1
|
Zhu Z, Xu X, Huang J, Xu G, Liu S, Hong F, Chen Y, Yi X, Li H, Li J. Transcriptomic analysis of Vibrio alginolyticus challenged by Rhizoma coptidis reveals mechanisms of virulence genes. Gene 2024; 905:148188. [PMID: 38278336 DOI: 10.1016/j.gene.2024.148188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024]
Abstract
Rhizoma coptidis, a Chinese herbal medicine widely used to treat various bacterial infections, has the potential to develop antibiotic substitutes to overcome the drug resistance of Vibrio alginolyticus. To study the inhibitory effect of R. coptidis on V. alginolyticus, we sequenced the transcriptomes of three groups of samples of wild-type V. alginolyticus (CK) and V. alginolyticus, which were stressed by 5 mg/mL R. coptidis for 2 h (RC_2 h) and 4 h (RC_4 h). CK was compared with RC_2 h and RC_4 h, respectively, and a total of 1565 differentially expressed genes (DEGs) (988 up-regulated and 577 down-regulated) and 1737 DEGs (1152 up-regulated and 585 down-regulated) were identified. Comparing RC_2 h with RC_4 h, 156 DEGs (114 up-regulated and 42 down-regulated) were identified. The ability of biofilm formation and motility of V. alginolyticus altered upon with different concentrations of R. coptidis. Interestingly, relative expression patterns of virulence genes appeared statistically significantly varied, upon different concentrations of R. coptidis extract. DEGs were annotated to the Gene Ontology (GO) database for function enrichment analysis and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, the results showed that the main enriched pathways, was those related to the virulence of V. alginolyticus. This study provides a new perspective for understanding the complex pathogenic mechanism of V. alginolyticus. R. coptidis could potnetially be used as alternative or complimnetary to antibiotics to treat infections after further research.
Collapse
Affiliation(s)
- Zhiqin Zhu
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, Fujian 361021, China, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fujian Province, Xiamen 361021, China
| | - XiaoJin Xu
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, Fujian 361021, China, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fujian Province, Xiamen 361021, China; Fujian Province Key Laboratory of Special Aquatic Formula Feed (Fujian Tianma Science and Technology Group Co., Ltd, China.
| | - Jiangyuan Huang
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, Fujian 361021, China, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fujian Province, Xiamen 361021, China
| | - Genhuang Xu
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, Fujian 361021, China, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fujian Province, Xiamen 361021, China
| | - ShiChao Liu
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, Fujian 361021, China, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fujian Province, Xiamen 361021, China
| | - Fei Hong
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, Fujian 361021, China, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fujian Province, Xiamen 361021, China
| | - Yunong Chen
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, Fujian 361021, China, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fujian Province, Xiamen 361021, China
| | - Xin Yi
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, Fujian 361021, China, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fujian Province, Xiamen 361021, China
| | - Huiyao Li
- Fisheries Research Institute of Fujian, Xiamen 361013, China
| | - Jun Li
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, Fujian 361021, China, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fujian Province, Xiamen 361021, China.
| |
Collapse
|
2
|
Tadeu AD, Duarte J, Trindade D, Costa P, Venâncio C, Lopes I, Oliveira V, Gomes NCM, Almeida A, Pereira C. Bacteriophages to control Vibrio alginolyticus in live feeds prior to their administration in larviculture. J Appl Microbiol 2024; 135:lxae115. [PMID: 38710582 DOI: 10.1093/jambio/lxae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/16/2024] [Accepted: 05/04/2024] [Indexed: 05/08/2024]
Abstract
AIMS This study aimed to evaluate the efficiency of two phages [VB_VaC_TDDLMA (phage TDD) and VB_VaC_SRILMA (phage SRI)] alone and in a cocktail to control Vibrio alginolyticus in brine shrimp before their administration in larviculture. METHODS AND RESULTS Phages were isolated from seawater samples and characterized by host spectrum, growth parameters, adsorption rate, genomic analysis, and inactivation efficiency. Both phages belong to the Caudoviricetes class and lack known virulence or antibiotic-resistance genes. They exhibit specificity, infecting only their host, V. alginolyticus CECT 521. Preliminary experiments in a culture medium showed that phage TDD (reduction of 5.8 log CFU ml-1 after 10 h) outperformed phage SRI (reduction of 4.6 log CFU ml-1 after 6 h) and the cocktail TDD/SRI (reduction of 5.2 log CFU ml-1 after 8 h). In artificial marine water experiments with Artemia franciscana, both single phage suspensions and the phage cocktail, effectively inactivated V. alginolyticus in culture water (reduction of 4.3, 2.1, and 1.9 log CFU ml-1 for phages TDD, SRI, and the phage cocktail, respectively, after 12 h) and in A. franciscana (reduction of 51.6%, 87.3%, and 85.3% for phages TDD, SRI, and the phage cocktail, respectively, after 24 h). The two phages and the phage cocktail did not affect A. franciscana natural microbiota or other Vibrio species in the brine shrimp. CONCLUSIONS The results suggest that phages can safely and effectively control V. alginolyticus in A. franciscana prior to its administration in larviculture.
Collapse
Affiliation(s)
- Amanda Dias Tadeu
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - João Duarte
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - David Trindade
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Pedro Costa
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Cátia Venâncio
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Isabel Lopes
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Vanessa Oliveira
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Newton C M Gomes
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Adelaide Almeida
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Carla Pereira
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
3
|
Romero J, Blas-Chumacero S, Urzúa V, Villasante A, Opazo R, Gajardo F, Miranda CD, Rojas R. Lysin and Lytic Phages Reduce Vibrio Counts in Live Feed and Fish Larvae. Microorganisms 2024; 12:904. [PMID: 38792735 PMCID: PMC11123823 DOI: 10.3390/microorganisms12050904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 05/26/2024] Open
Abstract
Vibrio species are naturally found in estuarine and marine ecosystems, but are also recognized as significant human enteropathogens, often linked to seafood-related illnesses. In aquaculture settings, Vibrio poses a substantial risk of infectious diseases, resulting in considerable stock losses and prompting the use of antimicrobials. However, this practice contributes to the proliferation of antimicrobial-resistant (AMR) bacteria and resistance genes. Our investigation aimed to explore the potential of biological agents such as bacteriophage CH20 and endolysin LysVPp1 in reducing Vibrio bacterial loads in both rotifer and fish larvae. LysVPp1's lytic activity was assessed by measuring absorbance reduction against various pathogenic Vibrio strains. Phage CH20 exhibited a limited host range, affecting only Vibrio alginolyticus GV09, a highly pathogenic strain. Both CH20 and LysVPp1 were evaluated for their effectiveness in reducing Vibrio load in rotifers or fish larvae through short-setting bioassays. Our results demonstrated the significant lytic effect of endolysin LysVPp1 on strains of Vibrio alginolyticus, Vibrio parahaemolyticus, and Vibrio splendidus. Furthermore, we have showcased the feasibility of reducing the load of pathogenic Vibrio in live feed and fish larvae by using a non-antibiotic-based approach, such as lytic phage and endolysin LysVPp1, thus contributing to the progress of a sustainable aquaculture from a One Health perspective.
Collapse
Affiliation(s)
- Jaime Romero
- Laboratorio de Biotecnología de Alimentos, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, El Líbano 5524, Santiago 7830489, Chile; (S.B.-C.); (V.U.); (A.V.); (R.O.); (F.G.)
| | - Sergueia Blas-Chumacero
- Laboratorio de Biotecnología de Alimentos, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, El Líbano 5524, Santiago 7830489, Chile; (S.B.-C.); (V.U.); (A.V.); (R.O.); (F.G.)
| | - Victoria Urzúa
- Laboratorio de Biotecnología de Alimentos, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, El Líbano 5524, Santiago 7830489, Chile; (S.B.-C.); (V.U.); (A.V.); (R.O.); (F.G.)
| | - Alejandro Villasante
- Laboratorio de Biotecnología de Alimentos, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, El Líbano 5524, Santiago 7830489, Chile; (S.B.-C.); (V.U.); (A.V.); (R.O.); (F.G.)
| | - Rafael Opazo
- Laboratorio de Biotecnología de Alimentos, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, El Líbano 5524, Santiago 7830489, Chile; (S.B.-C.); (V.U.); (A.V.); (R.O.); (F.G.)
| | - Felipe Gajardo
- Laboratorio de Biotecnología de Alimentos, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, El Líbano 5524, Santiago 7830489, Chile; (S.B.-C.); (V.U.); (A.V.); (R.O.); (F.G.)
| | - Claudio D. Miranda
- Laboratorio de Patobiología Acuática, Departamento de Acuicultura, Universidad Católica del Norte, Larrondo 1281, Coquimbo 1780000, Chile; (C.D.M.); (R.R.)
| | - Rodrigo Rojas
- Laboratorio de Patobiología Acuática, Departamento de Acuicultura, Universidad Católica del Norte, Larrondo 1281, Coquimbo 1780000, Chile; (C.D.M.); (R.R.)
| |
Collapse
|
4
|
Yi X, Xu X, Chen Y, Xu G, Zhu Z, Li H, Shen H, Lin M, Zhao W, Zheng J, Jiang X. Genetic analysis of Vibrio alginolyticus challenged by Fructus schisandrae reveals the mechanism of virulence genes. Gene 2023; 870:147421. [PMID: 37031882 DOI: 10.1016/j.gene.2023.147421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/21/2023] [Accepted: 04/04/2023] [Indexed: 04/11/2023]
Abstract
Due to the abusive use of antibiotics, bacterial resistance has become a global problem and poses severe threats to aquaculture. The drug-resistant diseases caused by Vibrio alginolyticus have caused significant economic losses to cultured marine fish. Fructus schisandrae is used to treat inflammatory diseases in China and Japan. There have been no reports of bacterial molecular mechanisms associated with F. schisandrae stress. In this study, the inhibiting effect of F. schisandrae on the growth of V. alginolyticus was detected to understand response mechanisms at the molecular level. The antibacterial tests were analyzed via next-generation deep sequencing technology (RNA sequencing, RNA-seq). Wild V. alginolyticus (CK) was compared with V. alginolyticus, F. schisandrae incubated for 2 h, and V. alginolyticus, F. schisandrae incubated for 4 h. Our results revealed that there were 582 genes (236 upregulated and 346 downregulated) and 1068 genes (376 upregulated and 692 downregulated), respectively. Differentially expressed genes (DEGs) were involved in the following functional categories: metabolic process, single-organism process, catalytic activity, cellular process, binding, membrane, cell part, cell, and localization. FS_2 h was compared with FS_4 h, and 21 genes (14 upregulated and 7 downregulated) were obtained. The RNA-seq results were validated by detecting the expression levels of 13 genes using quantitative real-time polymerase chain reaction (qRT-PCR). The qRT-PCR results matched those of the sequencing, which reinforced the reliability of the RNA-seq. The results revealed the transcriptional response of V. alginolyticus to F. schisandrae, which will provide new ideas for studying V. alginolyticus' complex virulence molecular mechanism and the possibility of developing Schisandra to prevent and treat drug-resistant diseases.
Collapse
Affiliation(s)
- Xin Yi
- Fisheries College, Jimei University, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fujian Province, Xiamen 361021, China
| | - XiaoJin Xu
- Fisheries College, Jimei University, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fujian Province, Xiamen 361021, China; Fujian Province Key Laboratory of Special Aquatic Formula Feed(Fujian Tianma Science and Technology Group Co., Ltd.)
| | - YuNong Chen
- Fisheries College, Jimei University, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fujian Province, Xiamen 361021, China; Fujian Province Key Laboratory of Special Aquatic Formula Feed(Fujian Tianma Science and Technology Group Co., Ltd.)
| | - Genhuang Xu
- Fisheries College, Jimei University, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fujian Province, Xiamen 361021, China
| | - ZhiQin Zhu
- Fisheries College, Jimei University, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fujian Province, Xiamen 361021, China
| | - Huiyao Li
- Fisheries Research Institute of Fujian, Xiamen 361013, China
| | - HaoYang Shen
- Fisheries College, Jimei University, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fujian Province, Xiamen 361021, China
| | - Mao Lin
- Fisheries College, Jimei University, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fujian Province, Xiamen 361021, China
| | - Wenyu Zhao
- Fisheries College, Jimei University, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fujian Province, Xiamen 361021, China
| | - Jiang Zheng
- Fisheries College, Jimei University, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fujian Province, Xiamen 361021, China
| | - XingLong Jiang
- Fisheries College, Jimei University, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fujian Province, Xiamen 361021, China.
| |
Collapse
|
5
|
Yi X, Xu X, Qi X, Chen Y, Zhu Z, Xu G, Li H, Kraco EK, Shen H, Lin M, Zheng J, Qin Y, Jiang X. Mechanisms Underlying the Virulence Regulation of Vibrio alginolyticus ND-01 pstS and pstB with a Transcriptomic Analysis. Microorganisms 2022; 10:2093. [PMID: 36363689 PMCID: PMC9698627 DOI: 10.3390/microorganisms10112093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 05/18/2024] Open
Abstract
Vibrio alginolyticus is a common opportunistic pathogen of fish, shrimp, and shellfish, and many diseases it causes can result in severe economic losses in the aquaculture industry. Causing host disease was confirmed by several virulence factors of V. alginolyticus. To date, there have been no reports on the effect of the pstS gene on its virulence regulation of V. alginolyticus. The virulence mechanism of target genes regulating V. alginolyticus is worthy of further study. Previous studies found that Fructus schisandrae (30 mg/mL) inhibited the growth of V. alginolyticus ND-01 (OD600 = 0.5) for 4 h, while the expressions of pstS and pstB were significantly affected by F. schisandrae stress. So, we speculated that pstS and pstB might be the virulence genes of V. alginolyticus, which were stably silenced by RNAi to construct the silencing strains pstS-RNAi and pstB-RNAi, respectively. After the expression of pstS or pstB gene was inhibited, the adhesion capacity and biofilm formation of V. alginolyticus were significantly down-regulated. The chemotaxis and biofilm formation ability of pstS-RNAi was reduced by 33.33% and 68.13% compared with the wild-type strain, respectively. Sequence alignment and homology analysis showed that pstS was highly conserved, which suggested that pstS played a vital role in the secretion system of V. alginolyticus. The pstS-RNAi with the highest silencing efficiency was selected for transcriptome sequencing. The Differentially Expressed Genes (DEGs) and GO terms were mapped to the reference genome of V. alginolyticus, including 1055 up-regulated genes and 1134 down-regulated genes. The functions of the DEGs were analyzed by GO and categorized into different enriched functional groups, such as ribosome synthesis, organelles, biosynthesis, pathogenesis, and secretion. These DEGs were then mapped to the reference KEGG pathways of V. alginolyticus and enriched in commonalities in the metabolic, ribosomal, and bacterial secretion pathways. Therefore, pstS and pstB could regulate the bacterial virulence of V. alginolyticus by affecting its adhesion, biofilm formation ability, and motility. Understanding the relationship between the expressions of pstS and pstB with bacterial virulence could provide new perspectives to prevent bacterial diseases.
Collapse
Affiliation(s)
- Xin Yi
- Key Laboratory of Healthy Mariculture for the East China Sea, Engineering Research Center of the Modern Technology for Eel Industry, Fisheries College, Jimei University, Xiamen 361021, China
| | - Xiaojin Xu
- Key Laboratory of Healthy Mariculture for the East China Sea, Engineering Research Center of the Modern Technology for Eel Industry, Fisheries College, Jimei University, Xiamen 361021, China
| | - Xin Qi
- Key Laboratory of Healthy Mariculture for the East China Sea, Engineering Research Center of the Modern Technology for Eel Industry, Fisheries College, Jimei University, Xiamen 361021, China
| | - Yunong Chen
- Key Laboratory of Healthy Mariculture for the East China Sea, Engineering Research Center of the Modern Technology for Eel Industry, Fisheries College, Jimei University, Xiamen 361021, China
| | - Zhiqin Zhu
- Key Laboratory of Healthy Mariculture for the East China Sea, Engineering Research Center of the Modern Technology for Eel Industry, Fisheries College, Jimei University, Xiamen 361021, China
| | - Genhuang Xu
- Key Laboratory of Healthy Mariculture for the East China Sea, Engineering Research Center of the Modern Technology for Eel Industry, Fisheries College, Jimei University, Xiamen 361021, China
| | - Huiyao Li
- Fisheries Research Institute of Fujian, Xiamen 361013, China
| | - Emma-Katharine Kraco
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 East Greenfield Avenue, Milwaukee, WI 53204, USA
| | - Haoyang Shen
- Key Laboratory of Healthy Mariculture for the East China Sea, Engineering Research Center of the Modern Technology for Eel Industry, Fisheries College, Jimei University, Xiamen 361021, China
| | - Mao Lin
- Key Laboratory of Healthy Mariculture for the East China Sea, Engineering Research Center of the Modern Technology for Eel Industry, Fisheries College, Jimei University, Xiamen 361021, China
| | - Jiang Zheng
- Key Laboratory of Healthy Mariculture for the East China Sea, Engineering Research Center of the Modern Technology for Eel Industry, Fisheries College, Jimei University, Xiamen 361021, China
| | - Yingxue Qin
- Key Laboratory of Healthy Mariculture for the East China Sea, Engineering Research Center of the Modern Technology for Eel Industry, Fisheries College, Jimei University, Xiamen 361021, China
| | - Xinglong Jiang
- Key Laboratory of Healthy Mariculture for the East China Sea, Engineering Research Center of the Modern Technology for Eel Industry, Fisheries College, Jimei University, Xiamen 361021, China
| |
Collapse
|
6
|
Droubogiannis S, Pavlidi L, Tsertou MI, Kokkari C, Skliros D, Flemetakis E, Katharios P. Vibrio Phage Artemius, a Novel Phage Infecting Vibrio alginolyticus. Pathogens 2022; 11:pathogens11080848. [PMID: 36014969 PMCID: PMC9416449 DOI: 10.3390/pathogens11080848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 02/04/2023] Open
Abstract
Vibrio alginolyticus is an important pathogen of marine animals and has been the target of phage therapy applications in marine aquaculture for many years. Here, we report the isolation and partial characterization of a novel species of the Siphoviridae family, the Vibrio phage Artemius. The novel phage was species-specific and could only infect strains of V. alginolyticus. It could efficiently reduce the growth of the host bacterium at various multiplicities of infection as assessed by an in vitro lysis assay. It had a genome length of 43,349 base pairs. The complete genome has double-stranded DNA with a G + C content of 43.61%. In total, 57 ORFs were identified, of which 19 were assigned a predicted function. A genomic analysis indicated that Vibrio phage Artemius is lytic and does not harbor genes encoding toxins and antibiotic resistance determinants.
Collapse
Affiliation(s)
- Stavros Droubogiannis
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology & Aquaculture, 71500 Heraklion, Greece; (S.D.); (L.P.); (M.I.T.); (C.K.)
- Department of Biology, School of Sciences and Engineering, University of Crete, 71500 Heraklion, Greece
| | - Lydia Pavlidi
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology & Aquaculture, 71500 Heraklion, Greece; (S.D.); (L.P.); (M.I.T.); (C.K.)
| | - Maria Ioanna Tsertou
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology & Aquaculture, 71500 Heraklion, Greece; (S.D.); (L.P.); (M.I.T.); (C.K.)
| | - Constantina Kokkari
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology & Aquaculture, 71500 Heraklion, Greece; (S.D.); (L.P.); (M.I.T.); (C.K.)
| | - Dimitrios Skliros
- Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece; (D.S.); (E.F.)
| | - Emmanouil Flemetakis
- Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece; (D.S.); (E.F.)
| | - Pantelis Katharios
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology & Aquaculture, 71500 Heraklion, Greece; (S.D.); (L.P.); (M.I.T.); (C.K.)
- Correspondence:
| |
Collapse
|
7
|
Qi X, Xu X, Li H, Pan Y, Katharine Kraco E, Zheng J, Lin M, Jiang X. fliA, flrB, and fliR regulate adhesion by controlling the expression of critical virulence genes in Vibrio harveyi. Gene 2022; 839:146726. [PMID: 35835408 DOI: 10.1016/j.gene.2022.146726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 06/07/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022]
Abstract
Bacteria adhesion to fish mucus is a crucial virulence mechanism. As the initial step of bacterial infection, adhesion is impacted by bacterial motility and environmental conditions. However, its molecular mechanism is yet unclear. In this study, a significant decrease in gene expression of adhesion-deficient Vibrio harveyi was observed when the bacteria were subjected by Cu2+(50 mg/L), Pb2+(100 mg/L), Hg2+(25 mg/L), and Zn2+(50 mg/L). The genes fliA, fliR, and flrB were responsible for flagellation; being crucial for adhesion, these genes were identified and silenced via RNAi. After silencing of these genes by RNAi technology, the ability of adhesion, biofilm formation, motility, and flagella synthesis of V. harveyi were considerably reduced. Compared with the control group, it was observed that the expression levels of fliS, fliD, flgH, and flrC were significant down-regulated in fliR-RNAi, flrB-RNAi, and fliA-RNAi. This data indicates that the expression levels of most virulence genes are affected by fliA, fliR, and flrB. Also, the expression of fliA, fliR, and flrB can be influenced by the salinity, temperature, and pH. The results show that: (1) fliA, fliR, and flrB have important roles in the adhesion of V. harveyi; (2) fliA, fliR, and flrB can regulate bacterial adhesion by affecting its motility, and biofilm formation; (3) fliA, fliR, and flrB can regulate adhesion ability of V. harveyi in different environments.
Collapse
Affiliation(s)
- Xin Qi
- State Key Laboratory of Large Yellow Croaker Breeding, Fujian Fuding Seagull Fishing Food Co. Ltd., Ningde 352103, China; Fisheries College, Jimei University, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen 361021, Fujian, China
| | - Xiaojin Xu
- State Key Laboratory of Large Yellow Croaker Breeding, Fujian Fuding Seagull Fishing Food Co. Ltd., Ningde 352103, China; Fisheries College, Jimei University, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen 361021, Fujian, China; Fujian Province Key Laboratory of Special Aquatic Formula Feed (Fujian Tianma Science and Technology Group Co., Ltd., China; School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 East Greenfield Avenue, Milwaukee, WI 53204, USA.
| | - Huiyao Li
- State Key Laboratory of Large Yellow Croaker Breeding, Fujian Fuding Seagull Fishing Food Co. Ltd., Ningde 352103, China; Fisheries Research Institute of Fujian, Xiamen 361013, China
| | - Ying Pan
- State Key Laboratory of Large Yellow Croaker Breeding, Fujian Fuding Seagull Fishing Food Co. Ltd., Ningde 352103, China
| | | | - Jiang Zheng
- Fisheries College, Jimei University, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen 361021, Fujian, China
| | - Mao Lin
- Fisheries College, Jimei University, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen 361021, Fujian, China
| | - Xinglong Jiang
- State Key Laboratory of Large Yellow Croaker Breeding, Fujian Fuding Seagull Fishing Food Co. Ltd., Ningde 352103, China; Fisheries College, Jimei University, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen 361021, Fujian, China.
| |
Collapse
|
8
|
Xu X, Li H, Qi X, Chen Y, Qin Y, Zheng J, Jiang X. cheA, cheB, cheR, cheV, and cheY Are Involved in Regulating the Adhesion of Vibrio harveyi. Front Cell Infect Microbiol 2021; 10:591751. [PMID: 33614522 PMCID: PMC7887938 DOI: 10.3389/fcimb.2020.591751] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/01/2020] [Indexed: 11/13/2022] Open
Abstract
Diseases caused by Vibrio harveyi lead to severe economic losses in the aquaculture industry. Adhesion is an important disease-causing factor observed in bacteria with chemotactic activity. In our study, we measured the adhesion of V. harveyi by subjecting the bacteria to stress using Cu2+, Pb2+, Hg2+, and Zn2+. The genes responsible for chemotaxis (cheA, cheB, cheR, cheV, and cheY), which are also crucial for adhesion, were identified and silenced via RNAi. We observed that a decrease in chemotactic gene expression reduced the ability of the organism to demonstrate adhesion, motility, chemotaxis, and biofilm formation. Upon comparing the cheA-RNAi bacteria to the wild-type strain, we observed that the transcriptome of V. harveyi was significantly altered. Additionally, the expression of key genes and the adhesion ability were affected by the pH (pH of 5, 6, 7, 8, and 9), salinity (NaCl at concentrations of 0.8, 1.5, 2.5, 3.5, or 4.5%), and temperature (4, 15, 28, 37, and 44°C) of the medium. Based on these results, the following conclusions were made: (1) The chemotactic genes cheA, cheB, cheR, cheV, and cheY may regulate the adhesion ability of V. harveyi by affecting bacterial motility, and participate in the regulation of adhesion at different temperatures, salinities, and pH values; (2) stable silencing of cheA could alter the transcriptional landscape of V. harveyi and regulate the expression of genes associated with its adhesion mechanisms.
Collapse
Affiliation(s)
- Xiaojin Xu
- Fisheries College, Jimei University, Xiamen, China.,Engineering Research Centre of Eel Modern Industrial Technology, Ministry of Education, Xiamen, China.,Jimei University, Xiamen, China.,State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, China.,Fujian Province Key Laboratory of Special Aquatic Formula Feed, Fujian Tianma Science and Technology Group Co., Ltd., Fuzhou, China
| | - Huiyao Li
- Fisheries College, Jimei University, Xiamen, China.,Engineering Research Centre of Eel Modern Industrial Technology, Ministry of Education, Xiamen, China.,Jimei University, Xiamen, China
| | - Xin Qi
- Fisheries College, Jimei University, Xiamen, China.,Engineering Research Centre of Eel Modern Industrial Technology, Ministry of Education, Xiamen, China.,Jimei University, Xiamen, China
| | - Yunong Chen
- Fisheries College, Jimei University, Xiamen, China.,Engineering Research Centre of Eel Modern Industrial Technology, Ministry of Education, Xiamen, China.,Jimei University, Xiamen, China
| | - Yingxue Qin
- Fisheries College, Jimei University, Xiamen, China.,Engineering Research Centre of Eel Modern Industrial Technology, Ministry of Education, Xiamen, China.,Jimei University, Xiamen, China
| | - Jiang Zheng
- Fisheries College, Jimei University, Xiamen, China.,Engineering Research Centre of Eel Modern Industrial Technology, Ministry of Education, Xiamen, China.,Jimei University, Xiamen, China.,State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, China
| | - Xinglong Jiang
- Fisheries College, Jimei University, Xiamen, China.,Engineering Research Centre of Eel Modern Industrial Technology, Ministry of Education, Xiamen, China.,Jimei University, Xiamen, China
| |
Collapse
|
9
|
Zhang M, Kang J, Wu B, Qin Y, Huang L, Zhao L, Mao L, Wang S, Yan Q. Comparative transcriptome and phenotype analysis revealed the role and mechanism of ompR in the virulence of fish pathogenic Aeromonas hydrophila. Microbiologyopen 2020; 9:e1041. [PMID: 32282134 PMCID: PMC7349151 DOI: 10.1002/mbo3.1041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 12/16/2022] Open
Abstract
Aeromonas hydrophila B11 strain was isolated from diseased Anguilla japonica, which had caused severe gill ulcers in farmed eel, causing huge economic losses. EnvZ‐OmpR is a model two‐component system in the bacteria and is widely used in the research of signal transduction and gene transcription regulation. In this study, the ompR of A. hydrophila B11 strain was first silenced by RNAi technology. The role of ompR in the pathogenicity of A. hydrophila B11 was investigated by analyzing both the bacterial comparative transcriptome and phenotype. The qRT‐PCR results showed that the expression of ompR in the ompR‐RNAi strain decreased by 97% compared with the wild‐type strain. The virulence test showed that after inhibition of the ompR expression, the LD50 of A. hydrophila B11 decreased by an order of magnitude, suggesting that ompR is involved in the regulation of bacterial virulence. Comparative transcriptome analysis showed that the expression of ompR can directly regulate the expression of several important virulence‐related genes, such as the bacterial type II secretion system; moreover, ompR expression also regulates the expression of multiple genes related to bacterial chemotaxis, motility, adhesion, and biofilm formation. Further studies on the phenotype of A. hydrophila B11 and ompR‐RNAi also confirmed that the downregulation of ompR expression can decrease bacterial chemotaxis, adhesion, and biofilm formation.
Collapse
Affiliation(s)
- Mengmeng Zhang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Jianping Kang
- Fujian Fisheries Technology Extension Center, Fuzhou, China
| | - Bin Wu
- Fujian Fisheries Technology Extension Center, Fuzhou, China
| | - Yingxue Qin
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China.,Fujian Province Key Laboratory of Special Aquatic Formula Feed, Fujian Tianma Science and Technology Group Co., Ltd., Fuqing, China
| | - Lixing Huang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Lingmin Zhao
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Leilei Mao
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Suyun Wang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Qingpi Yan
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| |
Collapse
|
10
|
Qi W, Xu W, Zhao L, Xu X, Luo Z, Huang L, Yan Q. Protection against Pseudomonas plecoglossicida in Epinephelus coioides immunized with a cspA1-knock-down live attenuated vaccine. FISH & SHELLFISH IMMUNOLOGY 2019; 89:498-504. [PMID: 30981887 DOI: 10.1016/j.fsi.2019.04.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/01/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
Pseudomonas plecoglossicida is well-known as the cause of viscera granulomas disease in fish. In this study, a cspA1 knock-down strain was constructed and tested in Epinephelus coioides to observe the changes in virulence and evaluate its potential as an attenuated live vaccine. The results showed that the cspA1 knock-down strain caused a significant reduction in the ability of biofilm formation, motility, adhesion and virulence. E. coioides vaccinated with cspA1 knock-down strain were more tolerant of the infection by wild-type P. plecoglossicida. The relative percent survival value of E. coioides vaccinated with cspA1 knock-down strain reached 80% after challenging with wild-type P. plecoglossicida. In the meanwhile, the expression level of genes associated with immunity, including IL-1β, IgM, MHC-I and MHC-II, was up-regulated after vaccination, indicating that the cspA1 knock-down strain can induce effective and durable immune response in E. coioides and it may be an effective attenuated live vaccine candidate for the prevention of infections by P. plecoglossicida.
Collapse
Affiliation(s)
- Weilu Qi
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, PR China; Fujian Province Key Laboratory of Special Aquatic Formula Feed (Fujian Tianma Science and Technology Group Co., Ltd.), PR China
| | - Wei Xu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, PR China
| | - Lingmin Zhao
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, PR China; Fujian Province Key Laboratory of Special Aquatic Formula Feed (Fujian Tianma Science and Technology Group Co., Ltd.), PR China
| | - Xiaojin Xu
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, PR China
| | - Zhuhua Luo
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, PR China
| | - Lixing Huang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, PR China; Fujian Province Key Laboratory of Special Aquatic Formula Feed (Fujian Tianma Science and Technology Group Co., Ltd.), PR China.
| | - Qingpi Yan
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, PR China.
| |
Collapse
|
11
|
Wang S, Yan Q, Zhang M, Huang L, Mao L, Zhang M, Xu X, Chen L, Qin Y. The role and mechanism of icmF in Aeromonas hydrophila survival in fish macrophages. JOURNAL OF FISH DISEASES 2019; 42:895-904. [PMID: 30919989 DOI: 10.1111/jfd.12991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/22/2019] [Accepted: 02/24/2019] [Indexed: 06/09/2023]
Abstract
Survival in host macrophages is an effective strategy for pathogenic bacteria to spread. Aeromonas hydrophila has been found to survive in fish macrophages, but the mechanisms remain unknown. In this paper, the roles and possible mechanisms of IcmF in bacterial survival in fish macrophages were investigated. First, a stable silencing strain icmF-RNAi was constructed by shRNA and RT-qPCR confirmed the expression of icmF was down-regulated by 94.42%. The expression of Hcp, DotU and VgrG was also decreased in icmF-RNAi. The intracellular survival rate of the wild-type strain was 92.3%, while the survival rate of icmF-RNAi was only 20.58%. The escape rate of the wild-type strain was 20%, while that of the icmF-RNAi was only 7.5%. Further studies indicated that the expression of icmF can significantly affect the adhesion, biofilm formation, motility and acid resistance of A. hydrophila, but has no significant effect on the growth of A. hydrophila even under the stress of H2 O2 . The results indicated that IcmF of A. hydrophila not only acts as a structural protein which participates in virulence-related characteristics such as bacterial motility, adhesion and biofilm formation, but also acts as a key functional protein which participates in the interaction between bacteria and host macrophages.
Collapse
Affiliation(s)
- Suyun Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, China
| | - Qingpi Yan
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, China
| | - Meimei Zhang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, China
| | - Lixing Huang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, China
| | - Leilei Mao
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, China
| | - Mengmeng Zhang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, China
| | - Xiaojin Xu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, China
| | - Liwei Chen
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, China
| | - Yingxue Qin
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, China
| |
Collapse
|
12
|
Huang L, Guo L, Xu X, Qin Y, Zhao L, Su Y, Yan Q. The role of rpoS in the regulation of Vibrio alginolyticus virulence and the response to diverse stresses. JOURNAL OF FISH DISEASES 2019; 42:703-712. [PMID: 30811044 DOI: 10.1111/jfd.12972] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 06/09/2023]
Abstract
Vibrio alginolyticus is a leading aquatic pathogen, causing huge losses to aquaculture. rpoS has been proven to play a variety of important roles in stress response and virulence in several bacteria. In our previous study, upon treatment with Cu2+ , Pb2+ , Hg2+ and low pH, the expression levels of rpoS were downregulated as assessed by RNA-seq, while impaired adhesion ability was observed, indicating that rpoS might play roles in the regulation of adhesion. In the present study, the RNAi technology was used to knockdown rpoS in V. alginolyticus. In comparison with wild-type V. alginolyticus, RNAi-treated bacteria showed significantly impaired abilities of adhesion, growth, haemolytic, biofilm production, movement and virulence. Meanwhile, alterations of temperature, salinity, pH and starvation starkly affected rpoS expression. The present data suggested that rpoS is a critical regulator of virulence in V. alginolyticus; in addition, rpoS regulates bacterial adhesion in response to temperature, pH and nutrient content changes. These are helpful to explore its pathogenic mechanism and provide reference for disease control.
Collapse
Affiliation(s)
- Lixing Huang
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Lina Guo
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Xiaojin Xu
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Yingxue Qin
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Lingmin Zhao
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Yongquan Su
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, China
| | - Qingpi Yan
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen, China
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, China
| |
Collapse
|
13
|
Liu D, Zhang T, Wang Y, Muhammad M, Xue W, Ju J, Zhao B. Knockout of alanine racemase gene attenuates the pathogenicity of Aeromonas hydrophila. BMC Microbiol 2019; 19:72. [PMID: 30940083 PMCID: PMC6444436 DOI: 10.1186/s12866-019-1437-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/17/2019] [Indexed: 11/10/2022] Open
Abstract
Background Aeromonas hydrophila is an opportunistic pathogen of poikilothermic and homoeothermic animals, including humans. In the present study, we described the role of Alanine racemase (alr-2) in the virulence of A. hydrophila using an alr-2 knockout mutant (A.H.Δalr). Results In mouse and common carp models, the survival of animals challenged with A.H.Δalr was significantly increased compared with the wild-type (WT), and the mutant was also impaired in its ability to replicate in the organs and blood of infected mice and fish. The A.H.Δalr significantly increased phagocytosis by macrophages of the mice and fish. These attenuation effects of alr-2 could be complemented by the addition of D-alanine to the A.H.Δalr strain. The histopathology results indicated that the extent of tissue injury in the WT-infected animals was more severe than in the A.H.Δalr-infected groups. The expression of 9 virulence genes was significantly down-regulated, and 3 outer membrane genes were significantly up-regulated in A.H.Δalr. Conclusions Our data suggest that alr-2 is essential for the virulence of A. hydrophila. Our findings suggested alanine racemase could be applied in the development of new antibiotics against A. hydrophila.
Collapse
Affiliation(s)
- Dong Liu
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Ting Zhang
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yaping Wang
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Murtala Muhammad
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Wen Xue
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Jiansong Ju
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Baohua Zhao
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
14
|
Huang L, Zhang Y, He R, Zuo Z, Luo Z, Xu W, Yan Q. Phenotypic characterization, virulence, and immunogenicity of Pseudomonas plecoglossicida rpoE knock-down strain. FISH & SHELLFISH IMMUNOLOGY 2019; 87:772-777. [PMID: 30776544 DOI: 10.1016/j.fsi.2019.02.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 06/09/2023]
Abstract
Pseudomonas plecoglossicida, a temperature dependent bacterial pathogen in fish, expresses rpoE gene that is sensitive to temperature and probably critical for pathogen virulence and disease development. In this study, the rpoE silence strain rpoE-RNAi-1 was constructed by gene knock-down. The rpoE-RNAi-1 displayed significant changes in biofilm formation, swarming motility, adhesion and virulence. Meanwhile, vaccination of grouper with rpoE-RNAi-1 led to a relative percent survival (RPS) value of 85% after challenged with the wild-type P. plecoglossicida. qRT-PCR assays showed that vaccination with rpoE-RNAi-1 enhanced the expression of immune-related genes, including MHC-I, MHC-II, IgM, and IL-1β, indicating that it was able to induce humoral and cell-mediated immune response in grouper. These results validated the possibility of rpoE as a potential target for constructing P. plecoglossicida live attenuated vaccine.
Collapse
Affiliation(s)
- Lixing Huang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, PR China.
| | - Youyu Zhang
- Institute of Electromagnetics and Acoustics, School of Electronic Science and Engineering, Xiamen University, Xiamen, Fujian, PR China
| | - Rongchao He
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, PR China
| | - Zhenghong Zuo
- School of Life Sciences, Xiamen University, Xiamen, Fujian, PR China
| | - Zhuhua Luo
- Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005, PR China
| | - Wei Xu
- Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005, PR China
| | - Qingpi Yan
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, PR China.
| |
Collapse
|
15
|
Huang L, Huang L, Zhao L, Qin Y, Su Y, Yan Q. The regulation of oxidative phosphorylation pathway on Vibrio alginolyticus adhesion under adversities. Microbiologyopen 2019; 8:e00805. [PMID: 30767412 PMCID: PMC6692554 DOI: 10.1002/mbo3.805] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 02/03/2023] Open
Abstract
Vibrio alginolyticus is one of the most important pathogens in mariculture and leading to heavy losses. After treatment with Cu2+, Pb2+, and low pH, the expression of oxidative phosphorylation pathway genes, including coxA, coxB, coxC, ccoN, ccoO, and ccoQ, was found commonly downregulated by RNA‐seq as well as quantitative real‐time PCR. RNAi significantly reduced the expression of coxA, coxB, coxC, ccoN, ccoO, and ccoQ in V. alginolyticus. Compared with the wild‐type strain, the adhesion abilities of RNAi strains of V. alginolyticus were significantly impaired, as well as their cytochrome C oxidase activity. ccoQ appeared to be more important in the regulation of bacterial adhesion in these target genes, while ccoO was relatively weak in the regulation of the adhesion. Meanwhile, the changes of temperature, salinity, pH, and starvation affected coxA, coxB, coxC, ccoN, ccoO, and ccoQ expression remarkably. These findings indicated that: the oxidative phosphorylation pathway is a critical regulator of adhesion in V. alginolyticus; coxA, coxB, coxC, ccoN, ccoO, and ccoQ regulate the bacterial adhesion in response to environmental changes such as temperature, salinity, pH, and starvation.
Collapse
Affiliation(s)
- Li Huang
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian, China.,Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, Fujian, China
| | - Lixing Huang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, Fujian, China
| | - Lingmin Zhao
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, Fujian, China
| | - Yingxue Qin
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, Fujian, China
| | - Yongquan Su
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian, China
| | - Qingpi Yan
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian, China.,Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, Fujian, China
| |
Collapse
|
16
|
Zuo Y, Zhao L, Xu X, Zhang J, Zhang J, Yan Q, Huang L. Mechanisms underlying the virulence regulation of new Vibrio alginolyticus ncRNA Vvrr1 with a comparative proteomic analysis. Emerg Microbes Infect 2019; 8:1604-1618. [PMID: 31711375 PMCID: PMC6853220 DOI: 10.1080/22221751.2019.1687261] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/24/2019] [Indexed: 12/17/2022]
Abstract
The incidence of Vibrio alginolyticus infections has increased in recent years due to the influence of climate change and rising sea temperature. Vibrio virulence regulatory RNA 1 (Vvrr1) is a newly found noncoding RNA (ncRNA) predicted to be closely related to the adhesion ability of V. alginolyticus based on the previous RNA-seq. In this study, the target genes of Vvrr1 were fully screened and verified by constructing Vvrr1-overexpressing strains and using the proteome sequencing technology. Pyruvate kinase I (pykF) gene was predicted to be a chief target gene of Vvrr1 involved in virulence regulation. The adhesion ability, biofilm formation and virulence were significantly reduced in the Vvrr1-overexpressing and the pykF-silenced strain compared with the wild strains. Similar to the overexpression of Vvrr1, the silencing of pykF also reduced the expression level of virulence genes, such as ndk, eno, sdhB, glpF, and cysH. Meanwhile, by constructing the "pykF-GFP" fusion expression plasmid and using the GFP reporter gene analysis in Escherichia coli, the fluorescence intensity of the strain containing Vvrr1 whole ncRNA sequence vector was found to be significantly weakened. These indicated that Vvrr1 participated in the virulence regulation mechanism of V. alginolyticus by interacting with the virulence gene pykF.
Collapse
Affiliation(s)
- Yanfei Zuo
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, PR People’s Republic of China
| | - Lingmin Zhao
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, PR People’s Republic of China
| | - Xiaojin Xu
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, PR People’s Republic of China
| | - Jiaonan Zhang
- Key Laboratory of Special Aquatic Feed for Fujian, Fujian Tianma Technology Company Limited, Fuzhou, People’s Republic of China
| | - Jiaolin Zhang
- Key Laboratory of Special Aquatic Feed for Fujian, Fujian Tianma Technology Company Limited, Fuzhou, People’s Republic of China
| | - Qingpi Yan
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, PR People’s Republic of China
| | - Lixing Huang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, PR People’s Republic of China
| |
Collapse
|
17
|
Zhang M, Yan Q, Mao L, Wang S, Huang L, Xu X, Qin Y. KatG plays an important role in Aeromonas hydrophila survival in fish macrophages and escape for further infection. Gene 2018; 672:156-164. [DOI: 10.1016/j.gene.2018.06.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/22/2018] [Accepted: 06/11/2018] [Indexed: 10/14/2022]
|
18
|
Bronzato GF, Oliva MS, Alvin MG, Pribul BR, Rodrigues DP, Coelho SM, Coelho IS, Souza MM. MALDI-TOF MS as a tool for the identification of Vibrio alginolyticus from Perna perna mussels (Linnaeus, 1758). PESQUISA VETERINARIA BRASILEIRA 2018. [DOI: 10.1590/1678-5150-pvb-5233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
ABSTRACT: Vibrio species are ubiquitous in aquatic environments, including coastal and marine habitats. Vibrio alginolyticus is an opportunistic pathogen for fish, crustaceans and mussels and their identification by biochemical tests may be impaired due their nutritional requirements. The study used Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) to identify 49 Vibrio spp. isolates associated with mussels (Perna perna) from different locations along the Rio de Janeiro coast. The rpoA gene was used as a genus-specific marker of Vibrio spp. and was positive in all 209 isolates. MALDI-TOF MS confirmed 87.8% of V. alginolyticus when compared to the results of the biochemical tests. Four isolates were identified as Shewanella putrefaciens (8.16%) and one was identified as V. parahaemolyticus (2.0%). Just one isolate was not identified by this technique (2.0%). The pyrH sequencing confirmed 75% of the proteomic technique results. MALDI-TOF MS is an excellent option for characterization of bacterial species, as it is efficient, fast and easy to apply. In addition, our study confirms its high specificity and sensitivity in these marine bacteria identification.
Collapse
|
19
|
Huang L, Xu W, Su Y, Zhao L, Yan Q. Regulatory role of the RstB-RstA system in adhesion, biofilm production, motility, and hemolysis. Microbiologyopen 2018; 7:e00599. [PMID: 29573209 PMCID: PMC6182747 DOI: 10.1002/mbo3.599] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/15/2018] [Accepted: 01/15/2018] [Indexed: 01/19/2023] Open
Abstract
For infection, initial invasion of the host is of great importance, with adhesion playing a critical role. We previously demonstrated rstA and rstB are remarkably downregulated in Vibrio alginolyticus cultured under heavy metal and acidic stresses, with impaired adhesion, suggesting that rstA and rstB might be involved in adhesion regulation. The present study showed that rstA and rstB silencing resulted in impaired adhesion, biofilm production, motility, hemolysis, and virulence. Meanwhile, changes of temperature, starvation, and pH remarkably affected rstA and rstB expression. These findings indicated that (1) rstA and rstB are critical regulators of adhesion in V. alginolyticus; (2) rstA and rstB have remarkable effects on biofilm production, motility, hemolysis, and virulence in V. alginolyticus; (3) rstA and rstB modulate adhesion in response to environmental changes of temperature, pH, and starvation.
Collapse
Affiliation(s)
- Lixing Huang
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian, China.,Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, China
| | - Wei Xu
- Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - Yongquan Su
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian, China.,College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Lingmin Zhao
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, China
| | - Qingpi Yan
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian, China.,Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, China
| |
Collapse
|
20
|
Hamza F, Satpute S, Banpurkar A, Kumar AR, Zinjarde S. Biosurfactant from a marine bacterium disrupts biofilms of pathogenic bacteria in a tropical aquaculture system. FEMS Microbiol Ecol 2018; 93:4566513. [PMID: 29087455 DOI: 10.1093/femsec/fix140] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 10/25/2017] [Indexed: 11/13/2022] Open
Abstract
Bacterial infections are major constraints in aquaculture farming. These pathogens often adapt to the biofilm mode of growth and resist antibiotic treatments. We have used a non-toxic glycolipid biosurfactant (BS-SLSZ2) derived from a marine epizootic bacterium Staphylococcus lentus to treat aquaculture associated infections in an eco-friendly manner. We found that BS-SLSZ2 contained threose, a four-carbon sugar as the glycone component, and hexadecanoic and octadecanoic acids as the aglycone components. The critical micelle concentration of the purified glycolipid was 18 mg mL-1. This biosurfactant displayed anti-adhesive activity and inhibited biofilm formation by preventing initial attachment of cells onto surfaces. The biosurfactant (at a concentration of 20 μg) was able to inhibit Vibrio harveyi and Pseudomonas aeruginosa biofilms by 80.33 ± 2.16 and 82 ± 2.03%, respectively. At this concentration, it was also able to disrupt mature biofilms of V. harveyi (78.7 ± 1.93%) and P. aeruginosa (81.7 ± 0.59%). The biosurfactant was non-toxic towards Artemia salina. In vivo challenge experiments showed that the glycolipid was effective in protecting A. salina nauplii against V. harveyi and P. aeruginosa infections. This study highlights the significance of marine natural products in providing alternative biofilm controlling agents and decreasing the usage of antibiotics in aquaculture settings.
Collapse
Affiliation(s)
- Faseela Hamza
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, 411007, India
| | - Surekha Satpute
- Department of Microbiology, Savitribai Phule Pune University, Pune, 411007, India
| | - Arun Banpurkar
- Department of Physics, Savitribai Phule Pune University, Pune, 411007, India
| | - Ameeta Ravi Kumar
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, 411007, India
| | - Smita Zinjarde
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, 411007, India.,Department of Microbiology, Savitribai Phule Pune University, Pune, 411007, India
| |
Collapse
|
21
|
Huang L, Wang L, Lin X, Su Y, Qin Y, Kong W, Zhao L, Xu X, Yan Q. mcp, aer, cheB, and cheV contribute to the regulation of Vibrio alginolyticus (ND-01) adhesion under gradients of environmental factors. Microbiologyopen 2017; 6:e00517. [PMID: 28744982 PMCID: PMC5727358 DOI: 10.1002/mbo3.517] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/02/2017] [Accepted: 06/13/2017] [Indexed: 12/25/2022] Open
Abstract
Adhesion is a key virulence factor of pathogens and can be affected by the environment. Our previously research with RNA-seq indicated that mcp, aer, cheB, and cheV might play roles in the regulation of adhesion in Vibrio alginolyticus (ND-01). In order to determine whether and how environmental factors affect adhesion through these genes, gene silencing was performed followed by quantitative real-time PCR (qRT-PCR), RNAi, transmission electron microscopy, and adhesion, capillary, and motility assays to verify how these genes influence adhesion. Silencing these genes led to deficiencies in adhesion, chemotaxis, flagellar assembly, and motility. The expression levels of cheA, cheW, and cheY, which are important genes closely related to the functions of mcp, aer, cheV, and cheB, were significantly downregulated in all of the RNAi groups. The expression of mcp, aer, cheV, and cheB under different gradients of temperature, pH, and salinity and after starvation for various durations was also detected, which showed that these genes were sensitive to certain environmental stresses, particularly pH and starvation. Our results indicated that mcp, aer, cheB, and cheV: (1) are necessary for ND-01 adhesion; (2) play key roles in the bacterial chemotaxis pathway by controlling the expression of downstream genes; (3) might affect adhesion by impacting motility, though motility is not the only route through which adhesion is affected; and (4) contribute to the regulation of ND-01 adhesion in natural environments with different temperatures, pH levels, and salinities as well as after various starvation periods.
Collapse
Affiliation(s)
- Lixing Huang
- Fisheries CollegeKey Laboratory of Healthy Mariculture for the East China SeaMinistry of AgricultureJimei UniversityXiamenFujianChina
| | - Lu Wang
- Fisheries CollegeKey Laboratory of Healthy Mariculture for the East China SeaMinistry of AgricultureJimei UniversityXiamenFujianChina
| | - Xiangzhi Lin
- Third Institute of OceanographyState Oceanic AdministrationXiamenFujianChina
| | - Yongquan Su
- College of Ocean & Earth SciencesXiamen UniversityXiamenFujianChina
| | - Yingxue Qin
- Fisheries CollegeKey Laboratory of Healthy Mariculture for the East China SeaMinistry of AgricultureJimei UniversityXiamenFujianChina
| | - Wendi Kong
- Third Institute of OceanographyState Oceanic AdministrationXiamenFujianChina
| | - Lingmin Zhao
- Fisheries CollegeKey Laboratory of Healthy Mariculture for the East China SeaMinistry of AgricultureJimei UniversityXiamenFujianChina
| | - Xiaojin Xu
- Fisheries CollegeKey Laboratory of Healthy Mariculture for the East China SeaMinistry of AgricultureJimei UniversityXiamenFujianChina
| | - Qingpi Yan
- Fisheries CollegeKey Laboratory of Healthy Mariculture for the East China SeaMinistry of AgricultureJimei UniversityXiamenFujianChina
| |
Collapse
|
22
|
Guo L, Huang L, Su Y, Qin Y, Zhao L, Yan Q. secA, secD, secF, yajC, and yidC contribute to the adhesion regulation of Vibrio alginolyticus. Microbiologyopen 2017; 7:e00551. [PMID: 29057613 PMCID: PMC5911994 DOI: 10.1002/mbo3.551] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/26/2017] [Accepted: 09/18/2017] [Indexed: 11/30/2022] Open
Abstract
Vibrio alginolyticus caused great losses to aquaculture. Adhesion is an important virulence factor of V. alginolyticus. In this study, the relationship between V. alginolyticus adhesion and type II secretion system genes (secA, secD, secF, yajC, and yidC) was determined using gene silencing, qRT‐PCR and in vitro adhesion assay. The results showed that the expression of target genes and the bacterial adhesion exhibited significant decreases after transient gene silencing and stable gene silencing, which indicated that secA, secD, secF, yajC, and yidC played roles in the bacterial adhesion of V. alginolyticus. The expression of secA, secD, secF, yajC, and yidC were significantly influenced by temperature, salinity, pH and starvation. The results indicated that the expression of secA, secD, secF, yajC, and yidC were sensitive to different environmental factors, whereas environmental factors can affect V. alginolyticus adhesion via the expression of secA, secD, secF, yajC, and yidC.
Collapse
Affiliation(s)
- Lina Guo
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, China
| | - Lixing Huang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, China
| | - Yongquan Su
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian, China.,College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yingxue Qin
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, China
| | - Lingmin Zhao
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, China
| | - Qingpi Yan
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, China.,State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian, China
| |
Collapse
|
23
|
Liu W, Huang L, Su Y, Qin Y, Zhao L, Yan Q. Contributions of the oligopeptide permeases in multistep of Vibrio alginolyticus pathogenesis. Microbiologyopen 2017; 6. [PMID: 28714216 PMCID: PMC5635161 DOI: 10.1002/mbo3.511] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/25/2017] [Accepted: 05/30/2017] [Indexed: 01/14/2023] Open
Abstract
Vibrio alginolyticus has been associated with several diseases of cultivated marine animals, and has led to considerable economic losses. The oligopeptide permease (Opp) has been proven to play a variety of important roles in nutrition and virulence in several bacteria. In our previous research, the opp gene cluster was identified in Vibrio alginolyticus with transcriptome sequence, which also indicated that the Opp system might play roles in the regulation of adhesion. In this study, the relationship between V. alginolyticus virulence and the opp gene cluster was determined using gene silencing followed by RT‐qPCR, in vitro adhesion assay, growth curves detection in the presence of glutathione (GSH) as a toxic substrate, hemolysis assay, biofilm assay, and artificial infection. Silencing these genes led to deficiencies in adhesion, peptide internalization, biofilm production, hemolytic activity, and virulence. The expression levels of hapr, hapa, tlh, and hlya, which are important genes closely related to the hemolytic activity of Vibrio, were significantly downregulated in all of the RNAi groups. Furthermore, the expression of oppA, oppB, oppC, oppD, and oppF was significantly influenced by temperature, starvation, and pH. These results indicate that (1) oppABCDF contributed in multistep of V. alginolyticus pathogenesis, including adhesion, biofilm production, and hemolytic activity; (2) oppABCDF was sensitive to different temperatures, changes in pH, and increased starvation time.
Collapse
Affiliation(s)
- Wenjia Liu
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Lixing Huang
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Yongquan Su
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, China.,College of Ocean & Earth Sciences, Xiamen University, Xiamen, China
| | - Yingxue Qin
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Lingmin Zhao
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Qingpi Yan
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen, China.,State Key Laboratory of Large Yellow Croaker Breeding, Ningde, China
| |
Collapse
|
24
|
Jiang Q, Chen W, Qin Y, Huang L, Xu X, Zhao L, Yan Q. AcuC, a histone deacetylase, contributes to the pathogenicity of Aeromonas hydrophila. Microbiologyopen 2017; 6. [PMID: 28371510 PMCID: PMC5552924 DOI: 10.1002/mbo3.468] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/04/2017] [Accepted: 02/16/2017] [Indexed: 12/16/2022] Open
Abstract
The interactions of pathogens and phagocytes are complex. Our study demonstrated that Aeromonas hydrophila B11 can survive in the macrophagocytes of Tilapia mossambica. To explore the regulatory processes of A. hydrophila survival in the macrophagocytes, we used the mini-Tn10 transposon mutagenesis system to build a mutant library by mixing Escherichia coli Sm10 (pLOFKm) and A. hydrophila B11. In total, 102 mutant colonies were detected, and 11 of them showed reduced survival in macrophagocytes. The mutant with the most severe phenotype, AM73, was chosen for further research. The ORF interrupted by mini-Tn10 in AM73 was approximately 960 bp and was deposited in GenBank with the accession number SRP049226. The 319 amino acid protein encoded by the ORF showed a high degree of identity (89%) with proteins in the histone deacetylase/AcuC/AphA family of A. hydrophila subsp. hydrophila ATCC7966. A strain (AC73) in which the acuC mutation was complemented was constructed by generating the recombinant expression plasmid pACYC184-acuC and introducing it into the AM73 mutant strain. Our experiments revealed that strain AM73 was deficient in biofilm formation, adhesion, survival in macrophagocytes, and virulence compared with A. hydrophila B11, and all of these biological properties were improved in strain AC73. The expression of 10 significant virulence genes was significantly inhibited in strain AM73. The results indicated that AcuC was an important regulatory protein contributing to the pathogenicity of A. hydrophila.
Collapse
Affiliation(s)
- Qingling Jiang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Wenbo Chen
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Yingxue Qin
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Lixing Huang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Xiaojin Xu
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Lingmin Zhao
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Qingpi Yan
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China.,State Key Laboratory of Large Yellow Croaker Breeding, Ningde, China
| |
Collapse
|
25
|
Luo G, Huang L, Su Y, Qin Y, Xu X, Zhao L, Yan Q. flrA, flrB and flrC regulate adhesion by controlling the expression of critical virulence genes in Vibrio alginolyticus. Emerg Microbes Infect 2016; 5:e85. [PMID: 27485498 PMCID: PMC5034100 DOI: 10.1038/emi.2016.82] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/12/2016] [Accepted: 05/16/2016] [Indexed: 12/24/2022]
Abstract
Adhesion is an important virulence trait of Vibrio alginolyticus. Bacterial adhesion is influenced by environmental conditions; however, the molecular mechanism underlying this effect remains unknown. The expression levels of flrA, flrB and flrC were significantly downregulated in adhesion-deficient V. alginolyticus strains cultured under Cu2+, Pb2+, Hg2+ and low-pH stresses. Silencing these genes led to deficiencies in adhesion, motility, flagellar assembly, biofilm formation and exopolysaccharide (EPS) production. The expression levels of fliA, flgH, fliS, fliD, cheR, cheV and V12G01_22158 (Gene ID) were significantly downregulated in all of the RNAi groups, whereas the expression levels of toxT, ctxB, acfA, hlyA and tlh were upregulated in flrA- and flrC-silenced groups. These genes play a key role in the virulence mechanisms of most pathogenic Vibrio species. Furthermore, the expression of flrA, flrB and flrC was significantly influenced by temperature, salinity, starvation and pH. These results indicate that (1) flrA, flrB and flrC are important for V. alginolyticus adhesion; (2) flrA, flrB and flrC significantly influence bacterial adhesion, motility, biofilm formation and EPS production by controlling expression of key genes involved in those phenotypes; and (3) flrA, flrB and flrC regulate adhesion in the natural environment with different temperatures, pH levels, salinities and starvation time.
Collapse
Affiliation(s)
- Gang Luo
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian 361021, China
| | - Lixing Huang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian 361021, China
| | - Yongquan Su
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361102, China.,State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian 352000, China
| | - Yingxue Qin
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian 361021, China
| | - Xiaojin Xu
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian 361021, China
| | - Lingmin Zhao
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian 361021, China
| | - Qingpi Yan
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian 361021, China.,State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian 352000, China
| |
Collapse
|
26
|
Huang L, Hu J, Su Y, Qin Y, Kong W, Zhao L, Ma Y, Xu X, Lin M, Zheng J, Yan Q. Genome-Wide Detection of Predicted Non-coding RNAs Related to the Adhesion Process in Vibrio alginolyticus Using High-Throughput Sequencing. Front Microbiol 2016; 7:619. [PMID: 27199948 PMCID: PMC4848308 DOI: 10.3389/fmicb.2016.00619] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 04/14/2016] [Indexed: 01/12/2023] Open
Abstract
The ability of bacteria to adhere to fish mucus can be affected by environmental conditions and is considered to be a key virulence factor of Vibrio alginolyticus. However, the molecular mechanism underlying this ability remains unclear. Our previous study showed that stress conditions such as exposure to Cu, Pb, Hg, and low pH are capable of reducing the adhesion ability of V. alginolyticus. Non-coding RNAs (ncRNAs) play a crucial role in the intricate regulation of bacterial gene expression, thereby affecting bacterial pathogenicity. Thus, we hypothesized that ncRNAs play a key role in the V. alginolyticus adhesion process. To validate this, we combined high-throughput sequencing with computational techniques to detect ncRNA dynamics in samples after stress treatments. The expression of randomly selected novel ncRNAs was confirmed by QPCR. Among the significantly altered ncRNAs, 30 were up-regulated and 2 down-regulated by all stress treatments. The QPCR results reinforced the reliability of the sequencing data. Target prediction and KEGG pathway analysis indicated that these ncRNAs are closely related to pathways associated with in vitro adhesion, and our results indicated that chemical stress-induced reductions in the adhesion ability of V. alginolyticus might be due to the perturbation of ncRNA expression. Our findings provide important information for further functional characterization of ncRNAs during the adhesion process of V. alginolyticus.
Collapse
Affiliation(s)
- Lixing Huang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University Xiamen, China
| | - Jiao Hu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University Xiamen, China
| | - Yongquan Su
- College of Ocean and Earth Sciences, Xiamen University Xiamen, China
| | - Yingxue Qin
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University Xiamen, China
| | - Wendi Kong
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei UniversityXiamen, China; College of Ocean and Earth Sciences, Xiamen UniversityXiamen, China
| | - Lingmin Zhao
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University Xiamen, China
| | - Ying Ma
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University Xiamen, China
| | - Xiaojin Xu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University Xiamen, China
| | - Mao Lin
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University Xiamen, China
| | - Jiang Zheng
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University Xiamen, China
| | - Qingpi Yan
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei UniversityXiamen, China; State Key Laboratory of Large Yellow Croaker BreedingNingde, China
| |
Collapse
|
27
|
Kalatzis PG, Bastías R, Kokkari C, Katharios P. Isolation and Characterization of Two Lytic Bacteriophages, φSt2 and φGrn1; Phage Therapy Application for Biological Control of Vibrio alginolyticus in Aquaculture Live Feeds. PLoS One 2016; 11:e0151101. [PMID: 26950336 PMCID: PMC4780772 DOI: 10.1371/journal.pone.0151101] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/22/2016] [Indexed: 01/13/2023] Open
Abstract
Bacterial infections are a serious problem in aquaculture since they can result in massive mortalities in farmed fish and invertebrates. Vibriosis is one of the most common diseases in marine aquaculture hatcheries and its causative agents are bacteria of the genus Vibrio mostly entering larval rearing water through live feeds, such as Artemia and rotifers. The pathogenic Vibrio alginolyticus strain V1, isolated during a vibriosis outbreak in cultured seabream, Sparus aurata, was used as host to isolate and characterize the two novel bacteriophages φSt2 and φGrn1 for phage therapy application. In vitro cell lysis experiments were performed against the bacterial host V. alginolyticus strain V1 but also against 12 presumptive Vibrio strains originating from live prey Artemia salina cultures indicating the strong lytic efficacy of the 2 phages. In vivo administration of the phage cocktail, φSt2 and φGrn1, at MOI = 100 directly on live prey A. salina cultures, led to a 93% decrease of presumptive Vibrio population after 4 h of treatment. Current study suggests that administration of φSt2 and φGrn1 to live preys could selectively reduce Vibrio load in fish hatcheries. Innovative and environmental friendly solutions against bacterial diseases are more than necessary and phage therapy is one of them.
Collapse
Affiliation(s)
- Panos G. Kalatzis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Former American Base of Gournes, Heraklion 71003, Crete, Greece
- Marine Biological Section, University of Copenhagen, Helsingør, Denmark
| | - Roberto Bastías
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Former American Base of Gournes, Heraklion 71003, Crete, Greece
- Institute of Biology, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Constantina Kokkari
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Former American Base of Gournes, Heraklion 71003, Crete, Greece
| | - Pantelis Katharios
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Former American Base of Gournes, Heraklion 71003, Crete, Greece
| |
Collapse
|
28
|
Huang L, Huang L, Yan Q, Qin Y, Ma Y, Lin M, Xu X, Zheng J. The TCA Pathway is an Important Player in the Regulatory Network Governing Vibrio alginolyticus Adhesion Under Adversity. Front Microbiol 2016; 7:40. [PMID: 26870007 PMCID: PMC4735382 DOI: 10.3389/fmicb.2016.00040] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/11/2016] [Indexed: 12/24/2022] Open
Abstract
Adhesion is a critical step in the initial stage of Vibrio alginolyticus infection; therefore, it is important to understand the underlying mechanisms governing the adhesion of V. alginolyticus and determine if environmental factors have any effect. A greater understanding of this process may assist in developing preventive measures for reducing infection. In our previous research, we presented the first RNA-seq data from V. alginolyticus cultured under stress conditions that resulted in reduced adhesion. Based on the RNA-seq data, we found that the Tricarboxylic acid cycle (TCA pathway) might be closely related to adhesion. Environmental interactions with the TCA pathway might alter adhesion. To validate this, bioinformatics analysis, quantitative Real-Time PCR (qPCR), RNAi, and in vitro adhesion assays were performed, while V. alginolyticus was treated with various stresses including temperature, pH, salinity, and starvation. The expression of genes involved in the TCA pathway was confirmed by qPCR, which reinforced the reliability of the sequencing data. Silencing of these genes was capable of reducing the adhesion ability of V. alginolyticus. Adhesion of V. alginolyticus is influenced substantially by environmental factors and the TCA pathway is sensitive to some environmental stresses, especially changes in pH and starvation. Our results indicated that (1) the TCA pathway plays a key role in V. alginolyticus adhesion: (2) the TCA pathway is sensitive to environmental stresses.
Collapse
Affiliation(s)
- Lixing Huang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University Xiamen, China
| | - Li Huang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University Xiamen, China
| | - Qingpi Yan
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University Xiamen, China
| | - Yingxue Qin
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University Xiamen, China
| | - Ying Ma
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University Xiamen, China
| | - Mao Lin
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University Xiamen, China
| | - Xiaojin Xu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University Xiamen, China
| | - Jiang Zheng
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University Xiamen, China
| |
Collapse
|
29
|
Microbial Surface Colonization and Biofilm Development in Marine Environments. Microbiol Mol Biol Rev 2015; 80:91-138. [PMID: 26700108 DOI: 10.1128/mmbr.00037-15] [Citation(s) in RCA: 496] [Impact Index Per Article: 55.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Biotic and abiotic surfaces in marine waters are rapidly colonized by microorganisms. Surface colonization and subsequent biofilm formation and development provide numerous advantages to these organisms and support critical ecological and biogeochemical functions in the changing marine environment. Microbial surface association also contributes to deleterious effects such as biofouling, biocorrosion, and the persistence and transmission of harmful or pathogenic microorganisms and their genetic determinants. The processes and mechanisms of colonization as well as key players among the surface-associated microbiota have been studied for several decades. Accumulating evidence indicates that specific cell-surface, cell-cell, and interpopulation interactions shape the composition, structure, spatiotemporal dynamics, and functions of surface-associated microbial communities. Several key microbial processes and mechanisms, including (i) surface, population, and community sensing and signaling, (ii) intraspecies and interspecies communication and interaction, and (iii) the regulatory balance between cooperation and competition, have been identified as critical for the microbial surface association lifestyle. In this review, recent progress in the study of marine microbial surface colonization and biofilm development is synthesized and discussed. Major gaps in our knowledge remain. We pose questions for targeted investigation of surface-specific community-level microbial features, answers to which would advance our understanding of surface-associated microbial community ecology and the biogeochemical functions of these communities at levels from molecular mechanistic details through systems biological integration.
Collapse
|
30
|
Wang L, Huang L, Su Y, Qin Y, Kong W, Ma Y, Xu X, Lin M, Zheng J, Yan Q. Involvement of the flagellar assembly pathway in Vibrio alginolyticus adhesion under environmental stresses. Front Cell Infect Microbiol 2015; 5:59. [PMID: 26322276 PMCID: PMC4533019 DOI: 10.3389/fcimb.2015.00059] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/30/2015] [Indexed: 11/13/2022] Open
Abstract
Adhesion is an important virulence factor of Vibrio alginolyticus. This factor may be affected by environmental conditions; however, its molecular mechanism remains unclear. In our previous research, adhesion deficient strains were obtained by culturing V. alginolyticus under stresses including Cu, Pb, Hg, and low pH. With RNA-seq and bioinformatics analysis, we found that all of these stress treatments significantly affected the flagellar assembly pathway, which may play an important role in V. alginolyticus adhesion. Therefore, we hypothesized that the environmental stresses of the flagellar assembly pathway may be one way in which environmental conditions affect adhesion. To verify our hypothesis, a bioinformatics analysis, QPCR, RNAi, in vitro adhesion assay and motility assay were performed. Our results indicated that (1) the flagellar assembly pathway was sensitive to environmental stresses, (2) the flagellar assembly pathway played an important role in V. alginolyticus adhesion, and (3) motility is not the only way in which the flagellar assembly pathway affects adhesion.
Collapse
Affiliation(s)
- Lu Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei UniversityXiamen, China
| | - Lixing Huang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei UniversityXiamen, China
| | - Yongquan Su
- College of Ocean and Earth Sciences, Xiamen UniversityXiamen, China
| | - Yingxue Qin
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei UniversityXiamen, China
| | - Wendi Kong
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei UniversityXiamen, China
| | - Ying Ma
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei UniversityXiamen, China
| | - Xiaojin Xu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei UniversityXiamen, China
| | - Mao Lin
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei UniversityXiamen, China
| | - Jiang Zheng
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei UniversityXiamen, China
| | - Qingpi Yan
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei UniversityXiamen, China
| |
Collapse
|
31
|
Huang L, Hu J, Su Y, Qin Y, Kong W, Ma Y, Xu X, Lin M, Yan Q. Identification and characterization of three Vibrio alginolyticus non-coding RNAs involved in adhesion, chemotaxis, and motility processes. Front Cell Infect Microbiol 2015; 5:56. [PMID: 26217589 PMCID: PMC4498440 DOI: 10.3389/fcimb.2015.00056] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 06/26/2015] [Indexed: 11/30/2022] Open
Abstract
The capability of Vibrio alginolyticus to adhere to fish mucus is a key virulence factor of the bacteria. Our previous research showed that stress conditions, such as Cu(2+), Pb(2+), Hg(2+), and low pH, can reduce this adhesion ability. Non-coding (nc) RNAs play a crucial role in regulating bacterial gene expression, affecting the bacteria's pathogenicity. To investigate the mechanism(s) underlying the decline in adhesion ability caused by stressors, we combined high-throughput sequencing with computational techniques to detect stressed ncRNA dynamics. These approaches yielded three commonly altered ncRNAs that are predicted to regulate the bacterial chemotaxis pathway, which plays a key role in the adhesion process of bacteria. We hypothesized they play a key role in the adhesion process of V. alginolyticus. In this study, we validated the effects of these three ncRNAs on their predicted target genes and their role in the V. alginolyticus adhesion process with RNA interference (i), quantitative real-time polymerase chain reaction (qPCR), northern blot, capillary assay, and in vitro adhesion assays. The expression of these ncRNAs and their predicted target genes were confirmed by qPCR and northern blot, which reinforced the reliability of the sequencing data and the target prediction. Overexpression of these ncRNAs was capable of reducing the chemotactic and adhesion ability of V. alginolyticus, and the expression levels of their target genes were also significantly reduced. Our results indicated that these three ncRNAs: (1) are able to regulate the bacterial chemotaxis pathway, and (2) play a key role in the adhesion process of V. alginolyticus.
Collapse
Affiliation(s)
- Lixing Huang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei UniversityXiamen, China
| | - Jiao Hu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei UniversityXiamen, China
| | - Yongquan Su
- College of Ocean and Earth Sciences, Xiamen UniversityXiamen, China
| | - Yingxue Qin
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei UniversityXiamen, China
| | - Wendi Kong
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei UniversityXiamen, China
| | - Ying Ma
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei UniversityXiamen, China
| | - Xiaojin Xu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei UniversityXiamen, China
| | - Mao Lin
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei UniversityXiamen, China
| | - Qingpi Yan
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei UniversityXiamen, China
| |
Collapse
|