1
|
Song F, Xu D, Che J, Huang M, Li H. Chitosan hydrogel incorporated with bone marrow mesenchymal stem cell-derived exosomal TIMP2 to inhibit angiogenesis in cholangiocarcinoma. Tissue Cell 2024; 93:102694. [PMID: 39718067 DOI: 10.1016/j.tice.2024.102694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 12/25/2024]
Abstract
OBJECTIVE Cholangiocarcinoma (CCA) presents a therapeutic challenge due to its aggressiveness and poor survival rates. This study introduces an approach using tissue inhibitor of metalloproteinase 2 (TIMP2)-enriched bone marrow mesenchymal stem cell-derived exosomes (BMSC-Exo) encapsulated in chitosan hydrogels (CS), intending to provide novel insight into the CCA treatment. METHODS BMSC-Exo was characterized by using TEM, nanoparticle tracking analysis, and western blotting. Role of TIMP2 in CCA was explored using bioinformatics analysis. Therapeutic efficacy and mechanisms of BMSC-Exo/CS in CCA were assessed through cell viability tests and colony formation assays. Angiogenic and Wnt/β-catenin signaling pathways-related key factors were detected through RT-qPCR or western blotting. RESULTS BMSC-Exo displayed typical cup-shaped morphology and was positive for exosomal markers CD9 and TSG101, but negative for endoplasmic reticulum marker Calnexin, with a diameter of 124.6 nm. BMSC-Exo combined with CS showed synergistic anti-proliferative effects in CCA cells. High-expression TIMP2 samples indicated a better prognosis of CCA patients, and BMSC-Exo/CS increased the TIMP2 expression in CCA cells. Mechanistically, BMSC-Exo/CS TIMP2 overexpression inhibited key factors related to angiogenesis (VEGFA and VEGFR2) and Wnt/β-catenin pathway (β-catenin and c-Myc), thereby reducing CCA cell viability. Notably, these inhibitory effects were reversed by a Wnt signaling agonist (BML-284). CONCLUSION The study validates the therapeutic potential of BMSC-Exo/CS TIMP2 in CCA treatment. This innovative approach targets angiogenesis and Wnt/β-catenin signaling, providing a new avenue for more effective and comprehensive CCA therapies.
Collapse
Affiliation(s)
- Fei Song
- Department of Minimally Invasive Intervention, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| | - Dan Xu
- Department of Medical laboratory, Pingbian County People's Hospital, Pingbian, Yunnan, China.
| | - Jiayin Che
- Department of Minimally Invasive Intervention, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| | - Ming Huang
- Department of Minimally Invasive Intervention, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| | - Hongyang Li
- Department of Minimally Invasive Intervention, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| |
Collapse
|
2
|
Lin Z, Assaraf YG, Kwok HF. Peptides for microbe-induced cancers: latest therapeutic strategies and their advanced technologies. Cancer Metastasis Rev 2024; 43:1315-1336. [PMID: 39008152 DOI: 10.1007/s10555-024-10197-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 06/14/2024] [Indexed: 07/16/2024]
Abstract
Cancer is a significant global health concern associated with multiple distinct factors, including microbial and viral infections. Numerous studies have elucidated the role of microorganisms, such as Helicobacter pylori (H. pylori), as well as viruses for example human papillomavirus (HPV), hepatitis B virus (HBV), and hepatitis C virus (HCV), in the development of human malignancies. Substantial attention has been focused on the treatment of these microorganism- and virus-associated cancers, with promising outcomes observed in studies employing peptide-based therapies. The current paper provides an overview of microbe- and virus-induced cancers and their underlying molecular mechanisms. We discuss an assortment of peptide-based therapies which are currently being developed, including tumor-targeting peptides and microbial/viral peptide-based vaccines. We describe the major technological advancements that have been made in the design, screening, and delivery of peptides as anticancer agents. The primary focus of the current review is to provide insight into the latest research and development in this field and to provide a realistic glimpse into the future of peptide-based therapies for microbe- and virus-induced neoplasms.
Collapse
Affiliation(s)
- Ziqi Lin
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Lab, Faculty of Biology, Technion-Israel Instituteof Technology, Haifa, 3200003, Israel
| | - Hang Fai Kwok
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR.
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR.
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Avenida de Universidade, Taipa, Macau SAR.
| |
Collapse
|
3
|
Zhao L, Wu Q, Long Y, Qu Q, Qi F, Liu L, Zhang L, Ai K. microRNAs: critical targets for treating rheumatoid arthritis angiogenesis. J Drug Target 2024; 32:1-20. [PMID: 37982157 DOI: 10.1080/1061186x.2023.2284097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/09/2023] [Indexed: 11/21/2023]
Abstract
Vascular neogenesis, an early event in the development of rheumatoid arthritis (RA) inflammation, is critical for the formation of synovial vascular networks and plays a key role in the progression and persistence of chronic RA inflammation. microRNAs (miRNAs), a class of single-stranded, non-coding RNAs with approximately 21-23 nucleotides in length, regulate gene expression by binding to the 3' untranslated region (3'-UTR) of specific mRNAs. Increasing evidence suggests that miRNAs are differently expressed in diseases associated with vascular neogenesis and play a crucial role in disease-related vascular neogenesis. However, current studies are not sufficient and further experimental studies are needed to validate and establish the relationship between miRNAs and diseases associated with vascular neogenesis, and to determine the specific role of miRNAs in vascular development pathways. To better treat vascular neogenesis in diseases such as RA, we need additional studies on the role of miRNAs and their target genes in vascular development, and to provide more strategic references. In addition, future studies can use modern biotechnological methods such as proteomics and transcriptomics to investigate the expression and regulatory mechanisms of miRNAs, providing a more comprehensive and in-depth research basis for the treatment of related diseases such as RA.
Collapse
Affiliation(s)
- Lingyun Zhao
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Qingze Wu
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Yiying Long
- Hunan Traditional Chinese Medical College, Zhuzhou, China
| | - Qirui Qu
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Fang Qi
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Li Liu
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Liang Zhang
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Kun Ai
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
4
|
Hamada Y, Tanoue K, Arigami T, Yamakuchi M, Okawa M, Matsushita D, Takenouchi K, Yamada S, Maywar DN, Nakayama C, Oyama Y, Higashi S, Fujisaki C, Hozaka Y, Kita Y, Hashiguchi T, Ohtsuka T. The Vascular Endothelial Growth Factor-A121/Vascular Endothelial Growth Factor-A165 Ratio as a Predictor of the Therapeutic Response to Immune Checkpoint Inhibitors in Gastric Cancer. Cancers (Basel) 2024; 16:3958. [PMID: 39682145 DOI: 10.3390/cancers16233958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/14/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES The response rate to immune checkpoint inhibitor (ICI) therapy is limited. Further, there is a need to discover biomarkers to predict therapeutic efficacy. The vascular endothelial growth factor (VEGF) is strongly associated with intra-tumoral immunity; however, its utility as a marker remains unknown. Therefore, our objectives were to examine the isoforms of VEGF and determine whether VEGF levels predict ICI efficacy. METHODS Levels of VEGF isoforms VEGF-A121 and VEGF-A165 were measured in stored serum samples obtained from 30 patients with advanced or recurrent gastric cancer who received nivolumab monotherapy at Kagoshima University Hospital, and the association with prognosis and treatment efficacy was retrospectively analyzed. RESULTS The serum levels of the total VEGF, VEGF-A121, and VEGF-A165 were not significantly associated with prognosis. However, the ratio of VEGF-A121/VEGF-A165 (VEGF-A121/165) exhibited a statistically significant (p = 0.0088) difference in progression-free survival (PFS) with the low-ratio group having a 67-day prolonged median PFS time. Under univariable analysis, only VEGF-A121/165 values exhibited reduced progression-free survival with statistical significance. When comparing treatment responses in the low (n = 15) and high (n = 15) serum VEGF-A-121/165 groups, RECIST evaluation was 3 to 0 for complete response (CR), 2 to 0 for partial response (PR), 3 to 2 for stable disease (SD), and 3 to 10 for progressive disease (PD). Patients with clinically unsettled PR or SD were classified as non-CR/non-PD (4 vs. 3), with a disease control rate of 80% vs. 33%. CONCLUSIONS The serum VEGF-A121/165 ratio may represent a new, easily measured biomarker for predicting the therapeutic response to ICIs.
Collapse
Affiliation(s)
- Yuki Hamada
- Department of Digestive Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Kiyonori Tanoue
- Department of Digestive Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
- Department of Laboratory and Vascular Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Takaaki Arigami
- Department of Digestive Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Munekazu Yamakuchi
- Department of Laboratory and Vascular Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Masashi Okawa
- Department of Cardiovascular and Gastroenterological Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Daisuke Matsushita
- Department of Digestive Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Kazunori Takenouchi
- Department of Laboratory and Vascular Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | | | - Drew N Maywar
- Department of Electrical and Computer Engineering Technology, Rochester Institute of Technology, Rochester, NY 14623, USA
| | - Chieri Nakayama
- Department of Digestive Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Yoko Oyama
- Department of Laboratory and Vascular Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Sadayuki Higashi
- Department of Laboratory and Vascular Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Chieko Fujisaki
- Department of Laboratory and Vascular Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Yuto Hozaka
- Department of Digestive Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Yoshiaki Kita
- Department of Digestive Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Teruto Hashiguchi
- Department of Laboratory and Vascular Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Takao Ohtsuka
- Department of Digestive Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| |
Collapse
|
5
|
Li Y, Zhao J, Li R, Yao X, Dong X, Zhang R, Li Y. Treatment options for tumor progression after initial immunotherapy in advanced non-small cell lung cancer: A real-world study. Neoplasia 2024; 57:101043. [PMID: 39226660 PMCID: PMC11403516 DOI: 10.1016/j.neo.2024.101043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/14/2024] [Accepted: 08/22/2024] [Indexed: 09/05/2024]
Abstract
OBJECTIVE Whether to continue administering immunotherapy to patients with advanced non-small cell lung cancer (NSCLC) who have experienced tumor progression remains controversial after immunotherapy. The aims were to explore survival outcomes after further immunotherapy post-progression and to determine the optimal combination therapy in such cases. METHODS Overall, 507 patients with NSCLC who underwent immunotherapy and experienced tumor progression were retrospectively divided into Immuno-combination and No-immuno groups according to whether additional combination therapy involving immunotherapy was administered post-progression. Progression-free survival (PFS) and overall survival (OS) were evaluated. Subgroup analyses were performed according to the different treatment regimens for patients in the Immuno-combination group. RESULTS After propensity score matching, there were 150 patients in the No-immuno group and 300 patients in the Immuno combination group. Superior PFS was observed in the Immuno-combination group compared with those in the No-immuno group (6-month PFS: 25.3 % vs. 60.6 %; 12-month PFS: 6.7 % vs. 24.4 %; P < 0.001). Similar intergroup differences were observed for OS (12-month OS: 22.3 % vs. 69.4 %; 18-month OS: 6.4 % vs. 40.4 %; P < 0.001). Superior PFS outcomes were observed in the Immuno+Antiangiogenic group compared with the Immuno+Chemo group (6-month PFS: 51.3 % vs. 71.5 %; 12-month PFS: 23.1 % vs. 25.7 %; P = 0.017). Similar differences in OS were observed between those same subgroups (12-month OS: 62.1 % vs. 77.9 %; 18-month OS: 33.3 % vs. 48.7 %; P = 0.006). CONCLUSION Patients with NSCLC experiencing tumor progression post-immunotherapy can still benefit from further treatment, with immunotherapy combined with antiangiogenic therapy the most efficacious option.
Collapse
Affiliation(s)
- Ying Li
- Department of Respiratory Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250000, China
| | - Junfeng Zhao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250000, China
| | - Ruyue Li
- Department of Respiratory Oncology, Shandong Cancer Hospital and Institute, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, Shan Dong, 261000, China
| | - Xiujing Yao
- Department of Respiratory Oncology, Shandong Cancer Hospital and Institute, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, Shan Dong, 261000, China
| | - Xue Dong
- Department of Respiratory Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250000, China
| | - Ruidan Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250000, China
| | - Yintao Li
- Department of Respiratory Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250000, China.
| |
Collapse
|
6
|
Zhong Q, Li D, Yang XP. Progress in antitumor mechanisms and applications of phenformin (Review). Oncol Rep 2024; 52:151. [PMID: 39301645 PMCID: PMC11421015 DOI: 10.3892/or.2024.8810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/03/2024] [Indexed: 09/22/2024] Open
Abstract
Phenformin, a biguanide compound, has attracted increased attention due to its prominent antitumor activity. As a multi‑target agent, the antitumor effects of phenformin involve a wide range of factors, including inhibition of mitochondrial complex I, activation of AMP‑activated protein kinase, impact on the tumor microenvironment, suppression of cancer stem cells and others. In addition, phenformin has been shown to markedly augment the effectiveness of various clinical treatment methods, including radiotherapy, chemotherapy, targeted therapy and immunotherapy. It is noteworthy that breakthrough progress has been made in the treatment of cancer with phenformin with application in clinical trials for the treatment of melanoma. Phenformin not only reduces the lesion area of patients, but also enhances the efficacy of dalafinib/trimetinib. In the present review, the novel breakthroughs in the antitumor effects and mechanisms of phenformin were discussed. In addition, the current review focuses on the clinical development value of phenformin, striving to provide new insights into the future research direction of phenformin in the field of tumor treatment.
Collapse
Affiliation(s)
- Qi Zhong
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - Duo Li
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| | - Xiao-Ping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
7
|
Yang H, Guo K, Ding P, Ning J, Zhang Y, Wang Y, Wang Z, Liu G, Shao C, Pan M, Ma Z, Yan X, Han J. Histone deacetylases: Regulation of vascular homeostasis via endothelial cells and vascular smooth muscle cells and the role in vascular pathogenesis. Genes Dis 2024; 11:101216. [PMID: 39281836 PMCID: PMC11396065 DOI: 10.1016/j.gendis.2024.101216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/20/2023] [Accepted: 01/04/2024] [Indexed: 09/18/2024] Open
Abstract
Histone deacetylases (HDACs) are proteases that play a key role in chromosome structural modification and gene expression regulation, and the involvement of HDACs in cancer, the nervous system, and the metabolic and immune system has been well reviewed. Our understanding of the function of HDACs in the vascular system has recently progressed, and a significant variety of HDAC inhibitors have been shown to be effective in the treatment of vascular diseases. However, few reviews have focused on the role of HDACs in the vascular system. In this study, the role of HDACs in the regulation of the vascular system mainly involving endothelial cells and vascular smooth muscle cells was discussed based on recent updates, and the role of HDACs in different vascular pathogenesis was summarized as well. Furthermore, the therapeutic effects and prospects of HDAC inhibitors were also addressed in this review.
Collapse
Affiliation(s)
- Hanyi Yang
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
- Xi'an Medical University, Xi'an, Shaanxi 710086, China
| | - Kai Guo
- Department of Thoracic Surgery, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710068, China
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Peng Ding
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Jiayi Ning
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
- Xi'an Medical University, Xi'an, Shaanxi 710086, China
| | - Yimeng Zhang
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
- Xi'an Medical University, Xi'an, Shaanxi 710086, China
| | - Yuanyong Wang
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Zhaoyang Wang
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Guanglin Liu
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Changjian Shao
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Minghong Pan
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Zhiqiang Ma
- Department of Medical Oncology, Senior Department of Oncology, Chinese PLA General Hospital, The Fifth Medical Center, Beijing 100853, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| | - Jing Han
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710038, China
| |
Collapse
|
8
|
Dong B, Chen L, Pang Q, Jiang O, Ge H, Cheng Y, Zhou R, Meng X, Li J, Zhu X, Wang X, Cao Q, Ji Y, Chen M. TQB2450 with or without anlotinib as maintenance treatment in subjects with locally advanced/unresectable non-small cell lung cancer that have not progressed after prior concurrent/sequential chemoradiotherapy (R-ALPS): study protocol for a randomized, double-blind, placebo-controlled, multicenter phase III trial. Transl Lung Cancer Res 2024; 13:2828-2837. [PMID: 39507039 PMCID: PMC11535846 DOI: 10.21037/tlcr-24-362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 09/04/2024] [Indexed: 11/08/2024]
Abstract
Background Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of non-small cell lung cancer (NSCLC). TQB2450 (benmelstobart) is a novel humanized immunoglobulin G1 monoclonal antibody against programmed death-ligand 1 (PD-L1). Anlotinib, an oral multitargeted anti-angiogenic agent with potential synergy with ICIs, has shown efficacy in relapsed and advanced NSCLC. Accumulating preclinical data suggest a synergism between immunological and anti-angiogenic therapies through the improvement of the immune microenvironment of the tumor. In this study, we hypothesized that the combination of TQB2450 and anlotinib as maintenance treatment would enable further improvements in the outcomes of patients with locally advanced/unresectable NSCLC without driver mutations that have not progressed after definitive chemoradiotherapy. Methods The Radiotherapy and Anlotinib Let PD-L1 Superb (R-ALPS) study is a randomized, double-blind, placebo-controlled, multicenter phase III study (Clinicaltrials.gov identifier, NCT04325763). A total of 534 eligible participants will be randomized to receive TQB2450 (1,200 mg) plus anlotinib (8 mg), or TQB2450 (1,200 mg) plus placebo, or placebo as maintenance therapy. Progression-free survival (PFS), assessed by the independent review committee is the primary endpoint. The secondary endpoints include additional measures of efficacy, safety, and biomarkers. An interim analysis of the effectiveness will be conducted when 70% (286 cases) of the total PFS events have been reached. Discussion The development of the R-ALPS study will contribute to a deeper insight into the interplay between immunotherapy and anti-angiogenic therapy and thus might expand the treatment options available to patients with locally advanced or unresectable NSCLC. Trial Registration Clinicaltrials.gov identifier: NCT04325763. Date of registration: May 27, 2020. Protocol version: Version 4.0, Sep 16, 2022 (https://classic.clinicaltrials.gov/ct2/show/NCT04325763).
Collapse
Affiliation(s)
- Baiqiang Dong
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Long Chen
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Qingsong Pang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Ou Jiang
- Department of Radiation Oncology, The Second People’s Hospital of Neijiang, Neijiang, China
| | - Hong Ge
- Department of Radiation Oncology, Henan Cancer Hospital, Zhengzhou, China
| | - Yufeng Cheng
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, China
| | - Rongrong Zhou
- Department of Radiation Oncology, Xiangya Hospital Central South University, Changsha, China
| | - Xiangjiao Meng
- Department of Radiation Oncology, Shandong Cancer Hospital & Institute, Jinan, China
| | - Jie Li
- Department of Radiation Oncology, Shanxi Cancer Hospital, Taiyuan, China
| | - Xuan Zhu
- Department of Radiation Oncology, Guangzhou Concord Cancer Center, Guangzhou, China
| | - Xunqiang Wang
- Chia Tai Tianqing Pharmaceutical Group Co., Ltd., Nanjing, China
| | - Qiuyue Cao
- Chia Tai Tianqing Pharmaceutical Group Co., Ltd., Nanjing, China
| | - Yongling Ji
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Ming Chen
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
9
|
Guo M, Sheng W, Yuan X, Wang X. Neutrophils as promising therapeutic targets in pancreatic cancer liver metastasis. Int Immunopharmacol 2024; 140:112888. [PMID: 39133956 DOI: 10.1016/j.intimp.2024.112888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/01/2024] [Accepted: 08/04/2024] [Indexed: 09/01/2024]
Abstract
Pancreatic cancer is characterized by an extremely poor prognosis and presents significant treatment challenges. Liver metastasis is the leading cause of death in patients with pancreatic cancer. Recent studies have highlighted the significant impact of neutrophils on tumor occurrence and progression, as well as their crucial role in the pancreatic cancer tumor microenvironment. Neutrophil infiltration plays a critical role in the progression and prognosis of pancreatic cancer. Neutrophils contribute to pancreatic cancer liver metastasis through various mechanisms, including angiogenesis, immune suppression, immune evasion, and epithelial-mesenchymal transition (EMT). Therefore, targeting neutrophils holds promise as an important therapeutic strategy for inhibiting pancreatic cancer liver metastasis. This article provides a summary of research findings on the involvement of neutrophils in pancreatic cancer liver metastasis and analyzes their potential as therapeutic targets. This research may provide new insights for the treatment of pancreatic cancer and improve the prognosis of patients with this disease.
Collapse
Affiliation(s)
- Minjie Guo
- Department of Thoracic Oncology, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wanying Sheng
- Department of Thoracic Oncology, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiao Yuan
- Cancer Institute of Jiangsu University, Zhenjiang, China.
| | - Xu Wang
- Department of Thoracic Oncology, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| |
Collapse
|
10
|
Kuang H, Yan Q, Li Z, Lin A, Li K, Zhang J, Luo P, Yin Y. Comprehensive analysis of VEGF/VEGFR inhibitor-induced immune-mediated hypertension: integrating pharmacovigilance, clinical data, and preclinical models. Front Immunol 2024; 15:1488853. [PMID: 39502700 PMCID: PMC11534862 DOI: 10.3389/fimmu.2024.1488853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction This study aimed to elucidate the differential immunological mechanisms and characteristics of hypertension induced by VEGF inhibitors (VEGFi) and VEGF receptor inhibitors (VEGFRi), with the goal of optimizing monitoring strategies and treatment protocols. Methods We investigated the risk of immune-related adverse events associated with VEGFi/VEGFRi-induced hypertension by analyzing the FDA Adverse Event Reporting System (FAERS) database. Findings were corroborated with blood pressure characteristics observed in clinical patients and preclinical models exposed to various VEGF/VEGFRi. Clinical and preclinical studies were conducted to compare immunological responses and hypertension profiles between inhibitor classes. An integrative analysis across cancer types and species was performed, focusing on key signaling pathways. Results Analysis of FAERS data, in conjunction with clinical observations, revealed that both VEGFi and VEGFRi significantly elevated the risk of immune-mediated, blood pressure-related adverse events (ROR=7.75, 95% CI: 7.76-7.95). Subsequent clinical and preclinical studies demonstrated differential immunological responses and hypertension profiles between inhibitor classes. VEGFRi exhibited a more rapid onset, greater blood pressure elevation, and higher incidence of immune-mediated adverse events compared to VEGFi (Systolic BP: ROR=0 for VEGFi vs. ROR=12.25, 95% CI: 6.54-22.96 for VEGFRi; Diastolic BP: ROR=5.09, 95% CI: 0.60-43.61 for VEGFi vs. ROR=12.90, 95% CI: 3.73-44.55 for VEGFRi). Integrative analysis across cancer types and species, focusing on key signaling pathways, revealed that VEGF/VEGFRi-induced blood pressure elevation was associated with immunomodulation of the mitogen activated protein kinase (MAPK) pathway (R=-0.379, P=0.0435), alterations in triglyceride metabolism (R=-0.664, P=0.0001), modulation of myo-inositol 1,4,5-trisphosphate-sensitive calcium release channel activity (R=0.389, P=0.0378), and dysregulation of nitric oxide eNOS activation and metabolism (R=-0.439, P=0.0179). Discussion The temporal dynamics of these effects demonstrated greater significance than dose-dependent responses. Both VEGFi and VEGFRi significantly augmented the risk of immune-mediated, blood pressure-related adverse events, with VEGFRi inducing a more rapid and pronounced onset of blood pressure elevation and a higher incidence of immune-related, blood pressure-associated adverse events compared to VEGFi.
Collapse
Affiliation(s)
- Hongyu Kuang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qingkai Yan
- Department of Cardiology, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Zhanzhi Li
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Kailai Li
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuehui Yin
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
Alexandru I, Davidescu L, Motofelea AC, Ciocarlie T, Motofelea N, Costachescu D, Marc MS, Suppini N, Șovrea AS, Coșeriu RL, Bondor DA, Bobeică LG, Crintea A. Emerging Nanomedicine Approaches in Targeted Lung Cancer Treatment. Int J Mol Sci 2024; 25:11235. [PMID: 39457017 PMCID: PMC11508987 DOI: 10.3390/ijms252011235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Lung cancer, the leading cause of cancer-related deaths worldwide, is characterized by its aggressive nature and poor prognosis. As traditional chemotherapy has the disadvantage of non-specificity, nanomedicine offers innovative approaches for targeted therapy, particularly through the development of nanoparticles that can deliver therapeutic agents directly to cancer cells, minimizing systemic toxicity and enhancing treatment efficacy. VEGF and VEGFR are shown to be responsible for activating different signaling cascades, which will ultimately enhance tumor development, angiogenesis, and metastasis. By inhibiting VEGF and VEGFR signaling pathways, these nanotherapeutics can effectively disrupt tumor angiogenesis and proliferation. This review highlights recent advancements in nanoparticle design, including lipid-based, polymeric, and inorganic nanoparticles, and their clinical implications in improving lung cancer outcomes, exploring the role of nanomedicine in lung cancer diagnoses and treatment.
Collapse
Affiliation(s)
- Isaic Alexandru
- Department X of General Surgery, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Lavinia Davidescu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Alexandru Cătălin Motofelea
- Department of Internal Medicine, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Tudor Ciocarlie
- Department VII Internal Medicine II, Discipline of Cardiology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Nadica Motofelea
- Department of Obstetrics and Gynecology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania;
| | - Dan Costachescu
- Radiology Department, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Monica Steluta Marc
- Discipline of Pulmonology, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania; (M.S.M.); (N.S.)
| | - Noemi Suppini
- Discipline of Pulmonology, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania; (M.S.M.); (N.S.)
| | - Alina Simona Șovrea
- Department of Morphological Sciences, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| | - Răzvan-Lucian Coșeriu
- Department of Microbiology, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540142 Târgu-Mures, Romania;
| | - Daniela-Andreea Bondor
- Department of Medical Biochemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.-A.B.); (L.-G.B.); (A.C.)
| | - Laura-Gabriela Bobeică
- Department of Medical Biochemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.-A.B.); (L.-G.B.); (A.C.)
| | - Andreea Crintea
- Department of Medical Biochemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.-A.B.); (L.-G.B.); (A.C.)
| |
Collapse
|
12
|
Chen S, Liu Y, Zhang Y, Guo X, Bai T, He K, Zhu Y, Lei Y, Du M, Wang X, Liu Q, Yan H. Bruton's tyrosine kinase inhibition suppresses pathological retinal angiogenesis. Br J Pharmacol 2024. [PMID: 39374939 DOI: 10.1111/bph.17344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/25/2024] [Accepted: 08/22/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND AND PURPOSE Pathological retinal angiogenesis is a typical manifestation of vision-threatening ocular diseases. Many patients exhibit poor response or resistance to anti-vascular endothelial growth factor (VEGF) agents. Bruton's tyrosine kinase (BTK) controls the proliferation and function of immune cells. Therefore, we examined the anti-inflammatory and anti-angiogenic effects of BTK inhibition on retinal angiogenesis. EXPERIMENTAL APPROACH Retinal neovascularisation and vascular leakage in oxygen-induced retinopathy in C57/BL6J mice were assessed by whole-mount retinal immunofluorescence. PLX5622 was used to deplete microglia and Rag1-knockout mice were used to test the contribution of lymphocytes to the effects of BTK inhibition. The cytokines, activation markers, inflammatory and immune-regulatory activities of retinal microglia/macrophages were detected using qRT-PCR and immunofluorescence. NLRP3 was detected by western blotting, and the effects of BTK inhibition on the co-culture of microglia and human retinal microvascular endothelial cells (HRMECs) were examined. KEY RESULTS BTK inhibition suppressed pathological angiogenesis and vascular leakage, and significantly reduced retinal inflammation, which involved microglia/macrophages but not lymphocytes. BTK inhibition increased anti-inflammatory factors and reduced pro-inflammatory cytokines that resulted from NLRP3 inflammasome activation. BTK inhibition suppressed the inflammatory activity of microglia/macrophages, and acted synergistically with anti-VEGF without retinal toxicity. Moreover, the supernatant of microglia incubated with BTK-inhibitor reduced the proliferation, tube formation and sprouting of HRMECs. CONCLUSION AND IMPLICATIONS BTK inhibition suppressed retinal neovascularisation and vascular leakage by modulating the inflammatory activity of microglia and macrophages. Our study suggests BTK inhibition as a novel and promising approach for alleviating pathological retinal angiogenesis.
Collapse
Affiliation(s)
- Siyue Chen
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China
| | - Yuming Liu
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China
| | - Yutian Zhang
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China
| | - Xu Guo
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China
| | - Tinghui Bai
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China
| | - Kai He
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China
| | - Yanfang Zhu
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China
| | - Yi Lei
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China
| | - Mei Du
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaohong Wang
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hua Yan
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China
| |
Collapse
|
13
|
Wang M, Wang X, Zhang Y, Gu J, Zhang J, Wen X. Transcription Factor FOSL1 Promotes Angiogenesis of Colon Carcinoma by Regulating the VEGF Pathway Through Activating TIMP1. Biochem Genet 2024; 62:3389-3402. [PMID: 38103125 DOI: 10.1007/s10528-023-10547-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/07/2023] [Indexed: 12/17/2023]
Abstract
Angiogenesis is the critical media for tumor growth and migration. Tissue Inhibitor Matrix Metalloproteinase-1 (TIMP1) acts as an oncogene in colon carcinoma (CC), but the biological effects of TIMP1 on angiogenesis remain an open issue. This study sought to explore the exact function and mechanism of TIMP1 in the angiogenesis of CC. Bioinformatics methods were utilized to analyze the expression of TIMP1 and its upstream transcription factor FOS-like antigen 1 (FOSL1) in the tumor tissue of CC. Meanwhile, in CC cell lines, real-time quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and Western blot were utilized to verify the expression of TIMP1 and FOSL1. Cell counting kit-8 and tube formation assays were utilized to analyze the proliferation and angiogenesis abilities of human umbilical vein endothelial cells (HUVECs). Western blot was used to detect the protein expression of VEGFA, VEGFR-2, and VEGFR-3. Chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays were carried out to explore the specific interaction between FOSL1 and TIMP1. The present study discovered that TIMP1 and FOSL1 were evidently up-regulated in CC tissue and cells. Meanwhile, TIMP1 was found to participate in regulating the signaling pathway of vascular endothelial growth factor (VEGF). Silenced TIMP1 conspicuously suppressed the proliferation and angiogenesis of HUVECs and reduced the protein expression of VEGFA, VEGFR-2, and VEGFR-3. Moreover, FOSL1 could promote TIMP1 transcription by binding with its promoter and the inhibition of TIMP1 expression obviously reversed the promotion effects of FOSL1 overexpression on the proliferation and angiogenesis of HUVECs. FOSL1 activated VEGF pathway by up-regulating TIMP1 expression, thereby advancing CC angiogenesis. We provided theoretical basis that the FOSL1/TIMP1/VEGF pathway might be a novel option for anti-angiogenesis therapy of CC.
Collapse
Affiliation(s)
- Meng Wang
- Department of General Surgery, Center of Gastrointestinal and Minimally Invasive Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University & The Second Affiliated Hospital of Chengdu, Chongqing Medical University, 19 Yangshi Street, Chengdu, 610031, Sichuan, China
| | - Xian Wang
- Department of Anorectal, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University & The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, 610031, Sichuan, China
| | - Yuanchuan Zhang
- Department of General Surgery, Center of Gastrointestinal and Minimally Invasive Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University & The Second Affiliated Hospital of Chengdu, Chongqing Medical University, 19 Yangshi Street, Chengdu, 610031, Sichuan, China
| | - Jianhui Gu
- Department of General Surgery, Center of Gastrointestinal and Minimally Invasive Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University & The Second Affiliated Hospital of Chengdu, Chongqing Medical University, 19 Yangshi Street, Chengdu, 610031, Sichuan, China
| | - Jie Zhang
- Department of General Surgery, Center of Gastrointestinal and Minimally Invasive Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University & The Second Affiliated Hospital of Chengdu, Chongqing Medical University, 19 Yangshi Street, Chengdu, 610031, Sichuan, China
| | - Xing Wen
- Department of General Surgery, Center of Gastrointestinal and Minimally Invasive Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University & The Second Affiliated Hospital of Chengdu, Chongqing Medical University, 19 Yangshi Street, Chengdu, 610031, Sichuan, China.
| |
Collapse
|
14
|
Dong H, Zhang Z, Ni M, Xu X, Luo Y, Wang Y, Zhang H, Chen J. The Trend of the Treatment of Advanced Hepatocellular Carcinoma: Combination of Immunotherapy and Targeted Therapy. Curr Treat Options Oncol 2024; 25:1239-1256. [PMID: 39259476 PMCID: PMC11485193 DOI: 10.1007/s11864-024-01246-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2024] [Indexed: 09/13/2024]
Abstract
OPINION STATEMENT Hepatocellular carcinoma (HCC) is a common type of tumor worldwide. The development of systemic treatment of advanced HCC has remained stagnant for a considerable period. During the last years, a series of new treatment regimens based on the combination of immunotherapeutic drugs and targeted drugs have been gradually developed, increased the objective response rate (ORR), overall survival (OS), and progression free survival (PFS) of HCC patients. Among the different combination therapy groups, atezolizumab plus bevacizumab and sintilimab plus IBI-305 seem to have unique advantages, while head-to-head comparisons are still needed. A comprehensive understanding of the developments, the ongoing clinical trials and the mechanisms of combination of immunotherapy and targeted therapy might lead to the development of new combination strategies and solving current challenges such as the molecular biomarkers, the clinical administration order of drugs and the second-line treatments after combination therapy.
Collapse
Affiliation(s)
- Heng Dong
- School of Pharmacy and Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, People's Republic of China
| | - Zhengguo Zhang
- School of Pharmacy and Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, People's Republic of China
| | - Mengjie Ni
- School of Pharmacy and Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, People's Republic of China
| | - Xiaoyun Xu
- School of Pharmacy and Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, People's Republic of China
| | - Yifeng Luo
- School of Pharmacy and Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, People's Republic of China
| | - Yaru Wang
- School of Pharmacy and Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, People's Republic of China
| | - Haiyun Zhang
- School of Pharmacy and Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, People's Republic of China
| | - Jianxiang Chen
- School of Pharmacy and Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, People's Republic of China.
- Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, National Cancer Centre, Singapore, 169610, Singapore.
| |
Collapse
|
15
|
Yang C, Li B, Dong S, Xu J, Sun X, Liang X, Liu K, Sun K, Yang Y, Ji T, Ye Z, Xie L, Tang X. Efficacy and Safety of Fruquintinib-Based Treatment in Patients with Refractory Bone and Soft Tissue Sarcoma after Developing Resistance to Several TKIs: A Multicenter Retrospective Study. Orthop Surg 2024; 16:2380-2390. [PMID: 39030807 PMCID: PMC11456709 DOI: 10.1111/os.14163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/17/2024] [Accepted: 06/22/2024] [Indexed: 07/22/2024] Open
Abstract
OBJECTIVE Multitargeted tyrosine kinase inhibitors (TKIs) have been approved as second-line therapy in refractory sarcoma, prolonging progression-free survival (PFS) but with short-lived duration of disease control. Fruquintinib is a TKI that specifically inhibits vascular endothelial growth factor receptor-1,2,3 with no metabolism by liver enzymes. In this retrospective study, we assessed the efficacy and safety of fruquintinib-based treatment in patients with refractory sarcoma after developing several lines of TKI resistance. METHODS We retrospectively analyzed the clinical data of patients with refractory sarcoma after they had developed several lines of resistance to TKIs and who received fruquintinib-based treatment from November 2021 to August 2023. The primary endpoint was the progression-free survival rate at 4 months (4m-PFSR). Secondary endpoints were the median PFS, overall survival (OS), objective response rate, disease control rate, and adverse effects (AEs). PFS and OS were estimated using the Kaplan-Meier method. A log-rank test was used to compare survival curves between different clinical and pathological factors. Cox proportional hazards analysis was performed to identify PFS-related prognostic factors. RESULTS We included 124 patients: 56 (45.2%) with osteosarcoma, 28 (22.6%) with Ewing sarcoma, seven (5.6%) with chondrosarcoma, and 33 (26.6%) with soft tissue sarcomas (STS). Only 18 (14.5%) patients received monotherapy with fruquintinib. With a median follow-up time of 6.8 (interquartile range [IQR], 4.6-9.4) months, 22 (17.7%) patients had partial response and 78 (62.9%) had stable disease. The 4m-PFSR was 58.4% (95% confidence interval [CI], 49.6%-67.1%). The median PFS and OS were 4.4 (95% CI, 3.9-5.0) months and 11.4 (95% CI, 10.3-12.5) months. In multivariate analysis, a high hazard ratio for progression was associated with target lesions located outside the lung and bone with 1.79 (95% CI, 1.10-2.93; p = 0.020). Eighty-eight AEs were recorded in 47 (37.9%) patients; the most common were pneumothorax (18/124, 14.5%), diarrhea (8/124, 6.5%), oral mucositis (7/124, 5.6%), and thrombocytopenia (7/124, 5.6%). CONCLUSIONS Fruquintinib may be a potential option for patients with refractory sarcoma after developing several lines of TKI resistance, with a satisfactory efficacy and safety profile in combination therapy. However, the degree of contribution of fruquintinib to results is unclear when combined with other effective substances. Additional prospective trials of fruquintinib should be conducted, especially involving different pathological types and combination regimens.
Collapse
Affiliation(s)
- Chenchen Yang
- Musculoskeletal Tumor CenterPeking University People's HospitalBeijingChina
| | - Binghao Li
- Department of OrthopedicsThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Sen Dong
- Musculoskeletal Tumor CenterPeking University People's HospitalBeijingChina
| | - Jie Xu
- Musculoskeletal Tumor CenterPeking University People's HospitalBeijingChina
| | - Xin Sun
- Musculoskeletal Tumor CenterPeking University People's HospitalBeijingChina
| | - Xin Liang
- Musculoskeletal Tumor CenterPeking University People's HospitalBeijingChina
| | - Kuisheng Liu
- Musculoskeletal Tumor CenterPeking University People's HospitalBeijingChina
| | - Kunkun Sun
- Musculoskeletal Tumor CenterPeking University People's HospitalBeijingChina
| | - Yi Yang
- Musculoskeletal Tumor CenterPeking University People's HospitalBeijingChina
| | - Tao Ji
- Musculoskeletal Tumor CenterPeking University People's HospitalBeijingChina
| | - Zhaoming Ye
- Department of OrthopedicsThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Lu Xie
- Musculoskeletal Tumor CenterPeking University People's HospitalBeijingChina
| | - Xiaodong Tang
- Musculoskeletal Tumor CenterPeking University People's HospitalBeijingChina
| |
Collapse
|
16
|
Zhang K, Shi Y, Jin Z, He J. Advances in tumor vascular growth inhibition. Clin Transl Oncol 2024; 26:2084-2096. [PMID: 38504070 DOI: 10.1007/s12094-024-03432-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/01/2024] [Indexed: 03/21/2024]
Abstract
Tumor growth and metastasis require neovascularization, which is dependent on a complex array of factors, such as the production of various pro-angiogenic factors by tumor cells, intercellular signaling, and stromal remodeling. The hypoxic, acidic tumor microenvironment is not only conducive to tumor cell proliferation, but also disrupts the equilibrium of angiogenic factors, leading to vascular heterogeneity, which further promotes tumor development and metastasis. Anti-angiogenic strategies to inhibit tumor angiogenesis has, therefore, become an important focus for anti-tumor therapy. The traditional approach involves the use of anti-angiogenic drugs to inhibit tumor neovascularization by targeting upstream and downstream angiogenesis-related pathways or pro-angiogenic factors, thereby inhibiting tumor growth and metastasis. This review explores the mechanisms involved in tumor angiogenesis and summarizes currently used anti-angiogenic drugs, including monoclonal antibody, and small-molecule inhibitors, as well as the progress and challenges associated with their use in anti-tumor therapy. It also outlines the opportunities and challenges of treating tumors using more advanced anti-angiogenic strategies, such as immunotherapy and nanomaterials.
Collapse
Affiliation(s)
- Keyong Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yuanyuan Shi
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Ze Jin
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jian He
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
17
|
Wachholz GE, Akbari P, Huijbers EJM, Jalan P, van Beijnum JR, Griffioen AW. Targeting endothelial cell anergy to improve CAR T cell therapy for solid tumors. Biochim Biophys Acta Rev Cancer 2024; 1879:189155. [PMID: 39019408 DOI: 10.1016/j.bbcan.2024.189155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
Chimeric antigen receptor (CAR) T cell therapy presents significant results, especially for the treatment of hematologic malignancies. However, there are limitations and challenges to be overcome to achieve similar success for the treatment of solid tumors. These challenges involve selection of the target, infiltration into the tumor microenvironment and maintenance of functionality. The tumor vasculature is a major barrier for leukocytes to enter the tumor parenchyma. Due to the exposure of the vasculature to angiogenic growth factors during tumor progression, the endothelial cells become anergic to inflammatory cytokines, resulting in reduced leukocyte adhesion molecule expression. As such adhesion molecules are a prerequisite for leukocyte extravasation, endothelial cell anergy allows tumors to escape from endogenous immunity, as well as from cellular immunotherapies such as CAR T cells. Hence, overcoming endothelial cell anergy, e.g. through the administration of angiogenesis inhibitors, is believed to restore anti-tumor immunity. Concomitantly, both endogenous immune cells as well as cellular therapeutics such as CAR T cells can permeate into the tumor parenchyma. Here, we discuss how prior or concomitant treatment with an antiangiogenic drug can improve CAR T cell therapy, to become an attractive strategy for the treatment of solid tumors.
Collapse
Affiliation(s)
- Gabriela E Wachholz
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Parvin Akbari
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Elisabeth J M Huijbers
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Prachi Jalan
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Judy R van Beijnum
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
18
|
Yousefi T, Mohammadi Jobani B, Taebi R, Qujeq D. Innovating Cancer Treatment Through Cell Cycle, Telomerase, Angiogenesis, and Metastasis. DNA Cell Biol 2024; 43:438-451. [PMID: 39018567 DOI: 10.1089/dna.2024.0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024] Open
Abstract
Cancer remains a formidable challenge in the field of medicine, necessitating innovative therapeutic strategies to combat its relentless progression. The cell cycle, a tightly regulated process governing cell growth and division, plays a pivotal role in cancer development. Dysregulation of the cell cycle allows cancer cells to proliferate uncontrollably. Therapeutic interventions designed to disrupt the cell cycle offer promise in restraining tumor growth and progression. Telomerase, an enzyme responsible for maintaining telomere length, is often overactive in cancer cells, conferring them with immortality. Targeting telomerase presents an opportunity to limit the replicative potential of cancer cells and hinder tumor growth. Angiogenesis, the formation of new blood vessels, is essential for tumor growth and metastasis. Strategies aimed at inhibiting angiogenesis seek to deprive tumors of their vital blood supply, thereby impeding their progression. Metastasis, the spread of cancer cells from the primary tumor to distant sites, is a major challenge in cancer therapy. Research efforts are focused on understanding the underlying mechanisms of metastasis and developing interventions to disrupt this deadly process. This review provides a glimpse into the multifaceted approach to cancer therapy, addressing critical aspects of cancer biology-cell cycle regulation, telomerase activity, angiogenesis, and metastasis. Through ongoing research and innovative strategies, the field of oncology continues to advance, offering new hope for improved treatment outcomes and enhanced quality of life for cancer patients.
Collapse
Affiliation(s)
- Tooba Yousefi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahareh Mohammadi Jobani
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Taebi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Durdi Qujeq
- Department of Clinical Biochemistry, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
19
|
Shen Y, Wu Y, Hao M, Fu M, Zhu K, Luo P, Wang J. Clinicopathological association of CD93 expression in gastric adenocarcinoma. J Cancer Res Clin Oncol 2024; 150:400. [PMID: 39190192 PMCID: PMC11349802 DOI: 10.1007/s00432-024-05874-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/28/2024] [Indexed: 08/28/2024]
Abstract
AIMS CD93 was recently identified as a promising therapeutic target for angiogenesis blockade in various tumors. Herein, we aimed to investigate the expression and clinicopathological significance of CD93 in gastric adenocarcinoma. METHODS The gene expression of CD93 gastric adenocarcinoma was assessed using The Cancer Genome Atlas (TCGA) dataset. We then analyzed CD93 expression in 404 cases of gastric adenocarcinoma using immunohistochemistry. Clinicopathological associations and prognostic implications of CD93 expression were further investigated. RESULTS Using the TCGA dataset, we observed a significantly elevated CD93 gene expression in gastric adenocarcinoma compared to normal gastric tissues. The immunohistochemistry assay revealed a highly variable CD93 expression among patients with gastric adenocarcinoma, consistently demonstrating higher intratumor expression than in adjacent normal tissues. Notably, CD93 was predominantly expressed on the membrane of CD31+ vascular endothelial cells. Furthermore, patients with higher CD93 expression demonstrated significantly poorer overall survival. Accordingly, higher CD93 expression was associated with deeper invasion and a higher possibility of lymph node metastasis and developing tumor thrombus. Cox proportional hazards regression suggested CD93 expression was an independent predictor for the prognosis of patients with gastric adenocarcinoma. CONCLUSIONS Our study revealed a significantly higher CD93 expression in gastric adenocarcinoma when compared with adjacent normal gastric tissues, and demonstrated its predominant expression on vascular endothelial cells. Our findings also highlighted the clinicopathological significance of CD93 in gastric adenocarcinoma, shedding light on a potential therapeutic target.
Collapse
Affiliation(s)
- Yun Shen
- Department of Pathology, People's Hospital of Tongling City, Tongling, Anhui, China
- Department of Pathology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Yahui Wu
- Department of Pathology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Mengfei Hao
- Department of Pathology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
- Department of Pathology, the First Clinical College of Changzhi Medical College, No.161 Jiefang East Street, Changzhi, Shanxi, China
| | - Minghan Fu
- Department of Pathology, Yueyang Central Hospital, Yueyang, Hunan, China
| | - Kai Zhu
- Department of Pathology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
- Department of Pathology, the First Clinical College of Changzhi Medical College, No.161 Jiefang East Street, Changzhi, Shanxi, China
| | - Panru Luo
- Department of Pathology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
- Department of Pathology, the First Clinical College of Changzhi Medical College, No.161 Jiefang East Street, Changzhi, Shanxi, China
| | - Jinsheng Wang
- Department of Pathology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China.
- Department of Pathology, the First Clinical College of Changzhi Medical College, No.161 Jiefang East Street, Changzhi, Shanxi, China.
- Key Laboratory of Esophageal Cancer Basic Research and Clinical Transformation, Shanxi Provincial Health Commission, Changzhi, Shanxi, China.
| |
Collapse
|
20
|
Kaya-Tilki E, Öztürk AA, Engür-Öztürk S, Dikmen M. Enhanced anti-angiogenic effects of aprepitant-loaded nanoparticles in human umbilical vein endothelial cells. Sci Rep 2024; 14:19837. [PMID: 39191829 PMCID: PMC11349893 DOI: 10.1038/s41598-024-70791-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
Recent advancements in cancer therapy have led to the development of novel nanoparticle-based drug delivery systems aimed at enhancing the efficacy of chemotherapeutic agents. This study focuses on evaluating aprepitant-loaded PLGA and Eudragit RS 100 nanoparticles for their potential antiangiogenic effects. Characterization studies revealed that aprepitant-loaded nanoparticles exhibited particle sizes ranging from 208.50 to 238.67 nm, with monodisperse distributions (PDI < 0.7) and stable zeta potentials (between - 5.0 and - 15.0 mV). Encapsulation efficiencies exceeding 99% were achieved, highlighting the efficacy of PLGA and Eudragit RS 100 as carriers for aprepitant. Cellular uptake studies demonstrated enhanced internalization of aprepitant-loaded nanoparticles by HUVEC cells compared to free aprepitant, as confirmed by fluorescence microscopy. Furthermore, cytotoxicity assays revealed significant dose-dependent effects of aprepitant-loaded nanoparticles on HUVEC cell viability, with IC50 values at 24 h of 11.9 µg/mL for Eudragit RS 100 and 94.3 µg/mL for PLGA formulations. Importantly, these nanoparticles effectively inhibited HUVEC cell migration and invasion induced by M2c supernatant, as evidenced by real-time cell analysis and gene expression studies. Moreover, aprepitant-loaded nanoparticles downregulated VEGFA and VEGFB gene expressions and reduced VEGFR-2 protein levels in HUVEC cells, highlighting their potential as antiangiogenic agents. Overall, this research underscores the promise of nanoparticle-based aprepitant formulations in targeted cancer therapy, offering enhanced therapeutic outcomes through improved drug delivery and efficacy against angiogenesis.
Collapse
Affiliation(s)
- Elif Kaya-Tilki
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.
| | - Ahmet Alper Öztürk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Selin Engür-Öztürk
- Department of Pharmacy Services, Tavas Vocational School of Health Services, Pamukkale University, Denizli, Turkey
| | - Miriş Dikmen
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
21
|
Xu F, Ye Y, Gao Y, Xu S. Dual Role of Necroptosis in Cervical Cancer: Promoting Tumor Aggression and Modulating the Immune Microenvironment via the JAK2-STAT3 Pathway. J Cancer 2024; 15:5288-5307. [PMID: 39247606 PMCID: PMC11375541 DOI: 10.7150/jca.98738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/28/2024] [Indexed: 09/10/2024] Open
Abstract
In the dynamic landscape of cervical cancer (CC) pathophysiology, this study aimed to elucidate the role of necroptosis in modulating tumor proliferation, invasion, and the immune microenvironment in CC. In this study, the impact of necroptosis on CC was evaluated through a series of bioinformatical analyses and experimental approaches. The impact of necroptosis on CC was illustrated by analyzing its effects on tumor aggression, immune responses, and the JAK2-STAT3 signaling pathway. Bevacizumab, a monoclonal antibody targeting vascular endothelial growth factor (VEGF), was also evaluated for its potential induction of necroptosis in CC cells and its interaction with necroptosis inhibitors. Additionally, the study assessed the influence of necroptosis on the immune microenvironment, particularly in T-cell-related pathways and the expression of tumor suppressor genes in CC. Necroptosis was found to enhance VEGFA expression through the activation of the JAK2-STAT3 pathway, promoting tumor proliferative and invasive capabilities in CC. Bevacizumab induced necroptosis in CC cells, potentially leading to resistance to therapy. The combination of bevacizumab with necroptosis inhibitors attenuated VEGFA expression, suggesting a novel therapeutic strategy. Additionally, necroptosis activated T-cell-related pathways and promoted the infiltration and activation of Jurkat T cells. CD3D-a tumor suppressor gene in CC-was identified as a critical marker and its expression could be upregulated by necroptosis via the JAK2-STAT3 pathway in Jurkat T cells. Treatment of CC cells with supernatants from necroptosis-induced Jurkat cells resulted in reduced tumor cell proliferation and invasion. This study reveals a complex interaction between necroptosis, tumor progression, and the immune response in CC. The findings propose a nuanced approach to leveraging necroptosis for therapeutic interventions, highlighting the potential of combining necroptosis inhibitors with existing therapies to improve treatment outcomes in CC.
Collapse
Affiliation(s)
- Fangfang Xu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yingjun Ye
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yueqing Gao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Shaohua Xu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
22
|
Chong X, Madeti Y, Cai J, Li W, Cong L, Lu J, Mo L, Liu H, He S, Yu C, Zhou Z, Wang B, Cao Y, Wang Z, Shen L, Wang Y, Zhang X. Recent developments in immunotherapy for gastrointestinal tract cancers. J Hematol Oncol 2024; 17:65. [PMID: 39123202 PMCID: PMC11316403 DOI: 10.1186/s13045-024-01578-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
The past few decades have witnessed the rise of immunotherapy for Gastrointestinal (GI) tract cancers. The role of immune checkpoint inhibitors (ICIs), particularly programmed death protein 1 (PD-1) and PD ligand-1 antibodies, has become increasingly pivotal in the treatment of advanced and perioperative GI tract cancers. Currently, anti-PD-1 plus chemotherapy is considered as first-line regimen for unselected advanced gastric/gastroesophageal junction adenocarcinoma (G/GEJC), mismatch repair deficient (dMMR)/microsatellite instability-high (MSI-H) colorectal cancer (CRC), and advanced esophageal cancer (EC). In addition, the encouraging performance of claudin18.2-redirected chimeric antigen receptor T-cell (CAR-T) therapy in later-line GI tract cancers brings new hope for cell therapy in solid tumour treatment. Nevertheless, immunotherapy for GI tumour remains yet precise, and researchers are dedicated to further maximising and optimising the efficacy. This review summarises the important research, latest progress, and future directions of immunotherapy for GI tract cancers including EC, G/GEJC, and CRC.
Collapse
Affiliation(s)
- Xiaoyi Chong
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Yelizhati Madeti
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Jieyuan Cai
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Wenfei Li
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Lin Cong
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Jialin Lu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Liyang Mo
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Huizhen Liu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Siyi He
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Chao Yu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Zhiruo Zhou
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Boya Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Yanshuo Cao
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Zhenghang Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Yakun Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China.
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
| | - Xiaotian Zhang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China.
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
| |
Collapse
|
23
|
Li P, Shang Y, Yuan L, Tong J, Chen Q. Targeting BMP2 for therapeutic strategies against hepatocellular carcinoma. Transl Oncol 2024; 46:101970. [PMID: 38797016 PMCID: PMC11152749 DOI: 10.1016/j.tranon.2024.101970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/29/2024] Open
Abstract
OBJECTIVES This study aimed to investigate the role of BMP2 in hepatocellular carcinoma (HCC) growth and metastasis using a dual approach combining single-cell RNA sequencing (scRNA-seq) and bulk RNA-seq. METHODS scRNA-seq data from the GEO database and bulk RNA-seq data from the TCGA database were analyzed. Differentially expressed marker genes of endothelial cells were identified and analyzed using enrichment analysis, PPI analysis, correlation analysis, and GSEA. In vitro, experiments were conducted using the Huh-7 HCC cell line, and in vivo, models of HCC growth and metastasis were established by knocking down BMP2. RESULTS The scRNA-seq analysis identified BMP2 as a key marker gene in endothelial cells of HCC samples. Elevated BMP2 expression correlated with poor prognosis in HCC. In vitro experiments showed that silencing BMP2 inhibited the proliferation, migration, and invasion of liver cancer cells. In vivo studies confirmed increased BMP2 expression in HCC tissues, promoting angiogenesis and HCC growth. CONCLUSION This study highlights the role of BMP2 in tumor angiogenesis and HCC progression. Targeting BMP2 could be a promising therapeutic strategy against HCC.
Collapse
Affiliation(s)
- Ping Li
- Department of Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, PR China
| | - You Shang
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, PR China
| | - Liying Yuan
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, PR China
| | - Jialing Tong
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, PR China
| | - Quan Chen
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, PR China.
| |
Collapse
|
24
|
Xu Q, Liang R, Gao J, Fan Y, Dong J, Wang L, Zheng C, Yang J, Ming D. rTMS Ameliorates time-varying depression and social behaviors in stimulated space complex environment associated with VEGF signaling. LIFE SCIENCES IN SPACE RESEARCH 2024; 42:17-26. [PMID: 39067986 DOI: 10.1016/j.lssr.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 07/30/2024]
Abstract
Studies have indicated that medium- to long-duration spaceflight may adversely affect astronauts' emotional and social functioning. Emotion modulation can significantly impact astronauts' well-being, performance, mission safety and success. However, with the increase in flight time, the potential alterations in emotional and social performance during spaceflight and their underlying mechanisms remain to be investigated, and targeted therapeutic and preventive interventions have yet to be identified. We evaluated the changes of emotional and social functions in mice with the extension of the time in simulated space complex environment (SSCE), and simultaneously monitored changes in brain tissue of vascular endothelial growth factor (VEGF), matrix metalloproteinase-9 (MMP-9), and inflammation-related factors. Furthermore, we assessed the regulatory role of repetitive transcranial magnetic stimulation (rTMS) in mood and socialization with the extension of the time in SSCE, as well as examining alterations of VEGF signaling in the medial prefrontal cortex (mPFC). Our findings revealed that mice exposed to SSCE for 7 days exhibited depressive-like behaviors, with these changes persisting throughout SSCE period. In addition, 14 days of rTMS treatment significantly ameliorated SSCE-induced emotional and social dysfunction, potentially through modulation of the level of VEGF signaling in mPFC. These results indicates that emotional and social disorders increase with the extension of SSCE time, and rTMS can improve the performance, which may be related to VEGF signaling. This study offers insights into potential pattern of change over time for mental health issues in astronauts. Further analysis revealed that rTMS modulates emotional and social dysfunction during SSCE exposure, with its mechanism potentially being associated with VEGF signaling.
Collapse
Affiliation(s)
- Qing Xu
- Medical School, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Rong Liang
- Medical School, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Jing Gao
- Medical School, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Yueyue Fan
- Medical School, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Jinrui Dong
- Medical School, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Ling Wang
- Medical School, Faculty of Medicine, Tianjin University, Tianjin 300072, China; Brain-Computer Interaction and Human-Machine Fusion Haihe Laboratory, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin 300072, China
| | - Chenguang Zheng
- Medical School, Faculty of Medicine, Tianjin University, Tianjin 300072, China; Brain-Computer Interaction and Human-Machine Fusion Haihe Laboratory, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin 300072, China
| | - Jiajia Yang
- Medical School, Faculty of Medicine, Tianjin University, Tianjin 300072, China; Brain-Computer Interaction and Human-Machine Fusion Haihe Laboratory, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin 300072, China.
| | - Dong Ming
- Medical School, Faculty of Medicine, Tianjin University, Tianjin 300072, China; Brain-Computer Interaction and Human-Machine Fusion Haihe Laboratory, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
25
|
Ren X, Wang H, Deng L, Wang W, Wang Y. Immune-related adverse events of immune checkpoint inhibitors combined with angiogenesis inhibitors: A real-world pharmacovigilance analysis of the FDA Adverse Event Reporting System (FAERS) database (2014-2022). Int Immunopharmacol 2024; 136:112301. [PMID: 38838553 DOI: 10.1016/j.intimp.2024.112301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 06/07/2024]
Abstract
INTRODUCTION Although immune checkpoint inhibitors (ICIs) combined with angiogenesis inhibitors (AGIs) has become increasingly used for cancers, the impact of combination therapy on immune-related adverse events (irAEs) in real-world settings has not been well elucidated to date. METHODS The FDA Adverse Event Reporting System (FAERS) database from 2014 to 2022 was retrospectively queried to extract reports of irAEs referred as standardized MedDRA queries (SMQs), preferred terms (PTs) and system organ classes (SOCs). To perform disproportionality analysis, information component (IC) and reporting odds ratio (ROR) were calculated and lower limit of 95 % confidence interval (CI) for IC (IC025) > 0 or ROR (ROR025) > 1 with at least 3 reports was considered statistically significant. RESULTS Compared to ICIs alone, ICIs + AGIs demonstrated a lower IC025/ROR025 for irAEs-SMQ (2.343/5.082 vs. 1.826/3.563). Regarding irAEs-PTs, there were fewer irAEs-PTs of significant value in ICIs + AGIs than ICIs alone (57 vs. 150 PTs) and lower signal value for most PTs (88 %) in ICIs + AGIs. Moreover, lower IC025 for most of irAEs-SOCs in ICIs + AGIs (11/13) compared with ICIs alone was observed. As for outcomes of irAEs, ICIs + AGIs showed a lower frequency of "fatal" for irAEs-SMQ than ICIs alone (4.88 % vs. 7.83 %), so as in cardiac disorder (SOC) (15.45 % vs. 26.37 %), and respiratory, thoracic and mediastinal disorders (SOC) (13.74 % vs. 20.06 %). Similarly, there were lower occurrence and fewer fatality of irAEs in ICIs + AGIs + chemotherapy (CT) than ICIs + CT. CONCLUSION ICIs combined with AGIs may reduce incidence and mortality for most of irAEs compared to ICIs alone whether or not with CT.
Collapse
Affiliation(s)
- Xiayang Ren
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Haijun Wang
- Department of Intensive Care Unit, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Lei Deng
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Wenqing Wang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Yanfeng Wang
- Department of Comprehensive Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
26
|
Chen Y, Zhang Z, Pan F, Li P, Yao W, Chen Y, Xiong L, Wang T, Li Y, Huang G. Pericytes recruited by CCL28 promote vascular normalization after anti-angiogenesis therapy through RA/RXRA/ANGPT1 pathway in lung adenocarcinoma. J Exp Clin Cancer Res 2024; 43:210. [PMID: 39075504 PMCID: PMC11285179 DOI: 10.1186/s13046-024-03135-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND It has been proposed that anti-angiogenesis therapy could induce tumor "vascular normalization" and further enhance the efficacy of chemotherapy, radiotherapy, target therapy, and immunotherapy for nearly twenty years. However, the detailed molecular mechanism of this phenomenon is still obscure. METHOD Overexpression and knockout of CCL28 in human lung adenocarcinoma cell line A549 and murine lung adenocarcinoma cell line LLC, respectively, were utilized to establish mouse models. Single-cell sequencing was performed to analyze the proportion of different cell clusters and metabolic changes in the tumor microenvironment (TME). Immunofluorescence and multiplex immunohistochemistry were conducted in murine tumor tissues and clinical biopsy samples to assess the percentage of pericytes coverage. Primary pericytes were isolated from lung adenocarcinoma tumor tissues using magnetic-activated cell sorting (MACS). These pericytes were then treated with recombinant human CCL28 protein, followed by transwell migration assays and RNA sequencing analysis. Changes in the secretome and metabolome were examined, and verification of retinoic acid metabolism alterations in pericytes was conducted using quantitative real-time PCR, western blotting, and LC-MS technology. Chromatin immunoprecipitation followed by quantitative PCR (ChIP-qPCR) was employed to validate the transcriptional regulatory ability and affinity of RXRα to specific sites at the ANGPT1 promoter. RESULTS Our study showed that after undergoing anti-angiogenesis treatment, the tumor exhibited a state of ischemia and hypoxia, leading to an upregulation in the expression of CCL28 in hypoxic lung adenocarcinoma cells by the hypoxia-sensitive transcription factor CEBPB. Increased CCL28 could promote tumor vascular normalization through recruiting and metabolic reprogramming pericytes in the tumor microenvironment. Mechanistically, CCL28 modified the retinoic acid (RA) metabolism and increased ANGPT1 expression via RXRα in pericytes, thereby enhancing the stability of endothelial cells. CONCLUSION We reported the details of the molecular mechanisms of "vascular normalization" after anti-angiogenesis therapy for the first time. Our work might provide a prospective molecular marker for guiding the clinical arrangement of combination therapy between anti-angiogenesis treatment and other therapies.
Collapse
Affiliation(s)
- Ying Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
- Medical Schoolof, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Zhiyong Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
- Medical Schoolof, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Fan Pan
- Medical Schoolof, Nanjing University, Nanjing, Jiangsu, 210093, China
- Department of Medical Oncology, Affiliated Hospital of Medical School, Jinling Hospital, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Pengfei Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
- Medical Schoolof, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Weiping Yao
- Medical Schoolof, Nanjing University, Nanjing, Jiangsu, 210093, China
- Department of Medical Oncology, Affiliated Hospital of Medical School, Jinling Hospital, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Yuxi Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
- Medical Schoolof, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Lei Xiong
- Department of Cardio-Thoracic Surgery, Affiliated Hospital of Medical School, Jinling Hospital, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Tingting Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China.
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China.
- Medical Schoolof, Nanjing University, Nanjing, Jiangsu, 210093, China.
| | - Yan Li
- Department of Respiratory Critical Care Medicine, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, Jiangsu, 210008, China.
| | - Guichun Huang
- Department of Medical Oncology, Affiliated Hospital of Medical School, Jinling Hospital, Nanjing University, Nanjing, Jiangsu, 210008, China.
- Department of Oncology, Medical School, Zhongda Hospital, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
27
|
Du G, Dou C, Sun P, Wang S, Liu J, Ma L. Regulatory T cells and immune escape in HCC: understanding the tumor microenvironment and advancing CAR-T cell therapy. Front Immunol 2024; 15:1431211. [PMID: 39136031 PMCID: PMC11317284 DOI: 10.3389/fimmu.2024.1431211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024] Open
Abstract
Liver cancer, which most commonly manifests as hepatocellular carcinoma (HCC), is the sixth most common cancer in the world. In HCC, the immune system plays a crucial role in the growth and proliferation of tumor cells. HCC achieve immune escape through the tumor microenvironment, which significantly promotes the development of this cancer. Here, this article introduces and summarizes the functions and effects of regulatory T cells (Tregs) in the tumor microenvironment, highlighting how Tregs inhibit and regulate the functions of immune and tumor cells, cytokines, ligands and receptors, etc, thereby promoting tumor immune escape. In addition, it discusses the mechanism of CAR-T therapy for HCC and elaborate on the relationship between CAR-T and Tregs.
Collapse
Affiliation(s)
- Guangtan Du
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
- Medical Department of Qingdao University, Qingdao, China
| | - Cunmiao Dou
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
- Medical Department of Qingdao University, Qingdao, China
| | - Peng Sun
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shasha Wang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jia Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Leina Ma
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| |
Collapse
|
28
|
Yi M, Li T, Niu M, Zhang H, Wu Y, Wu K, Dai Z. Targeting cytokine and chemokine signaling pathways for cancer therapy. Signal Transduct Target Ther 2024; 9:176. [PMID: 39034318 PMCID: PMC11275440 DOI: 10.1038/s41392-024-01868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/30/2024] [Accepted: 05/11/2024] [Indexed: 07/23/2024] Open
Abstract
Cytokines are critical in regulating immune responses and cellular behavior, playing dual roles in both normal physiology and the pathology of diseases such as cancer. These molecules, including interleukins, interferons, tumor necrosis factors, chemokines, and growth factors like TGF-β, VEGF, and EGF, can promote or inhibit tumor growth, influence the tumor microenvironment, and impact the efficacy of cancer treatments. Recent advances in targeting these pathways have shown promising therapeutic potential, offering new strategies to modulate the immune system, inhibit tumor progression, and overcome resistance to conventional therapies. In this review, we summarized the current understanding and therapeutic implications of targeting cytokine and chemokine signaling pathways in cancer. By exploring the roles of these molecules in tumor biology and the immune response, we highlighted the development of novel therapeutic agents aimed at modulating these pathways to combat cancer. The review elaborated on the dual nature of cytokines as both promoters and suppressors of tumorigenesis, depending on the context, and discussed the challenges and opportunities this presents for therapeutic intervention. We also examined the latest advancements in targeted therapies, including monoclonal antibodies, bispecific antibodies, receptor inhibitors, fusion proteins, engineered cytokine variants, and their impact on tumor growth, metastasis, and the tumor microenvironment. Additionally, we evaluated the potential of combining these targeted therapies with other treatment modalities to overcome resistance and improve patient outcomes. Besides, we also focused on the ongoing research and clinical trials that are pivotal in advancing our understanding and application of cytokine- and chemokine-targeted therapies for cancer patients.
Collapse
Affiliation(s)
- Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Tianye Li
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, People's Republic of China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Haoxiang Zhang
- Department of Hepatopancreatobiliary Surgery, Fujian Provincial Hospital, Fuzhou, 350001, People's Republic of China
| | - Yuze Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Zhijun Dai
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| |
Collapse
|
29
|
Wang K, Zhang R, Li C, Chen H, Lu J, Zhao H, Zhuo X. Construction and assessment of an angiogenesis-related gene signature for prognosis of head and neck squamous cell carcinoma. Discov Oncol 2024; 15:284. [PMID: 39012409 PMCID: PMC11252106 DOI: 10.1007/s12672-024-01084-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/05/2024] [Indexed: 07/17/2024] Open
Abstract
OBJECTIVE Angiogenesis-associated genes (AAGs) play a critical role in cancer patient survival. However, there are insufficient reports on the prognostic value of AAGs in head and neck squamous cell carcinoma (HNSC). Therefore, this study aimed to investigate the correlation between AAG expression levels and survival in HNSC patients, explore the predictive value of signature genes and lay the groundwork for future in-depth research. METHODS Relevant data for HNSC were obtained from the databases. AAGs-associated signature genes linked to prognosis were screened to construct a predictive model. Further analysis was conducted to determine the functional correlation of the signature genes. RESULTS The signature genes (STC1, SERPINA5, APP, OLR1, and PDGFA) were used to construct prognostic models. Patients were divided into high-risk and low-risk groups based on the calculated risk scores. Survival analysis showed that patients in the high-risk group had a significantly lower overall survival than those in the low-risk group (P < 0.05). Therefore, this prognostic model was an independent prognostic factor for predicting HNSC. In addition, patients in the low-risk group were more sensitive to multiple anti-cancer drugs. Functional correlation analysis showed a good correlation between the characteristic genes and HNSC metastasis, invasion, and angiogenesis. CONCLUSION This study established a new prognostic model for AAGs and may guide the selection of therapeutic agents for HNSC. These genes have important functions in the tumor microenvironment; it also provides a valuable resource for the future clinical trials investigating the relationship between HNSC and AAGs.
Collapse
Affiliation(s)
- Kaiqin Wang
- Department of Otolaryngology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Ruizhe Zhang
- Department of Otolaryngology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Changya Li
- Department of Otolaryngology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Huarong Chen
- Department of Otolaryngology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Jiafeng Lu
- Department of Otolaryngology, Anshun People's Hospital, Anshun, Guizhou, China
| | - Houyu Zhao
- Department of Otolaryngology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.
| | - Xianlu Zhuo
- Department of Otolaryngology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.
| |
Collapse
|
30
|
Yang Y, Qiu YT, Li WK, Cui ZL, Teng S, Wang YD, Wu J. Multi-Omics analysis elucidates tumor microenvironment and intratumor microbes of angiogenesis subtypes in colon cancer. World J Gastrointest Oncol 2024; 16:3169-3192. [PMID: 39072166 PMCID: PMC11271793 DOI: 10.4251/wjgo.v16.i7.3169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/13/2024] [Accepted: 05/06/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Angiogenesis plays an important role in colon cancer (CC) progression. AIM To investigate the tumor microenvironment (TME) and intratumor microbes of angiogenesis subtypes (AGSs) and explore potential targets for antiangiogenic therapy in CC. METHODS The data were obtained from The Cancer Genome Atlas database and Gene Expression Omnibus database. K-means clustering was used to construct the AGSs. The prognostic model was constructed based on the differential genes between two subtypes. Single-cell analysis was used to analyze the expression level of SLC2A3 on different cells in CC, which was validated by immunofluorescence. Its biological functions were further explored in HUVECs. RESULTS CC samples were grouped into two AGSs (AGS-A and AGS-B) groups and patients in the AGS-B group had poor prognosis. Further analysis revealed that the AGS-B group had high infiltration of TME immune cells, but also exhibited high immune escape. The intratumor microbes were also different between the two subtypes. A convenient 6-gene angiogenesis-related signature (ARS), was established to identify AGSs and predict the prognosis in CC patients. SLC2A3 was selected as the representative gene of ARS, which was higher expressed in endothelial cells and promoted the migration of HUVECs. CONCLUSION Our study identified two AGSs with distinct prognoses, TME, and intratumor microbial compositions, which could provide potential explanations for the impact on the prognosis of CC. The reliable ARS model was further constructed, which could guide the personalized treatment. The SLC2A3 might be a potential target for antiangiogenic therapy.
Collapse
Affiliation(s)
- Yi Yang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, China
| | - Yu-Ting Qiu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, China
| | - Wen-Kun Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, China
| | - Zi-Lu Cui
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, China
| | - Shuo Teng
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, China
- Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100050, China
| | - Ya-Dan Wang
- Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100050, China
| | - Jing Wu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, China
| |
Collapse
|
31
|
Hao T, Zhang B, Li W, Yang X, Wu S, Yuan Y, Cui H, Chen Q, Li Z. Nordihydroguaiaretic Acid-Cross-Linked Phenylboronic Acid-Functionalized Polyplex Micelles for Anti-angiogenic Gene Therapy of Orthotopic and Metastatic Tumors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34620-34631. [PMID: 38934519 DOI: 10.1021/acsami.4c05311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Polyplexes are required to be equipped with multiple functionalities to accomplish adequate structure stability and gene transfection efficacy for gene therapy. Herein, a 4-carboxy-3-fluorophenylboronic acid (FPBA)-functionalized block copolymer of PEG-b-PAsp(DET/FBA) and PAsp(DET/FBA) (abbreviated as PB and HB) was synthesized and applied for engineering functional polyplex micelles (PMs) through ionic complexation with pDNA followed by strategic cross-linking with nordihydroguaiaretic acid (NDGA) in respect to the potential linkage of polyphenol and FPBA moieties. In relation to polyplex micelles void of cross-linking, the engineered multifunctional polyplex micelles (PBHBN-PMs) were determined to possess improved structural tolerability against the exchange reaction with charged species. Besides, the FPBA/NDGA cross-linking appeared to be selectively cleaved in the acidic endosomal compartments but not the neutral milieu. Furthermore, the PBHB-PMs with the optimal FPBA/NDGA cross-linking degree were identified to possess appreciable cellular uptake and endosomal escape activities, eliciting a significantly high level of gene expression relative to P-PMs and PB-PMs. Eventually, in vivo antitumor therapy by our proposed multifunctional PMs appeared to be capable of facilitating expression of the antiangiogenic genomic payloads (sFlt-1 pDNA) via systemic administration. The enriched antiangiogenic sFlt-1 in the tumors could silence the activities of angiogenic cytokines for the inhibited neo-vasculature and the suppressed growth of orthotopic 4T1 tumors. Of note, the persistent expression of the antiangiogenic sFlt-1 is also presumed to migrate into the blood circulation, thereby accounting for an overall antiangiogenic environment in preventing the potential pulmonary metastasis. Hence, our elaborated multifaceted PMs inspired fascinating potential as an intriguing gene delivery system for the treatment of clinical solid tumors and metastasis.
Collapse
Affiliation(s)
- Tangna Hao
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Bingning Zhang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Wenjing Li
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Xianxian Yang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Sha Wu
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Yujie Yuan
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Hongxia Cui
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Qixian Chen
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Zhen Li
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| |
Collapse
|
32
|
Yu JH, Xiao BY, Li DD, Jiang W, Ding Y, Wu XJ, Zhang RX, Lin JZ, Wang W, Han K, Kong LH, Zhang XK, Chen BY, Mei WJ, Pan ZZ, Tang JH, Zhang XS, Ding PR. Neoadjuvant camrelizumab plus apatinib for locally advanced microsatellite instability-high or mismatch repair-deficient colorectal cancer (NEOCAP): a single-arm, open-label, phase 2 study. Lancet Oncol 2024; 25:843-852. [PMID: 38852601 DOI: 10.1016/s1470-2045(24)00203-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/28/2024] [Accepted: 04/09/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND PD-1 blockade is highly efficacious for mismatch repair-deficient colorectal cancer in both metastatic and neoadjuvant settings. We aimed to explore the activity and safety of neoadjuvant therapy with PD-1 blockade plus an angiogenesis inhibitor and the feasibility of organ preservation in patients with locally advanced mismatch repair-deficient colorectal cancer. METHODS We initiated a single-arm, open-label, phase 2 trial (NEOCAP) at Sun Yat-sen University Cancer Center and the Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China. Patients aged 18-75 years with untreated mismatch repair-deficient or microsatellite instability-high or POLE/POLD1-mutated locally advanced colorectal cancer (cT3 or N+ for rectal cancer, and T3 with invasion ≥5mm or T4, with or without N+ for colon cancer) and an Eastern Cooperative Oncology Group performance score of 0-1 were enrolled and given 200 mg camrelizumab intravenously on day 1 and 250 mg apatinib orally from day 1-14, every 3 weeks for 3 months followed by surgery or 6 months if patients did not have surgery. Patients who had a clinical complete response did not undergo surgery and proceeded with a watch-and-wait approach. The primary endpoint was the proportion of patients with a pathological or clinical complete response. Eligible enrolled patients who received at least one cycle of neoadjuvant treatment and had at least one tumour response assessment following the baseline assessment were included in the activity analysis, and patients who received at least one dose of study drug were included in the safety analysis. The study is registered with ClinicalTrials.gov (NCT04715633) and is ongoing. FINDINGS Between Sept 29, 2020, and Dec 15, 2022, 53 patients were enrolled; one patient was excluded from the activity analysis because they were found to be mismatch repair-proficient and microsatellite-stable. 23 (44%) patients were female and 29 (56%) were male. The median follow-up was 16·4 (IQR 10·5-23·5) months. 28 (54%; 95% CI 35-68) patients had a clinical complete response and 24 of these patients were managed with a watch-and-wait approach, including 20 patients with colon cancer and multiple primary colorectal cancer. 23 (44%) of 52 patients underwent surgery for the primary tumour, and 14 (61%; 95% CI 39-80) had a pathological complete response. 38 (73%; 95% CI 59-84) of 52 patients had a complete response. Grade 3-5 adverse events occurred in 20 (38%) of 53 patients; the most common were increased aminotransferase (six [11%]), bowel obstruction (four [8%]), and hypertension (four [8%]). Drug-related serious adverse events occurred in six (11%) of 53 patients. One patient died from treatment-related immune-related hepatitis. INTERPRETATION Neoadjuvant camrelizumab plus apatinib show promising antitumour activity in patients with locally advanced mismatch repair-deficient or microsatellite instability-high colorectal cancer. Immune-related adverse events should be monitored with the utmost vigilance. Organ preservation seems promising not only in patients with rectal cancer, but also in those with colon cancer who have a clinical complete response. Longer follow-up is needed to assess the oncological outcomes of the watch-and-wait approach. FUNDING The National Natural Science Foundation of China, Guangdong Basic and Applied Basic Research Foundation, and the Cancer Innovative Research Program of Sun Yat-sen University Cancer Center. TRANSLATION For the Chinese translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Jie-Hai Yu
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Bin-Yi Xiao
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Dan-Dan Li
- Department of Biotherapy Center, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Wu Jiang
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Ya Ding
- Department of Biotherapy Center, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Xiao-Jun Wu
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Rong-Xin Zhang
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Jun-Zhong Lin
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Wei Wang
- Department of Gastrointestinal Surgery, Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China; Department of General Surgery, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Kai Han
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Ling-Heng Kong
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Xin-Ke Zhang
- Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Bi-Yun Chen
- Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Wei-Jian Mei
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Zhi-Zhong Pan
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Jing-Hua Tang
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Xiao-Shi Zhang
- Department of Biotherapy Center, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Pei-Rong Ding
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China.
| |
Collapse
|
33
|
Kuwano A, Yada M, Koga Y, Tanaka K, Ohishi Y, Masumoto A, Motomura K. Dynamics of the neutrophil‑to‑lymphocyte ratio during lenvatinib treatment for unresectable hepatocellular carcinoma. Oncol Lett 2024; 28:309. [PMID: 38784605 PMCID: PMC11112146 DOI: 10.3892/ol.2024.14442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
Lenvatinib is an approved therapy for advanced hepatocellular carcinoma (HCC). Recently, immune checkpoint inhibitors have been approved as frontline chemotherapies for HCC, and the tumor immune microenvironment (TIME) has been demonstrated to significantly affect HCC treatment. The neutrophil-to-lymphocyte ratio (NLR) is associated with the TIME, and the dynamics of the NLR are associated with prognosis or treatment efficacy in various cancer types. The present study investigated the dynamics of the TIME using the NLR in 101 patients with HCC treated with lenvatinib. Immunostaining for CD8+ tumor-infiltrating lymphocytes (TILs) was also performed in 9 patients who underwent liver tumor biopsy prior to subsequent chemotherapy for progression or discontinuation due to adverse events on lenvatinib treatment. The NLR values measured at the start of treatment (SOT), after 1 month of treatment and after 3 months of treatment were 2.78±2.20, 2.61±1.86 and 2.66±2.36, respectively (P=0.733). Among the patients with no reduction in the initial dose, there was no significant difference between the NLR after 1 month (2.34±0.25) and that at the SOT (2.86±2.33) (P=0.613). In patients who achieved a complete or partial response, the NLR at the time of the best tumor response was 1.65±0.56, which was significantly lower than that at the SOT (2.05±0.78) (P=0.023). In patients who did not respond to lenvatinib, the NLR at the time of disease progression was 3.68±3.19, which was significantly higher than that at the SOT (2.78±1.79) (P=0.043). Overall, 5 out of the 6 patients who did not respond to lenvatinib had low CD8+ TIL counts at disease progression. Although the present study included a limited number of patients, the NLR was associated with the therapeutic effects of lenvatinib. These findings suggest the potential of lenvatinib as an immunomodulator.
Collapse
Affiliation(s)
- Akifumi Kuwano
- Department of Hepatology, Aso Iizuka Hospital, Iizuka, Fukuoka 820-8505, Japan
| | - Masayoshi Yada
- Department of Hepatology, Aso Iizuka Hospital, Iizuka, Fukuoka 820-8505, Japan
| | - Yuta Koga
- Department of Hepatology, Aso Iizuka Hospital, Iizuka, Fukuoka 820-8505, Japan
| | - Kosuke Tanaka
- Department of Hepatology, Aso Iizuka Hospital, Iizuka, Fukuoka 820-8505, Japan
| | - Yoshihiro Ohishi
- Department of Diagnostic Pathology, Aso Iizuka Hospital, Iizuka, Fukuoka 820-8505, Japan
| | - Akihide Masumoto
- Department of Hepatology, Aso Iizuka Hospital, Iizuka, Fukuoka 820-8505, Japan
| | - Kenta Motomura
- Department of Hepatology, Aso Iizuka Hospital, Iizuka, Fukuoka 820-8505, Japan
| |
Collapse
|
34
|
Huang L, Gao R, Nan L, Qi J, Yang S, Shao S, Xie J, Pan M, Qiu T, Zhang J. Anti-VEGFR2-Interferon α Promotes the Infiltration of CD8+ T Cells in Colorectal Cancer by Upregulating the Expression of CCL5. J Immunother 2024; 47:195-204. [PMID: 38654631 DOI: 10.1097/cji.0000000000000516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/04/2024] [Indexed: 04/26/2024]
Abstract
SUMMARY Immunocytokines are a promising immunotherapeutic approach in cancer therapy. Anti-VEGFR2-interferon α (IFNα) suppressed colorectal cancer (CRC) growth and enhanced CD8 + T-cell infiltration in the tumor microenvironment, exhibiting great clinical translational potential. However, the mechanism of how the anti-VEGFR2-IFNα recruits T cells has not been elucidated. Here, we demonstrated that anti-VEGFR2-IFNα suppressed CRC metastasis and enhanced CD8 + T-cell infiltration. RNA sequencing revealed a transcriptional activation of CCL5 in metastatic CRC cells, which was correlated with T-cell infiltration. IFNα but not anti-VEGFR2 could further upregulate CCL5 in tumors. In immunocompetent mice, both IFNα and anti-VEGFR2-IFNα increased the subset of tumor-infiltrating CD8 + T cells through upregulation of CCL5. Knocking down CCL5 in tumor cells attenuated the infiltration of CD8 + T cells and dampened the antitumor efficacy of anti-VEGFR2-IFNα treatment. We, therefore, propose upregulation of CCL5 is a key to enhance infiltration of CD8 + T cells in metastatic CRC with IFNα and IFNα-based immunocytokine treatments. These findings may help the development of IFNα related immune cytokines for the treatment of less infiltrated tumors.
Collapse
Affiliation(s)
- Linhua Huang
- Antibody Engineering Laboratory, State Key Laboratory of Natural Medicines, Department of Biopharmaceutical, School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| | - Rui Gao
- Antibody Engineering Laboratory, State Key Laboratory of Natural Medicines, Department of Biopharmaceutical, School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| | - Lidi Nan
- Antibody Engineering Laboratory, State Key Laboratory of Natural Medicines, Department of Biopharmaceutical, School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| | - Jingyao Qi
- Antibody Engineering Laboratory, State Key Laboratory of Natural Medicines, Department of Biopharmaceutical, School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| | - Siyu Yang
- Antibody Engineering Laboratory, State Key Laboratory of Natural Medicines, Department of Biopharmaceutical, School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| | - Shuai Shao
- Antibody Engineering Laboratory, State Key Laboratory of Natural Medicines, Department of Biopharmaceutical, School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| | - Jiajun Xie
- Antibody Engineering Laboratory, State Key Laboratory of Natural Medicines, Department of Biopharmaceutical, School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| | - Mingzhu Pan
- Antibody Engineering Laboratory, State Key Laboratory of Natural Medicines, Department of Biopharmaceutical, School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| | | | - Juan Zhang
- Antibody Engineering Laboratory, State Key Laboratory of Natural Medicines, Department of Biopharmaceutical, School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| |
Collapse
|
35
|
Yang M, Cui M, Sun Y, Liu S, Jiang W. Mechanisms, combination therapy, and biomarkers in cancer immunotherapy resistance. Cell Commun Signal 2024; 22:338. [PMID: 38898505 PMCID: PMC11186190 DOI: 10.1186/s12964-024-01711-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024] Open
Abstract
Anti-programmed death 1/programmed death ligand 1 (anti-PD-1/PD-L1) antibodies exert significant antitumor effects by overcoming tumor cell immune evasion and reversing T-cell exhaustion. However, the emergence of drug resistance causes most patients to respond poorly to these immune checkpoint inhibitors (ICIs). Studies have shown that insufficient T-cell infiltration, lack of PD-1 expression, deficient interferon signaling, loss of tumor antigen presentation, and abnormal lipid metabolism are all considered to be closely associated with immunotherapy resistance. To address drug resistance in tumor immunotherapy, a lot of research has concentrated on developing combination therapy strategies. Currently, ICIs such as anti-PD-1 /PD-L1 antibody combined with chemotherapy and targeted therapy have been approved for clinical treatment. In this review, we analyze the mechanisms of resistance to anti-PD-1/PD-L1 therapy in terms of the tumor microenvironment, gut microbiota, epigenetic regulation, and co-inhibitory immune checkpoint receptors. We also discuss various promising combination therapeutic strategies to address resistance to anti-PD-1/PD-L1 drugs, including combining these therapies with traditional Chinese medicine, non-coding RNAs, targeted therapy, other ICIs, and personalized cancer vaccines. Moreover, we focus on biomarkers that predict resistance to anti-PD-1/PD-L1 therapy as well as combination therapy efficacy. Finally, we suggest ways to further expand the application of immunotherapy through personalized combination strategies using biomarker systems.
Collapse
Affiliation(s)
- Manshi Yang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Mengying Cui
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Yang Sun
- Department of Orthopaedic, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Shui Liu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Weibo Jiang
- Department of Orthopaedic, The Second Hospital of Jilin University, Changchun, 130041, China.
| |
Collapse
|
36
|
Simões RB, Simões MDELPB, Ioshii SO, Robes RR, Dall'antonia MO, Goehr MP, Neves PJF. Effects of valproic acid on wound healing of the abdominal wall musculoaponeurotic layer: an experimental study in rats. Rev Col Bras Cir 2024; 51:e20243676. [PMID: 38896636 DOI: 10.1590/0100-6991e-20243676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/10/2024] [Indexed: 01/03/2025] Open
Abstract
INTRODUCTION valproic acid (VPA), an epigenetic drug, has potential for the treatment of neoplasms. Its effects on the healing of the peritoneal-musculo-aponeurotic plane (PMA) of the abdominal wall are studied. METHOD sixty Wistar rats were allocated into two groups: experimental (VPA) and control (0.9% sodium chloride), treated daily, starting three days before the intervention and until euthanasia. Under anesthesia, a median laparotomy was performed and repaired with two synthetic layers. Assessments took place 3, 7 and 14 days after surgery. The integrity of the wounds, the quality of the inflammatory reaction, the intensity of the leukocyte infiltrate, collagen synthesis, the intensity of angiogenesis and the presence of myofibroblasts were studied. RESULTS there was dehiscence of the PMA plane in 11 of the 30 animals (p=0.001) in the experimental group. There was no difference in the quality and intensity of the inflammatory reaction. Immunohistochemistry revealed, in the experimental group, less collagen I (p3=0.003, p7=0.013 and p14=0.001) and more collagen III (p3=0.003, p7=0.013 and p14= 0.001). Collagen evaluated by Sirus Supra Red F3BA showed, in the experimental group, less collagen at all three times (p<0.001) with less collagen I and collagen III (p<0.001). A lower number of vessels was found on the 3rd day (p<0.001) and on the 7th day (p=0.001) and did not affect the number of myofibroblasts. CONCLUSION VPA showed dehiscence of the PMA plane, with less deposition of total collagen and collagen I, less angiogenic activity, without interfering with the number of myofibroblasts.
Collapse
Affiliation(s)
- Rachel Biondo Simões
- - Universidade Federal do Paraná, Programa de Pós-graduação em Clínica Cirúrgica - Dep. de Cirurgia - Curitiba - PR - Brasil
| | - Maria DE Lourdes Pessole Biondo Simões
- - Universidade Federal do Paraná, Programa de Pós-graduação em Clínica Cirúrgica - Dep. de Cirurgia - Curitiba - PR - Brasil
- - Universidade Federal do Paraná, Técnica Cirúrgica e Cirurgia Experimental - Curitiba - PR - Brasil
| | - Sérgio Ossamu Ioshii
- - Universidade Federal do Paraná, Departamento de Patologia da UFPR - Curitiba - PR - Brasil
| | - Rogério Ribeiro Robes
- - Universidade Federal do Paraná, Técnica Cirúrgica e Cirurgia Experimental - Curitiba - PR - Brasil
| | | | - Matheus Prince Goehr
- - Universidade Federal do Paraná, Técnica Cirúrgica e Cirurgia Experimental - Curitiba - PR - Brasil
| | - Pedro Juan Furtado Neves
- - Universidade Federal do Paraná, Técnica Cirúrgica e Cirurgia Experimental - Curitiba - PR - Brasil
| |
Collapse
|
37
|
Simões RB, Simões MDELPB, Ioshii SO, Robes RR, Dall'antonia MO, Goehr MP, Neves PJF. Effects of valproic acid on wound healing of the abdominal wall musculoaponeurotic layer: an experimental study in rats. Rev Col Bras Cir 2024; 51:e20243676. [PMID: 38896636 PMCID: PMC11185066 DOI: 10.1590/0100-6991e-20243676-en] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/10/2024] [Indexed: 06/21/2024] Open
Abstract
INTRODUCTION valproic acid (VPA), an epigenetic drug, has potential for the treatment of neoplasms. Its effects on the healing of the peritoneal-musculo-aponeurotic plane (PMA) of the abdominal wall are studied. METHOD sixty Wistar rats were allocated into two groups: experimental (VPA) and control (0.9% sodium chloride), treated daily, starting three days before the intervention and until euthanasia. Under anesthesia, a median laparotomy was performed and repaired with two synthetic layers. Assessments took place 3, 7 and 14 days after surgery. The integrity of the wounds, the quality of the inflammatory reaction, the intensity of the leukocyte infiltrate, collagen synthesis, the intensity of angiogenesis and the presence of myofibroblasts were studied. RESULTS there was dehiscence of the PMA plane in 11 of the 30 animals (p=0.001) in the experimental group. There was no difference in the quality and intensity of the inflammatory reaction. Immunohistochemistry revealed, in the experimental group, less collagen I (p3=0.003, p7=0.013 and p14=0.001) and more collagen III (p3=0.003, p7=0.013 and p14= 0.001). Collagen evaluated by Sirus Supra Red F3BA showed, in the experimental group, less collagen at all three times (p<0.001) with less collagen I and collagen III (p<0.001). A lower number of vessels was found on the 3rd day (p<0.001) and on the 7th day (p=0.001) and did not affect the number of myofibroblasts. CONCLUSION VPA showed dehiscence of the PMA plane, with less deposition of total collagen and collagen I, less angiogenic activity, without interfering with the number of myofibroblasts.
Collapse
Affiliation(s)
- Rachel Biondo Simões
- - Universidade Federal do Paraná, Programa de Pós-graduação em Clínica Cirúrgica - Dep. de Cirurgia - Curitiba - PR - Brasil
| | - Maria DE Lourdes Pessole Biondo Simões
- - Universidade Federal do Paraná, Programa de Pós-graduação em Clínica Cirúrgica - Dep. de Cirurgia - Curitiba - PR - Brasil
- - Universidade Federal do Paraná, Técnica Cirúrgica e Cirurgia Experimental - Curitiba - PR - Brasil
| | - Sérgio Ossamu Ioshii
- - Universidade Federal do Paraná, Departamento de Patologia da UFPR - Curitiba - PR - Brasil
| | - Rogério Ribeiro Robes
- - Universidade Federal do Paraná, Técnica Cirúrgica e Cirurgia Experimental - Curitiba - PR - Brasil
| | | | - Matheus Prince Goehr
- - Universidade Federal do Paraná, Técnica Cirúrgica e Cirurgia Experimental - Curitiba - PR - Brasil
| | - Pedro Juan Furtado Neves
- - Universidade Federal do Paraná, Técnica Cirúrgica e Cirurgia Experimental - Curitiba - PR - Brasil
| |
Collapse
|
38
|
Akinpelu A, Akinsipe T, Avila LA, Arnold RD, Mistriotis P. The impact of tumor microenvironment: unraveling the role of physical cues in breast cancer progression. Cancer Metastasis Rev 2024; 43:823-844. [PMID: 38238542 PMCID: PMC11156564 DOI: 10.1007/s10555-024-10166-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/02/2024] [Indexed: 01/30/2024]
Abstract
Metastasis accounts for the vast majority of breast cancer-related fatalities. Although the contribution of genetic and epigenetic modifications to breast cancer progression has been widely acknowledged, emerging evidence underscores the pivotal role of physical stimuli in driving breast cancer metastasis. In this review, we summarize the changes in the mechanics of the breast cancer microenvironment and describe the various forces that impact migrating and circulating tumor cells throughout the metastatic process. We also discuss the mechanosensing and mechanotransducing molecules responsible for promoting the malignant phenotype in breast cancer cells. Gaining a comprehensive understanding of the mechanobiology of breast cancer carries substantial potential to propel progress in prognosis, diagnosis, and patient treatment.
Collapse
Affiliation(s)
- Ayuba Akinpelu
- Department of Chemical Engineering, Samuel Ginn College of Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Tosin Akinsipe
- Department of Biological Sciences, College of Science and Mathematics, Auburn University, Auburn, AL, 36849, USA
| | - L Adriana Avila
- Department of Biological Sciences, College of Science and Mathematics, Auburn University, Auburn, AL, 36849, USA
| | - Robert D Arnold
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Panagiotis Mistriotis
- Department of Chemical Engineering, Samuel Ginn College of Engineering, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
39
|
Li S, Sheng J, Zhang D, Qin H. Targeting tumor-associated macrophages to reverse antitumor drug resistance. Aging (Albany NY) 2024; 16:10165-10196. [PMID: 38787372 PMCID: PMC11210230 DOI: 10.18632/aging.205858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
Currently, antitumor drugs show limited clinical outcomes, mainly due to adaptive resistance. Clinical evidence has highlighted the importance of the tumor microenvironment (TME) and tumor-associated macrophages (TAMs) in tumor response to conventional antitumor drugs. Preclinical studies show that TAMs following antitumor agent can be reprogrammed to an immunosuppressive phenotype and proangiogenic activities through different mechanisms, mediating drug resistance and poor prognosis. Potential extrinsic inhibitors targeting TAMs repolarize to an M1-like phenotype or downregulate proangiogenic function, enhancing therapeutic efficacy of anti-tumor therapy. Moreover, pharmacological modulation of macrophages that restore the immune stimulatory characteristics is useful to reshaping the tumor microenvironment, thus further limiting tumor growth. This review aims to introduce macrophage response in tumor therapy and provide a potential therapeutic combination strategy of TAM-targeting immunomodulation with conventional antitumor drugs.
Collapse
Affiliation(s)
- Sheng Li
- The Second Hospital of Jilin University, Changchun, China
| | - Jiyao Sheng
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, China
| | - Dan Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, China
| | - Hanjiao Qin
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
40
|
Li A, Wu J. High STAT4 expression correlates with poor prognosis in acute myeloid leukemia and facilitates disease progression by upregulating VEGFA expression. Open Med (Wars) 2024; 19:20230840. [PMID: 38737443 PMCID: PMC11087736 DOI: 10.1515/med-2023-0840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/11/2023] [Accepted: 10/22/2023] [Indexed: 05/14/2024] Open
Abstract
The aim of our study is to explore the mechanism of transcription-4 (STAT4) in acute myeloid leukemia (AML). STAT4 level in AML bone marrow samples/cells was analyzed using bioinformatics and quantitative real-time PCR. The correlation between high STAT4 expression and the prognosis of AML patients was analyzed. The viability, apoptosis, and angiogenesis of AML cells were detected. The levels of STAT4, vascular endothelial growth factor A (VEGFA), and apoptosis-related proteins (Bcl-2 and Bax) in transfected AML cells were examined. STAT4 level was upregulated in AML. STAT4 silencing decreased the viability and angiogenesis, yet increased the apoptosis of AML cells, while overexpressed STAT4 did conversely. VEGFA silencing counteracted the impacts of overexpressed STAT4 upon promoting viability and angiogenesis as well as repressing the apoptosis of AML cells. High STAT4 expression was correlated with poor prognosis of AML patients and facilitated disease progression via upregulating VEGFA expression.
Collapse
Affiliation(s)
- Aohang Li
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jingxuan Wu
- Research Ward, Beijing Friendship Hospital, Capital Medical University, Xicheng District, Beijing, China
| |
Collapse
|
41
|
Zhao X, Cheng Y, Guo C, Nie L, Zhang Q, Zhang M, Sun K, Wang G. Efficacy of cross-line anti-programmed death 1/programmed cell death-ligand 1 antibody in the treatment of advanced nonsmall cell lung cancer: A retrospective study. Health Sci Rep 2024; 7:e2114. [PMID: 38736477 PMCID: PMC11082083 DOI: 10.1002/hsr2.2114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/11/2024] [Accepted: 04/20/2024] [Indexed: 05/14/2024] Open
Abstract
Background and Aims Immune checkpoint inhibitors (ICIs) across multiple treatment lines have not yet been evaluated comprehensively. The purpose of this research was to investigate whether or not continuous cross-line ICIs therapy is effective in treating non-small cell lung cancer (NSCLC). Methods We conducted a retrospective investigation into the medical histories of 47 patients diagnosed with advanced NSCLC and treated with ICIs at the Peking University First Hospital between January 2018 and June 2022. Results Due to the progression of their disease, 14 patients were given the same ICIs, 5 patients were given different ICIs, and 6 patients discontinued taking ICIs altogether. The objective response rates were 7.140% in the ICIs cross-line treatment group, 0% in the replacement of ICIs treatment group, and 0% in the discontinuation of ICIs treatment group. The disease control rates were 64.260% in the ICIs cross-line treatment group, 60% in the replacement of ICIs treatment group, and 0% in the discontinuation of ICIs treatment group. The average overall survival durations of the three groups were 24.020 (95% confidence interval [CI]: 17.061-30.979), 31.643 (95% CI: 23.513-39.774), and 7.997 (95% CI: 3.746-12.247) months, respectively (p = 0.003). The median second progression-free survival (PFS2) durations of the three groups were 4.570 (95% CI: 3.276-5.864), 3.530 (95% CI: 0.674-6.386), and 1.570 (95% CI: 0-4.091) months, respectively (p = 0.091). Conclusions Cross-line ICIs cannot improve the prognosis and PFS2 of patients with NSCLC, but compared to discontinuing ICIs, OS may be prolonged. A few patients may benefit from prolonged ICIs therapy.
Collapse
Affiliation(s)
- Xiang Zhao
- Department of Respiratory and Critical Care MedicinePeking University First HospitalBeijingChina
| | - Yuan Cheng
- Department of Respiratory and Critical Care MedicinePeking University First HospitalBeijingChina
| | - Cuiyan Guo
- Department of Respiratory and Critical Care MedicinePeking University First HospitalBeijingChina
| | - Ligong Nie
- Department of Respiratory and Critical Care MedicinePeking University First HospitalBeijingChina
| | - Qi Zhang
- Department of Respiratory and Critical Care MedicinePeking University First HospitalBeijingChina
| | - Meng Zhang
- Department of Respiratory and Critical Care MedicinePeking University First HospitalBeijingChina
| | - Kunyan Sun
- Department of Respiratory and Critical Care MedicinePeking University First HospitalBeijingChina
| | - Guangfa Wang
- Department of Respiratory and Critical Care MedicinePeking University First HospitalBeijingChina
| |
Collapse
|
42
|
Li B, Wang Z, Zhou H, Tan W, Zou J, Li Y, Yoshida S, Zhou Y. Bibliometric evaluation of global trends and characteristics of RNA methylation during angiogenesis. Heliyon 2024; 10:e29817. [PMID: 38681586 PMCID: PMC11046201 DOI: 10.1016/j.heliyon.2024.e29817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024] Open
Abstract
Background RNA methylation is involved in major life processes. Angiogenesis is a normal phenomenon that occurs constantly in the bodies of all mammals, once it is aberrant or something goes wrong, it may lead to pathological changes. The bibliometric analysis could produce a comprehensive overview of RNA methylation during angiogenesis. Methods The Web of Science Core Collection (WoSCC) database was used to screen publications about RNA methylation during angiogenesis from Jan 1, 2000 to Nov 24, 2022. Bibliometric and visualization analyses were conducted to understand publication trends by CiteSpace and VOSviewer. Results In total, 382 publications from 2000 to 2022 were included in the bibliometric and visualization analyses. On the whole, the number of publications had exponential growth. China was the country and Sun Yat-Sen University was the university associated with the largest number of publications, although publications from the United Kingdom and Soochow University were currently having the strongest impact. Cancer was the most studied topic in this field, and N6-methyladenosine is the most studied RNA methylation type. Conclusion There is a continuously increasing trend in publications related to RNA methylation and angiogenesis, which has attracted much attention, particularly since 2011. RNA methylation might be a promising target in the investigation of pathological angiogenesis and related disorders, which deserves further investigation.
Collapse
Affiliation(s)
- Bingyan Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Zicong Wang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Haixiang Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Wei Tan
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Jingling Zou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yun Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| |
Collapse
|
43
|
Saeinasab M, Atlasi Y, M Matin M. Functional role of lncRNAs in gastrointestinal malignancies: the peculiar case of small nucleolar RNA host gene family. FEBS J 2024; 291:1353-1385. [PMID: 36282516 DOI: 10.1111/febs.16668] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/18/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Long noncoding RNAs (lncRNAs) play crucial roles in normal physiology and are often de-regulated in disease states such as cancer. Recently, a class of lncRNAs referred to as the small nucleolar RNA host gene (SNHG) family have emerged as important players in tumourigenesis. Here, we discuss new findings describing the role of SNHGs in gastrointestinal tumours and summarize the three main functions by which these lncRNAs promote carcinogenesis, namely: competing with endogenous RNAs, modulating protein function, and regulating epigenetic marking. Furthermore, we discuss how SNHGs participate in different hallmarks of cancer, and how this class of lncRNAs may serve as potential biomarkers in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Morvarid Saeinasab
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Iran
| | - Yaser Atlasi
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, UK
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Iran
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Iran
| |
Collapse
|
44
|
Wang F, Jin Y, Wang M, Luo HY, Fang WJ, Wang YN, Chen YX, Huang RJ, Guan WL, Li JB, Li YH, Wang FH, Hu XH, Zhang YQ, Qiu MZ, Liu LL, Wang ZX, Ren C, Wang DS, Zhang DS, Wang ZQ, Liao WT, Tian L, Zhao Q, Xu RH. Combined anti-PD-1, HDAC inhibitor and anti-VEGF for MSS/pMMR colorectal cancer: a randomized phase 2 trial. Nat Med 2024; 30:1035-1043. [PMID: 38438735 DOI: 10.1038/s41591-024-02813-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 01/10/2024] [Indexed: 03/06/2024]
Abstract
Epigenetic modifications of chromatin, including histone acetylation, and tumor angiogenesis play pivotal roles in creating an immunosuppressive tumor microenvironment. In the randomized phase 2 CAPability-01 trial, we investigated the potential efficacy of combining the programmed cell death protein-1 (PD-1) monoclonal antibody sintilimab with the histone deacetylase inhibitor (HDACi) chidamide with or without the anti-vascular endothelial growth factor (VEGF) monoclonal antibody bevacizumab in patients with unresectable chemotherapy-refractory locally advanced or metastatic microsatellite stable/proficient mismatch repair (MSS/pMMR) colorectal cancer. Forty-eight patients were randomly assigned to either the doublet arm (sintilimab and chidamide, n = 23) or the triplet arm (sintilimab, chidamide and bevacizumab, n = 25). The primary endpoint of progression-free survival (PFS) rate at 18 weeks (18wPFS rate) was met with a rate of 43.8% (21 of 48) for the entire study population. Secondary endpoint results include a median PFS of 3.7 months, an overall response rate of 29.2% (14 of 48), a disease control rate of 56.3% (27 of 48) and a median duration of response of 12.0 months. The secondary endpoint of median overall survival time was not mature. The triplet arm exhibited significantly improved outcomes compared to the doublet arm, with a greater 18wPFS rate (64.0% versus 21.7%, P = 0.003), higher overall response rate (44.0% versus 13.0%, P = 0.027) and longer median PFS rate (7.3 months versus 1.5 months, P = 0.006). The most common treatment-emergent adverse events observed in both the triplet and doublet arms included proteinuria, thrombocytopenia, neutropenia, anemia, leukopenia and diarrhea. There were two treatment-related fatalities (hepatic failure and pneumonitis). Analysis of bulk RNA sequencing data from the patients suggested that the triplet combination enhanced CD8+ T cell infiltration, resulting in a more immunologically active tumor microenvironment. Our study suggests that the combination of a PD-1 antibody, an HDACi, and a VEGF antibody could be a promising treatment regimen for patients with MSS/pMMR advanced colorectal cancer. ClinicalTrials.gov registration: NCT04724239 .
Collapse
Affiliation(s)
- Feng Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, P. R. China.
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China.
| | - Ying Jin
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China
| | - Min Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China
| | - Hui-Yan Luo
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China
| | - Wei-Jia Fang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Ying-Nan Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China
| | - Yan-Xing Chen
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China
| | - Run-Jie Huang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China
| | - Wen-Long Guan
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China
| | - Ji-Bin Li
- Department of Clinical Research, Sun Yat-Sen University Cancer Center, Guangzhou, P. R. China
| | - Yu-Hong Li
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China
| | - Feng-Hua Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China
| | - Xiao-Hua Hu
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Yan-Qiao Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, P. R. China
| | - Miao-Zhen Qiu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China
| | - Lu-Lu Liu
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Zi-Xian Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China
| | - Chao Ren
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China
| | - De-Shen Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China
| | - Dong-Sheng Zhang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China
| | - Zhi-Qiang Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China
| | - Wen-Ting Liao
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Lin Tian
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Qi Zhao
- Bioinformatics Platform, Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Rui-Hua Xu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, P. R. China.
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China.
| |
Collapse
|
45
|
Jasim SA, Al-Hawary SIS, Kaur I, Ahmad I, Hjazi A, Petkov I, Ali SHJ, Redhee AH, Shuhata Alubiady MH, Al-Ani AM. Critical role of exosome, exosomal non-coding RNAs and non-coding RNAs in head and neck cancer angiogenesis. Pathol Res Pract 2024; 256:155238. [PMID: 38493725 DOI: 10.1016/j.prp.2024.155238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/13/2024] [Accepted: 03/02/2024] [Indexed: 03/19/2024]
Abstract
Head and neck cancer (HNC) refers to the epithelial malignancies of the upper aerodigestive tract. HNCs have a constant yet slow-growing rate with an unsatisfactory overall survival rate globally. The development of new blood vessels from existing blood conduits is regarded as angiogenesis, which is implicated in the growth, progression, and metastasis of cancer. Aberrant angiogenesis is a known contributor to human cancer progression. Representing a promising therapeutic target, the blockade of angiogenesis aids in the reduction of the tumor cells oxygen and nutrient supplies. Despite the promise, the association of existing anti-angiogenic approaches with severe side effects, elevated cancer regrowth rates, and limited survival advantages is incontrovertible. Exosomes appear to have an essential contribution to the support of vascular proliferation, the regulation of tumor growth, tumor invasion, and metastasis, as they are a key mediator of information transfer between cells. In the exocrine region, various types of noncoding RNAs (ncRNAs) identified to be enriched and stable and contribute to the occurrence and progression of cancer. Mounting evidence suggest that exosome-derived ncRNAs are implicated in tumor angiogenesis. In this review, the characteristics of angiogenesis, particularly in HNC, and the impact of ncRNAs on HNC angiogenesis will be outlined. Besides, we aim to provide an insight on the regulatory role of exosomes and exosome-derived ncRNAs in angiogenesis in different types of HNC.
Collapse
Affiliation(s)
| | | | - Irwanjot Kaur
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Iliya Petkov
- Medical University - Sofia, Department of Neurology, Sofia, Bulgaria
| | - Saad Hayif Jasim Ali
- Department of medical laboratory, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | - Ahmed Huseen Redhee
- Medical laboratory technique college, the Islamic University, Najaf, Iraq; Medical laboratory technique college, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical laboratory technique college, the Islamic University of Babylon, Babylon, Iraq
| | | | | |
Collapse
|
46
|
Zhao X, Zhao R, Wen J, Zhang X, Wu S, Fang J, Ma J, Gao L, Hu Y. Bioinformatics-based screening and analysis of the key genes involved in the influence of antiangiogenesis on myeloid-derived suppressor cells and their effects on the immune microenvironment. Med Oncol 2024; 41:96. [PMID: 38526604 DOI: 10.1007/s12032-024-02357-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/12/2023] [Indexed: 03/26/2024]
Abstract
This study aimed to screen differentially expressed genes (DEGs) involved in the influence of antiangiogenic therapy on myeloid-derived suppressor cell (MDSC) infiltration and investigate their mechanisms of action. Data on DEGs after the action of antiangiogenic drugs in a pan-cancer context were obtained from the Gene Expression Omnibus (GEO) database. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using the clusterProfiler package in R software. Single-sample gene set enrichment analysis was performed using the gene set variation analysis package to evaluate the levels of immune cells and the activity of immune-related pathways. The relationships of DEGs with the infiltration levels of MDSCs and specific immune cell subpopulations were investigated via gene module analysis. The top 10 key genes were subsequently obtained from PPI network analysis using the cytoHubba plugin of the Cytoscape platform. When the DEGs of the four datasets were intersected, a DEG in the intersection of three datasets and 12 DEGs in the intersection of two datasets were upregulated, and 28 DEGs in the intersection of two datasets were downregulated. GO and KEGG pathway enrichment analyses revealed that the DEGs were associated with multiple important signaling pathways closely related to tumor onset and development, including cell differentiation, cell proliferation, the cell cycle, and immune responses. Most downregulated genes in lung adenocarcinoma (LUAD) were positively correlated with MDSC expression. Only MGP was negatively correlated; the correlation between CACNG6 and MDSC expression was statistically insignificant. In lung squamous cell carcinoma (LUSC), the relationships of PMEPA1, PCDH7, NEURL1B, and CACNG6 with MDSC expression were statistically insignificant; MGP was negatively correlated with MDSC expression. The top 10 key genes with the highest degree scores obtained using the cytoHubba plugin of Cytoscape were AURKB, RRM2, BUB1, NUSAP1, PRC1, TOP2A, NCAPH, CENPA, KIF2C, and CCNA2. Most of these genes were upregulated in LUAD and associated with immune cell infiltration and prognosis in tumors. An analysis of the relationships between DEGs and infiltration by other specific immune cells revealed the presence of consistent patterns in the downregulated genes, which exhibited positive correlations with the levels of Th2 cells, γδ T cells, and CD56dim NK cells, and negative correlations with other infiltrating immune cells. Antiangiogenic therapy may regulate MDSC infiltration through multiple important signaling pathways closely associated with tumor onset and development, such as cell differentiation, cell proliferation, the cell cycle, and immune responses. Antiangiogenic drugs may exert effects by affecting various types of infiltrating cells associated with immune suppression.
Collapse
Affiliation(s)
- XiangFei Zhao
- Department of Oncology, 5th Medical Center of Chinese, PLA General Hospital, Dongdajie 8th, Fengtai District, Beijing, 100853, China
| | - RuGang Zhao
- Department of Oncology, 5th Medical Center of Chinese, PLA General Hospital, Dongdajie 8th, Fengtai District, Beijing, 100853, China
| | - JuYi Wen
- Department of Oncology, 5th Medical Center of Chinese, PLA General Hospital, Dongdajie 8th, Fengtai District, Beijing, 100853, China
| | - Xia Zhang
- Department of Oncology, 5th Medical Center of Chinese, PLA General Hospital, Dongdajie 8th, Fengtai District, Beijing, 100853, China
| | - ShanShan Wu
- Department of Oncology, 5th Medical Center of Chinese, PLA General Hospital, Dongdajie 8th, Fengtai District, Beijing, 100853, China
| | - Juan Fang
- Department of Oncology, 5th Medical Center of Chinese, PLA General Hospital, Dongdajie 8th, Fengtai District, Beijing, 100853, China
| | - JunPeng Ma
- Department of Oncology, 6th Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - LiPin Gao
- Department of Oncology, 6th Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Yi Hu
- Department of Oncology, 5th Medical Center of Chinese, PLA General Hospital, Dongdajie 8th, Fengtai District, Beijing, 100853, China.
| |
Collapse
|
47
|
ZHOU Y, REN D, BI H, YI B, ZHANG C, WANG H, SUN J. [Tumor-associated Macrophage:
Emerging Targets for Modulating the Tumor Microenvironment]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2024; 27:231-240. [PMID: 38590197 PMCID: PMC11002190 DOI: 10.3779/j.issn.1009-3419.2024.102.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Indexed: 04/10/2024]
Abstract
Tumor-associated macrophage (TAM) play a crucial role in the immune microenvironment of lung cancer. Through changes in their phenotype and phagocytic functions, TAM contribute to the initiation and progression of lung cancer. By promoting the formation of an immune-suppressive microenvironment and accelerating the growth of abnormal tumor vasculature, TAM facilitate the invasion and metastasis of lung cancer. Macrophages can polarize into different subtypes with distinct functions and characteristics in response to various stimuli, categorized as anti-tumor M1 and pro-tumor M2 types. In tumor tissues, TAM typically polarize into the alternatively activated M2 phenotype, exhibiting inhibitory effects on tumor immunity. This article reviews the role of anti-angiogenic drugs in modulating TAM phenotypes, highlighting their potential to reprogram M2-type TAM into an anti-tumor M1 phenotype. Additionally, the functional alterations of TAM play a significant role in anti-angiogenic therapy and immunotherapy strategies. In summary, the regulation of TAM polarization and function opens up new avenues for lung cancer treatment and may serve as a novel target for modulating the immune microenvironment of tumors.
.
Collapse
|
48
|
Zhou J, Zhou P, Wang J, Song J. Roles of endothelial cell specific molecule‑1 in tumor angiogenesis (Review). Oncol Lett 2024; 27:137. [PMID: 38357478 PMCID: PMC10865172 DOI: 10.3892/ol.2024.14270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/23/2024] [Indexed: 02/16/2024] Open
Abstract
Angiogenesis plays a crucial role in tumor growth and metastasis, and is heavily influenced by the tumor microenvironment (TME). Endothelial cell dysfunction is a key factor in tumor angiogenesis and is characterized by the aberrant expression of pro-angiogenic factors. Endothelial cell specific molecule-1 (ESM1), also known as endocan, is a marker of endothelial cell dysfunction. Although ESM1 is primarily expressed in normal endothelial cells, dysregulated ESM1 expression has been observed in human tumors and animal tumor models, and implicated in tumor growth, metastasis and angiogenesis. The precise role of ESM1 in tumor angiogenesis and its potential regulatory mechanisms are not yet conclusively defined. However, the aim of the present review was to explore the involvement of ESM1 in the process of tumor angiogenesis in the TME and the characteristics of neovascularization. In addition, the present review discusses the interaction between ESM1 and angiogenic factors, as well as the mechanisms through which ESM1 contributes to tumor angiogenesis. Furthermore, the reciprocal regulation between ESM1 and the TME is explored. Finally, the potential of targeting ESM1 as a therapeutic strategy for tumor angiogenesis is presented.
Collapse
Affiliation(s)
- Jie Zhou
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Ping Zhou
- College of Chinese Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Jinfang Wang
- College of Nursing, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Jie Song
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| |
Collapse
|
49
|
Duan X, Liu X, Chen R, Pu Y. Effectiveness of PD1/PD-L1 combined with anti-angiogenic drugs in patients with advanced nonsmall cell lung cancer: A systematic review and meta-analysis. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2024; 29:7. [PMID: 38524742 PMCID: PMC10956568 DOI: 10.4103/jrms.jrms_166_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 09/03/2023] [Accepted: 10/25/2023] [Indexed: 03/26/2024]
Abstract
Background Protein-1 (PD-1) and programmed cell death 1 ligand 1 (PD-L1) therapy have become an important treatment approach for patients with advanced nonsmall cell lung cancer (NSCLC), but primary or secondary resistance remains a challenge for some patients. PD-1/PD-L1 combined with anti-angiogenic drugs (AAs) in NSCLC patients have potential synergistic effects, and the survival benefit may vary based on a treatment order. To investigate the efficacy of PD-1/PD-L1 combined with AAs as the treatment for patients with advanced NSCLC. Materials and Methods We comprehensively searched EMBASE, PubMed, Web of Science, CNKI, VIP, and Wanfang databases from January 2017 to September 2022. The Cochrane risk bias tool evaluated the quality of included randomized clinical trials. Newcastle-Ottawa-Scale score was used to evaluate the quality of retrospective studies. Publication bias was evaluated by funnel plot, Begg's test, and Egger's test. Results Seventeen articles were finally selected, involving 5182 patients. Meta-analysis results showed that PD1/PD-L1 combined with AAs therapy significantly improved progression-free survival (PFS) (hazard ratio [HR] = 0.61, 95% confidence interval [CI]: 0.50-0.75, P < 0.00001), overall survival (OS) (HR = 0.79, 95% CI: 0.71-0.88, P < 0.00001), and objective response rate (ORR) (risk ratio = 0.88, 95% CI: 0.81-0.96, P = 0.004), with the statistically significant difference. The sensitivity analysis demonstrated the robustness of the PFS, ORR, and OS. Conclusion The combination of PD-1/PD-L1 inhibitors with AAs in treating advanced patients has exhibited notable therapeutic advantages when contrasted with monotherapy. Specifically, the administration of PD-1/PD-L1 inhibitors in conjunction with AAs, or sequential treatment involving PD-1/PD-L1 followed by AAs, has shown enhanced therapeutic efficacy in this patient population.
Collapse
Affiliation(s)
- Xueyu Duan
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, Yunnan, China
- College of Pharmacy, Dali University, Dali, Yunnan, China
| | - Xiaobo Liu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, Yunnan, China
| | - Ruixiang Chen
- Department of Pharmacy, Yunnan Third People’s Hospital, Kunming, Yunnan, China
| | - Yanjiao Pu
- College of Pharmacy, Dali University, Dali, Yunnan, China
| |
Collapse
|
50
|
Chen B, Han Y, Sheng S, Deng J, Vasquez E, Yau V, Meng M, Sun C, Wang T, Wang Y, Sheng M, Wu T, Wang X, Liu Y, Lin N, Zhang L, Shao W. An angiogenesis-associated gene-based signature predicting prognosis and immunotherapy efficacy of head and neck squamous cell carcinoma patients. J Cancer Res Clin Oncol 2024; 150:91. [PMID: 38347320 PMCID: PMC10861726 DOI: 10.1007/s00432-024-05606-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/02/2024] [Indexed: 02/15/2024]
Abstract
OBJECTIVES To develop a model that can assist in the diagnosis and prediction of prognosis for head and neck squamous cell carcinoma (HNSCC). MATERIALS AND METHODS Data from TCGA and GEO databases were used to generate normalized gene expression data. Consensus Cluster Plus was used for cluster analysis and the relationship between angiogenesis-associated gene (AAG) expression patterns, clinical characteristics and survival was examined. Support vector machine (SVM) and least absolute shrinkage and selection operator (LASSO) analyzes and multiple logistic regression analyzes were performed to determine the diagnostic model, and a prognostic nomogram was constructed using univariate and multivariate Cox regression analyses. ESTIMATE, XCELL, TIMER, QUANTISEQ, MCPCOUNTER, EPIC, CIBERSORT-ABS, CIBERSORT algorithms were used to assess the immune microenvironment of HNSCC patients. In addition, gene set enrichment analysis, treatment sensitivity analysis, and AAGs mutation studies were performed. Finally, we also performed immunohistochemistry (IHC) staining in the tissue samples. RESULTS We classified HNSCC patients into subtypes based on differences in AAG expression from TCGA and GEO databases. There are differences in clinical features, TME, and immune-related gene expression between two subgroups. We constructed a HNSCC diagnostic model based on nine AAGs, which has good sensitivity and specificity. After further screening, we constructed a prognostic risk signature for HNSCC based on six AAGs. The constructed risk score had a good independent prognostic significance, and it was further constructed into a prognostic nomogram together with age and stage. Different prognostic risk groups have differences in immune microenvironment, drug sensitivity, gene enrichment and gene mutation. CONCLUSION We have constructed a diagnostic and prognostic model for HNSCC based on AAG, which has good performance. The constructed prognostic risk score is closely related to tumor immune microenvironment and immunotherapy response.
Collapse
Affiliation(s)
- Bangjie Chen
- College & Hospital of Stomatology, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, China
- The First Affiliated Hospital (First Clinical Medical College), Anhui Medical University, Hefei, China
| | - Yanxun Han
- The First Affiliated Hospital (First Clinical Medical College), Anhui Medical University, Hefei, China
| | - Shuyan Sheng
- The First Affiliated Hospital (First Clinical Medical College), Anhui Medical University, Hefei, China
| | - Jianyi Deng
- The First Affiliated Hospital (First Clinical Medical College), Anhui Medical University, Hefei, China
| | | | - Vicky Yau
- Division of Oral and Maxillofacial Surgery, NewYork Presbyterian (Columbia Irving Medical Center), New York, USA
| | - Muzi Meng
- UK Program Site, American University of the Caribbean School of Medicine, Preston, UK
- Bronxcare Health System, New York, USA
| | - Chenyu Sun
- The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Tao Wang
- The Affiliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou, China
| | - Yu Wang
- The Affiliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou, China
| | - Mengfei Sheng
- College & Hospital of Stomatology, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, China
- Department of Microbiology and Parasitology (Anhui Provincial Laboratory of Pathogen Biology), School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Tiangang Wu
- College & Hospital of Stomatology, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, China
| | - Xinyi Wang
- The First Affiliated Hospital (First Clinical Medical College), Anhui Medical University, Hefei, China
| | - Yuchen Liu
- The First Affiliated Hospital (First Clinical Medical College), Anhui Medical University, Hefei, China
| | - Ning Lin
- The Affiliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou, China.
| | - Lei Zhang
- College & Hospital of Stomatology, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, China.
| | - Wei Shao
- College & Hospital of Stomatology, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, China.
- Department of Microbiology and Parasitology (Anhui Provincial Laboratory of Pathogen Biology), School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|