1
|
Han Q, Li L, Li Z, Yang M, Lei S, Su Y, Xu H. Clinicopathological analysis of anti-VEGF drug-associated renal thrombotic microangiopathy: A case series and review of the literature. Pathol Res Pract 2025; 266:155824. [PMID: 39879682 DOI: 10.1016/j.prp.2025.155824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/12/2024] [Accepted: 01/26/2025] [Indexed: 01/31/2025]
Abstract
Anti-vascular endothelial growth factor-associated thrombotic microangiopathy (aVEGF-TMA) was recently discovered in patients with malignant tumors. Four aVEGF-TMA patients diagnosed by renal biopsy between 2018 and 2022 were identified, and all were females aged 30-62 years (mean age, 47 years). Two patients with malignant gastrointestinal stromal tumors who received sunitinib were analyzed. One patient was treated with bevacizumab plus regorafenib, which has never been reported before. Another patient had lung adenocarcinoma with multiple metastasis and was treated with bevacizumab. Proteinuria was often the first symptom, and the mean onset time was 23.25 months (7-36 months). Renal function was decreased in all patients, and nephrotic syndrome, hematuria, hypertension and anemia were present in some patients. Microscopically, both bevacizumab-TMAs and sunitinib-TMAs presented thrombi within dilated capillaries, mesangiolysis, double counters of the glomerular basement membrane and effaced or fused foot processes. Glomerulosclerosis and endothelial cell injury occurred in only some patients. Positive IgM deposits were observed in all aVEGF-TMAs, but IgA and C3 deposits were observed only in bevacizumab-TMAs. CD34 expression was absent around dilated capillaries containing thrombi, and immunostaining for fibrin/fibrinogen was positive; however, CD61 staining was negative in all patients. Thus, fibrin thrombi were suggested to be present in aVEGF-TMA. The mean follow-up time after renal biopsy was 19.5 months (range 14-32 months). One patient continued sunitinib treatment and eventually progressed to permanent dialysis, but tumor progression was controlled. The other three patients developed drug resistance, two patients discontinued aVEGF medication, and proteinuria decreased significantly. Notably, one patient recovered 14 months after withdrawal. The other patient who continued bevacizumab treatment had persistent proteinuria, and the tumor still progressed. In summary, renal function needs to be monitored in patients with malignant tumors who are receiving aVEGF drug treatment, especially females. Timely termination of related aVEGF administration after comprehensive assessment could alleviate their clinical symptoms. DATA AVAILABILITY: Data are available from the corresponding Author upon reasonable request.
Collapse
Affiliation(s)
- Qianqian Han
- Department of Pathology, West China Hospital of Sichuan University, Chengdu 610041, China.
| | - Lin Li
- Department of Pathology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Ziyao Li
- Department of Pathology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Mei Yang
- Department of Pathology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Song Lei
- Department of Pathology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yanyan Su
- Department of Pathology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Huan Xu
- Department of Pathology, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
2
|
Puik JR, Le C, Kazemier G, Oprea-Lager DE, Swijnenburg RJ, Giovannetti E, Griffioen AW, Huijbers EJ. Prostate-specific membrane antigen as target for vasculature-directed therapeutic strategies in solid tumors. Crit Rev Oncol Hematol 2025; 205:104556. [PMID: 39551117 DOI: 10.1016/j.critrevonc.2024.104556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/21/2024] [Accepted: 11/07/2024] [Indexed: 11/19/2024] Open
Abstract
Prostate-specific membrane antigen (PSMA) is one of the few biomarkers which has been successfully translated to the clinic as theranostic biomarker for patients with prostate cancer. In the context of prostate cancer, PSMA is overexpressed on the cell membrane of tumor cells, making it a viable target for interventions with urea-based small molecule inhibitors or antibodies conjugated to radioactive isotopes. Interestingly, in several non-prostatic cancers, expression of PSMA appears to be associated with the tumor neovasculature. This offers novel therapeutic opportunities for treatments targeting the vasculature in non-prostatic cancers. In this review, we discuss PSMA and its potential as target for vasculature-directed therapeutic approaches, including radioligand therapy, fusion protein vaccination and CAR T-cell therapy.
Collapse
Affiliation(s)
- Jisce R Puik
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Surgery, De Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Chung Le
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Geert Kazemier
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Surgery, De Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Daniela E Oprea-Lager
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands; Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Rutger-Jan Swijnenburg
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Surgery, De Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Elisa Giovannetti
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands; Cancer Pharmacology Lab, Associazione Italiana per la Ricerca sul Cancro (AIRC), Fondazione Pisana per la Scienza, University of Pisa, Pisa, Italy.
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; CimCure BV, Plesmanlaan 125, Amsterdam, the Netherlands
| | - Elisabeth Jm Huijbers
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; CimCure BV, Plesmanlaan 125, Amsterdam, the Netherlands
| |
Collapse
|
3
|
Gonçalves M, Warwas KM, Meyer M, Schwartz-Albiez R, Bulbuc N, Zörnig I, Jäger D, Momburg F. Reversal of Endothelial Cell Anergy by T Cell-Engaging Bispecific Antibodies. Cancers (Basel) 2024; 16:4251. [PMID: 39766150 PMCID: PMC11674949 DOI: 10.3390/cancers16244251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/10/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Objectives: Reduced expression of adhesion molecules in tumor vasculature can limit infiltration of effector T cells. To improve T cell adhesion to tumor endothelial cell (EC) antigens and enhance transendothelial migration, we developed bispecific, T-cell engaging antibodies (bsAb) that activate T cells after cross-linking with EC cell surface antigens. Methods: Recombinant T-cell stimulatory anti-VEGFR2-anti-CD3 and costimulatory anti-TIE2-anti-CD28 or anti-PD-L1-anti-CD28 bsAb were engineered and expressed. Primary lines of human umbilical vein endothelial cells (HUVEC) that constitutively express VEGFR2 and TIE2 growth factor receptors and PD-L1, but very low levels of adhesion molecules, served as models for anergic tumor EC. Results: In cocultures with HUVEC, anti-VEGFR2-anti-CD3 bsAb increased T cell binding and elicited rapid T cell activation. The release of proinflammatory cytokines TNF-α, IFN-γ, and IL-6 was greatly augmented by the addition of anti-TIE2-anti-CD28 or anti-PD-L1-anti-CD28 costimulatory bsAb. Concomitantly, T cell-released cytokines upregulated E-selectin, ICAM1, and VCAM1 adhesion molecules on HUVEC. HUVEC cultured in breast cancer cell-conditioned medium to mimic the influence of tumor-secreted factors were similarly activated by T cell-engaging bsAb. Migration of T cells in transwell assays was significantly increased by anti-VEGFR2-anti-CD3 bsAb. The combination with costimulatory anti-TIE2-anti-CD28 bsAb augmented activation and proliferation of migrated T cells and their cytotoxic capacity against spheroids of the MCF-7 breast cancer cell line seeded in the lower transwell chamber. Conclusions: T cells activated by anti-VEGFR2-anti-CD3 and costimulatory EC-targeting bsAb can reverse the energy of quiescent EC in vitro, resulting in improved T cell migration through an EC layer.
Collapse
Affiliation(s)
- Márcia Gonçalves
- Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (M.G.)
- Antigen Presentation and T/NK Cell Activation Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Karsten M. Warwas
- Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (M.G.)
- Antigen Presentation and T/NK Cell Activation Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Marten Meyer
- Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (M.G.)
- Antigen Presentation and T/NK Cell Activation Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Reinhard Schwartz-Albiez
- Antigen Presentation and T/NK Cell Activation Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Nadja Bulbuc
- Antigen Presentation and T/NK Cell Activation Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Inka Zörnig
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Dirk Jäger
- Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (M.G.)
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Frank Momburg
- Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (M.G.)
- Antigen Presentation and T/NK Cell Activation Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
4
|
Ribatti D. The crossroad between tumor and endothelial cells. Clin Exp Med 2024; 24:227. [PMID: 39325128 PMCID: PMC11427519 DOI: 10.1007/s10238-024-01490-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024]
Abstract
Endothelial cells are critical in tumor development, and the specific targeting of endothelial cells offers a potent means to effectively impede angiogenesis and suppress the growth of tumors. Tumor endothelial cells are responsible for the loss of anticancer immunity, the so-called endothelial anergy, i.e., the unresponsiveness of tumor endothelial cells to pro-inflammatory stimulation, not allowing adhesion of immune cells to the endothelium. Endothelial cells downregulate antigen presentation and recruitment of immune cells, contributing to immunosuppression. Targeting endothelial cells may assist in improving the immune effect of immune cells in tumor microenvironment.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, Università Degli Studi Di Bari, Piazza Giulio Cesare 11, 70125, Bari, Italy.
| |
Collapse
|
5
|
Ghadrdoost Nakhchi B, Kosuru R, Chrzanowska M. Towards Targeting Endothelial Rap1B to Overcome Vascular Immunosuppression in Cancer. Int J Mol Sci 2024; 25:9853. [PMID: 39337337 PMCID: PMC11432579 DOI: 10.3390/ijms25189853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/23/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
The vascular endothelium, a specialized monolayer of endothelial cells (ECs), is crucial for maintaining vascular homeostasis by controlling the passage of substances and cells. In the tumor microenvironment, Vascular Endothelial Growth Factor A (VEGF-A) drives tumor angiogenesis, leading to endothelial anergy and vascular immunosuppression-a state where ECs resist cytotoxic CD8+ T cell infiltration, hindering immune surveillance. Immunotherapies have shown clinical promise. However, their effectiveness is significantly reduced by tumor EC anergy. Anti-angiogenic treatments aim to normalize tumor vessels and improve immune cell infiltration. Despite their potential, these therapies often cause significant systemic toxicities, necessitating new treatments. The small GTPase Rap1B emerges as a critical regulator of Vascular Endothelial Growth Factor Receptor 2 (VEGFR2) signaling in ECs. Our studies using EC-specific Rap1B knockout mice show that the absence of Rap1B impairs tumor growth, alters vessel morphology, and increases CD8+ T cell infiltration and activation. This indicates that Rap1B mediates VEGF-A's immunosuppressive effects, making it a promising target for overcoming vascular immunosuppression in cancer. Rap1B shares structural and functional similarities with RAS oncogenes. We propose that targeting Rap1B could enhance therapies' efficacy while minimizing adverse effects by reversing endothelial anergy. We briefly discuss strategies successfully developed for targeting RAS as a model for developing anti-Rap1 therapies.
Collapse
Affiliation(s)
| | - Ramoji Kosuru
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA; (B.G.N.)
| | - Magdalena Chrzanowska
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA; (B.G.N.)
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
6
|
Benboubker V, Ramzy GM, Jacobs S, Nowak-Sliwinska P. Challenges in validation of combination treatment strategies for CRC using patient-derived organoids. J Exp Clin Cancer Res 2024; 43:259. [PMID: 39261955 PMCID: PMC11389238 DOI: 10.1186/s13046-024-03173-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/23/2024] [Indexed: 09/13/2024] Open
Abstract
Patient-derived organoids (PDOs) established from tissues from various tumor types gave the foundation of ex vivo models to screen and/or validate the activity of many cancer drug candidates. Due to their phenotypic and genotypic similarity to the tumor of which they were derived, PDOs offer results that effectively complement those obtained from more complex models. Yet, their potential for predicting sensitivity to combination therapy remains underexplored. In this review, we discuss the use of PDOs in both validation and optimization of multi-drug combinations for personalized treatment strategies in CRC. Moreover, we present recent advancements in enriching PDOs with diverse cell types, enhancing their ability to mimic the complexity of in vivo environments. Finally, we debate how such sophisticated models are narrowing the gap in personalized medicine, particularly through immunotherapy strategies and discuss the challenges and future direction in this promising field.
Collapse
Affiliation(s)
- Valentin Benboubker
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel-Servet, Geneva, 4 1211, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, 1211, Switzerland
- Translational Research Center in Oncohaematology, Geneva, 1211, Switzerland
| | - George M Ramzy
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel-Servet, Geneva, 4 1211, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, 1211, Switzerland
- Translational Research Center in Oncohaematology, Geneva, 1211, Switzerland
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, 1211, Switzerland
| | - Sacha Jacobs
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel-Servet, Geneva, 4 1211, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, 1211, Switzerland
- Translational Research Center in Oncohaematology, Geneva, 1211, Switzerland
| | - Patrycja Nowak-Sliwinska
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel-Servet, Geneva, 4 1211, Switzerland.
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, 1211, Switzerland.
- Translational Research Center in Oncohaematology, Geneva, 1211, Switzerland.
| |
Collapse
|
7
|
Wachholz GE, Akbari P, Huijbers EJM, Jalan P, van Beijnum JR, Griffioen AW. Targeting endothelial cell anergy to improve CAR T cell therapy for solid tumors. Biochim Biophys Acta Rev Cancer 2024; 1879:189155. [PMID: 39019408 DOI: 10.1016/j.bbcan.2024.189155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
Chimeric antigen receptor (CAR) T cell therapy presents significant results, especially for the treatment of hematologic malignancies. However, there are limitations and challenges to be overcome to achieve similar success for the treatment of solid tumors. These challenges involve selection of the target, infiltration into the tumor microenvironment and maintenance of functionality. The tumor vasculature is a major barrier for leukocytes to enter the tumor parenchyma. Due to the exposure of the vasculature to angiogenic growth factors during tumor progression, the endothelial cells become anergic to inflammatory cytokines, resulting in reduced leukocyte adhesion molecule expression. As such adhesion molecules are a prerequisite for leukocyte extravasation, endothelial cell anergy allows tumors to escape from endogenous immunity, as well as from cellular immunotherapies such as CAR T cells. Hence, overcoming endothelial cell anergy, e.g. through the administration of angiogenesis inhibitors, is believed to restore anti-tumor immunity. Concomitantly, both endogenous immune cells as well as cellular therapeutics such as CAR T cells can permeate into the tumor parenchyma. Here, we discuss how prior or concomitant treatment with an antiangiogenic drug can improve CAR T cell therapy, to become an attractive strategy for the treatment of solid tumors.
Collapse
Affiliation(s)
- Gabriela E Wachholz
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Parvin Akbari
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Elisabeth J M Huijbers
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Prachi Jalan
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Judy R van Beijnum
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
8
|
Guo Y, Hu P, Shi J. Nanomedicine Remodels Tumor Microenvironment for Solid Tumor Immunotherapy. J Am Chem Soc 2024; 146:10217-10233. [PMID: 38563421 DOI: 10.1021/jacs.3c14005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Although immunotherapy is relatively effective in treating hematological malignancies, their efficacy against solid tumors is still suboptimal or even noneffective presently. Compared to hematological cancers, solid tumors exhibit strikingly different immunosuppressive microenvironment, severely deteriorating the efficacy of immunotherapy: (1) chemical features such as hypoxia and mild acidity suppress the activity of immune cells, (2) the pro-tumorigenic domestication of immune cells in the microenvironment within the solid tumors further undermines the effectiveness of immunotherapy, and (3) the dense physical barrier of solid tumor tissues prevents the effective intratumoral infiltration and contact killing of active immune cells. Therefore, we believe that reversing the immunosuppressive microenvironment are of critical priority for the immunotherapy against solid tumors. Due to their unique morphologies, structures, and compositions, nanomedicines have become powerful tools for achieving this goal. In this Perspective, we will first briefly introduce the immunosuppressive microenvironment of solid tumors and then summarize the most recent progresses in nanomedicine-based immunotherapy for solid tumors by remodeling tumor immune-microenvironment in a comprehensive manner. It is highly expected that this Perspective will aid in advancing immunotherapy against solid tumors, and we are highly optimistic on the future development in this burgeoning field.
Collapse
Affiliation(s)
- Yuedong Guo
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200331, P. R. China
| | - Ping Hu
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200331, P. R. China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China
| | - Jianlin Shi
- Shanghai Institute of Ceramics, Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China
| |
Collapse
|
9
|
Ribatti D. Aberrant tumor vasculature. Facts and pitfalls. Front Pharmacol 2024; 15:1384721. [PMID: 38576482 PMCID: PMC10991687 DOI: 10.3389/fphar.2024.1384721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 03/11/2024] [Indexed: 04/06/2024] Open
Abstract
Endothelial cells form a single cell layer lining the inner walls of blood vessels and play critical roles in organ homeostasis and disease progression. Specifically, tumor endothelial cells are heterogenous, and highly permeable, because of specific interactions with the tumor tissue environment and through soluble factors and cell-cell interactions. This review article aims to analyze different aspects of endothelial cell heterogeneity in tumor vasculature, with particular emphasis on vascular normalization, vascular permeability, metabolism, endothelial-to-mesenchymal transition, resistance to therapy, and the interplay between endothelial cells and the immune system.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, Bari, Italy
| |
Collapse
|
10
|
Ning RX, Liu CY, Wang SQ, Li WK, Kong X, He ZW. Application status and optimization suggestions of tumor organoids and CAR-T cell co-culture models. Cancer Cell Int 2024; 24:98. [PMID: 38443969 PMCID: PMC10916304 DOI: 10.1186/s12935-024-03272-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/14/2024] [Indexed: 03/07/2024] Open
Abstract
Tumor organoids, especially patient-derived organoids (PDOs) exhibit marked similarities in histopathological morphology, genomic alterations, and specific marker expression profiles to those of primary tumour tissues. They are applied in various fields including drug screening, gene editing, and identification of oncogenes. However, CAR-T therapy in the treatment of solid tumours is still at an exploratory stage. Tumour organoids offer unique advantages over other preclinical models commonly used for CAR-T therapy research, which the preservation of the biological characteristics of primary tumour tissue is critical for the study of early-stage solid tumour CAR-T therapies. Although some investigators have used this co-culture model to validate newly targeted CAR-T cells, optimise existing CAR-T cells and explore combination therapy strategies, there is still untapped potential in the co-culture models used today. This review introduces the current status of the application of tumour organoid and CAR-T cell co-culture models in recent years and commented on the limitations of the current co-cultivation model. Meanwhile, we compared the tumour organoid model with two pre-clinical models commonly used in CAR-T therapy research. Eventually, combined with the new progress of organoid technologies, optimization suggestions were proposed for the co-culture model from five perspectives: preserving or reconstructing the tumor microenvironment, systematization, vascularization, standardized culture procedures, and expanding the tumor organoids resource library, aimed at assisting related researchers to better utilize co-culture models.
Collapse
Affiliation(s)
- Rong-Xuan Ning
- The First Dongguan Affiliated Hospital, Guangdong Medical University, No. 42 Jiaoping Road, Tangxia Town, Dongguan, 523710, Guangdong Province, China
- China-America Cancer Research Institute, Guangdong Medical University, Dongguan, 523808, Guangdong Province, China
| | - Cun-Yu Liu
- China-America Cancer Research Institute, Guangdong Medical University, Dongguan, 523808, Guangdong Province, China
| | - Shi-Qi Wang
- China-America Cancer Research Institute, Guangdong Medical University, Dongguan, 523808, Guangdong Province, China
| | - Wen-Kai Li
- China-America Cancer Research Institute, Guangdong Medical University, Dongguan, 523808, Guangdong Province, China
| | - Xia Kong
- China-America Cancer Research Institute, Guangdong Medical University, Dongguan, 523808, Guangdong Province, China.
- School of Basic Medicine, Guangdong Medical University, Dongguan, 523808, Guangdong Province, China.
| | - Zhi-Wei He
- The First Dongguan Affiliated Hospital, Guangdong Medical University, No. 42 Jiaoping Road, Tangxia Town, Dongguan, 523710, Guangdong Province, China.
- China-America Cancer Research Institute, Guangdong Medical University, Dongguan, 523808, Guangdong Province, China.
| |
Collapse
|
11
|
Fu Y, Sun S, Shi D, Bi J. Construction of endothelial cell signatures for predicting the diagnosis, prognosis and immunotherapy response of bladder cancer via machine learning. J Cell Mol Med 2024; 28:e18155. [PMID: 38429911 PMCID: PMC10907833 DOI: 10.1111/jcmm.18155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 03/03/2024] Open
Abstract
We subtyped bladder cancer (BC) patients based on the expression patterns of endothelial cell (EC) -related genes and constructed a diagnostic signature and an endothelial cell prognostic index (ECPI), which are useful for diagnosing BC patients, predicting the prognosis of BC and evaluating drug sensitivity. Differentially expressed genes in ECs were obtained from the Tumour Immune Single-Cell Hub database. Subsequently, a diagnostic signature, a tumour subtyping system and an ECPI were constructed using data from The Cancer Genome Atlas and Gene Expression Omnibus. Associations between the ECPI and the tumour microenvironment, drug sensitivity and biofunctions were assessed. The hub genes in the ECPI were identified as drug candidates by molecular docking. Subtype identification indicated that high EC levels were associated with a worse prognosis and immunosuppressive effect. The diagnostic signature and ECPI were used to effectively diagnose BC and accurately assess the prognosis of BC and drug sensitivity among patients. Three hub genes in the ECPI were extracted, and the three genes had the closest affinity for doxorubicin and curcumin. There was a close relationship between EC and BC. EC-related genes can help clinicians diagnose BC, predict the prognosis of BC and select effective drugs.
Collapse
Affiliation(s)
- Yang Fu
- Department of UrologyThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Shanshan Sun
- Department of PharmacyThe People's Hospital of Liaoning ProvinceShenyangLiaoningChina
| | - Du Shi
- Department of UrologyThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Jianbin Bi
- Department of UrologyThe First Hospital of China Medical UniversityShenyangLiaoningChina
| |
Collapse
|
12
|
Liu Y, Liu Y, Sun X, Wang Y, Du C, Bai J. Morphologically transformable peptide nanocarriers coloaded with doxorubicin and curcumin inhibit the growth and metastasis of hepatocellular carcinoma. Mater Today Bio 2024; 24:100903. [PMID: 38130427 PMCID: PMC10733681 DOI: 10.1016/j.mtbio.2023.100903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/03/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023] Open
Abstract
In tumor treatment, the highly disordered vascular system and lack of accumulation of chemotherapeutic drugs in tumors severely limit the therapeutic role of nanocarriers. Smaller drug-containing nanoparticles (NPs) can better penetrate the tumor but are easily removed, which severely limits the tumor-killing properties of the drug. The chemotherapeutic medication doxorubicin (DOX) is highly toxic to the heart, but this toxicity can be effectively mitigated and the combined anticancer effect can be enhanced by clinically incorporating curcumin (CUR) as part of the dual therapy. We designed a small-molecule peptide, Pep1, containing a targeting peptide (CREKA) and a pH-responsive moiety. These NPs can target the blood vessels in tumor microthrombi and undergo a morphological shift in the tumor microenvironment. This process enhances the penetration and accumulation of drugs, ultimately improving the effectiveness of cancer treatment. In vitro and in vivo experiments demonstrated that this morphological transformation allowed rapid and effective drug release into tumors, the effective inhibition of tumor angiogenesis, and the promotion of tumor cell apoptosis, thus effectively killing tumor cells. Our findings provide a novel and simple approach to nhibit the growth and metastasis of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yun Liu
- School of Stomatology, Weifang Medical University, Weifang, 261053, China
| | - Yunxia Liu
- School of Stomatology, Weifang Medical University, Weifang, 261053, China
- Department of Dentistry, Affiliated Hospital of Weifang Medical University, Weifang, 261035, China
| | - Xinyu Sun
- School of Medical Sciences, Weifang Medical University, Weifang, 261053, China
| | - Yue Wang
- School of Medical Sciences, Weifang Medical University, Weifang, 261053, China
| | - Changqing Du
- Department of Dentistry, Affiliated Hospital of Weifang Medical University, Weifang, 261035, China
| | - Jingkun Bai
- School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, China
| |
Collapse
|
13
|
Li A, Fang J. Anti‐angiogenic therapy enhances cancer immunotherapy: Mechanism and clinical application. INTERDISCIPLINARY MEDICINE 2024; 2. [DOI: 10.1002/inmd.20230025] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/18/2023] [Indexed: 01/04/2025]
Abstract
AbstractImmunotherapy, specifically immune checkpoint inhibitors, is revolutionizing cancer treatment, achieving durable control of previously incurable or advanced tumors. However, only a certain group of patients exhibit effective responses to immunotherapy. Anti‐angiogenic therapy aims to block blood vessel growth in tumors by depriving them of essential nutrients and effectively impeding their growth. Emerging evidence shows that tumor vessels exhibit structural and functional abnormalities, resulting in an immunosuppressive microenvironment and poor response to immunotherapy. Both preclinical and clinical studies have used anti‐angiogenic agents to enhance the effectiveness of immunotherapy against cancer. In this review, we concentrate on the synergistic effect of anti‐angiogenic and immune therapies in cancer management, dissect the direct effects and underlying mechanisms of tumor vessels on recruiting and activating immune cells, and discuss the potential of anti‐angiogenic agents to improve the effectiveness of immunotherapy. Lastly, we outline challenges and opportunities for the anti‐angiogenic strategy to enhance immunotherapy. Considering the increasing approval of the combination of anti‐angiogenic and immune therapies in treating cancers, this comprehensive review would be timely and important.
Collapse
Affiliation(s)
- An‐Qi Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University Guangzhou China
| | - Jian‐Hong Fang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University Guangzhou China
- Department of Hepatobiliary Surgery I General Surgery Center Zhujiang Hospital Southern Medical University Guangzhou China
| |
Collapse
|
14
|
Qian C, Liu C, Liu W, Zhou R, Zhao L. Targeting vascular normalization: a promising strategy to improve immune-vascular crosstalk in cancer immunotherapy. Front Immunol 2023; 14:1291530. [PMID: 38193080 PMCID: PMC10773740 DOI: 10.3389/fimmu.2023.1291530] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024] Open
Abstract
Blood vessels are a key target for cancer therapy. Compared with the healthy vasculature, tumor blood vessels are extremely immature, highly permeable, and deficient in pericytes. The aberrantly vascularized tumor microenvironment is characterized by hypoxia, low pH, high interstitial pressure, and immunosuppression. The efficacy of chemotherapy, radiotherapy, and immunotherapy is affected by abnormal blood vessels. Some anti-angiogenic drugs show vascular normalization effects in addition to targeting angiogenesis. Reversing the abnormal state of blood vessels creates a normal microenvironment, essential for various cancer treatments, specifically immunotherapy. In addition, immune cells and molecules are involved in the regulation of angiogenesis. Therefore, combining vascular normalization with immunotherapy may increase the efficacy of immunotherapy and reduce the risk of adverse reactions. In this review, we discussed the structure, function, and formation of abnormal vessels. In addition, we elaborated on the role of the immunosuppressive microenvironment in the formation of abnormal vessels. Finally, we described the clinical challenges associated with the combination of immunotherapy with vascular normalization, and highlighted future research directions in this therapeutic area.
Collapse
Affiliation(s)
- Cheng Qian
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Chaoqun Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Weiwei Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Rui Zhou
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Liang Zhao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
15
|
van Loon K, van Breest Smallenburg ME, Huijbers EJM, Griffioen AW, van Beijnum JR. Extracellular vimentin as a versatile immune suppressive protein in cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188985. [PMID: 37717859 DOI: 10.1016/j.bbcan.2023.188985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/19/2023]
Abstract
The interest in finding new targets in the tumor microenvironment for anti-cancer therapy has increased rapidly over the years. More specifically, the tumor-associated blood vessels are a promising target. We recently found that the intermediate filament protein vimentin is externalized by endothelial cells of the tumor vasculature. Extracellular vimentin was shown to sustain angiogenesis by mimicking VEGF and supporting cell migration, as well as endothelial cell anergy, the unresponsiveness of the endothelium to proinflammatory cytokines. The latter hampers immune cell infiltration and subsequently provides escape from tumor immunity. Other studies showed that extracellular vimentin plays a role in sustained systemic and local inflammation. Here we will review the reported roles of extracellular vimentin with a particular emphasis on its involvement in the interactions between immune cells and the endothelium in the tumor microenvironment. To this end, we discuss the different ways by which extracellular vimentin modulates the immune system. Moreover, we review how this protein can alter immune cell-vessel wall adhesion by altering the expression of adhesion proteins, attenuating immune cell infiltration into the tumor parenchyma. Finally, we discuss how vimentin-targeting therapy can reverse endothelial cell anergy and promote immune infiltration, supporting anti-tumor immunity.
Collapse
Affiliation(s)
- Karlijn van Loon
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Mathilda E van Breest Smallenburg
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Elisabeth J M Huijbers
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; CimCure BV, Amsterdam, the Netherlands
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; CimCure BV, Amsterdam, the Netherlands
| | - Judy R van Beijnum
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; CimCure BV, Amsterdam, the Netherlands.
| |
Collapse
|
16
|
Tsujinaka K, Izawa-Ishizawa Y, Miyata K, Yoshioka T, Oomine K, Nishi H, Kondo M, Itokazu S, Miyata T, Niimura T, Sato M, Aizawa F, Yagi K, Chuma M, Zamami Y, Goda M, Ishizawa K. Angiogenesis inhibitor-specific hypertension increases the risk of developing aortic dissection. Biomed Pharmacother 2023; 167:115504. [PMID: 37722188 DOI: 10.1016/j.biopha.2023.115504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023] Open
Abstract
Aortic dissection is an adverse event of angiogenesis inhibitors; however, the association between the drugs and aortic dissection is unclear. Therefore, we investigated if and how angiogenesis inhibitors increase the onset of aortic dissection using pharmacologically-induced aortic dissection-prone model (LAB) mice, cultured endothelial cells, and real-world databases, which is a novel integrated research approach. Disproportionality analysis was performed and calculated using the reporting odds ratio as a risk signal using a worldwide database of spontaneous adverse events to estimate the risk of adverse events. Angiogenesis inhibitors, but not other hypertension-inducing drugs, showed significant risk signals for aortic aneurysms and dissection. A retrospective cohort analysis using JMDC, a medical receipt database in Japan, showed that the history of atherosclerosis and dyslipidemia, but not hypertension, were significantly associated with the onset of aortic dissection during angiogenesis inhibitor medication administration. For in vivo studies, sunitinib (100 mg/kg/day) was administered to LAB mice. Sunitinib increased systolic blood pressure (182 mmHg vs. 288 mmHg with sunitinib; p<0.01) and the incidence of aortic dissection (40% vs. 59% with sunitinib; p = 0.34) in mice. In vivo and in vitro studies revealed that sunitinib increased endothelin-1 expression and induced endothelial cell damage evaluated by intracellular- and vascular cell adhesion molecule-1 expressions. The increased risk of developing aortic dissection with angiogenesis inhibitors is associated with the development of drug-specific hypertension via endothelial cell damage and endothelin-1 expression. Our findings are invaluable in establishing safer anticancer therapies and strategies to prevent the development of vascular toxicity in high-risk patients.
Collapse
Affiliation(s)
- Kaito Tsujinaka
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan; Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Yuki Izawa-Ishizawa
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan; Department of General Medicine, Taoka Hospital, Tokushima, Japan.
| | - Koji Miyata
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Toshihiko Yoshioka
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan; Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Kohei Oomine
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Honoka Nishi
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Masateru Kondo
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan; Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Syuto Itokazu
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Tatsumi Miyata
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Takahiro Niimura
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan; Clinical Research Center for Developmental Therapeutics, Tokushima University Hospital, Tokushima, Japan
| | - Maki Sato
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Fuka Aizawa
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan; Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Kenta Yagi
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan; Clinical Research Center for Developmental Therapeutics, Tokushima University Hospital, Tokushima, Japan
| | - Masayuki Chuma
- Department of Hospital Pharmacy & Pharmacology, Asahikawa Medical University & University Hospital, Asahikawa, Japan
| | - Yoshito Zamami
- Department of Pharmacy, Okayama University Hospital, Okayama, Japan
| | - Mitsuhiro Goda
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan; Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Keisuke Ishizawa
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan; Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan; Clinical Research Center for Developmental Therapeutics, Tokushima University Hospital, Tokushima, Japan
| |
Collapse
|
17
|
Mieville V, Griffioen AW, Benamran D, Nowak-Sliwinska P. Advanced in vitro models for renal cell carcinoma therapy design. Biochim Biophys Acta Rev Cancer 2023; 1878:188942. [PMID: 37343729 DOI: 10.1016/j.bbcan.2023.188942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/23/2023]
Abstract
Renal cell carcinoma (RCC) and its principal subtype, clear cell RCC, are the most diagnosed kidney cancer. Despite substantial improvement over the last decades, current pharmacological intervention still fails to achieve long-term therapeutic success. RCC is characterized by a high intra- and inter-tumoral heterogeneity and is heavily influenced by the crosstalk of the cells composing the tumor microenvironment, such as cancer-associated fibroblasts, endothelial cells and immune cells. Moreover, multiple physicochemical properties such as pH, interstitial pressure or oxygenation may also play an important role. These elements are often poorly recapitulated in in vitro models used for drug development. This inadequate recapitulation of the tumor is partially responsible for the current lack of an effective and curative treatment. Therefore, there are needs for more complex in vitro or ex vivo drug screening models. In this review, we discuss the current state-of-the-art of RCC models and suggest strategies for their further development.
Collapse
Affiliation(s)
- Valentin Mieville
- School of Pharmaceutical Sciences, Faculty of Sciences, University of Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland; Translational Research Center in Oncohaematology, Geneva, Switzerland
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Daniel Benamran
- Division of Urology, Geneva University Hospitals, Geneva, Switzerland
| | - Patrycja Nowak-Sliwinska
- School of Pharmaceutical Sciences, Faculty of Sciences, University of Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland; Translational Research Center in Oncohaematology, Geneva, Switzerland.
| |
Collapse
|
18
|
Dudley AC, Griffioen AW. Pathological angiogenesis: mechanisms and therapeutic strategies. Angiogenesis 2023; 26:313-347. [PMID: 37060495 PMCID: PMC10105163 DOI: 10.1007/s10456-023-09876-7] [Citation(s) in RCA: 126] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/26/2023] [Indexed: 04/16/2023]
Abstract
In multicellular organisms, angiogenesis, the formation of new blood vessels from pre-existing ones, is an essential process for growth and development. Different mechanisms such as vasculogenesis, sprouting, intussusceptive, and coalescent angiogenesis, as well as vessel co-option, vasculogenic mimicry and lymphangiogenesis, underlie the formation of new vasculature. In many pathological conditions, such as cancer, atherosclerosis, arthritis, psoriasis, endometriosis, obesity and SARS-CoV-2(COVID-19), developmental angiogenic processes are recapitulated, but are often done so without the normal feedback mechanisms that regulate the ordinary spatial and temporal patterns of blood vessel formation. Thus, pathological angiogenesis presents new challenges yet new opportunities for the design of vascular-directed therapies. Here, we provide an overview of recent insights into blood vessel development and highlight novel therapeutic strategies that promote or inhibit the process of angiogenesis to stabilize, reverse, or even halt disease progression. In our review, we will also explore several additional aspects (the angiogenic switch, hypoxia, angiocrine signals, endothelial plasticity, vessel normalization, and endothelial cell anergy) that operate in parallel to canonical angiogenesis mechanisms and speculate how these processes may also be targeted with anti-angiogenic or vascular-directed therapies.
Collapse
Affiliation(s)
- Andrew C Dudley
- Department of Microbiology, Immunology and Cancer Biology, The University of Virginia, Charlottesville, VA, 22908, USA.
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
19
|
Thomas JA, Gireesh Moly AG, Xavier H, Suboj P, Ladha A, Gupta G, Singh SK, Palit P, Babykutty S. Enhancement of immune surveillance in breast cancer by targeting hypoxic tumor endothelium: Can it be an immunological switch point? Front Oncol 2023; 13:1063051. [PMID: 37056346 PMCID: PMC10088512 DOI: 10.3389/fonc.2023.1063051] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/17/2023] [Indexed: 03/30/2023] Open
Abstract
Breast cancer ranks second among the causes of cancer-related deaths in women. In spite of the recent advances achieved in the diagnosis and treatment of breast cancer, further study is required to overcome the risk of cancer resistance to treatment and thereby improve the prognosis of individuals with advanced-stage breast cancer. The existence of a hypoxic microenvironment is a well-known event in the development of mutagenesis and rapid proliferation of cancer cells. Tumor cells, purposefully cause local hypoxia in order to induce angiogenesis and growth factors that promote tumor growth and metastatic characteristics, while healthy tissue surrounding the tumor suffers damage or mutate. It has been found that these settings with low oxygen levels cause immunosuppression and a lack of immune surveillance by reducing the activation and recruitment of tumor infiltrating leukocytes (TILs). The immune system is further suppressed by hypoxic tumor endothelium through a variety of ways, which creates an immunosuppressive milieu in the tumor microenvironment. Non responsiveness of tumor endothelium to inflammatory signals or endothelial anergy exclude effector T cells from the tumor milieu. Expression of endothelial specific antigens and immunoinhibitory molecules like Programmed death ligand 1,2 (PDL-1, 2) and T cell immunoglobulin and mucin-domain containing-3 (TIM-3) by tumor endothelium adds fuel to the fire by inhibiting T lymphocytes while promoting regulatory T cells. The hypoxic microenvironment in turn recruits Myeloid Derived Suppressor Cells (MDSCs), Tumor Associated Macrophages (TAMs) and T regulatory cells (Treg). The structure and function of newly generated blood vessels within tumors, on the other hand, are aberrant, lacking the specific organization of normal tissue vasculature. Vascular normalisation may work for a variety of tumour types and show to be an advantageous complement to immunotherapy for improving tumour access. By enhancing immune response in the hypoxic tumor microenvironment, via immune-herbal therapeutic and immune-nutraceuticals based approaches that leverage immunological evasion of tumor, will be briefly reviewed in this article. Whether these tactics may be the game changer for emerging immunological switch point to attenuate the breast cancer growth and prevent metastatic cell division, is the key concern of the current study.
Collapse
Affiliation(s)
- Juvin Ann Thomas
- Centre for Tumor Immunology and Microenvironment, Department of Zoology, Mar Ivanios College, Nalanchira, Thiruvananthapuram, Kerala, India
| | - Athira Gireesh Gireesh Moly
- Centre for Tumor Immunology and Microenvironment, Department of Zoology, Mar Ivanios College, Nalanchira, Thiruvananthapuram, Kerala, India
| | - Hima Xavier
- Centre for Tumor Immunology and Microenvironment, Department of Zoology, Mar Ivanios College, Nalanchira, Thiruvananthapuram, Kerala, India
| | - Priya Suboj
- Department of Botany and Biotechnology, St. Xaviers College, Thumba, Thiruvananthapuram, Kerala, India
| | - Amit Ladha
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, West-Midlands, United Kingdom
| | - Gaurav Gupta
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Santosh Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Partha Palit
- Drug Discovery Research Laboratory, Assam University, Silchar, Department of Pharmaceutical Sciences, Assam, India
| | - Suboj Babykutty
- Centre for Tumor Immunology and Microenvironment, Department of Zoology, Mar Ivanios College, Nalanchira, Thiruvananthapuram, Kerala, India
| |
Collapse
|