endothelial colony formation was significantly enhanced on RGD-TAMRA-modified surfaces compared to the unmodified control. No phenotypic differences were detected between ECFCs obtained on RGD-TAMRA compared to ECFCs obtained on rat-tail collagen-coated surfaces. Compared with collagen-coated surfaces and unmodified surfaces, RGD-TAMRA surfaces promoted ECFC adhesion, cell spreading, and clonal expansion. This study presents a platform that allows for a comprehensive in vitro evaluation of peptide-based biofunctionalization as a promising avenue for ex vivo ECFC expansion.
Collapse
Affiliation(s)
- Mohamed A Elkhodiry
- Department of Chemical Engineering, McGill University, Montréal, Quebec, Canada
| | - Mariève D Boulanger
- Department of Chemical Engineering, McGill University, Montréal, Quebec, Canada
| | - Omar Bashth
- Department of Chemical Engineering, McGill University, Montréal, Quebec, Canada
| | - Jean-François Tanguay
- Coronary Care Unit, Montréal Heart Institute, Montréal, Quebec, Canada.,Department of Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Gaétan Laroche
- Département de Génie des Mines, des Matériaux et de la Métallurgie, Centre de Recherche du CHU de Québec, Université Laval, Quebec City, Quebec, Canada
| | - Corinne A Hoesli
- Department of Chemical Engineering, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
8
|
Aoki M, Aoki H, Mukhopadhyay P, Tsuge T, Yamamoto H, Matsumoto NM, Toyohara E, Okubo Y, Ogawa R, Takabe K. Sphingosine-1-Phosphate Facilitates Skin Wound Healing by Increasing Angiogenesis and Inflammatory Cell Recruitment with Less Scar Formation. Int J Mol Sci 2019; 20:ijms20143381. [PMID: 31295813 PMCID: PMC6678961 DOI: 10.3390/ijms20143381] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 11/25/2022] Open
Abstract
Wound healing starts with the recruitment of inflammatory cells that secrete wound-related factors. This step is followed by fibroblast activation and tissue construction. Sphingosine-1-phosphate (S1P) is a lipid mediator that promotes angiogenesis, cell proliferation, and attracts immune cells. We investigated the roles of S1P in skin wound healing by altering the expression of its biogenic enzyme, sphingosine kinase-1 (SphK1). The murine excisional wound splinting model was used. Sphingosine kinase-1 (SphK1) was highly expressed in murine wounds and that SphK1−/− mice exhibit delayed wound closure along with less angiogenesis and inflammatory cell recruitment. Nanoparticle-mediated topical SphK1 overexpression accelerated wound closure, which associated with increased angiogenesis, inflammatory cell recruitment, and various wound-related factors. The SphK1 overexpression also led to less scarring, and the interaction between transforming growth factor (TGF)-β1 and S1P receptor-2 (S1PR2) signaling is likely to play a key role. In summary, SphK1 play important roles to strengthen immunity, and contributes early wound healing with suppressed scarring. S1P can be a novel therapeutic molecule with anti-scarring effect in surgical, trauma, and chronic wound management.
Collapse
Affiliation(s)
- Masayo Aoki
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Tokyo 113-8603, Japan
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine and Massey Cancer Center, Richmond, VA 23298-0011, USA
| | - Hiroaki Aoki
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine and Massey Cancer Center, Richmond, VA 23298-0011, USA
- Department of Surgery, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Partha Mukhopadhyay
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine and Massey Cancer Center, Richmond, VA 23298-0011, USA
| | - Takuya Tsuge
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Tokyo 113-8603, Japan
| | - Hirofumi Yamamoto
- Department of Molecular Pathology, Osaka University, Suita 565-0871, Japan
| | - Noriko M Matsumoto
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Tokyo 113-8603, Japan
| | - Eri Toyohara
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Tokyo 113-8603, Japan
| | - Yuri Okubo
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Tokyo 113-8603, Japan
| | - Rei Ogawa
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Tokyo 113-8603, Japan
| | - Kazuaki Takabe
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine and Massey Cancer Center, Richmond, VA 23298-0011, USA.
- Division of Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
- Department of Surgery, University at Buffalo Jacob School of Medicine and Biomedical Sciences, the State University of New York, Buffalo, NY 14203, USA.
| |
Collapse
|
9
|
Ex vivo expansion of cord blood-derived endothelial cells using a novel xeno-free culture media. Future Sci OA 2019; 5:FSO376. [PMID: 31245040 PMCID: PMC6554691 DOI: 10.2144/fsoa-2018-0103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 01/09/2019] [Indexed: 01/06/2023] Open
Abstract
Aim Endothelial cells (ECs), isolated from peripheral blood (PB), bone marrow (BM) and cord blood (CB), are limited in numbers and expansion has had limited success. We used a novel serum-free medium (EndoGo) to evaluate effects on ex vivo expansion of CB-derived ECs. Materials & methods Flow cytometry and matrigel were used to determine expansion of ECs and for determination of the EC progenitor cell. Results EndoGo™-containing cultures demonstrated superior expansion and stimulated proliferation of two distinct subpopulations, CD34+CD31+ and CD34-CD31+, which exhibited different morphology, phenotype and function. EndoGo also expanded the CB endothelial progenitor cells from freshly isolated CB. Conclusion These findings demonstrate the potential of EndoGo to expand CB ECs, which could generate increased numbers of ECs for therapeutic applications.
Collapse
|
10
|
Ex vivoexpansion of cord blood-derived endothelial cells using a novel xeno-free culture media. Future Sci OA 2019. [DOI: 10.4155/fsoa-2018-0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
11
|
Vasculogenic Stem and Progenitor Cells in Human: Future Cell Therapy Product or Liquid Biopsy for Vascular Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1201:215-237. [PMID: 31898789 DOI: 10.1007/978-3-030-31206-0_11] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
New blood vessel formation in adults was considered to result exclusively from sprouting of preexisting endothelial cells, a process referred to angiogenesis. Vasculogenesis, the formation of new blood vessels from endothelial progenitor cells, was thought to occur only during embryonic life. Discovery of adult endothelial progenitor cells (EPCs) in 1997 opened the door for cell therapy in vascular disease. Endothelial progenitor cells contribute to vascular repair and are now well established as postnatal vasculogenic cells in humans. It is now admitted that endothelial colony-forming cells (ECFCs) are the vasculogenic subtype. ECFCs could be used as a cell therapy product and also as a liquid biopsy in several vascular diseases or as vector for gene therapy. However, despite a huge interest in these cells, their tissue and molecular origin is still unclear. We recently proposed that endothelial progenitor could come from very small embryonic-like stem cells (VSELs) isolated in human from CD133 positive cells. VSELs are small dormant stem cells related to migratory primordial germ cells. They have been described in bone marrow and other organs. This chapter discusses the reported findings from in vitro data and also preclinical studies that aimed to explore stem cells at the origin of vasculogenesis in human and then explore the potential use of ECFCs to promote newly formed vessels or serve as liquid biopsy to understand vascular pathophysiology and in particular pulmonary disease and haemostasis disorders.
Collapse
|
12
|
Endovascular Interventions Permit Isolation of Endothelial Colony-Forming Cells from Peripheral Blood. Int J Mol Sci 2018; 19:ijms19113453. [PMID: 30400266 PMCID: PMC6274882 DOI: 10.3390/ijms19113453] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/30/2018] [Accepted: 11/01/2018] [Indexed: 11/16/2022] Open
Abstract
Background: Isolation of endothelial colony-forming cells (ECFCs) is difficult due to the extremely low concentration of their precursors in the peripheral blood (PB). We hypothesized that mechanical injury to the arterial wall during percutaneous coronary intervention (PCI) or coronary artery bypass grafting (CABG) may increase the release of circulating ECFC precursors and induce their growth in vitro. Methods: PB samples from patients with coronary artery disease were collected before, immediately after, and 24 h after the surgery in the CABG group. In the PCI group, PB was isolated before, immediately after the insertion of the catheter, immediately after balloon angioplasty, and 24 h after the PCI. A mononuclear fraction of PB was isolated and differentiated into ECFCs with the following immunophenotyping and evaluation of angiogenic properties. Results. The obtained cultures corresponded to the phenotype and tube forming potential consistent with ECFCs. The isolation of ECFCs in the PCI group was successful in 75% of cases (six out of eight patients) after catheter insertion and in 87.5% (seven out of eight patients) after the balloon inflation and stent deployment. These cultures had high/medium proliferative activity in contrast to those obtained before or 24 h after the intervention. Conclusions: Mechanical injury during PCI increases the release of ECFC precursors to the PB and, hence, the efficacy of ECFC isolation.
Collapse
|
13
|
Puttini S, Plaisance I, Barile L, Cervio E, Milano G, Marcato P, Pedrazzini T, Vassalli G. ALDH1A3 Is the Key Isoform That Contributes to Aldehyde Dehydrogenase Activity and Affects in Vitro Proliferation in Cardiac Atrial Appendage Progenitor Cells. Front Cardiovasc Med 2018; 5:90. [PMID: 30087899 PMCID: PMC6066537 DOI: 10.3389/fcvm.2018.00090] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/25/2018] [Indexed: 12/23/2022] Open
Abstract
High aldehyde dehydrogenase (ALDHhi) activity has been reported in normal and cancer stem cells. We and others have shown previously that human ALDHhi cardiac atrial appendage cells are enriched with stem/progenitor cells. The role of ALDH in these cells is poorly understood but it may come down to the specific ALDH isoform(s) expressed. This study aimed to compare ALDHhi and ALDHlo atrial cells and to identify the isoform(s) that contribute to ALDH activity, and their functional role. Methods and Results: Cells were isolated from atrial appendage specimens from patients with ischemic and/or valvular heart disease undergoing heart surgery. ALDHhi activity assessed with the Aldefluor reagent coincided with primitive surface marker expression (CD34+). Depending on their ALDH activity, RT-PCR analysis of ALDHhi and ALDHlo cells demonstrated a differential pattern of pluripotency genes (Oct 4, Nanog) and genes for more established cardiac lineages (Nkx2.5, Tbx5, Mef2c, GATA4). ALDHhi cells, but not ALDHlo cells, formed clones and were culture-expanded. When cultured under cardiac differentiation conditions, ALDHhi cells gave rise to a higher number of cardiomyocytes compared with ALDHlo cells. Among 19 ALDH isoforms known in human, ALDH1A3 was most highly expressed in ALDHhi atrial cells. Knocking down ALDH1A3, but not ALDH1A1, ALDH1A2, ALDH2, ALDH4A1, or ALDH8A1 using siRNA decreased ALDH activity and cell proliferation in ALDHhi cells. Conversely, overexpressing ALDH1A3 with a retroviral vector increased proliferation in ALDHlo cells. Conclusions: ALDH1A3 is the key isoform responsible for ALDH activity in ALDHhi atrial appendage cells, which have a propensity to differentiate into cardiomyocytes. ALDH1A3 affects in vitro proliferation of these cells.
Collapse
Affiliation(s)
- Stefania Puttini
- Cardiovascular Department, CHUV University Hospital, Lausanne, Switzerland
| | - Isabelle Plaisance
- Cardiovascular Department, CHUV University Hospital, Lausanne, Switzerland
| | - Lucio Barile
- Cardiocentro Ticino Foundation and Swiss Institute for Regenerative Medicine, Lugano, Switzerland
| | - Elisabetta Cervio
- Cardiocentro Ticino Foundation and Swiss Institute for Regenerative Medicine, Lugano, Switzerland
| | - Giuseppina Milano
- Cardiovascular Department, CHUV University Hospital, Lausanne, Switzerland.,Cardiocentro Ticino Foundation and Swiss Institute for Regenerative Medicine, Lugano, Switzerland
| | - Paola Marcato
- Departments of Pathology, Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Thierry Pedrazzini
- Cardiovascular Department, CHUV University Hospital, Lausanne, Switzerland
| | - Giuseppe Vassalli
- Cardiovascular Department, CHUV University Hospital, Lausanne, Switzerland.,Cardiocentro Ticino Foundation and Swiss Institute for Regenerative Medicine, Lugano, Switzerland
| |
Collapse
|
14
|
Cretoiu D, Radu BM, Banciu A, Banciu DD, Cretoiu SM. Telocytes heterogeneity: From cellular morphology to functional evidence. Semin Cell Dev Biol 2016; 64:26-39. [PMID: 27569187 DOI: 10.1016/j.semcdb.2016.08.023] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 08/24/2016] [Indexed: 12/19/2022]
Abstract
Telocytes (TCs), located ubiquitously in the internal organs of vertebrates, are a heterogeneous, recently described, cell population of the stromal space. Characterized by lengthy cytoplasmic extensions that can reach tens of microns and are called telopodes (Tps), TCs are difficult to see using conventional microscopes. It was the electron microscopy which led to their first identification and Popescu's team the first responsible for the reconstructions indicating TCs 'organization' in a three-dimensional (3D) network that is believed to be accountable for the complex roles of TCs. Gradually, it became increasingly evident that TCs are difficult to characterize in terms of immunophenotype and that their phenotype is different depending on the location and needs of the tissue at one time. This review discusses the growing body of evidence accumulated since TCs were discovered and highlights how the complex interplay between TCs and stem cells might be of importance for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Dragos Cretoiu
- Division of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania; 'Victor Babes' National Institute of Pathology, Bucharest 050096, Romania
| | - Beatrice Mihaela Radu
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona 37134, Italy; Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Bucharest 050095, Romania
| | - Adela Banciu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Bucharest 050095, Romania
| | - Daniel Dumitru Banciu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Bucharest 050095, Romania
| | - Sanda Maria Cretoiu
- Division of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania; 'Victor Babes' National Institute of Pathology, Bucharest 050096, Romania.
| |
Collapse
|
15
|
Patel J, Donovan P, Khosrotehrani K. Concise Review: Functional Definition of Endothelial Progenitor Cells: A Molecular Perspective. Stem Cells Transl Med 2016; 5:1302-1306. [PMID: 27381992 DOI: 10.5966/sctm.2016-0066] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/25/2016] [Indexed: 01/10/2023] Open
Abstract
: Since the discovery of endothelial progenitor cells (EPCs) almost 2 decades ago, there has been great hope in their use in treating chronic ischemic disease. Unfortunately, to date, many of the clinical trials using EPCs have been hampered by the lack of clear definition of this cell population. Attributes of a progenitor population are self-renewal and multipotentiality. Major progress has been achieved moving from a definition of EPCs based on a candidate cell surface molecule to a functional definition based essentially on self-renewal hierarchy of endothelial colony-forming cells (ECFCs). More recent work has seized on this functional characterization to associate gene expression signatures with the self-renewal capacity of ECFCs. In particular, Notch signaling driving the quiescence of progenitors has been shown to be central to progenitor self-renewal. This new molecular definition has tremendous translational consequences, because progenitors have been shown to display greater vasculogenic potential. Also, this molecular definition of EPC self-renewal allows assessment of the quality of presumed EPC preparations. This promises to be the initial stage in progressing EPCs further into mainstream clinical use. SIGNIFICANCE The development of a therapy using endothelial progenitor cells provides great hope for patients in treating cardiovascular diseases going forward. For continual development of this therapy toward the clinical, further understanding of the fundamental biology of these cells is required. This will enable a greater understanding of their stemness capacity and provide insight into their ability to differentiate and drive tissue regeneration when injected into a host.
Collapse
Affiliation(s)
- Jatin Patel
- University of Queensland Centre for Clinical Research, Herston, Queensland, Australia
| | - Prudence Donovan
- University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Kiarash Khosrotehrani
- University of Queensland Centre for Clinical Research, Herston, Queensland, Australia University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland, Australia
| |
Collapse
|
16
|
Tasev D, Konijnenberg LSF, Amado-Azevedo J, van Wijhe MH, Koolwijk P, van Hinsbergh VWM. CD34 expression modulates tube-forming capacity and barrier properties of peripheral blood-derived endothelial colony-forming cells (ECFCs). Angiogenesis 2016; 19:325-38. [PMID: 27043316 PMCID: PMC4930476 DOI: 10.1007/s10456-016-9506-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/19/2016] [Indexed: 11/30/2022]
Abstract
Endothelial colony-forming cells (ECFC) are grown from circulating CD34+ progenitors present in adult peripheral blood, but during in vitro expansion part of the cells lose CD34. To evaluate whether the regulation of CD34 characterizes the angiogenic phenotypical features of PB-ECFCs, we investigated the properties of CD34+ and CD34− ECFCs with respect to their ability to form capillary-like tubes in 3D fibrin matrices, tip-cell gene expression, and barrier integrity. Selection of CD34+ and CD34− ECFCs from subcultured ECFCs was accomplished by magnetic sorting (FACS: CD34+: 95 % pos; CD34−: 99 % neg). Both fractions proliferated at same rate, while CD34+ ECFCs exhibited higher tube-forming capacity and tip-cell gene expression than CD34− cells. However, during cell culture CD34− cells re-expressed CD34. Cell-seeding density, cell–cell contact formation, and serum supplements modulated CD34 expression. CD34 expression in ECFCs was strongly suppressed by newborn calf serum. Stimulation with FGF-2, VEGF, or HGF prepared in medium supplemented with 3 % albumin did not change CD34 mRNA or surface expression. Silencing of CD34 with siRNA resulted in strengthening of cell–cell contacts and increased barrier function of ECFC monolayers as measured by ECIS. Furthermore, CD34 siRNA reduced tube formation by ECFC, but did not affect tip-cell gene expression. These findings demonstrate that CD34+ and CD34− cells are different phenotypes of similar cells and that CD34 (1) can be regulated in ECFC; (2) is positively involved in capillary-like sprout formation; (3) is associated but not causally related to tip-cell gene expression; and (4) can affect endothelial barrier function.
Collapse
Affiliation(s)
- Dimitar Tasev
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center Amsterdam, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands.,A-Skin Nederland BV, De Boelelaan 1117, 1007 MB, Amsterdam, The Netherlands
| | - Lara S F Konijnenberg
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center Amsterdam, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands
| | - Joana Amado-Azevedo
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center Amsterdam, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands
| | - Michiel H van Wijhe
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center Amsterdam, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands
| | - Pieter Koolwijk
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center Amsterdam, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands
| | - Victor W M van Hinsbergh
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center Amsterdam, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
17
|
Almubarak S, Nethercott H, Freeberg M, Beaudon C, Jha A, Jackson W, Marcucio R, Miclau T, Healy K, Bahney C. Tissue engineering strategies for promoting vascularized bone regeneration. Bone 2016; 83:197-209. [PMID: 26608518 PMCID: PMC4911893 DOI: 10.1016/j.bone.2015.11.011] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/06/2015] [Accepted: 11/17/2015] [Indexed: 02/07/2023]
Abstract
This review focuses on current tissue engineering strategies for promoting vascularized bone regeneration. We review the role of angiogenic growth factors in promoting vascularized bone regeneration and discuss the different therapeutic strategies for controlled/sustained growth factor delivery. Next, we address the therapeutic uses of stem cells in vascularized bone regeneration. Specifically, this review addresses the concept of co-culture using osteogenic and vasculogenic stem cells, and how adipose derived stem cells compare to bone marrow derived mesenchymal stem cells in the promotion of angiogenesis. We conclude this review with a discussion of a novel approach to bone regeneration through a cartilage intermediate, and discuss why it has the potential to be more effective than traditional bone grafting methods.
Collapse
Affiliation(s)
- Sarah Almubarak
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States; UCSF-UCB Masters of Translational Medicine Program, Berkeley and San Francisco, CA, United States
| | - Hubert Nethercott
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States; UCSF-UCB Masters of Translational Medicine Program, Berkeley and San Francisco, CA, United States
| | - Marie Freeberg
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States; UCSF-UCB Masters of Translational Medicine Program, Berkeley and San Francisco, CA, United States
| | - Caroline Beaudon
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States; UCSF-UCB Masters of Translational Medicine Program, Berkeley and San Francisco, CA, United States
| | - Amit Jha
- Departments of Bioengineering, and Material Science and Engineering, University of California, Berkeley (UCB), Berkeley, CA, United States
| | - Wesley Jackson
- Departments of Bioengineering, and Material Science and Engineering, University of California, Berkeley (UCB), Berkeley, CA, United States
| | - Ralph Marcucio
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Theodore Miclau
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Kevin Healy
- Departments of Bioengineering, and Material Science and Engineering, University of California, Berkeley (UCB), Berkeley, CA, United States
| | - Chelsea Bahney
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States; Departments of Bioengineering, and Material Science and Engineering, University of California, Berkeley (UCB), Berkeley, CA, United States.
| |
Collapse
|
18
|
Patel J, Wong HY, Wang W, Alexis J, Shafiee A, Stevenson AJ, Gabrielli B, Fisk NM, Khosrotehrani K. Self-Renewal and High Proliferative Colony Forming Capacity of Late-Outgrowth Endothelial Progenitors Is Regulated by Cyclin-Dependent Kinase Inhibitors Driven by Notch Signaling. Stem Cells 2016; 34:902-12. [PMID: 26732848 DOI: 10.1002/stem.2262] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 11/10/2015] [Accepted: 11/30/2015] [Indexed: 11/10/2022]
Abstract
Since the discovery of endothelial colony forming cells (ECFC), there has been significant interest in their therapeutic potential to treat vascular injuries. ECFC cultures display significant heterogeneity and a hierarchy among cells able to give rise to high proliferative versus low proliferative colonies. Here we aimed to define molecularly this in vitro hierarchy. Based on flow cytometry, CD34 expression levels distinguished two populations. Only CD34 + ECFC had the capacity to reproduce high proliferative potential (HPP) colonies on replating, whereas CD34- ECFCs formed only small clusters. CD34 + ECFCs were the only ones to self-renew in stringent single-cell cultures and gave rise to both CD34 + and CD34- cells. Upon replating, CD34 + ECFCs were always found at the centre of HPP colonies and were more likely in G0/1 phase of cell cycling. Functionally, CD34 + ECFC were superior at restoring perfusion and better engrafted when injected into ischemic hind limbs. Transcriptomic analysis identified cyclin-dependent kinase (CDK) cell cycle inhibiting genes (p16, p21, and p57), the Notch signaling pathway (dll1, dll4, hes1, and hey1), and the endothelial cytokine il33 as highly expressed in CD34 + ECFC. Blocking the Notch pathway using a γ-secretase inhibitor (DAPT) led to reduced expression of cell cycle inhibitors, increased cell proliferation followed by a loss of self-renewal, and HPP colony formation capacity reflecting progenitor exhaustion. Similarly shRNA knockdown of p57 strongly affected self-renewal of ECFC colonies. ECFC hierarchy is defined by Notch signalling driving cell cycle regulators, progenitor quiescence and self-renewal potential.
Collapse
Affiliation(s)
- Jatin Patel
- UQ Centre for Clinical Research, The University of Queensland, Herston, Queensland, Australia
| | - Ho Yi Wong
- UQ Centre for Clinical Research, The University of Queensland, Herston, Queensland, Australia
| | - Weili Wang
- UQ Centre for Clinical Research, The University of Queensland, Herston, Queensland, Australia
| | - Josue Alexis
- UQ Diamantina Institute, Translational Research Institute, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Abbas Shafiee
- UQ Centre for Clinical Research, The University of Queensland, Herston, Queensland, Australia
| | - Alexander J Stevenson
- UQ Diamantina Institute, Translational Research Institute, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Brian Gabrielli
- UQ Diamantina Institute, Translational Research Institute, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Nicholas M Fisk
- UQ Centre for Clinical Research, The University of Queensland, Herston, Queensland, Australia.,Centre for Advanced Prenatal Care, Royal Brisbane & Women's Hospital, Herston, Queensland, Australia
| | - Kiarash Khosrotehrani
- UQ Centre for Clinical Research, The University of Queensland, Herston, Queensland, Australia.,UQ Diamantina Institute, Translational Research Institute, The University of Queensland, Woolloongabba, Queensland, Australia
| |
Collapse
|
19
|
Lau S, Schrimpf C, Klingenberg M, Helfritz F, Aper T, Haverich A, Wilhelmi M, Böer U. Evaluation of autologous tissue sources for the isolation of endothelial cells and adipose tissue-derived mesenchymal stem cells to pre-vascularize tissue-engineered vascular grafts. ACTA ACUST UNITED AC 2015. [DOI: 10.1515/bnm-2015-0014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractCurrently used synthetic vascular grafts bear a high infection risk due to insufficient microvascularization of the graft wall disabling the infiltration of immune cells. Tissue-engineered grafts with a functional pre-vascularization thus would be desirable. However, autologous tissue sources for capillary forming cells need to be evaluated. Here, peripheral blood outgrowth endothelial cells (PB-OEC) from 17 healthy donors and pericyte-like mesenchymal stem cells derived from adipose tissue (ASC) of 17 patients scheduled for visceral surgery were characterized and investigated regarding their ability to form capillary-like networks in plasma-derived fibrin gels. To obtain proliferating PB-OEC with endothelial cell-specific properties (CD31-, VE-cadherin-expression, ac-LDL uptake and three-dimensional (3D)-tube formation in fibrin gels) both enrichment of CD34
Collapse
|