1
|
Petkova-Kirova P, Anastassova N, Minchev B, Uzunova D, Grigorova V, Tsvetanova E, Georgieva A, Alexandrova A, Stefanova M, Yancheva D, Kalfin R, Tancheva L. Behavioral and Biochemical Effects of an Arylhydrazone Derivative of 5-Methoxyindole-2-Carboxylic Acid in a Scopolamine-Induced Model of Alzheimer's Type Dementia in Rats. Molecules 2024; 29:5711. [PMID: 39683869 DOI: 10.3390/molecules29235711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Alzheimer's disease (AD) has long proven to be a complex neurodegenerative disorder, with cholinergic dysfunction, oxidative stress, and neuroinflammation being just a few of its pathological features. The complexity of the disease requires a multitargeted treatment covering its many aspects. In the present investigation, an arylhydrazone derivative of 5-methoxyindole-2-carboxylic acid (5MeO), with in vitro strong antioxidant, neuroprotective and monoamine oxidase B-inhibiting effects, was studied in a scopolamine-induced Alzheimer-type dementia in rats. Using behavioral and biochemical methods, we evaluated the effects of 5MeO on learning and memory, and elucidated the mechanisms of these effects. Our experiments demonstrated that 5MeO had a beneficial effect on different types of memory as assessed by the step-through and the Barnes maze tasks. It efficiently restored the decreased by scopolamine brain-derived neurotrophic factor and acetylcholine levels and normalized the increased by scopolamine acetylcholine esterase activity in hippocampus. Most effective 5MeO was in counteracting the induced by scopolamine oxidative stress by decreasing the increased by scopolamine levels of lipid peroxidation and by increasing the reduced by scopolamine catalase activity. Blood biochemical analyses demonstrated a favorable safety profile of 5MeO, prompting further pharmacological studies suggesting 5MeO as a safe and efficient candidate in a multitargeted treatment of AD.
Collapse
Affiliation(s)
- Polina Petkova-Kirova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
| | - Neda Anastassova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Building 9, 1113 Sofia, Bulgaria
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria
| | - Borislav Minchev
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
| | - Diamara Uzunova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
| | - Valya Grigorova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
| | - Elina Tsvetanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
| | - Almira Georgieva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
| | - Albena Alexandrova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
- Department of Physiology and Biochemistry, National Sports Academy, Acad. S. Mladenov Str. 21, 1700 Sofia, Bulgaria
| | - Miroslava Stefanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
| | - Denitsa Yancheva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Building 9, 1113 Sofia, Bulgaria
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
- Department of Healthcare, Faculty of Public Health, Healthcare and Sport, South-West University, Ivan Mihailov 66, 2700 Blagoevgrad, Bulgaria
| | - Lyubka Tancheva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
| |
Collapse
|
2
|
Hassan PB, Mohammed Ameen SS, Mohammed L, Muhammed Ameen SM, Omer KM. Enhanced antibacterial activity of a novel silver-based metal organic framework towards multidrug-resistant Klebsiella pneumonia. NANOSCALE ADVANCES 2024; 6:3801-3808. [PMID: 39050964 PMCID: PMC11265599 DOI: 10.1039/d4na00037d] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/21/2024] [Indexed: 07/27/2024]
Abstract
The growth and spread of multidrug-resistant bacterial species, such as Klebsiella pneumoniae, pose a serious threat to human health and require the development of innovative antibacterial agents. The search for an acceptable, safe, and efficient antibacterial is a matter of significant concern. In the present work, silver-based metal-organic frameworks (Ag-MOFs) showed efficient antibacterial activity against multidrug-resistant K. pneumoniae (KBP 11) with a minimum inhibitory concentration and minimum bactericidal concentration of 10 μg mL-1. Moreover, the Ag-MOF showed enhanced antibacterial activity compared to silver ions and silver nanoparticles. Our experimental investigation showed that the antibacterial efficacy is attributed to the production of reactive oxygen species and the release of cellular constituents, such as K+ ions and proteins. The MOF scaffold enhances the stability and controlled release of silver ions, enabling sustained antibacterial activity and minimizing the risk of bacterial resistance development. Additionally, the MOF class, due to the high surface area and porous nature, enhances the transfer of bacteria into and on the surface of the MOF.
Collapse
Affiliation(s)
- Payam B Hassan
- Department of Biology, College of Science, University of Sulaimani Sulaymaniyah 46002 Kurdistan Region Iraq
| | | | - Lana Mohammed
- Department of Medical Laboratory, College of Health and Medical Technology, Sulaimani Polytechnic University Sulaymaniyah Iraq
| | - Sirwan M Muhammed Ameen
- Department of Biology, College of Science, University of Sulaimani Sulaymaniyah 46002 Kurdistan Region Iraq
| | - Khalid M Omer
- Department of Chemistry, College of Science, University of Sulaimani Qliasan St. 46002 Sulaymaniyah Kurdistan Region Iraq
| |
Collapse
|
3
|
Abdelhamid WG, Mowaad NA, Asaad GF, Galal AF, Mohammed SS, Mostafa OE, Sadek DR, Elkhateb LA. The potential protective effect of Camellia Sinensis in mitigating monosodium glutamate-induced neurotoxicity: biochemical and histological study in male albino rats. Metab Brain Dis 2024; 39:953-966. [PMID: 38869783 PMCID: PMC11233344 DOI: 10.1007/s11011-024-01365-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/29/2024] [Indexed: 06/14/2024]
Abstract
Monosodium glutamate (MSG) is the sodium compound derived from glutamic acid. Excessive daily ingestion of MSG leads to elevated amounts of glutamic acid in the bloodstream, which can be detrimental to brain structures. Camellia sinensis, often known as green tea (GT), is a rich source of essential hexogen antioxidants that are necessary for the body. Thirty-two adult male albino rats were divided into four groups (n = 8). Group 1 served as a control -ve group. Group 2 was given GT (1.5 ml/rat/day). Group 3 was given MSG (600 mg/kg/day). Group 4 was given MSG (600 mg/kg/day) and GT (1.5 ml/rat/day). All treatments were given orally for 28 days. MSG administration resulted in significant neurotoxicity in rats that was revealed by the significant reduction of serum concentration of glutathione peroxidase (GPx) and nitric oxide (NO), and the significant elevation of total antioxidant capacity (TAC) accompanied by the significant reduction of levels of serum monoamines (dopamine, serotonin, and norepinephrine) and histological changes in the hippocampus area CA1, dentate gyrus, and cerebellar cortex and positive immunohistochemical staining of glial fibrillary acidic proteins (GFAP) and calretinin. Administration of GT with MSG counteracted the MSG-mediated oxidative stress by significantly increasing serum concentrations of GPX and NO and significantly decreasing concentrations of TAC. Furthermore, GT significantly increased levels of serum monoamines (dopamine, serotonin, and norepinephrine). Moreover, it ameliorated the histological changes, GFAP, and calretinin immunostaining in brain tissues. It is envisaged that GT will serve as a viable protective choice for the inclusion of the neurotoxicity treatment procedure.
Collapse
Affiliation(s)
- Walaa G Abdelhamid
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Noha A Mowaad
- Narcotics, Ergogenics and Poisons Department, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Gihan F Asaad
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt.
| | - Asmaa F Galal
- Narcotics, Ergogenics and Poisons Department, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Sarah S Mohammed
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Olfat E Mostafa
- Biochemistry Department, Poison Control Center, Ain Shams University Hospitals, Cairo, Egypt
| | - Doaa R Sadek
- Histology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Lobna A Elkhateb
- Histology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
4
|
Magaji UF, Coremen M, Karabulut Bulan O, Sacan O, Yanardag R. Biochemical and Histological Effects of Moringa oleifera Extract against Valproate-Induced Kidney Damage. J Med Food 2024; 27:533-544. [PMID: 38836511 DOI: 10.1089/jmf.2023.0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
Valproic acid is an effective treatment for generalized seizure and related neurological defects. Despite its efficacy and acceptability, its use is associated with adverse drug effects. Moringa oleifera leaves are rich in phytochemical and nutritional components. It has excellent antioxidant and ethnobotanical benefits, thus popular among folk medicines and nutraceuticals. In the present study, 70% ethanol extract of moringa leaves was assessed for its in vivo biochemical and histological effects against valproate-induced kidney damage. Female Sprague-Dawley rats were randomly divided into four groups: Group I: control animals given physiological saline (n = 8); Group II: Moringa extract-administered group (0.3 g/kg b.w./day, n = 8); Group III: valproate-administered animals (0.5 g/kg b.w./day, n = 15); and Group IV: valproate + moringa extract (given similar doses of both valproate and moringa extract, n = 12) administered group. Treatments were administered orally for 15 days, the animals were fasted overnight, anesthetized, and then tissue samples harvested. In the valproate-administered experimental group, serum urea and uric acid were elevated. In the kidney tissue of the valproate rats, glutathione was depleted, antioxidant enzyme activities (superoxide dismutase, catalase, glutathione reductase, glutathione S-transferase, and glutathione peroxidase) disrupted, while oxidative stress biomarker, inflammatory proteins (Tumor necrosis factor-alpha and interleukin-6), histological damage scores, and the number of PCNA-positive cells were elevated. M. oleifera attenuated all these biochemical defects through its plethora of diverse antioxidant and therapeutic properties.
Collapse
Affiliation(s)
- Umar Faruk Magaji
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Istanbul, Türkiye
- Department of Biochemistry and Molecular Biology, Federal University Birnin Kebbi, Birnin Kebbi, Nigeria
| | - Melis Coremen
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Türkiye
| | - Omur Karabulut Bulan
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Türkiye
| | - Ozlem Sacan
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Istanbul, Türkiye
| | - Refiye Yanardag
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Istanbul, Türkiye
| |
Collapse
|
5
|
Oyeyemi A, Owonikoko W, Okoro T, Adagbonyi O, Ajeigbe K. Water contamination: A culprit of serum heavy metals concentration, oxidative stress and health risk among residents of a Nigerian crude oil-producing community. Toxicol Rep 2024; 12:375-388. [PMID: 38584719 PMCID: PMC10995875 DOI: 10.1016/j.toxrep.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/16/2024] [Accepted: 03/16/2024] [Indexed: 04/09/2024] Open
Abstract
Niger Delta has become popular for crude oil extraction for the past few decades. This uncoordinated activity has made it a hotspot for xenobiotics exposure and water bodies remain the environmental matrix significantly affected. One of the most deleterious components of crude oil is heavy metals (HMs). This study investigates HMs concentration in water and serum of humans residing in an oil-host community with the consideration of systemic effects, pollution status, carcinogenic and non-carcinogenic health risks and comparison made with residents from a non-oil-producing community. Heavy metal analysis, serum electrolytes, Urea, Creatinine, and liver enzymes were assessed using standard procedures; malondialdehyde, catalase, SOD, glutathione reductase, GPx and total antioxidant capacity (TAC) by spectrophotometry and TNF-α and 8-OHdG assessed via ELISA method. We found altered serum electrolytes; increased serum Pb and Cd levels; increased AST, ALT, ALP and lipid peroxidation; and decreased enzymes antioxidants including TAC among Ugbegugun community residents compared with control. We observed an association between environmental crude oil contamination, ecological and health risks in the community. We concluded that protracted exposure to HMs induces multi-systemic toxicities characterized by DNA damage, depletion of the antioxidant system, and increased free radical generation culminating lipo-peroxidation with significant ecological, carcinogenic, and non-carcinogenic risks characterize crude oil water contamination.
Collapse
Affiliation(s)
- A.W. Oyeyemi
- Laboratory for Environmental Physiology and Toxicology Research Unit, Department of Physiology, Igbinedion University, Okada, Nigeria
- Department of Physiology, Osun State University, Osogbo, Nigeria
| | - W.M. Owonikoko
- Laboratory for Environmental Physiology and Toxicology Research Unit, Department of Physiology, Igbinedion University, Okada, Nigeria
| | - T.D. Okoro
- Laboratory for Environmental Physiology and Toxicology Research Unit, Department of Physiology, Igbinedion University, Okada, Nigeria
| | - O. Adagbonyi
- Department of Anatomy, Igbinedion University, Okada, Nigeria
| | - K.O. Ajeigbe
- Laboratory for Environmental Physiology and Toxicology Research Unit, Department of Physiology, Igbinedion University, Okada, Nigeria
- Department of Physiology, Federal University, Oye-Ekiti, Nigeria
| |
Collapse
|
6
|
Jung HY, Lee HJ, Lee HJ, Kim YY, Jo C. Exploring effects of organic selenium supplementation on pork loin: Se content, meat quality, antioxidant capacity, and metabolomic profiling during storage. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:587-602. [PMID: 38975577 PMCID: PMC11222120 DOI: 10.5187/jast.2023.e62] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/09/2024]
Abstract
This research was conducted to study the effects of organic selenium (Se) supplements at different levels on pork loin quality during storage. Fifteen pork loins were procured randomly from three groups, Con (fed basal diet), Se15 (fed 0.15 ppm organic Se along with 0.10 ppm inorganic Se), and Se45 (fed 0.45 ppm organic Se along with 0.10 ppm inorganic Se). Each sample was analyzed for Se contents, antioxidant properties (glutathione peroxidase [GPx] activity, 2,2'-azinobis-[3-ethylbenzothiazoline-6-sulfonic acid] [ABTS] and 2,2-diphenyl-1-picrylhydrazyl [DPPH] radical scavenging activities, 2-thiobarbituric acid reactive substances), physicochemical properties (water holding capacity, pH, color), and metabolomic analysis during 14-day storage period. Se45-supplemented group showed significantly higher Se contents and GPx activity than the other groups throughout the storage period. However, other antioxidant properties were not significantly affected by Se supplementation. Selenium supplementation did not have an adverse impact on physicochemical properties. Nuclear Magnetic Resonance-based metabolomic analysis indicated that the selenium supply conditions were insufficient to induce metabolic change. These results suggest that organic Se (0.15 and 0.45 ppm) can accumulate high Se content in pork loins without compromising quality.
Collapse
Affiliation(s)
- Hyun Young Jung
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Hyun Jung Lee
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Korea
| | - Hag Ju Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Yoo Yong Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
- Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Cheorun Jo
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Korea
- Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
| |
Collapse
|
7
|
Pavlova E, Stojchevski R, Avtanski D. The effect of resistin on the redox state of breast cancer cells. J Cancer Res Clin Oncol 2024; 150:24. [PMID: 38252319 PMCID: PMC10803585 DOI: 10.1007/s00432-023-05556-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/30/2023] [Indexed: 01/23/2024]
Abstract
PURPOSE Resistin is an inflammatory cytokine secreted mostly by adipocytes and immune cells that plays a role in the development of insulin resistance, diabetes, and cancer. We hypothesized that resistin's inflammatory activity influences the free radical and oxidative stress pathways. METHODS We used human breast carcinogenic (MCF-7 and MDA-MB-231) and non-carcinogenic (MCF-10A) cells in this investigation and correlated the absorbed resistin concentration with the change in oxidative stress (TBARS, carbonated proteins) and antioxidant activity (Antioxidant Capacity, SuperOxideDismutase, CATalase, Glutathione Peroxidase). RESULTS Resistin was substantially more effective as a prooxidant at lower (12.5 ng/ml) concentrations, than at higher concentrations (25.0 ng/ml). Vitamin C did not appear to be an effective oxidative stress protector at antioxidant concentrations of 5.10-4 M. Leptin, at 100 ng/ml, did not result in conclusive oxidative stress or antioxidant defence stimulation, as expected. CONCLUSION Taken together, the findings support resistin's role as a non-oxidative stress marker and a metabolic signaling molecule.
Collapse
Affiliation(s)
- Elitsa Pavlova
- Faculty of Physics, Sofia University "St. Kliment Ohridski", 5 James Boucher Blvd., 1164, Sofia, Bulgaria.
| | - Radoslav Stojchevski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, New York, NY, 10022, USA
- Donald and Barbara Zucker School of Medicine at Hofstra, Northwell, Hempstead, NY, 11549, USA
- Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Dimiter Avtanski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, New York, NY, 10022, USA
- Donald and Barbara Zucker School of Medicine at Hofstra, Northwell, Hempstead, NY, 11549, USA
- Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| |
Collapse
|
8
|
Megarioti AH, Esch BM, Athanasopoulos A, Koulouris D, Makridakis M, Lygirou V, Samiotaki M, Zoidakis J, Sophianopoulou V, André B, Fröhlich F, Gournas C. Ferroptosis-protective membrane domains in quiescence. Cell Rep 2023; 42:113561. [PMID: 38096056 DOI: 10.1016/j.celrep.2023.113561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 11/02/2023] [Accepted: 11/22/2023] [Indexed: 12/30/2023] Open
Abstract
Quiescence is a common cellular state, required for stem cell maintenance and microorganismal survival under stress conditions or starvation. However, the mechanisms promoting quiescence maintenance remain poorly known. Plasma membrane components segregate into distinct microdomains, yet the role of this compartmentalization in quiescence remains unexplored. Here, we show that flavodoxin-like proteins (FLPs), ubiquinone reductases of the yeast eisosome membrane compartment, protect quiescent cells from lipid peroxidation and ferroptosis. Eisosomes and FLPs expand specifically in respiratory-active quiescent cells, and mutants lacking either show accelerated aging and defective quiescence maintenance and accumulate peroxidized phospholipids with monounsaturated or polyunsaturated fatty acids (PUFAs). FLPs are essential for the extramitochondrial regeneration of the lipophilic antioxidant ubiquinol. FLPs, alongside the Gpx1/2/3 glutathione peroxidases, prevent iron-driven, PUFA-dependent ferroptotic cell death. Our work describes ferroptosis-protective mechanisms in yeast and introduces plasma membrane compartmentalization as an important factor in the long-term survival of quiescent cells.
Collapse
Affiliation(s)
- Amalia H Megarioti
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos," 15341 Agia Paraskevi, Greece; Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15784 Athens, Greece
| | - Bianca M Esch
- Bioanalytical Chemistry Section, Department of Biology/Chemistry, Osnabrück University, 49076 Osnabrück, Germany
| | - Alexandros Athanasopoulos
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos," 15341 Agia Paraskevi, Greece
| | - Dimitrios Koulouris
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos," 15341 Agia Paraskevi, Greece
| | - Manousos Makridakis
- Biotechnology Division, Systems Biology Center, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Vasiliki Lygirou
- Biotechnology Division, Systems Biology Center, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Martina Samiotaki
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming," 16672 Vari, Greece
| | - Jerome Zoidakis
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15784 Athens, Greece; Biotechnology Division, Systems Biology Center, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Vicky Sophianopoulou
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos," 15341 Agia Paraskevi, Greece
| | - Bruno André
- Molecular Physiology of the Cell Laboratory, Université Libre de Bruxelles (ULB), IBMM, 6041 Gosselies, Belgium
| | - Florian Fröhlich
- Bioanalytical Chemistry Section, Department of Biology/Chemistry, Osnabrück University, 49076 Osnabrück, Germany; Center for Cellular Nanoanalytic Osnabrück (CellNanOs), Osnabrück University, 49076 Osnabrück, Germany.
| | - Christos Gournas
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos," 15341 Agia Paraskevi, Greece.
| |
Collapse
|
9
|
Nagaraj B, James AW, Mathivanan A, Nachiappan V. Impairment of RPN4, a transcription factor, induces ER stress and lipid abnormality in Saccharomyces cerevisiae. Mol Cell Biochem 2023; 478:2127-2139. [PMID: 36703093 DOI: 10.1007/s11010-022-04623-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/28/2022] [Indexed: 01/28/2023]
Abstract
Accumulation of misfolded/unfolded proteins in the endoplasmic reticulum (ER) induces ER stress. The transcription factor RPN4 {"Regulatory Particle Non-ATPase"} regulates protein homeostasis by degrading proteins that elude proper folding or assembly via the proteasomal degradation pathway. Here, we studied the lipid alterations exerted by Saccharomyces cerevisiae to mitigate (ER) stress during adaptive responses in rpn4∆ cells. The loss of RPN4-induced ER stress increased phospholipid synthesis, leading to altered membrane structures and accumulation of neutral lipids, causing an increase in lipid droplets (LDs). There was a significant upregulation of genes involved in neutral lipid and membrane lipid synthesis in rpn4∆ cells. Overexpression of RPN4 restored the defects caused by rpn4∆ cells. Thus, our study provides new insight that RPN4 impacts lipid homeostasis.
Collapse
Affiliation(s)
- Bhanupriya Nagaraj
- Biomembrane Lab, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Trichy, Tamil Nadu, 620 024, India
| | - Antonisamy William James
- Biomembrane Lab, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Trichy, Tamil Nadu, 620 024, India
- Departments of Medicine and Cancer Biology, College of Medicine & Life Sciences, Toledo, USA
| | - Arul Mathivanan
- Biomembrane Lab, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Trichy, Tamil Nadu, 620 024, India
| | - Vasanthi Nachiappan
- Biomembrane Lab, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Trichy, Tamil Nadu, 620 024, India.
| |
Collapse
|
10
|
Tarazi D, Maynes JT. Impact of Opioids on Cellular Metabolism: Implications for Metabolic Pathways Involved in Cancer. Pharmaceutics 2023; 15:2225. [PMID: 37765194 PMCID: PMC10534826 DOI: 10.3390/pharmaceutics15092225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Opioid utilization for pain management is prevalent among cancer patients. There is significant evidence describing the many effects of opioids on cancer development. Despite the pivotal role of metabolic reprogramming in facilitating cancer growth and metastasis, the specific impact of opioids on crucial oncogenic metabolic pathways remains inadequately investigated. This review provides an understanding of the current research on opioid-mediated changes to cellular metabolic pathways crucial for oncogenesis, including glycolysis, the tricarboxylic acid cycle, glutaminolysis, and oxidative phosphorylation (OXPHOS). The existing literature suggests that opioids affect energy production pathways via increasing intracellular glucose levels, increasing the production of lactic acid, and reducing ATP levels through impediment of OXPHOS. Opioids modulate pathways involved in redox balance which may allow cancer cells to overcome ROS-mediated apoptotic signaling. The majority of studies have been conducted in healthy tissue with a predominant focus on neuronal cells. To comprehensively understand the impact of opioids on metabolic pathways critical to cancer progression, research must extend beyond healthy tissue and encompass patient-derived cancer tissue, allowing for a better understanding in the context of the metabolic reprogramming already undergone by cancer cells. The current literature is limited by a lack of direct experimentation exploring opioid-induced changes to cancer metabolism as they relate to tumor growth and patient outcome.
Collapse
Affiliation(s)
- Doorsa Tarazi
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1A8, Canada;
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Jason T. Maynes
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1A8, Canada;
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Anesthesia and Pain Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON M5G 1E2, Canada
| |
Collapse
|
11
|
Dimitrov S, Slavchev I, Simeonova R, Mileva M, Pencheva T, Philipov S, Georgieva A, Tsvetanova E, Teneva Y, Rimpova N, Dobrikov G, Valcheva V. Evaluation of Acute and Sub-Acute Toxicity, Oxidative Stress and Molecular Docking of Two Nitrofuranyl Amides as Promising Anti-Tuberculosis Agents. Biomolecules 2023; 13:1174. [PMID: 37627241 PMCID: PMC10452431 DOI: 10.3390/biom13081174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Tuberculosis (TB) remains a widespread infectious disease and one of the top 10 causes of death worldwide. Nevertheless, despite significant advances in the development of new drugs against tuberculosis, many therapies and preventive measures do not lead to the expected favorable health results for various reasons. The aim of this study was to evaluate the acute and sub-acute toxicity and oxidative stress of two selected nitrofuranyl amides with high in vitro antimycobacterial activity. In addition, molecular docking studies were performed on both compounds to elucidate the possibilities for further development of new anti-tuberculosis candidates with improved efficacy, selectivity, and pharmacological parameters. Acute toxicity tests showed that no changes were observed in the skin, coat, eyes, mucous membranes, secretions, and vegetative activity in mice. The histological findings include features consistent with normal histological architecture without being associated with concomitant pathological conditions. The observed oxidative stress markers indicated that the studied compounds disturbed the oxidative balance in the mouse liver. Based on the molecular docking, compound DO-190 showed preferable binding energies compared to DO-209 in three out of four targets, while both compounds showed promising protein-ligand interactions. Thus, both studied compounds displayed promising activity with low toxicity and can be considered for further evaluation and/or lead optimization.
Collapse
Affiliation(s)
- Simeon Dimitrov
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (S.D.); (M.M.); (A.G.); (E.T.)
| | - Ivaylo Slavchev
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.S.); (G.D.)
| | - Rumyana Simeonova
- Department of Pharmacology, Pharmacotherapy, and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (R.S.); (Y.T.)
| | - Milka Mileva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (S.D.); (M.M.); (A.G.); (E.T.)
| | - Tania Pencheva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Stanislav Philipov
- Department of Human Anatomy, Histology, General and Clinical Pathology and Forensic Medicine, Faculty of Medicine, Sofia University “St. Kliment Ohridski”, 1407 Sofia, Bulgaria;
| | - Almira Georgieva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (S.D.); (M.M.); (A.G.); (E.T.)
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Elina Tsvetanova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (S.D.); (M.M.); (A.G.); (E.T.)
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Yoanna Teneva
- Department of Pharmacology, Pharmacotherapy, and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (R.S.); (Y.T.)
| | - Nadezhda Rimpova
- Department of Paediatrics, University Children’s Hospital, Medical University of Sofia, 1431 Sofia, Bulgaria;
| | - Georgi Dobrikov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.S.); (G.D.)
| | - Violeta Valcheva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (S.D.); (M.M.); (A.G.); (E.T.)
| |
Collapse
|
12
|
Maslov LN, Naryzhnaya NV, Sirotina M, Mukhomedzyanov AV, Kurbatov BK, Boshchenko AA, Ma H, Zhang Y, Fu F, Pei J, Azev VN, Pereverzev VA. Do reactive oxygen species damage or protect the heart in ischemia and reperfusion? Analysis on experimental and clinical data. J Biomed Res 2023; 37:268-280. [PMID: 37503710 PMCID: PMC10387750 DOI: 10.7555/jbr.36.20220261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023] Open
Abstract
The role of reactive oxygen species (ROS) in ischemic and reperfusion (I/R) injury of the heart has been discussed for more than 40 years. It has been demonstrated that reperfusion triggers a multiple increase in free radical generation in the isolated heart. Antioxidants were found to have the ability to mitigate I/R injury of the heart. However, it is unclear whether their cardioprotective effect truly depends on the decrease of ROS levels in myocardial tissues. Since high doses and high concentrations of antioxidants were experimentally used, it is highly likely that the cardioprotective effect of antioxidants depends on their interaction not only with free radicals but also with other molecules. It has been demonstrated that the antioxidant N-2-mercaptopropionyl glycine or NDPH oxidase knockout abolished the cardioprotective effect of ischemic preconditioning. Consequently, there is evidence that ROS protect the heart against the I/R injury.
Collapse
Affiliation(s)
- Leonid N Maslov
- Cardiology Research Institute, Tomsk National Research Medical Center, the Russian Academy of Sciences, Tomsk, Tomsk Region 634012, Russia
| | - Natalia V Naryzhnaya
- Cardiology Research Institute, Tomsk National Research Medical Center, the Russian Academy of Sciences, Tomsk, Tomsk Region 634012, Russia
| | - Maria Sirotina
- Cardiology Research Institute, Tomsk National Research Medical Center, the Russian Academy of Sciences, Tomsk, Tomsk Region 634012, Russia
| | - Alexandr V Mukhomedzyanov
- Cardiology Research Institute, Tomsk National Research Medical Center, the Russian Academy of Sciences, Tomsk, Tomsk Region 634012, Russia
| | - Boris K Kurbatov
- Cardiology Research Institute, Tomsk National Research Medical Center, the Russian Academy of Sciences, Tomsk, Tomsk Region 634012, Russia
| | - Alla A Boshchenko
- Cardiology Research Institute, Tomsk National Research Medical Center, the Russian Academy of Sciences, Tomsk, Tomsk Region 634012, Russia
| | - Huijie Ma
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Yi Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Feng Fu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, School of Basic Medicine, the Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jianming Pei
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, School of Basic Medicine, the Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Viacheslav N Azev
- The Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Moscow Oblast 142290, Russia
| | - Vladimir A Pereverzev
- Department of Normal Physiology, Belarusian State Medical University, Minsk 220083, Belarus
| |
Collapse
|
13
|
Munther S, Awn BH, Yassin HN. The Impact of Passive Smoking on Salivary Glutathione Peroxidase and Selenium in Relation to Dental Caries Severity among Five Years Old Children. Indian J Dent Res 2023; 34:270-273. [PMID: 38197345 DOI: 10.4103/ijdr.ijdr_969_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024] Open
Abstract
Background It had been found that passive smoking may have the same harmful effect as tobacco cigarettes smoking. Aims: This study was conducted to determine the effect of passive smoking on salivary glutathione peroxidase and selenium in relation to dental caries severity. Settings and Design The sample consisted of 120 children aged 5 years old, classified into four groups according to the number of cigarettes smoked by their fathers daily: Passive smoking children of 5-10 cigarettes, those of 10-15 cigarettes daily, those of 15-20 cigarettes daily and non-passive smoking children of no smokers indoor (the control group). The sample was further classified according to dental caries severity into three groups: mild (DMFS values <4), moderate (DMFS values from 4 to 8) and severe (DMFS values >8). Methods and Material Stimulated saliva was collected, and salivary glutathione peroxidase and selenium were chemically analysed. Results and Conclusions Glutathione peroxidase and selenium were higher among non-passive smoking children than passive smoking children and they were higher among children with mild caries severity than in children with moderate or severe caries severity (p < 0.01). Passive smoking had significant effect in both salivary glutathione peroxidase and selenium (p < 0.01), while dental caries had non-significant effect on them (p > 0.05). In conclusion, passive smoking had deleterious effect in salivary glutathione peroxidase and selenium, while dental caries did not have effect on these two variables. There is no interaction between both passive smoking and dental caries in neither glutathione peroxidase nor selenium, so the effect of passive smoking on these two variables can exceed the effect of dental caries on them.
Collapse
Affiliation(s)
- Shahba'a Munther
- Department of Pediatric and Preventive Dentistry, College of Dentistry, University of Baghdad, Iraq
| | - Baydaa Hussain Awn
- Department of Pediatric and Preventive Dentistry, College of Dentistry, University of Baghdad, Iraq
| | - Hiba N Yassin
- Department of Pediatric and Preventive Dentistry, College of Dentistry, University of Baghdad, Iraq
| |
Collapse
|
14
|
Shumilina J, Kiryushkin AS, Frolova N, Mashkina V, Ilina EL, Puchkova VA, Danko K, Silinskaya S, Serebryakov EB, Soboleva A, Bilova T, Orlova A, Guseva ED, Repkin E, Pawlowski K, Frolov A, Demchenko KN. Integrative Proteomics and Metabolomics Analysis Reveals the Role of Small Signaling Peptide Rapid Alkalinization Factor 34 (RALF34) in Cucumber Roots. Int J Mol Sci 2023; 24:7654. [PMID: 37108821 PMCID: PMC10140933 DOI: 10.3390/ijms24087654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
The main role of RALF small signaling peptides was reported to be the alkalization control of the apoplast for improvement of nutrient absorption; however, the exact function of individual RALF peptides such as RALF34 remains unknown. The Arabidopsis RALF34 (AtRALF34) peptide was proposed to be part of the gene regulatory network of lateral root initiation. Cucumber is an excellent model for studying a special form of lateral root initiation taking place in the meristem of the parental root. We attempted to elucidate the role of the regulatory pathway in which RALF34 is a participant using cucumber transgenic hairy roots overexpressing CsRALF34 for comprehensive, integrated metabolomics and proteomics studies, focusing on the analysis of stress response markers. CsRALF34 overexpression resulted in the inhibition of root growth and regulation of cell proliferation, specifically in blocking the G2/M transition in cucumber roots. Based on these results, we propose that CsRALF34 is not part of the gene regulatory networks involved in the early steps of lateral root initiation. Instead, we suggest that CsRALF34 modulates ROS homeostasis and triggers the controlled production of hydroxyl radicals in root cells, possibly associated with intracellular signal transduction. Altogether, our results support the role of RALF peptides as ROS regulators.
Collapse
Affiliation(s)
- Julia Shumilina
- Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Alexey S. Kiryushkin
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint Petersburg, Russia
| | - Nadezhda Frolova
- Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Valeria Mashkina
- Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Elena L. Ilina
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint Petersburg, Russia
| | - Vera A. Puchkova
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint Petersburg, Russia
| | - Katerina Danko
- Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | | | | | - Alena Soboleva
- Laboratory of Analytical Biochemistry and Biotechnology, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia (A.F.)
| | - Tatiana Bilova
- Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Anastasia Orlova
- Laboratory of Analytical Biochemistry and Biotechnology, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia (A.F.)
| | - Elizaveta D. Guseva
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint Petersburg, Russia
| | - Egor Repkin
- Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden
| | - Andrej Frolov
- Laboratory of Analytical Biochemistry and Biotechnology, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia (A.F.)
| | - Kirill N. Demchenko
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197022 Saint Petersburg, Russia
| |
Collapse
|
15
|
Bondzie-Quaye P, Swallah MS, Acheampong A, Elsherbiny SM, Acheampong EO, Huang Q. Advances in the biosynthesis, diversification, and hyperproduction of ganoderic acids in Ganoderma lucidum. Mycol Prog 2023. [DOI: 10.1007/s11557-023-01881-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
16
|
Kannan M, Sil S, Oladapo A, Thangaraj A, Periyasamy P, Buch S. HIV-1 Tat-mediated microglial ferroptosis involves the miR-204–ACSL4 signaling axis. Redox Biol 2023; 62:102689. [PMID: 37023693 PMCID: PMC10106521 DOI: 10.1016/j.redox.2023.102689] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/20/2023] [Accepted: 03/26/2023] [Indexed: 04/04/2023] Open
Abstract
This study was focused on exploring the role of the HIV-1 Tat protein in mediating microglial ferroptosis. Exposure of mouse primary microglial cells (mPMs) to HIV-1 Tat protein resulted in induction of ferroptosis, which was characterized by increased expression of Acyl-CoA synthetase long-chain family member 4 (ACSL4), in turn, leading to increased generation of oxidized phosphatidylethanolamine, elevated levels of lipid peroxidation, upregulated labile iron pool (LIP) and ferritin heavy chain-1 (FTH1), decreased glutathione peroxidase-4 and mitochondrial outer membrane rupture. Also, inhibition of ferroptosis by ferrostatin-1 (Fer-1) or deferoxamine (DFO) treatment suppressed ferroptosis-related changes in mPMs. Similarly, the knockdown of ACSL4 by gene silencing also inhibited ferroptosis induced by HIV-1 Tat. Furthermore, increased lipid peroxidation resulted in increased release of proinflammatory cytokines, such as TNFα, IL6, and IL1β and microglial activation. Pretreatment of mPMs with Fer-1 or DFO further blocked HIV-1 Tat-mediated microglial activation in vitro and reduced the expression and release of proinflammatory cytokines. We identified miR-204 as an upstream modulator of ACSL4, which was downregulated in mPMs exposed to HIV-1 Tat. Transient transfection of mPMs with miR-204 mimics reduced the expression of ACSL4 while inhibiting HIV-1 Tat-mediated ferroptosis and the release of proinflammatory cytokines. These in vitro findings were further validated in HIV-1 transgenic rats as well as HIV + ve human brain samples. Overall, this study underscores a novel mechanism(s) underlying HIV-1 Tat-mediated ferroptosis and microglial activation involving miR-204-ACSL4 signaling.
Collapse
|
17
|
Nalcacıoglu P, Kavuncu S, Taskın Turkmenoglu T, Sonmez CA. The effect of idebenone and corticosteroid treatment on methanol-induced toxic optic nerve and retinal damage in rats: biochemical and histopathological examination. Cutan Ocul Toxicol 2022; 41:250-256. [PMID: 35894634 DOI: 10.1080/15569527.2022.2106994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE To evaluate the therapeutic effects of methylprednisolone, the CoenzymeQ10 (CoQ10) structural analogue idebenone, and both together on the optic nerve (ON) and retinal layers following methanol intoxication in rats with histopathological and biochemical methods. MATERIALS AND METHODS This experimental study was conducted with 30 male Wistar rats. The rats were divided into five equal groups depending on the treatment protocol:healthy controls (HC), methanol (M), methanol + methylprednisolone (MM), methanol + idebenone (MI), and methanol + methylprednisolone + idebenone (MMI).Distilled water was provided orally to the HC group, while 20% methanol was administered orally at a dose of 3 g/kg with a nasogastric tube to all rats in groups except the HC group. Four hours later, group MM received 1 mg/kg of intraperitoneal methylprednisolone for 10 days using an insulin syringe, and group MI received 20 mg/kg idebenone by nasogastric catheter for 28 days. MMI group was administered oral idebenone and intraperitoneal methylprednisolone at the same dose. Serum samples were obtained on the 28th day for biochemical analysis and afterwards the rats were euthanized for histopathological examination and eyes were enucleated. ON was evaluated for circumference thickness, vascularization and number of astrocytes, also retinal layers were examined for structural changes by histopathological examination. RESULTS Comparison of the antioxidant and oxidative stress biomarkers between the groups revealed no statistically significant difference (p > 0.05). By histopathological evaluation the most marked results were obtained by MMI group with an improvement of all parameters mentioned. There was no statistically significant difference between MM group and M group for RD score (p = 0.123). In addition, ON vacuolization in MI group (p < 0.001) and ON astrocyte increase in both MI and MMI groups were statistically significantly lower than in M group (p = 0.001, p = 0.001, respectively). CONCLUSIONS The early use (within hours) of idebenone and short-term methylprednisolone treatment together may protect against the retinal and ON damage developing after methanol ingestion in rats as guided by the histopathological data.
Collapse
Affiliation(s)
- Pinar Nalcacıoglu
- M.D, Associate Professor, XXXXXXXX, Department of Ophthalmology, Ankara, Turkey
| | | | | | - Cigdem Atay Sonmez
- MD, Associate Professor, XXXXXXXX, Department of Biochemistry, Ankara, Turkey
| |
Collapse
|
18
|
Wang X, Qiu J, Xu Y, Pan Y, Chen H, Jia Q, Qian Y. Different cellular mechanism of imidacloprid and acetamiprid by a combined targeted lipidomics and metabolomics approach in Neuro-2a cells. Toxicol In Vitro 2022; 83:105426. [PMID: 35781001 DOI: 10.1016/j.tiv.2022.105426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 10/17/2022]
Abstract
As commonly used neonicotinoid insecticides for pest control, imidacloprid (IMI) and acetamiprid (ACE) posed neurotoxicity effects on living organisms. However, researches of the differences in toxicity mechanism between these two neonicotinoid insecticides are still limited. In this study, different cellular metabolism perturbations and redox homeostasis damages induced by IMI and ACE exposure in Neuro-2a cells were investigated. Distinct elevation of lactate dehydrogenase (LDH) activity and caspase 7 level demonstrated the influences on necrosis and apoptosis. There were 21 and 12 metabolites screened out as potential biomarkers after IMI and ACE exposure, including lipids and amino acids. Remarkable decrease of lipid hydroperoxides (LOOH) and increase of reactive oxygen species (ROS) generation were found only in the ACE20 group. Interference with glutathione metabolism pathway was further validated by detecting GPx (glutathion peroxidase), GSH (reduced glutathione) and GSSG (oxidized glutathione) levels. Taken together, the metabolic interferences and oxidative damages in ACE20 group were significantly different from the other three exposure groups. These results help to explore the toxicity mechanism of neonicotinoid insecticides from multiple perspectives. This study provides scientific basis for evaluating toxicity of different neonicotinoid insecticides.
Collapse
Affiliation(s)
- Xinlu Wang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China; Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jing Qiu
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Yanyang Xu
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Yecan Pan
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Hongping Chen
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Qi Jia
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Yongzhong Qian
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| |
Collapse
|
19
|
Zhang Y, Gao J, Nie Z, Zhu H, Du J, Cao L, Shao N, Sun Y, Su S, Xu G, Xu P. Microcystin-LR induces apoptosis in Juvenile Eriocheir sinensis via the mitochondrial pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 238:113528. [PMID: 35500400 DOI: 10.1016/j.ecoenv.2022.113528] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/05/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Microcystin-LR (MC-LR), the toxic substance of cyanobacteria secondary metabolism, widely exists in water environments and poses great risks to living organisms. Some toxicological assessments of MC-LR have performed at physiological and biochemical levels. However, plenty of blanks about the potential mechanism in aquatic crustacean remains. In this study, we firstly assessed the exposure toxicity of MC-LR to juvenile E. sinensis and clarified that the 96 h LD50 of MC-LR was 73.23 μg/kg. Then, hepatopancreas transcriptome profiles of MC-LR stressed crabs were constructed at 6 h post-injection and 37 differential expressed genes (DEGs) were identified. These DEGs were enriched in cytoskeleton, peroxisome and apoptosis pathways. To further reveal the toxicity of MC-LR, oxidative stress parameters (SOD, CAT, GSH-px and MDA), apoptosis genes (caspase 3, bcl-2 and bax) and apoptotic cells were detected. Significant accumulated MDA and rise-fall enzyme activities verified the oxidative stress caused by MC-LR. It is noteworthy that quantitative real-time PCR and TUNEL assay indicated that MC-LR stress-induced apoptosis via the mitochondrial pathway. Interestingly, activator protein-1 may play a crucial role in mediating the hepatotoxicity of MC-LR by regulating apoptosis and oxidative stress. Taken together, our study investigated the toxic effects and the potential molecular mechanisms of MC-LR on juvenile E. sinensis. It provided useful data for exploring the toxicity of MC-LR to aquatic crustaceans at molecular levels.
Collapse
Affiliation(s)
- Yuning Zhang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Jiancao Gao
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Zhijuan Nie
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Haojun Zhu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jinliang Du
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Liping Cao
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Nailin Shao
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yi Sun
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Shengyan Su
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Gangchun Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
20
|
Harohalli Masthigowda M, Sharma D, Khobra R, Krishnappa G, Khan H, Singh SK, Singh G, Singh GP. Pollen viability as a potential trait for screening heat-tolerant wheat ( Triticum aestivum L.). FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:625-633. [PMID: 35272764 DOI: 10.1071/fp21096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
High temperature during reproductive stage of winter crops causes sterility of pollen grains and reduced yield. It is essential to find the genotypes with higher pollen viability, as it is most sensitive to temperature extremes. A field study was conducted with wheat (Triticum aestivum L.) genotypes to understand the effect of high temperature on pollen viability and grain yield for 2years under timely (TS) and late sown (LS) conditions. A strong correlation was observed between higher pollen viability and higher grain yield under heat stress condition. Genotypes like K7903, HD2932, WH730 and RAJ3765 showed higher pollen viability, whereas DBW17, HUW468, RAJ4014 and UP2425 had lower pollen viability under LS condition. Further, the quantification of antioxidant enzymes activity mainly, Super oxide dismutase (SOD), Catalase (CAT), Peroxidase (POD) and Glutathione peroxidase (GPX) has showed significant variation among study genotypes. Thus, the identified high pollen viability genotypes can serve as a potential source for trait based breeding under heat stress in wheat. The present study is a first of its kind to assess more number of wheat genotypes for pollen viability and antioxidants activity under field condition. It also confirms that pollen viability can be used as a potential trait to screen genotypes for heat stress tolerance in wheat.
Collapse
Affiliation(s)
| | - Davinder Sharma
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, 132001 Haryana, India; and The Institute for cereal crops improvement, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Rinki Khobra
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, 132001 Haryana, India
| | | | - Hanif Khan
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, 132001 Haryana, India
| | - Sanjay Kumar Singh
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, 132001 Haryana, India
| | - Gyanendra Singh
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, 132001 Haryana, India
| | | |
Collapse
|
21
|
Wu X, Zhu Y, Yang M, Zhang J, Lin D. Biological responses of Eisenia fetida towards the exposure and metabolism of tris (2-butoxyethyl) phosphate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:152285. [PMID: 34933047 DOI: 10.1016/j.scitotenv.2021.152285] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/04/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
The toxicity of various organophosphorus flame retardants (OPFRs) is of increasing concern. However, there is still a lack of research on the toxicity of OPFRs to terrestrial invertebrates and its metabolism in vivo. Herein, earthworms (Eisenia fetida) were exposed to soil spiked with 0, 0.05, 0.5, and 5 mg/kg tris(2-butoxyethyl) phosphate (TBOEP, a typical alkyl OPFRs) for 28 d to study the biological responses to the exposure and metabolism of TBOEP. TBOEP exposure inhibited the activity of acetyl-cholinesterase (64.4-68.6% of that in the control group), increased the energy consumption level, and affected calcium-dependent pathways of E. fetida, which caused a 3.6-12.4% reduction in the weight gain rate (developmental toxicity), a 10.6-69.4% reduction in the number of juveniles (reproduction toxicity), and neurotoxicity to E. fetida. The 5 mg/kg TBOEP exposure caused a significant accumulation of malondialdehyde (1.68 times higher than that in the control group) in E. fetida, which indicated that the balance of oxidation and anti-oxidation of E. fetida was broken. Meanwhile, E. fetida maintained the absorption and metabolic abilities to TBOEP under the environmental condition. The removal rate of soil TBOEP was increased by 25.1-35.5% by the presence of E. fetida. Importantly, TBOEP could accumulate in E. fetida (0.09-76.0 μg/kg) and the activation of cytochrome P450 and glutathione detoxification pathway promoted the metabolism of TBOEP in E. fetida. These findings link the biological responses and metabolic behavior of earthworms under pollution stress and provide fundamental data for the environmental risk assessment and pollution removal of OPFRs in soil.
Collapse
Affiliation(s)
- Xinyue Wu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Ya Zhu
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Meirui Yang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Jianying Zhang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
22
|
Vyas R, Kesari KK, Slama P, Roychoudhury S, Sisodia R. Differential Activity of Antioxidants in Testicular Tissues Following Administration of Chlorophytum borivilianum in Gamma-Irradiated Swiss Albino Mice. Front Pharmacol 2022; 12:774444. [PMID: 35111049 PMCID: PMC8802459 DOI: 10.3389/fphar.2021.774444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Oxidative stress induced by radiation causes variable expression of antioxidant enzymes in a tissue-specific manner. Testicular tissues carry out the complex process of spermatogenesis, and studies indicate that testicular damages due to irradiation require long-term recovery before complete resumption. Ionizing radiation also causes oxidative stress in tissues, leading to testicular damage. Aims and Objectives: This study measured differential expression of antioxidant enzymes following administration of C. borivilianum root extract (CRB) in response to irradiation-induced oxidative stress. The activity of various important endogenous enzymatic defense systems was evaluated and correlated for strength of association. Materials and method: Two forms of C. borivilianum (CB) extracts [CB alone and CB-silver nanoparticles (AgNPs)] were administered at a dose of 50 mg/kg body weight to Swiss albino male mice for 7 consecutive days. After that, they were irradiated with 6 Gy irradiation and further used to study various parameters of antioxidant enzymes. Results: Results indicate a significant increase in the level of glutathione (GSH) and the activity of GSH-related antioxidant enzymes in irradiated mice treated with CRE and CRE-AgNPs (silver nanoparticles biosynthesized using C. borivilianum root extract) in comparison to non-pretreated ones (groups I and II). Reciprocal elevation was observed in related enzymes, that is, glutathione S-transferase activity (GST), glutathione reductase (GR), and glutathione peroxidase activity (GPx). Elevation in the activity of catalase (CAT) and superoxide dismutase (SOD) was also evident in both the irradiated groups pretreated with CRE-AgNPs. However, expression of CAT in the CRE-treated irradiated group was similar to that of the non-treated irradiated group. Higher association among CAT-SOD, CAT-GPx, and GR-GST was observed. Conclusion: Overall, it was observed that testicular cells post-irradiation in all groups go through intense oxidative stress; however, groups pretreated with CRE or CRE-AgNPs indicated better toleration and resumption of antioxidant capacity. CRE or CRE-AgNPs pretreated non-irradiated groups mostly remained within the control range indicating stimulated expression of antioxidants.
Collapse
Affiliation(s)
- Ruchi Vyas
- Department of Zoology, S.S Jain Subodh PG College, Jaipur, India.,Department of Zoology, University of Rajasthan, Jaipur, India
| | | | - Petr Slama
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | | | - Rashmi Sisodia
- Department of Zoology, University of Rajasthan, Jaipur, India
| |
Collapse
|
23
|
Ozturk M, Metin M, Altay V, De Filippis L, Ünal BT, Khursheed A, Gul A, Hasanuzzaman M, Nahar K, Kawano T, Caparrós PG. Molecular Biology of Cadmium Toxicity in Saccharomyces cerevisiae. Biol Trace Elem Res 2021; 199:4832-4846. [PMID: 33462792 DOI: 10.1007/s12011-021-02584-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/08/2021] [Indexed: 02/08/2023]
Abstract
Cadmium (Cd) is a toxic heavy metal mainly originating from industrial activities and causes environmental pollution. To better understand its toxicity and pollution remediation, we must understand the effects of Cd on living beings. Saccharomyces cerevisiae (budding yeast) is an eukaryotic unicellular model organism. It has provided much scientific knowledge about cellular and molecular biology in addition to its economic benefits. Effects associated with copper and zinc, sulfur and selenium metabolism, calcium (Ca2+) balance/signaling, and structure of phospholipids as a result of exposure to cadmium have been evaluated. In yeast as a result of cadmium stress, "mitogen-activated protein kinase," "high osmolarity glycerol," and "cell wall integrity" pathways have been reported to activate different signaling pathways. In addition, abnormalities and changes in protein structure, ribosomes, cell cycle disruption, and reactive oxygen species (ROS) following cadmium cytotoxicity have also been detailed. Moreover, the key OLE1 gene that encodes for delta-9 FA desaturase in relation to cadmium toxicity has been discussed in more detail. Keeping all these studies in mind, an attempt has been made to evaluate published cellular and molecular toxicity data related to Cd stress, and specifically published on S. cerevisiae.
Collapse
Affiliation(s)
- Munir Ozturk
- Department of Botany and Centre for Environmental Studies, Ege University, Izmir, Turkey.
| | - Mert Metin
- Graduate School of Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0135, Japan
| | - Volkan Altay
- Department of Biology, Faculty of Science and Arts, Hatay Mustafa Kemal University, Antakya, Hatay, Turkey
| | - Luigi De Filippis
- School of Life Sciences, University of Technology Sydney, Sydney, 123, Australia
| | - Bengu Turkyilmaz Ünal
- Faculty of Science and Arts, Department of Biotechnology, Nigde Omer Halisdemir University, Nigde, Turkey
| | - Anum Khursheed
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Alvina Gul
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences & Technology, Islamabad, Pakistan
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Kamuran Nahar
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Tomonori Kawano
- Graduate School of Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0135, Japan
| | - Pedro García Caparrós
- Agronomy Department of Superior School Engineering, University of Almería, Ctra. Sacramento s/n, La Cañadade San Urbano, 04120, Almería, Spain
| |
Collapse
|
24
|
Abdulrahim HA, Alagbonsi IA, Amuda O, Omeiza NA, Feyitimi ARA, Olayaki LA. Cannabis sativa and/or melatonin do not alter brain lipid but alter oxidative mechanisms in female rats. J Cannabis Res 2021; 3:38. [PMID: 34412689 PMCID: PMC8377844 DOI: 10.1186/s42238-021-00095-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 08/02/2021] [Indexed: 11/24/2022] Open
Abstract
Background Lipid profile and redox status play a role in brain (dys)functions. Cannabinoid and melatonergic systems operate in the brain and contribute to brain (patho)physiology, but their roles in the modulation of brain lipid and redox status are not well-known. We studied the effect of ethanol extract of Cannabis sativa (CS) and/or melatonin (M) on the lipid profile and anti-oxidant system of the rat brain. Methods We randomly divided twenty-four (24) female Wistar rats into 4 groups (n = 6 rats each). Group 1 (control) received distilled water mixed with DMSO. Groups II–IV received CS (2 mg/kg), M (4 mg/kg), and co-administration of CS and M (CS + M) respectively via oral gavage between 8:00 am and 10:00 am once daily for 14 days. Animals underwent 12-h fasting after the last day of treatment and sacrificed under ketamine anesthesia (20 mg/kg; i.m). The brain tissues were excised and homogenized for assay of the concentrations of the total cholesterol (TC), triacylglycerol (TG), high-density lipoprotein cholesterol (HDL-C), nitric oxide (NO), malondialdehyde (MDA), and the activities of glucose-6-phosphate dehydrogenase (G6PD), glutathione reductase (GR), glutathione peroxidase (GPx), catalase (CAT), superoxide dismutase (SOD), and acetylcholinesterase (AChE). One-way analysis of variance (ANOVA) was used to compare means across groups, followed by the least significant difference (LSD) post-hoc test. Results CS and/or M did not affect the lipid profile parameters. However, CS increased the G6PD (from 15.58 ± 1.09 to 21.02 ± 1.45 U/L; p = 0.047), GPx (from 10.47 ± 0.86 to 17.71 ± 1.04 U/L; p = 0.019), and SOD (from 0.81 ± 0.02 to 0.90 ± 0.01 μM; p = 0.007), but decreased NO (from 9.40 ± 0.51 to 6.75 ± 0.21 μM; p = 0.010) and had no effect on MDA (p = 0.905), CAT (p = 0.831), GR (p = 0.639), and AChE (p = 0.571) in comparison with the control group. M augmented the increase in G6PD (from 21.02 ± 1.45 U/L to 27.18 ± 1.81 U/L; p = 0.032) and decrease in NO (from 6.75 ± 0.21 to 4.86 ± 0.13 μM; p = 0.034) but abolished the increase in GPx (from 17.71 ± 1.04 to 8.59 ± 2.06 U/L; p = 0.006) and SOD (from 0.90 ± 0.01 to 0.70 ± 0.00 μM; p = 0.000) elicited by CS in the rat brain in comparison with the CS group. Conclusions CS and M do not alter brain lipid profile. Our data support the contention that CS elicits an anti-oxidative effect on the brain tissue and that CS + M elicits a pro-oxidant effect in rat brain. Supplementary Information The online version contains supplementary material available at 10.1186/s42238-021-00095-9.
Collapse
Affiliation(s)
- Halimat Amin Abdulrahim
- Department of Medical Biochemistry, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Isiaka Abdullateef Alagbonsi
- Department of Clinical Biology (Physiology unit), School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye, Rwanda.
| | - Oluwasola Amuda
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, Al-Hikmah University, Ilorin, Kwara, P.M.B. 1601, Nigeria
| | - Noah Adavize Omeiza
- Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | | | | |
Collapse
|
25
|
Assessment of Oxidative Stress Markers in Hypothermic Preservation of Transplanted Kidneys. Antioxidants (Basel) 2021; 10:antiox10081263. [PMID: 34439511 PMCID: PMC8389232 DOI: 10.3390/antiox10081263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 12/14/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) after renal transplantation is a complex biochemical process. The first component is an ischemic phase during kidney storage. The second is reperfusion, the main source of oxidative stress. This study aimed to analyze the activity of enzymes and concentrations of non-enzymatic compounds involved in the antioxidant defense mechanisms: glutathione (GSH), glutathione peroxidase (GPX), catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), glutathione transferase (GST), thiobarbituric acid reactive substances (TBARS), malondialdehyde (MDA), measured in preservation fluid before transplantation of human kidneys (KTx) grafted from brain dead donors. The study group (N = 66) was divided according to the method of kidney storage: Group 1—hypothermic machine perfusion (HMP) in LifePort perfusion pump, n1 = 26, and Group 2—static cold storage (SCS), n2 = 40. The measurements of kidney function parameters, blood count, and adverse events were performed at constant time points during 7-day hospitalization and 3-month follow-up. Kidney perfusate in Group 2 was characterized by significantly more acidic pH (p < 0.0001), higher activity of GPX [U/mgHb] (p < 0.05) and higher concentration of MDA [μmol/L] (p < 0.05). There was a statistically significant improvement of kidney function and specific blood count alterations concerning storage method in repeated measures. There were aggregations of significant correlations (p < 0.05) between kidney function parameters after KTx and oxidative stress markers: diuresis & CAT, Na+ & CAT, K+ & GPX, urea & GR. There were aggregations of significant correlations (p < 0.05) between recipient blood count and oxidative stress markers: CAT & MON, SOD & WBC, SOD & MON. Study groups demonstrated differences concerning the method of kidney storage. A significant role of recipient’s gender, gender matching, preservation solution, and perfusate pH was not confirmed, however, basing on analyzed data, the well-established long-term beneficial impact of HMP on the outcome of transplanted kidneys might partially depend on the intensity of IRI ischemic phase and oxidative stress, reflected by the examined biomarkers.
Collapse
|
26
|
Hsieh PS, Chen CW, Kuo YW, Ho HH. Lactobacillus spp. reduces ethanol-induced liver oxidative stress and inflammation in a mouse model of alcoholic steatohepatitis. Exp Ther Med 2021; 21:188. [PMID: 33488797 PMCID: PMC7812587 DOI: 10.3892/etm.2021.9619] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022] Open
Abstract
Alcoholic steatohepatitis (ASH) is a complex multifactorial disease that can lead to liver fibrosis and cirrhosis if not treated promptly. Alcohol-induced oxidative stress and inflammation are the main factors that cause steatohepatitis and liver injury; however, probiotic bacteria in the gastrointestinal tract have been revealed to regulate immune responses and reduce oxidative stress, suggesting that functional probiotics could help to prevent ASH and liver injury. Despite numerous reports on the interactions between ASH and probiotics, the mechanisms underlying probiotic-mediated liver protection remain unknown. Therefore, the aim of the present study was to screen probiotics with high antioxidant capacity and investigate the ability of different probiotic combinations to reduce alcoholic liver disease (ALD) in a mouse model. It was identified that Lactobacillus plantarum (TSP05), Lactobacillus fermentum (TSF331) and Lactobacillus reuteri (TSR332) neutralized free radicals and displayed high antioxidant activity in vitro. In addition, these three functional probiotic strains protected mice from alcohol-induced liver injury in vivo. Mice treated with the probiotics demonstrated significantly lower alanine aminotransferase, aspartate aminotransferase and triglyceride levels, which were associated with the downregulation of the proinflammatory cytokines TNF-α and IL-6. Furthermore, probiotic treatment upregulated glutathione and glutathione peroxidase activity, which are bioindicators of oxidative stress in the liver. Collectively, the present results indicated that Lactobacillus strains TSP05, TSF331 and TSR332 reduced oxidative stress and inflammatory responses, thus preventing ASH development and liver injury.
Collapse
Affiliation(s)
| | | | - Yi-Wei Kuo
- Glac Biotech Co., Ltd., Tainan 74442, Taiwan, R.O.C
| | | |
Collapse
|
27
|
Prakash V, Anbumani S. A Systematic Review on Occurrence and Ecotoxicity of Organic UV Filters in Aquatic Organisms. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 257:121-161. [PMID: 34554327 DOI: 10.1007/398_2021_68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The growing production of cosmetic products such as organic UV filters (OUVFs) in recent years has raised concern regarding their safety to human and environmental health. The inability of wastewater treatment plants in removing these chemical entities and their high octanol-water partition coefficient values tend to result in the persistence of OUVFs in several environmental matrices, leading these to be categorized as "emerging environmental contaminants" because of their unknown risk. Besides aquatic ecosystem contamination, the application of sludge disposal equally threatens terrestrial biota. Besides, the available reviews focusing on levels of OUVFs in aqueous systems (freshwater and marine), instrumental analysis from various samples, and specific toxicity effects, compiled information on the ecotoxicity of OUVFs is currently lacking. Hence, the present manuscript systematically reviews the ecotoxicity of OUVFs in freshwater and marine organisms occupying lower to higher trophic levels, including the underlying mechanisms of action and current knowledge gaps. The available scientific evidence suggests that OUVFs are a prime candidate for environmental concern due to their potential toxic effects. To the best of our knowledge, this is the first document detailing the toxicological effects of OUVFs in aquatic organisms.
Collapse
Affiliation(s)
- Ved Prakash
- Ecotoxicology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sadasivam Anbumani
- Ecotoxicology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
28
|
Zhang J, Hao H, Wu X, Wang Q, Chen M, Feng Z, Chen H. The functions of glutathione peroxidase in ROS homeostasis and fruiting body development in Hypsizygus marmoreus. Appl Microbiol Biotechnol 2020; 104:10555-10570. [PMID: 33175244 DOI: 10.1007/s00253-020-10981-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/15/2020] [Accepted: 10/26/2020] [Indexed: 12/28/2022]
Abstract
Glutathione peroxidase (GPX) is one of the most important antioxidant enzymes for maintaining reactive oxygen species (ROS) homeostasis. Although studies on fungi have suggested many important physiological functions of GPX, few studies have examined the role of this enzyme in Basidiomycetes, particularly its functions in fruiting body developmental processes. In the present study, GPX-silenced (GPxi) strains were obtained by using RNA interference. The GPxi strains of Hypsizygus marmoreus showed defects in mycelial growth and fruiting body development. In addition, the results indicated essential roles of GPX in controlling ROS homeostasis by regulating intracellular H2O2 levels, maintaining GSH/GSSG balance, and promoting antioxidant enzyme activity. Furthermore, lignocellulose enzyme activity levels were reduced and the mitochondrial phenotype and mitochondrial complex activity levels were changed in the H. marmoreus GPxi strains, possibly in response to impediments to mycelial growth and fruiting body development. These findings indicate that ROS homeostasis has a complex influence on growth, fruiting body development, GSH/GSSG balance, and carbon metabolism in H. marmoreus.Key points• ROS balance, energy metabolism, fruiting development.
Collapse
Affiliation(s)
- Jinjing Zhang
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 309 Room, No. 1000, Jinqi Road, Fengxian District, Shanghai, 201403, China
| | - Haibo Hao
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 309 Room, No. 1000, Jinqi Road, Fengxian District, Shanghai, 201403, China
| | - Xuelan Wu
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 309 Room, No. 1000, Jinqi Road, Fengxian District, Shanghai, 201403, China
| | - Qian Wang
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 309 Room, No. 1000, Jinqi Road, Fengxian District, Shanghai, 201403, China
| | - Mingjie Chen
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 309 Room, No. 1000, Jinqi Road, Fengxian District, Shanghai, 201403, China
| | - Zhiyong Feng
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 309 Room, No. 1000, Jinqi Road, Fengxian District, Shanghai, 201403, China.,College of Life Science, Nanjing Agricultural University, No. 1, Weigang road, XuanWu District, Nanjing, 210095, China
| | - Hui Chen
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 309 Room, No. 1000, Jinqi Road, Fengxian District, Shanghai, 201403, China.
| |
Collapse
|
29
|
Batista-Silva H, Rodrigues K, Sousa de Moura KR, Van Der Kraak G, Delalande-Lecapitaine C, Mena Barreto Silva FR. Role of bisphenol A on calcium influx and its potential toxicity on the testis of Danio rerio. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110876. [PMID: 32563953 DOI: 10.1016/j.ecoenv.2020.110876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
This study investigated the acute in vitro effect of low-concentration bisphenol A (BPA) on calcium (45Ca2+) influx in zebrafish (Danio rerio) testis and examined whether intracellular Ca2+ was involved in the effects of BPA on testicular toxicity. In vitro studies on 45Ca2+ influx were performed in the testes after incubation with BPA for 30 min. Inhibitors were added 15 min before the addition of 45Ca2+ and BPA to testes to study the mechanism of action of BPA. The involvement of intracellular calcium from stores on lactate dehydrogenase (LDH) release and on triacylglycerol (TAG) content were carried out after in vitro incubation of testes with BPA for 1 h. Furthermore, gamma-glutamyl transpeptidase (GGT) and aspartate aminotransferase (AST) activities were analyzed in the liver at 1 h after in vitro BPA incubation of D. rerio. Our data show that the acute in vitro treatment of D. rerio testes with BPA at very low concentration activates plasma membrane ionic channels, such as voltage-dependent calcium channels and calcium-dependent chloride channels, and protein kinase C (PKC), which stimulates Ca2+ influx. In addition, BPA increased cytosolic Ca2+ by activating inositol triphosphate receptor (IP3R) and inhibiting sarco/endoplasmic reticulum calcium ATPase (SERCA) at the endoplasmic reticulum, contributing to intracellular Ca2+ overload. The protein kinases, PKC, MEK 1/2 and PI3K, are involved in the mechanism of action of BPA, which may indicate a crosstalk between the non-genomic initiation effects mediated by PLC/PKC/IP3R signaling and genomic responses of BPA mediated by the estrogen receptor (ESR). In vitro exposure to a higher concentration of BPA caused cell damage and plasma membrane injury with increased LDH release and TAG content; both effects were dependent on intracellular Ca2+ and mediated by IP3R. Furthermore, BPA potentially induced liver damage, as demonstrated by increased GGT activity. In conclusion, in vitro effect of BPA in a low concentration triggers cytosolic Ca2+ overload and activates downstream protein kinases pointing to a crosstalk between its non-genomic and genomic effects of BPA mediated by ESR. Moreover, in vitro exposure to a higher concentration of BPA caused intracellular Ca2+-dependent testicular cell damage and plasma membrane injury. This acute toxicity was reinforced by increased testicular LDH release and GGT activity in the liver.
Collapse
Affiliation(s)
- Hemily Batista-Silva
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, CEP: 88040-900, Florianópolis, Santa Catarina, Brazil; Département Biologie et Sciences de La Terre, Université de Caen Normandie, Caen, Normandie, France
| | - Keyla Rodrigues
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, CEP: 88040-900, Florianópolis, Santa Catarina, Brazil
| | | | - Glen Van Der Kraak
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | | | - Fátima Regina Mena Barreto Silva
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, CEP: 88040-900, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
30
|
Gong Y, Yang J, Cai J, Liu Q, Zhang Z. Selenoprotein Gpx3 knockdown induces myocardial damage through Ca 2+ leaks in chickens. Metallomics 2020; 12:1713-1728. [PMID: 32968752 DOI: 10.1039/d0mt00027b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glutathione peroxidase 3 (Gpx3) is a pivotal selenoprotein that acts as an antioxidant. However, the role of Gpx3 in maintaining the normal metabolism of cardiomyocytes remains to be elucidated in more detail. Herein, we employed a model of Gpx3 interference in chicken embryos in vivo and Gpx3 knockdown chicken cardiomyocytes in vitro. Real-time PCR, western blotting and fluorescent staining were performed to detect reactive oxygen species (ROS), the calcium (Ca2+) concentration, endoplasmic reticulum (ER) stress, myocardial contraction, inflammation and heat shock proteins (HSPs). Our results revealed that Gpx3 suppression increased the level of ROS, which induced Ca2+ leakage in the cytoplasm by blocking the expression of Ca2+ channels. The imbalance of Ca2+ homeostasis triggered ER stress and blocked myocardial contraction. Furthermore, we found that Ca2+ imbalance in the cytoplasm induced severe inflammation, and HSPs might play a protective role throughout these processes. In conclusion, Gpx3 suppression induces myocardial damage through the activation of Ca2+-dependent ER stress.
Collapse
Affiliation(s)
- Yafan Gong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | | | | | | | | |
Collapse
|
31
|
Zhang S, He Y, Sen B, Wang G. Reactive oxygen species and their applications toward enhanced lipid accumulation in oleaginous microorganisms. BIORESOURCE TECHNOLOGY 2020; 307:123234. [PMID: 32245673 DOI: 10.1016/j.biortech.2020.123234] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/17/2020] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
Oleaginous microorganisms are among the most promising alternative sources of lipids for oleochemicals and biofuels. However, in the course of lipid production, reactive oxygen species (ROS) are generated inevitably as byproducts of aerobic metabolisms. Although excessive accumulation of ROS leads to lipid peroxidation, DNA damage, and protein denaturation, ROS accumulation has been suggested to enhance lipid synthesis in these microorganisms. There are many unresolved questions concerning this dichotomous view of ROS influence on lipid accumulation. These include what level of ROS triggers lipid overproduction, what mechanisms and targets are vital and whether ROS act as toxic byproducts or cellular messengers in these microorganisms? Here we review the current state of knowledge on ROS generation, antioxidative defense system, the dual effects of ROS on microbial lipid production, and ROS-induced lipid peroxidation and accumulation mechanisms. Toward the end, the review summarizes strategies that enhance lipid production based on ROS manipulation.
Collapse
Affiliation(s)
- Sai Zhang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yaodong He
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Biswarup Sen
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Guangyi Wang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Qingdao Institute Ocean Engineering of Tianjin University, Qingdao 266237, China.
| |
Collapse
|
32
|
Zhang ML, Wu HT, Chen WJ, Xu Y, Ye QQ, Shen JX, Liu J. Involvement of glutathione peroxidases in the occurrence and development of breast cancers. J Transl Med 2020; 18:247. [PMID: 32571353 PMCID: PMC7309991 DOI: 10.1186/s12967-020-02420-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/17/2020] [Indexed: 02/05/2023] Open
Abstract
Glutathione peroxidases (GPxs) belong to a family of enzymes that is important in organisms; these enzymes promote hydrogen peroxide metabolism and protect cell membrane structure and function from oxidative damage. Based on the establishment and development of the theory of the pathological roles of free radicals, the role of GPxs has gradually attracted researchers' attention, and the involvement of GPxs in the occurrence and development of malignant tumors has been shown. On the other hand, the incidence of breast cancer in increasing, and breast cancer has become the leading cause of cancer-related death in females worldwide; breast cancer is thought to be related to the increased production of reactive oxygen species, indicating the involvement of GPxs in these processes. Therefore, this article focused on the molecular mechanism and function of GPxs in the occurrence and development of breast cancer to understand their role in breast cancer and to provide a new theoretical basis for the treatment of breast cancer.
Collapse
Affiliation(s)
- Man-Li Zhang
- Changjiang Scholar's Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, 515041, China
| | - Hua-Tao Wu
- Department of General Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Wen-Jia Chen
- Changjiang Scholar's Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, 515041, China
- Department of Physiology/Cancer Research Center, Shantou University Medical College, Shantou, 515041, China
| | - Ya Xu
- Changjiang Scholar's Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, 515041, China
| | - Qian-Qian Ye
- Changjiang Scholar's Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, 515041, China
- Department of Physiology/Cancer Research Center, Shantou University Medical College, Shantou, 515041, China
| | - Jia-Xin Shen
- Department of Hematology, the First Affiliated Hospital of Shantou University Medical College, Shantou, People's Republic of China
| | - Jing Liu
- Changjiang Scholar's Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, 515041, China.
- Department of Physiology/Cancer Research Center, Shantou University Medical College, Shantou, 515041, China.
| |
Collapse
|
33
|
Hamida RS, Ali MA, Goda DA, Khalil MI, Redhwan A. Cytotoxic effect of green silver nanoparticles against ampicillin-resistant Klebsiella pneumoniae. RSC Adv 2020; 10:21136-21146. [PMID: 35518759 PMCID: PMC9054378 DOI: 10.1039/d0ra03580g] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/28/2020] [Indexed: 11/29/2022] Open
Abstract
Considering the harmful effects and high spread of drug-resistant Klebsiella pneumoniae, many researchers have been trying to produce new antibacterial agents to combat the emergence of multidrug-resistant (MDR) strains of this bacterium. Recent progress in the nanomedicine field has provided opportunities for synthesizing unique nanoagents to battle MDR bacteria by targeting virulence and resistance signalling. The biocidal effects of 14.9 nm silver nanoparticles fabricated using Nostoc sp. Bahar M (N-SNPs) and AgNO3 were examined against drug-resistant K. pneumoniae using the agar well diffusion method. Transmission electron microscopy (TEM) was used to detect the ultrastructural changes caused by N-SNPs and AgNO3. To address the mode of action of N-SNPs and AgNO3, CAT, GPx, LDH and ATPase levels were assessed. The toxicity of N-SNPs and AgNO3 was evaluated against the mfD, flu, hly, 23S, hns, hcp-1, VgrG-1 and VgrG-3 genes as well as cellular proteins. N-SNPs showed the greatest inhibitory activity against K. pneumoniae, with MIC and MBC values of 0.9 and 1.2 mg mL-1, respectively. Furthermore, N-SNPs and AgNO3 induced apoptotic features, including cell shrinkage and cell atrophy. N-SNPs were more potent bactericidal compounds than AgNO3, causing increased leakage of LDH and GPx activities and depletion of ATPase and CAT activities, resulting in induced oxidative stress and metabolic toxicity. Compared to AgNO3, N-SNPs exhibited the highest toxicity towards the selected genes and the greatest damage to bacterial proteins. N-SNPs were the most potent agents that induced bacterial membrane damage, oxidative stress and disruption of biomolecules such as DNA and proteins. N-SNPs may be used as effective nanodrugs against MDR bacteria.
Collapse
Affiliation(s)
- Reham Samir Hamida
- Molecular Biology Unit, Department of Zoology, Faculty of Science, Alexandria University Egypt +201156298937
| | - Mohamed Abdelaal Ali
- Biotechnology Unit, Department of Plant Production, College of Food and Agriculture Science, King Saud University Riyadh Saudi Arabia
| | - Doaa A Goda
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City) Alexandria Egypt
| | - Mahmoud Ibrahim Khalil
- Molecular Biology Unit, Department of Zoology, Faculty of Science, Alexandria University Egypt +201156298937
- Department of Biological Sciences, Faculty of Science, Beirut Arab University Lebanon
| | - Alya Redhwan
- Department of Health, College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University Riyadh Saudi Arabia +966555237223
| |
Collapse
|
34
|
Hamida RS, Ali MA, Goda DA, Khalil MI, Al-Zaban MI. Novel Biogenic Silver Nanoparticle-Induced Reactive Oxygen Species Inhibit the Biofilm Formation and Virulence Activities of Methicillin-Resistant Staphylococcus aureus (MRSA) Strain. Front Bioeng Biotechnol 2020; 8:433. [PMID: 32548095 PMCID: PMC7270459 DOI: 10.3389/fbioe.2020.00433] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/15/2020] [Indexed: 12/20/2022] Open
Abstract
Emerging antibiotic-resistant bacteria result in increased mortality and have negative economic impacts. It is necessary to discover new strategies to create alternative antibacterial agents that suppress the bacterial resistance mechanism and limit the spread of serious infectious bacterial diseases. Silver nanoparticles may represent a new medicinal agents as alternative antibiotics affect different bacterial mechanisms such as virulence and resistance. In addition to that of silver nitrate (AgNO3) and ampicillin, for the first time, the inhibitory effect of silver nanoparticles synthesized using Desertifilum sp. (D-SNPs) was evaluated against five pathogenic bacteria using the agar well diffusion method. Also, the influence of D-SNPs and AgNO3 on bacterial antioxidant and metabolic activities was studied. The antibacterial activity of D-SNPs and AgNO3 against methicillin-resistant Staphylococcus aureus (MRSA) strains was studied at the morphological and molecular level. D-SNPs and AgNO3 have the ability to inhibit the growth of the five bacterial strains and resulted in an imbalance in the CAT, GSH, GPx and ATPase levels. MRSA treated with D-SNPs and AgNO3 showed different morphological changes such as apoptotic bodies formation and cell wall damage. Moreover, both caused genotoxicity and denaturation of MRSA cellular proteins. Additionally, TEM micrographs showed the distribution of SNPs synthesized by MRSA. This result shows the ability of MRSA to reduce silver nitrate into silver nanoparticles. These data indicate that D-SNPs may be a significant alternative antibacterial agent against different bacteria, especially MDR bacteria, by targeting the virulence mechanism and biofilm formation, leading to bacterial death.
Collapse
Affiliation(s)
- Reham Samir Hamida
- Molecular Biology Unit, Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mohamed Abdelaal Ali
- Biotechnology Unit, Department of Plant Production, College of Food and Agriculture Science, King Saud University, Riyadh, Saudi Arabia
| | - Doaa A Goda
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Mahmoud Ibrahim Khalil
- Molecular Biology Unit, Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt.,Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, Lebanon
| | - Mayasar Ibrahim Al-Zaban
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
35
|
Rajakumar S, Abhishek A, Selvam GS, Nachiappan V. Effect of cadmium on essential metals and their impact on lipid metabolism in Saccharomyces cerevisiae. Cell Stress Chaperones 2020; 25:19-33. [PMID: 31823289 PMCID: PMC6985397 DOI: 10.1007/s12192-019-01058-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 11/14/2019] [Accepted: 11/28/2019] [Indexed: 01/09/2023] Open
Abstract
Cadmium (Cd) is a toxic heavy metal that induces irregularity in numerous lipid metabolic pathways. Saccharomyces cerevisiae, a model to study lipid metabolism, has been used to establish the molecular basis of cellular responses to Cd toxicity in relation to essential minerals and lipid homeostasis. Multiple pathways sense these environmental stresses and trigger the mineral imbalances specifically calcium (Ca) and zinc (Zn). This review is aimed to elucidate the role of Cd toxicity in yeast, in three different perspectives: (1) elucidate stress response and its adaptation to Cd, (2) understand the physiological role of a macromolecule such as lipids, and (3) study the stress rescue mechanism. Here, we explored the impact of Cd interference on the essential minerals such as Zn and Ca and their influence on endoplasmic reticulum stress and lipid metabolism. Cd toxicity contributes to lipid droplet synthesis by activating OLE1 that is essential to alleviate lipotoxicity. In this review, we expanded our current findings about the effect of Cd on lipid metabolism of budding yeast.
Collapse
Affiliation(s)
- Selvaraj Rajakumar
- Eukaryotic Biology Lab, Department of Biochemistry, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India.
- Biomembrane Lab, Department of Biochemistry, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India.
- Department of Pediatrics, Heritage Medical Research Centre, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada.
| | - Albert Abhishek
- Eukaryotic Biology Lab, Department of Biochemistry, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Govindan Sadasivam Selvam
- Eukaryotic Biology Lab, Department of Biochemistry, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Vasanthi Nachiappan
- Biomembrane Lab, Department of Biochemistry, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| |
Collapse
|
36
|
Yuan J, Guo J, Wang H, Guo A, Lian Q, Gu Z. Acute toxicity of cypermethrin on the juvenile of red claw crayfish Cherax quadricarinatus. CHEMOSPHERE 2019; 237:124468. [PMID: 31549634 DOI: 10.1016/j.chemosphere.2019.124468] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/18/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
In order to assess the toxicity of Cypermethrin (CYP), the 50% lethal concentration (LC50) of CYP on the juvenile of Cherax quadricarinatus is assessed. Meanwhile, the transcription level and the content in the antioxidant and biotransformation enzymes in hepatopancreas and immune enzymes in the serum of C. quadricarinatus exposed to CYP (0.1, 1, 10 and 100 ng·L-1) for 96 h were analyzed to reveal the CYP toxicity and detoxification mechanism. 24, 48, 72, 96 h LC50 were 1305.14, 424.52, 287.10 and 215.99 ng·L-1, respectively. There was no significant change of the content of enzymes at low concentration (0.16 ng·L-1). The fast increase of SOD and CAT content was observed at early stage (24 h), subsequent decreased at later stage of trail at medium concentration (0.32 and 0.63 ng·L-1). However, high concentration (1.25 ng·L-1) of CYP significantly inhibited SOD and CAT content. There was a significant increase in the level of MDA, PC and the content of GPx, EROD, CarE, GST at medium and high concentration after 72 h and 96 h exposure. The Na+-K+-ATPase, PO, ALK content decreased at medium and high concentration, especially at the 72-h and the 96-h exposure. The transcription was altered similarly to enzyme content, but the transcriptional response was generally more immediate than enzymatic response. Heat shock protein (hsp70) and multidrug resistance-associated protein 2 (abcc2) genes were up-regulated.
Collapse
Affiliation(s)
- Julin Yuan
- Zhejiang Institute of Freshwater Fisheries, Freshwater Fishery Healthy Breeding Laboratory of Ministry of Agriculture, Huzhou, Zhejiang, 313001, China
| | - Jianlin Guo
- Zhejiang Institute of Freshwater Fisheries, Freshwater Fishery Healthy Breeding Laboratory of Ministry of Agriculture, Huzhou, Zhejiang, 313001, China; Aquatic Breeding Company in Northern Area of Zhejiang Province, Huzhou, Zhejiang, 313001, China
| | - Haiyang Wang
- Zhejiang Institute of Freshwater Fisheries, Freshwater Fishery Healthy Breeding Laboratory of Ministry of Agriculture, Huzhou, Zhejiang, 313001, China
| | - Aihuan Guo
- Zhejiang Institute of Freshwater Fisheries, Freshwater Fishery Healthy Breeding Laboratory of Ministry of Agriculture, Huzhou, Zhejiang, 313001, China
| | - Qingping Lian
- Zhejiang Institute of Freshwater Fisheries, Freshwater Fishery Healthy Breeding Laboratory of Ministry of Agriculture, Huzhou, Zhejiang, 313001, China
| | - Zhimin Gu
- Zhejiang Institute of Freshwater Fisheries, Freshwater Fishery Healthy Breeding Laboratory of Ministry of Agriculture, Huzhou, Zhejiang, 313001, China.
| |
Collapse
|
37
|
Conrad M, Kagan VE, Bayir H, Pagnussat GC, Head B, Traber MG, Stockwell BR. Regulation of lipid peroxidation and ferroptosis in diverse species. Genes Dev 2018; 32:602-619. [PMID: 29802123 PMCID: PMC6004068 DOI: 10.1101/gad.314674.118] [Citation(s) in RCA: 334] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review by Conrad et al. reviews the functions and regulation of lipid peroxidation, ferroptosis, and the antioxidant network in diverse species, including humans, other mammals and vertebrates, plants, invertebrates, yeast, bacteria, and archaea, and discusses the potential evolutionary roles of lipid peroxidation and ferroptosis. Lipid peroxidation is the process by which oxygen combines with lipids to generate lipid hydroperoxides via intermediate formation of peroxyl radicals. Vitamin E and coenzyme Q10 react with peroxyl radicals to yield peroxides, and then these oxidized lipid species can be detoxified by glutathione and glutathione peroxidase 4 (GPX4) and other components of the cellular antioxidant defense network. Ferroptosis is a form of regulated nonapoptotic cell death involving overwhelming iron-dependent lipid peroxidation. Here, we review the functions and regulation of lipid peroxidation, ferroptosis, and the antioxidant network in diverse species, including humans, other mammals and vertebrates, plants, invertebrates, yeast, bacteria, and archaea. We also discuss the potential evolutionary roles of lipid peroxidation and ferroptosis.
Collapse
Affiliation(s)
- Marcus Conrad
- Institute of Developmental Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), 85764 Neuherberg, Germany
| | - Valerian E Kagan
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.,Department of Environmental Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.,Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.,Laboratory of Navigational Lipidomics of Cell Death and Regeneration, I.M. Sechenov First Moscow State Medical University, Moscow 119992, Russia
| | - Hülya Bayir
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.,Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Gabriela C Pagnussat
- Instituto de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Brian Head
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97330.,Molecular and Cell Biology Graduate Program, Oregon State University, Corvallis, Oregon 97330, USA
| | - Maret G Traber
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97330.,College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon 97330, USA
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA.,Department of Chemistry, Columbia University, New York, New York 10027, USA
| |
Collapse
|
38
|
Baldissera MD, Souza CF, Dolci GS, Grando TH, Sagrillo MR, Vaucher RA, da Luz SC, Silveira SO, Duarte MM, Duarte T, da Silva AS, Monteiro SG. Monoterpene alpha-terpinene induced hepatic oxidative, cytotoxic and genotoxic damage is associated to caspase activation in rats. J Appl Biomed 2017. [DOI: 10.1016/j.jab.2017.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
39
|
Rajakumar S, Nachiappan V. Lipid droplets alleviate cadmium induced cytotoxicity in Saccharomyces cerevisiae. Toxicol Res (Camb) 2017; 6:30-41. [PMID: 30090475 PMCID: PMC6062051 DOI: 10.1039/c6tx00187d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 10/03/2016] [Indexed: 01/07/2023] Open
Abstract
Cadmium (Cd) induces oxidative stress that generates reactive oxygen species (ROS) and increased lipid accumulation. However, very little is known about the role of oxidative stress in triacylglycerol (TAG) accumulation. TAG accumulation is deleterious to health and may result in obesity-associated metabolic syndrome. Hence TAG accumulation plays an important role in Cd induced cytotoxicity. The exposure of Wild-type (WT) cells to Cd, resulted in TAG accumulation and also enhanced viability when compared to TAG mutants (dga1Δ, lro1Δ and are2Δ). The inhibition of lipolysis also increased the tolerance of the cells to Cd. Fluorescence microscopy observations using acridine orange and DHR123 staining demonstrated that the TAG deficient mutants showed enhanced cell death and ROS production. The over expression of DGA1 and LRO1 rescued the Cd induced cytotoxicity by enhancing the formation of LDs. Results of this study revealed the possible metabolic link between LDs and oxidative stress in S. cerevisiae.
Collapse
Affiliation(s)
- Selvaraj Rajakumar
- Biomembrane Lab , Department of Biochemistry , Centre of Excellence in Life Sciences , Bharathidasan University , Tiruchirappalli 620024 , Tamil Nadu , India . ; ; Tel: +91 431 2904866
| | - Vasanthi Nachiappan
- Biomembrane Lab , Department of Biochemistry , Centre of Excellence in Life Sciences , Bharathidasan University , Tiruchirappalli 620024 , Tamil Nadu , India . ; ; Tel: +91 431 2904866
| |
Collapse
|
40
|
Ren A, Liu R, Miao ZG, Zhang X, Cao PF, Chen TX, Li CY, Shi L, Jiang AL, Zhao MW. Hydrogen-rich water regulates effects of ROS balance on morphology, growth and secondary metabolism via glutathione peroxidase in Ganoderma lucidum. Environ Microbiol 2016; 19:566-583. [PMID: 27554678 DOI: 10.1111/1462-2920.13498] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/10/2016] [Indexed: 11/28/2022]
Abstract
Ganoderma lucidum is one of the most important medicinal fungi, but the lack of basic study on the fungus has hindered the further development of its value. To investigate the roles of the redox system in G. lucidum, acetic acid (HAc) was applied as a reactive oxygen species (ROS) stress inducer, and hydrogen-rich water (HRW) was used to relieve the ROS stress in this study. Our results demonstrate that the treatment of 5% HRW significantly decreased the ROS content, maintained biomass and polar growth morphology of mycelium, and decreased secondary metabolism under HAc-induced oxidative stress. Furthermore, the roles of HRW were largely dependent on restoring the glutathione system under HAc stress in G. lucidum. To provide further evidence, we used two glutathione peroxidase (GPX)-defective strains, the gpxi strain, the mercaptosuccinic acid (MS, a GPX inhibitor)-treated wide-type (WT) strain, and gpx overexpression strains for further research. The results show that HRW was unable to relieve the HAc-induced ROS overproduction, decreased biomass, mycelium morphology change and increased secondary metabolism biosynthesis in the absence of GPX function. The gpx overexpression strains exhibited resistance to HAc-induced oxidative stress. Thus, we propose that HRW regulates morphology, growth and secondary metabolism via glutathione peroxidase under HAc stress in the fungus G. lucidum. Furthermore, our research also provides a method to study the ROS system in other fungi.
Collapse
Affiliation(s)
- Ang Ren
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
| | - Rui Liu
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
| | - Zhi-Gang Miao
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
| | - Xue Zhang
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
| | - Peng-Fei Cao
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
| | - Tian-Xi Chen
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
| | - Chen-Yang Li
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
| | - Liang Shi
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
| | - Ai-Liang Jiang
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
| | - Ming-Wen Zhao
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
| |
Collapse
|
41
|
Rajakumar S, Bhanupriya N, Ravi C, Nachiappan V. Endoplasmic reticulum stress and calcium imbalance are involved in cadmium-induced lipid aberrancy in Saccharomyces cerevisiae. Cell Stress Chaperones 2016; 21:895-906. [PMID: 27344570 PMCID: PMC5003806 DOI: 10.1007/s12192-016-0714-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 06/13/2016] [Accepted: 06/16/2016] [Indexed: 10/21/2022] Open
Abstract
The endoplasmic reticulum is the key organelle which controls protein folding, lipid biogenesis, and calcium (Ca(2+)) homeostasis. Cd exposure in Saccharomyces cerevisiae activated the unfolded protein response and was confirmed by the increased Kar2p expression. Cd exposure in wild-type (WT) cells increased PC levels and the PC biosynthetic genes. Deletion of the two phospholipid methyltransferases CHO2 and OPI3 modulated PC, TAG levels and the lipid droplets with cadmium exposure. Interestingly, we noticed an increase in the calcium levels upon Cd exposure in the mutant cells. This study concluded that Cd interrupted calcium homeostasis-induced lipid dysregulation leading to ER stress.
Collapse
Affiliation(s)
- Selvaraj Rajakumar
- Biomembrane Lab, Department of Biochemistry, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Nagaraj Bhanupriya
- Biomembrane Lab, Department of Biochemistry, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Chidambaram Ravi
- Biomembrane Lab, Department of Biochemistry, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Vasanthi Nachiappan
- Biomembrane Lab, Department of Biochemistry, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India.
| |
Collapse
|
42
|
Yuan J, Gu Z, Zheng Y, Zhang Y, Gao J, Chen S, Wang Z. Accumulation and detoxification dynamics of microcystin-LR and antioxidant responses in male red swamp crayfish Procambarus clarkii. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 177:8-18. [PMID: 27218425 DOI: 10.1016/j.aquatox.2016.05.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 04/30/2016] [Accepted: 05/06/2016] [Indexed: 06/05/2023]
Abstract
MC-LR is one of major microcystin isoforms with potent hepatotoxicity. In the present study, we aim to: 1) explore the dynamics of MC-LR accumulation and elimination in different tissues of male red swamp crayfish Procambarus clarkii; 2) reveal the mechanisms underlying hepatic antioxidation and detoxification. In the semi-static toxicity tests under the water temperature of 25±2°C, P. clarkii were exposed to 0.1, 1, 10 and 100μg/L MC-LR for 7days for accumulation and subsequently relocated to freshwater for another 7days to depurate MC-LR. MC-LR was measured in the hepatopancreas, intestine, abdominal muscle and gill by HPLC. The enzyme activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione S-transferase (GST), content of glutathione (GSH), and transcripts of Mn-sod, cat, gpx1, Mu-gst, heat shock protein90 (hsp90), hsp70 and hsp60 in hepatopancreas were detected. The results showed that P. clarkii accumulated more MC-LR in intestine, and less in abdominal muscle and gill during accumulation period and eliminated the toxin more quickly in gill and abdominal muscle, and comparatively slowly in intestine during depuration period. The fast increase of SOD and CAT activities at early stage, subsequent decrease at later stage of accumulation period and then fast increase during depuration period were partially consistent with the transcriptional changes of their respective genes. GPx was activated by longer MC-LR exposure and gpx1 mRNA expression showed uncoordinated regulation pattern compared with its enzyme. Hsp genes were up-regulated when P. clarkii was exposed to MC-LR.
Collapse
Affiliation(s)
- Julin Yuan
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China; Zhejiang Institute of Freshwater Fisheries, Freshwater Fishery Healthy Breeding Laboratory of Ministry of Agriculture, Huzhou, Zhejiang 313001, China
| | - Zhimin Gu
- Zhejiang Institute of Freshwater Fisheries, Freshwater Fishery Healthy Breeding Laboratory of Ministry of Agriculture, Huzhou, Zhejiang 313001, China.
| | - Yao Zheng
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi 214081, China
| | - Yingying Zhang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Jiancao Gao
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Shu Chen
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
43
|
Exposure to benzene metabolites causes oxidative damage in Saccharomyces cerevisiae. Antonie van Leeuwenhoek 2016; 109:841-54. [PMID: 27016252 DOI: 10.1007/s10482-016-0684-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 03/17/2016] [Indexed: 10/22/2022]
Abstract
Hydroquinone (HQ) and benzoquinone (BQ) are known benzene metabolites that form reactive intermediates such as reactive oxygen species (ROS). This study attempts to understand the effect of benzene metabolites (HQ and BQ) on the antioxidant status, cell morphology, ROS levels and lipid alterations in the yeast Saccharomyces cerevisiae. There was a reduction in the growth pattern of wild-type cells exposed to HQ/BQ. Exposure of yeast cells to benzene metabolites increased the activity of the anti-oxidant enzymes catalase, superoxide dismutase and glutathione peroxidase but lead to a decrease in ascorbic acid and reduced glutathione. Increased triglyceride level and decreased phospholipid levels were observed with exposure to HQ and BQ. These results suggest that the enzymatic antioxidants were increased and are involved in the protection against macromolecular damage during oxidative stress; presumptively, these enzymes are essential for scavenging the pro-oxidant effects of benzene metabolites.
Collapse
|
44
|
Rajakumar S, Ravi C, Nachiappan V. Defect of zinc transporter ZRT1 ameliorates cadmium induced lipid accumulation in Saccharomyces cerevisiae. Metallomics 2016; 8:453-60. [PMID: 26999708 DOI: 10.1039/c6mt00005c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cadmium (Cd) is a non-essential divalent heavy metal that enters the cells by utilizing the transport pathways of the essential metals, like zinc (Zn), in Saccharomyces cerevisiae. This work focuses on Cd accumulation and its impact on deletion of Zn transporters Zrt1p and Zrt2p and lipid homeostasis. Cd exposure reduces the Zn levels in the mutant strains, and the effect was higher in zrt2Δ cells. Upon Cd exposure, the wild-type and zrt2Δ cells follow a similar pattern, but an opposite pattern was observed in zrt1Δ cells. The Cd influx and ROS levels were high in both wild-type cells and zrt2Δ cells but significantly reduced in zrt1Δ cells. Cd exposure led to accumulation of triacylglycerol and lipid droplets in wild-type cells and zrt2Δ cells but these levels were decreased in zrt1Δ cells. Hence, these studies suggest that the zrt1Δ cells provide resistance towards Cd and aid in the maintenance of lipid homeostasis in yeast cells.
Collapse
Affiliation(s)
- Selvaraj Rajakumar
- Biomembrane Lab, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India.
| | | | | |
Collapse
|
45
|
Larsson K, Istenič K, Wulff T, Jónsdóttir R, Kristinsson H, Freysdottir J, Undeland I, Jamnik P. Effect of in vitro digested cod liver oil of different quality on oxidative, proteomic and inflammatory responses in the yeast Saccharomyces cerevisiae and human monocyte-derived dendritic cells. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2015; 95:3096-3106. [PMID: 25504560 DOI: 10.1002/jsfa.7046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 12/04/2014] [Accepted: 12/08/2014] [Indexed: 06/04/2023]
Abstract
BACKGROUND Upon oxidation of the polyunsaturated fatty acids in fish oil, either before ingestion or, as recently shown, during the gastro-intestinal passage, a cascade of potentially cytotoxic peroxidation products, such as malondialdehyde and 4-hydroxy-2-hexenal, can form. In this study, we digested fresh and oxidised cod liver oils in vitro, monitored the levels of lipid peroxidation products and evaluated oxidative, proteomic and inflammatory responses to the two types of digests in the yeast Saccharomyces cerevisiae and human monocyte-derived dendritic cells. RESULTS Digests of cod liver oil with 22-53 µmol L(-1) malondialdehyde and 0.26-3.7 µmol L(-1) 4-hydroxy-2-hexenal increased intracellular oxidation and cell energy metabolic activity compared to a digested blank in yeast cells and the influence of digests on mitochondrial protein expression was more pronounced for oxidised cod liver oil than fresh cod liver oil. The four differentially expressed and identified proteins were related to energy metabolism and oxidative stress response. Maturation of dendritic cells was affected in the presence of digested fresh cod liver oil compared to the digested blank, measured as lower CD86 expression. The ratio of secreted cytokines, IL-12p40/IL-10, suggested a pro-inflammatory effect of the digested oils in relation to the blank (1.47-1.67 vs. 1.07). CONCLUSION Gastro-intestinal digestion of cod liver oil increases the amount of oxidation products and resulting digests affect oxidation in yeast and immunomodulation of dendritic cells.
Collapse
Affiliation(s)
- Karin Larsson
- Food Science, Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Katja Istenič
- Biotechnical Faculty, Department of Food Science and Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Tune Wulff
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | | | | | - Jona Freysdottir
- Department of Immunology and Centre for Rheumatology Research, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland
- Faculty of Medicine, Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Ingrid Undeland
- Food Science, Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Polona Jamnik
- Biotechnical Faculty, Department of Food Science and Technology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
46
|
Li C, Shi L, Chen D, Ren A, Gao T, Zhao M. Functional analysis of the role of glutathione peroxidase (GPx) in the ROS signaling pathway, hyphal branching and the regulation of ganoderic acid biosynthesis in Ganoderma lucidum. Fungal Genet Biol 2015. [PMID: 26216672 DOI: 10.1016/j.fgb.2015.07.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Ganoderma lucidum, a hallmark of traditional Chinese medicine, has been widely used as a pharmacologically active compound. Although numerous research studies have focused on the pharmacological mechanism, fewer studies have explored the basic biological features of this species, restricting the further development and application of this important mushroom. Because of the ability of this mushroom to reduce and detoxify the compounds produced by various metabolic pathways, glutathione peroxidase (GPx) is one of the most important antioxidant enzymes with respect to ROS. Although studies in both animals and plants have suggested many important physiological functions of GPx, there are few systematic research studies concerning the role of this enzyme in fungi, particularly in large basidiomycetes. In the present study, we cloned the GPx gene and created GPx-silenced strains by the down-regulation of GPx gene expression using RNA interference. The results indicated an essential role for GPx in controlling the intracellular H2O2 content, hyphal branching, antioxidant stress tolerance, cytosolic Ca(2+) content and ganoderic acid biosynthesis. Further mechanistic investigation revealed that GPx is regulated by intracellular H2O2 levels and suggested that crosstalk occurs between GPx and intracellular H2O2. Moreover, evidence was obtained indicating that GPx regulation of hyphal branching via ROS might occur independently of the cytosolic Ca(2+) content. Further mechanistic investigation also revealed that the effects of GPx on ganoderic acid synthesis via ROS are regulated by the cytosolic Ca(2+) content. Taken together, these findings indicate that ROS have a complex influence on growth, development and secondary metabolism in fungi and that GPx serves an important function. The present study provides an excellent framework to identify GPx functions and highlights a role for this enzyme in ROS regulation.
Collapse
Affiliation(s)
- Chenyang Li
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing 210095, Jiangsu, People's Republic of China
| | - Liang Shi
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing 210095, Jiangsu, People's Republic of China
| | - Dongdong Chen
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing 210095, Jiangsu, People's Republic of China
| | - Ang Ren
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing 210095, Jiangsu, People's Republic of China
| | - Tan Gao
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing 210095, Jiangsu, People's Republic of China
| | - Mingwen Zhao
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
47
|
A protective role of methionine-R-sulfoxide reductase against cadmium in Schizosaccharomyces pombe. J Microbiol 2014; 52:976-81. [DOI: 10.1007/s12275-014-3512-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 01/07/2014] [Accepted: 01/09/2014] [Indexed: 01/03/2023]
|
48
|
Muthukumar K, Nachiappan V. Phosphatidylethanolamine from phosphatidylserine decarboxylase2 is essential for autophagy under cadmium stress in Saccharomyces cerevisiae. Cell Biochem Biophys 2014; 67:1353-63. [PMID: 23743710 DOI: 10.1007/s12013-013-9667-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cadmium (Cd) is a potent toxic element used in several industries and in the process contaminates air, soil, and water. Exposure of Saccharomyces cerevisiae to Cd increases the major phospholipids, and profound increase was observed in phosphatidylethanolamine (PE). In yeast, there are four different pathways contributing to the biosynthesis of PE, and contribution to PE pool through phosphatidylserine decarboxylase2 (psd2) is not significant in normal conditions. Upon Cd exposure, psd2Δ strain showed a significant decrease in major phospholipids including PE. When exposed to Cd, wild-type (WT) cells depicted an increase in ER stress and autophagy, whereas in psd2, ER stress was noted but autophagy process was impaired. The supplementation of ethanolamine did not overcome the Cd stress and also the autophagy process, whereas overexpression of PSD2 in psd2Δ increased the cellular tolerance, PE levels, and the autophagy process against Cd stress. From our studies, we can suggest that PSD2 of S. cerevisiae has an important role in PE synthesis and in autophagy process under Cd stress.
Collapse
Affiliation(s)
- Kannan Muthukumar
- Biomembrane Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | | |
Collapse
|
49
|
Ruta LL, Popa VC, Nicolau I, Danet AF, Iordache V, Neagoe AD, Farcasanu IC. Calcium signaling mediates the response to cadmium toxicity in Saccharomyces cerevisiae cells. FEBS Lett 2014; 588:3202-12. [PMID: 25017440 DOI: 10.1016/j.febslet.2014.07.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/28/2014] [Accepted: 07/01/2014] [Indexed: 02/07/2023]
Abstract
The involvement of Ca(2+) in the response to high Mn(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), and Hg(2+) was investigated in Saccharomyces cerevisiae. The yeast cells responded through a sharp increase in cytosolic Ca(2+) when exposed to Cd(2+), and to a lesser extent to Cu(2+), but not to Mn(2+), Co(2+), Ni(2+), Zn(2+), or Hg(2+). The response to high Cd(2+) depended mainly on external Ca(2+) (transported through the Cch1p/Mid1p channel) but also on vacuolar Ca(2+) (released into the cytosol through the Yvc1p channel). The adaptation to high Cd(2+) was influenced by perturbations in Ca(2+) homeostasis. Thus, the tolerance to Cd(2+) often correlated with sharp Cd(2+)-induced cytosolic Ca(2+) pulses, while the Cd(2+) sensitivity was accompanied by the incapacity to rapidly restore the low cytosolic Ca(2+).
Collapse
Affiliation(s)
- Lavinia L Ruta
- University of Bucharest, Faculty of Chemistry, Sos. Panduri 90-92, 050663 Bucharest, Romania
| | - Valentina C Popa
- University of Bucharest, Faculty of Chemistry, Sos. Panduri 90-92, 050663 Bucharest, Romania
| | - Ioana Nicolau
- University of Bucharest, Faculty of Chemistry, Sos. Panduri 90-92, 050663 Bucharest, Romania
| | - Andrei F Danet
- University of Bucharest, Faculty of Chemistry, Sos. Panduri 90-92, 050663 Bucharest, Romania
| | - Virgil Iordache
- University of Bucharest, Faculty of Biology, Spl. Independentei 91-95, 050095 Bucharest, Romania
| | - Aurora D Neagoe
- University of Bucharest, Faculty of Biology, Spl. Independentei 91-95, 050095 Bucharest, Romania
| | - Ileana C Farcasanu
- University of Bucharest, Faculty of Chemistry, Sos. Panduri 90-92, 050663 Bucharest, Romania.
| |
Collapse
|
50
|
Jakab Á, Antal K, Kiss Á, Emri T, Pócsi I. Increased oxidative stress tolerance results in general stress tolerance in Candida albicans independently of stress-elicited morphological transitions. Folia Microbiol (Praha) 2014; 59:333-40. [PMID: 24477890 DOI: 10.1007/s12223-014-0305-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 01/14/2014] [Indexed: 10/25/2022]
Abstract
A selection of tert-butylhydroperoxide (tBOOH)-tolerant Candida albicans mutants showed increased tolerances to 19 different stress conditions. These mutants are characterized by a constitutively upregulated antioxidative defense system and, therefore, adaptation to oxidative stress may play an important role in gaining general stress tolerance in C. albicans. Although C. albicans cells may undergo morphological transitions under various stress treatments, this ability shows considerable stress-specific and strain-specific variability and, hence, it is independent of mounting stress cross protections.
Collapse
Affiliation(s)
- Ágnes Jakab
- Department of Microbial Biotechnology and Cell Biology, Faculty of Science and Technology, University of Debrecen, P.O. Box 63, 4010, Debrecen, Hungary
| | | | | | | | | |
Collapse
|