1
|
Gray J, Kahl O, Zintl A. Pathogens transmitted by Ixodes ricinus. Ticks Tick Borne Dis 2024; 15:102402. [PMID: 39368217 DOI: 10.1016/j.ttbdis.2024.102402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/07/2024]
Abstract
Ixodes ricinus is the most important tick vector in central and western Europe and one of the most researched parasites. However, in the published literature on the tick and the pathogens it transmits, conjecture about specific transmission cycles and the clinical significance of certain microbes is not always clearly separated from confirmed facts. This article aims to present up-to-date, evidence-based information about the well-researched human pathogens tick-borne encephalitis virus, louping-ill virus, Anaplasma phagocytophilum, Borrelia burgdorferi sensu lato and several Babesia species, with a focus on their development in the tick, transmission dynamics and the reservoir hosts that support their circulation in the environment. Borrelia miyamotoi, Neoehrlichia mikurensis, Rickettsia helvetica and Rickettsia monacensis, which are much less common causes of disease but may affect immunocompromised patients, are also briefly discussed. Finally, the possible role of I. ricinus in the transmission of Coxiella burnetii, Francisella tularensis, Bartonella spp. and Spiroplasma ixodetis is reviewed.
Collapse
Affiliation(s)
- Jeremy Gray
- UCD School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | - Annetta Zintl
- UCD School of Veterinary Sciences, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
2
|
Szentiványi T, Takács N, Sándor AD, Péter Á, Boldogh SA, Kováts D, Foster JT, Estók P, Hornok S. Bat-associated ticks as a potential link for vector-borne pathogen transmission between bats and other animals. PLoS Negl Trop Dis 2024; 18:e0012584. [PMID: 39453968 PMCID: PMC11540221 DOI: 10.1371/journal.pntd.0012584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/06/2024] [Accepted: 09/29/2024] [Indexed: 10/27/2024] Open
Abstract
BACKGROUND Potentially zoonotic pathogens have been previously detected in bat-associated ticks, but their role in disease transmission and their frequency of feeding on non-bat hosts is poorly known. METHODOLOGY/PRINCIPAL FINDINGS We used molecular blood meal analysis to reveal feeding patterns of the bat-associated tick species Ixodes ariadnae, I. simplex, and I. vespertilionis collected from cave and mine walls in Central and Southeastern Europe. Vertebrate DNA, predominantly from bats, was detected in 43.5% of the samples (70 of 161 ticks) but in these ticks we also detected the DNA of non-chiropteran hosts, such as dog, Canis lupus familiaris, wild boar, Sus scrofa, and horse, Equus caballus, suggesting that bat-associated ticks may exhibit a much broader host range than previously thought, including domestic and wild mammals. Furthermore, we detected the zoonotic bacteria Neoehrlichia mikurensis in bat ticks for the first time, and other bacteria, such as Bartonella and Wolbachia. CONCLUSIONS/SIGNIFICANCE In the light of these findings, the role of bat ticks as disease vectors should be urgently re-evaluated in more diverse host systems, as they may contribute to pathogen transmission between bats and non-chiropteran hosts.
Collapse
Affiliation(s)
- Tamara Szentiványi
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Nóra Takács
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
- HUN-REN-UVMB Climate Change: New Blood-Sucking Parasites and Vector-Borne Pathogens Research Group, Budapest, Hungary
| | - Attila D. Sándor
- HUN-REN-UVMB Climate Change: New Blood-Sucking Parasites and Vector-Borne Pathogens Research Group, Budapest, Hungary
- STAR-UBB Institute, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Áron Péter
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
| | | | - Dávid Kováts
- Hungarian Biodiversity Research Society, Budapest, Hungary
| | - Jeffrey T. Foster
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Péter Estók
- Eszterházy Károly Catholic University, Eger, Hungary
| | - Sándor Hornok
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
- HUN-REN-UVMB Climate Change: New Blood-Sucking Parasites and Vector-Borne Pathogens Research Group, Budapest, Hungary
| |
Collapse
|
3
|
Hartemink N, Gort G, Krawczyk AI, Fonville M, van Vliet AJ, Takken W, Sprong H. Spatial and temporal variation of five different pathogens and symbionts in Ixodes ricinus nymphs in the Netherlands. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2024; 6:100209. [PMID: 39309546 PMCID: PMC11414485 DOI: 10.1016/j.crpvbd.2024.100209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/25/2024] [Accepted: 08/16/2024] [Indexed: 09/25/2024]
Abstract
The incidence of diseases caused by pathogens transmitted by the tick Ixodes ricinus vary over time and space through incompletely understood mechanisms. An important determinant of the disease risk is the density of infected ticks, which is the infection prevalence times the density of questing ticks. We therefore investigated the spatial and temporal variation of four pathogens and one of the most abundant symbionts in Ixodes ricinus in questing nymphs over four years of monthly collections in 12 locations in the Netherlands. The infection prevalence of all microbes showed markedly different patterns with significant spatial variation for Borrelia burgdorferi (s.l.), Neoehrlichia mikurensis, Rickettsia helvetica, and Midichloria mitochondrii, significant seasonal variation of B. burgdorferi (s.l.), N. mikurensis, and M. mitochondrii and a significant interannual variation of R. helvetica. Despite its ubiquitous presence, no spatio-temporal variation was observed for the infection prevalence of B. miyamotoi. The variation in infection prevalence was generally smaller than the variation in the density of nymphs, which fluctuated substantially both seasonally and between locations. This means that the variation in the densities of infected nymphs for all pathogens was mostly the result of the variation in densities of nymphs. We also investigated whether there were positive or negative associations between the symbionts, and more specifically whether ticks infected with vertically transmitted symbionts like M. mitochondrii and R. helvetica, have a higher prevalence of horizontally transmitted symbionts, such as B. burgdorferi (s.l.) and N. mikurensis. We indeed found a clear positive association between M. mitochondrii and B. burgdorferi (s.l.). The positive association between R. helvetica and B. burgdorferi (s.l.) was less clear and was only shown in two locations. Additionally, we found a clear positive association between B. burgdorferi (s.l.) and N. mikurensis, which are both transmitted by rodents. Our longitudinal study indicated strong between-location variation, some seasonal patterns and hardly any differences between years for most symbionts. Positive associations between symbionts were observed, suggesting that infection with a (vertically transmitted) symbiont may influence the probability of infection with other symbionts, or that there is a common underlying mechanism (e.g. feeding on rodents).
Collapse
Affiliation(s)
- Nienke Hartemink
- Biometris, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Gerrit Gort
- Biometris, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Aleksandra I. Krawczyk
- Jacob Blaustein Center for Scientific Cooperation, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Manoj Fonville
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, 3720 BA, Bilthoven, Bilthoven, the Netherlands
| | - Arnold J.H. van Vliet
- Earth Systems and Global Change Group, Wageningen University & Research, Droevendaalsesteeg 3a, 6708 PB, Wageningen, the Netherlands
| | - Willem Takken
- Laboratory of Entomology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Hein Sprong
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, 3720 BA, Bilthoven, Bilthoven, the Netherlands
- Laboratory of Entomology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| |
Collapse
|
4
|
Pustijanac E, Buršić M, Millotti G, Paliaga P, Iveša N, Cvek M. Tick-Borne Bacterial Diseases in Europe: Threats to public health. Eur J Clin Microbiol Infect Dis 2024; 43:1261-1295. [PMID: 38676855 DOI: 10.1007/s10096-024-04836-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Tick-borne diseases, caused by bacterial pathogens, pose a growing threat to public health in Europe. This paper provides an overview of the historical context of the discovery of the most impactful pathogens transmitted by ticks, including Borrelia burgdorferi sensu lato, Rickettsia spp., Anaplasma spp., Francisella spp., Ehrlichia spp., and Neoehrlichia mikurensis. Understanding the historical context of their discovery provides insight into the evolution of our understanding of these pathogens. METHODS AND RESULTS Systematic investigation of the prevalence and transmission dynamics of these bacterial pathogens is provided, highlighting the intricate relationships among ticks, host organisms, and the environment. Epidemiology is explored, providing an in-depth analysis of clinical features associated with infections. Diagnostic methodologies undergo critical examination, with a spotlight on technological advancements that enhance detection capabilities. Additionally, the paper discusses available treatment options, addressing existing therapeutic strategies and considering future aspects. CONCLUSIONS By integrating various pieces of information on these bacterial species, the paper aims to provide a comprehensive resource for researchers and healthcare professionals addressing the impact of bacterial tick-borne diseases in Europe. This review underscores the importance of understanding the complex details influencing bacterial prevalence and transmission dynamics to better combat these emerging public health threats.
Collapse
Affiliation(s)
- Emina Pustijanac
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, Zagrebačka 30, 52100, Pula, Croatia.
| | - Moira Buršić
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, Zagrebačka 30, 52100, Pula, Croatia
| | - Gioconda Millotti
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, Zagrebačka 30, 52100, Pula, Croatia
| | - Paolo Paliaga
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, Zagrebačka 30, 52100, Pula, Croatia
| | - Neven Iveša
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, Zagrebačka 30, 52100, Pula, Croatia
| | - Maja Cvek
- Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000, Rijeka, Croatia
- Teaching Institute of Public Health of the Region of Istria, Nazorova 23, 52100, Pula, Croatia
| |
Collapse
|
5
|
Alabí Córdova AS, Fecchio A, Calchi AC, Dias CM, Mongruel ACB, das Neves LF, Lee DAB, Machado RZ, André MR. Novel Tick-Borne Anaplasmataceae Genotypes in Tropical Birds from the Brazilian Pantanal Wetland. Microorganisms 2024; 12:962. [PMID: 38792791 PMCID: PMC11124045 DOI: 10.3390/microorganisms12050962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/01/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Despite numerous reports of Anaplasmataceae agents in mammals worldwide, few studies have investigated their occurrence in birds. The present study aimed to investigate the occurrence and molecular identity of Anaplasmataceae agents in birds from the Pantanal wetland, Brazil. Blood samples were collected from 93 different species. After DNA extraction, samples positive for the avian β-actin gene were subjected to both a multiplex quantitative real-time (q)PCR for Anaplasma and Ehrlichia targeting the groEL gene and to a conventional PCR for Anaplasmataceae agents targeting the 16S rRNA gene. As a result, 37 (7.4%) birds were positive for Anaplasma spp. and 4 (0.8%) for Ehrlichia spp. in the qPCR assay; additionally, 13 (2.6%) were positive for Anaplasmataceae agents in the PCR targeting the 16S rRNA gene. The Ehrlichia 16S rRNA sequences detected in Arundinicola leucocephala, Ramphocelus carbo, and Elaenia albiceps were positioned closely to Ehrlichia sp. Magellanica. Ehrlichia dsb sequences detected in Agelasticus cyanopus and Basileuterus flaveolus grouped with Ehrlichia minasensis. The 16S rRNA genotypes detected in Crax fasciolata, Pitangus sulphuratus and Furnarius leucopus grouped with Candidatus Allocryptoplasma. The 23S-5S genotypes detected in C. fasciolata, Basileuterus flaveolus, and Saltator coerulescens were related to Anaplasma phagocytophilum. In conclusion, novel genotypes of Anaplasma, Ehrlichia, and Candidatus Allocryptoplasma were detected in birds from the Pantanal wetland.
Collapse
Affiliation(s)
- Amir Salvador Alabí Córdova
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, Sao Paulo State University “Júlio de Mesquita Filho” (FCAV/UNESP), Jaboticabal 14884-900, Brazil; (A.S.A.C.); (A.C.C.); (C.M.D.); (A.C.B.M.); (L.F.d.N.); (D.A.B.L.); (R.Z.M.)
| | - Alan Fecchio
- Department of Ornithology, Academy of Natural Sciences of Drexel University, Philadelphia, PA 19103, USA;
| | - Ana Cláudia Calchi
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, Sao Paulo State University “Júlio de Mesquita Filho” (FCAV/UNESP), Jaboticabal 14884-900, Brazil; (A.S.A.C.); (A.C.C.); (C.M.D.); (A.C.B.M.); (L.F.d.N.); (D.A.B.L.); (R.Z.M.)
| | - Clara Morato Dias
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, Sao Paulo State University “Júlio de Mesquita Filho” (FCAV/UNESP), Jaboticabal 14884-900, Brazil; (A.S.A.C.); (A.C.C.); (C.M.D.); (A.C.B.M.); (L.F.d.N.); (D.A.B.L.); (R.Z.M.)
| | - Anna Claudia Baumel Mongruel
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, Sao Paulo State University “Júlio de Mesquita Filho” (FCAV/UNESP), Jaboticabal 14884-900, Brazil; (A.S.A.C.); (A.C.C.); (C.M.D.); (A.C.B.M.); (L.F.d.N.); (D.A.B.L.); (R.Z.M.)
| | - Lorena Freitas das Neves
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, Sao Paulo State University “Júlio de Mesquita Filho” (FCAV/UNESP), Jaboticabal 14884-900, Brazil; (A.S.A.C.); (A.C.C.); (C.M.D.); (A.C.B.M.); (L.F.d.N.); (D.A.B.L.); (R.Z.M.)
| | - Daniel Antonio Braga Lee
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, Sao Paulo State University “Júlio de Mesquita Filho” (FCAV/UNESP), Jaboticabal 14884-900, Brazil; (A.S.A.C.); (A.C.C.); (C.M.D.); (A.C.B.M.); (L.F.d.N.); (D.A.B.L.); (R.Z.M.)
| | - Rosangela Zacarias Machado
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, Sao Paulo State University “Júlio de Mesquita Filho” (FCAV/UNESP), Jaboticabal 14884-900, Brazil; (A.S.A.C.); (A.C.C.); (C.M.D.); (A.C.B.M.); (L.F.d.N.); (D.A.B.L.); (R.Z.M.)
| | - Marcos Rogério André
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, Sao Paulo State University “Júlio de Mesquita Filho” (FCAV/UNESP), Jaboticabal 14884-900, Brazil; (A.S.A.C.); (A.C.C.); (C.M.D.); (A.C.B.M.); (L.F.d.N.); (D.A.B.L.); (R.Z.M.)
| |
Collapse
|
6
|
Veinović G, Sukara R, Mihaljica D, Penezić A, Ćirović D, Tomanović S. The Occurrence and Diversity of Tick-Borne Pathogens in Small Mammals from Serbia. Vector Borne Zoonotic Dis 2024; 24:285-292. [PMID: 38346321 DOI: 10.1089/vbz.2023.0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
Background: Despite abundance of small mammals in Serbia, there is no information on their role in the epidemiology of tick-borne diseases (TBDs). This retrospective study aimed to identify different tick-borne pathogens (TBPs) in small mammals in Serbia collected during 2011. Materials and Methods: A total of 179 small mammals were collected from seven different localities in Serbia. The five localities belong to the capital city of Serbia-Belgrade: recreational areas-Ada Ciganlija, Titov gaj, and Košutnjak as well as mountainous suburban areas used for hiking-Avala and Kosmaj. The locality Veliko Gradište is a tourist place in northeastern Serbia, whereas the locality Milošev Do is a remote area in western Serbia with minor human impact on the environment. Results: The results of the presented retrospective study are the first findings of Rickettsia helvetica, Rickettsia monacensis, Neoehrlichia mikurensis, Borrelia afzelii, Borrelia miyamotoi, Babesia microti, Hepatozoon canis, and Coxiella burnetii in small mammals in Serbia. The presence of R. helvetica was confirmed in two Apodemus flavicollis, the presence of one of the following pathogens, R. monacensis, B. afzelii, H. canis, Ba. microti, and N. mikurensis was confirmed in one A. flavicollis each, whereas the presence of B. miyamotoi was confirmed in one Apodemus agrarius. Coinfection with B. afzelii and Ba. microti was confirmed in one A. flavicollis. DNA of C. burnetii was detected in 3 of 18 pools. Conclusions: The results confirm that detected pathogens circulate in the sylvatic cycle in Serbia and point to small mammals as potential reservoir hosts for the detected TBPs. Further large-scale studies on contemporary samples are needed to clarify the exact role of particular small mammal species in the epidemiology of TBDs caused by the detected pathogens.
Collapse
Affiliation(s)
- Gorana Veinović
- Group for Medical Entomology, Centre of Excellence for Food and Vector-Borne Zoonoses, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ratko Sukara
- Group for Medical Entomology, Centre of Excellence for Food and Vector-Borne Zoonoses, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Darko Mihaljica
- Group for Medical Entomology, Centre of Excellence for Food and Vector-Borne Zoonoses, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | | | - Duško Ćirović
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Snežana Tomanović
- Group for Medical Entomology, Centre of Excellence for Food and Vector-Borne Zoonoses, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
7
|
Boulanger N, Aran D, Maul A, Camara BI, Barthel C, Zaffino M, Lett MC, Schnitzler A, Bauda P. Multiple factors affecting Ixodes ricinus ticks and associated pathogens in European temperate ecosystems (northeastern France). Sci Rep 2024; 14:9391. [PMID: 38658696 PMCID: PMC11579317 DOI: 10.1038/s41598-024-59867-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 04/16/2024] [Indexed: 04/26/2024] Open
Abstract
In Europe, the main vector of tick-borne zoonoses is Ixodes ricinus, which has three life stages. During their development cycle, ticks take three separate blood meals from a wide variety of vertebrate hosts, during which they can acquire and transmit human pathogens such as Borrelia burgdorferi sensu lato, the causative agent of Lyme borreliosis. In this study conducted in Northeastern France, we studied the importance of soil type, land use, forest stand type, and temporal dynamics on the abundance of ticks and their associated pathogens. Negative binomial regression modeling of the results indicated that limestone-based soils were more favorable to ticks than sandstone-based soils. The highest tick abundance was observed in forests, particularly among coniferous and mixed stands. We identified an effect of habitat time dynamics in forests and in wetlands: recent forests and current wetlands supported more ticks than stable forests and former wetlands, respectively. We observed a close association between tick abundance and the abundance of Cervidae, Leporidae, and birds. The tick-borne pathogens responsible for Lyme borreliosis, anaplasmosis, and hard tick relapsing fever showed specific habitat preferences and associations with specific animal families. Machine learning algorithms identified soil related variables as the best predictors of tick and pathogen abundance.
Collapse
Affiliation(s)
- Nathalie Boulanger
- Université de Strasbourg UR3073: PHAVI: Groupe Borrelia, 67000, Strasbourg, France.
- Centre National de Référence Borrelia, Centre Hospitalier Régional Universitaire, Strasbourg, France.
| | - Delphine Aran
- Université de Lorraine, CNRS, LIEC, 57000, Metz, France
| | - Armand Maul
- Université de Lorraine, CNRS, LIEC, 57000, Metz, France
| | - Baba Issa Camara
- Université de Lorraine, CNRS, LIEC, 57000, Metz, France
- Université de Lorraine, LCOMS EA 7306, 57073, Metz, France
| | - Cathy Barthel
- Université de Strasbourg UR3073: PHAVI: Groupe Borrelia, 67000, Strasbourg, France
| | - Marie Zaffino
- Université de Lorraine, CNRS, LIEC, 57000, Metz, France
| | | | - Annick Schnitzler
- Université de Lorraine, CNRS, LIEC, 57000, Metz, France
- Museum National d'Histoire Naturelle, UMR 7194 HNHP CNRS/MNHN/UPVD, 75000, Paris, France
| | - Pascale Bauda
- Université de Lorraine, CNRS, LIEC, 57000, Metz, France.
| |
Collapse
|
8
|
Stegmüller S, Qi W, Torgerson PR, Fraefel C, Kubacki J. Hazard potential of Swiss Ixodes ricinus ticks: Virome composition and presence of selected bacterial and protozoan pathogens. PLoS One 2023; 18:e0290942. [PMID: 37956168 PMCID: PMC10642849 DOI: 10.1371/journal.pone.0290942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Ticks play an important role in transmitting many different emerging zoonotic pathogens that pose a significant threat to human and animal health. In Switzerland and abroad, the number of tick-borne diseases, in particular tick-borne encephalitis (TBE), has been increasing over the last few years. Thus, it remains essential to investigate the pathogen spectrum of ticks to rapidly detect emerging pathogens and initiate the necessary measures. To assess the risk of tick-borne diseases in different regions of Switzerland, we collected a total of 10'286 ticks from rural and urban areas in ten cantons in 2021 and 2022. Ticks were pooled according to species, developmental stage, gender, and collection site, and analyzed using next generation sequencing (NGS) and quantitative polymerase chain reaction (qPCR). The metagenomic analysis revealed for the first time the presence of Alongshan virus (ALSV) in Swiss ticks. Interestingly, the pool-prevalence of ALSV was higher than that of tick-borne encephalitis virus (TBEV). Furthermore, several TBEV foci have been identified and pool prevalence of selected non-viral pathogens determined.
Collapse
Affiliation(s)
- Stefanie Stegmüller
- Institute of Virology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Weihong Qi
- Functional Genomics Center Zurich, Zurich, Switzerland
| | - Paul R. Torgerson
- Section of Epidemiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Cornel Fraefel
- Institute of Virology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Jakub Kubacki
- Institute of Virology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology (DIP), Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
9
|
Corduneanu A, Zając Z, Kulisz J, Wozniak A, Foucault-Simonin A, Moutailler S, Wu-Chuang A, Peter Á, Sándor AD, Cabezas-Cruz A. Detection of bacterial and protozoan pathogens in individual bats and their ectoparasites using high-throughput microfluidic real-time PCR. Microbiol Spectr 2023; 11:e0153123. [PMID: 37606379 PMCID: PMC10581248 DOI: 10.1128/spectrum.01531-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/05/2023] [Indexed: 08/23/2023] Open
Abstract
Among the most studied mammals in terms of their role in the spread of various pathogens with possible zoonotic effects are bats. These are animals with a very complex lifestyle, diet, and behavior. They are able to fly long distances, thus maintaining and spreading the pathogens they may be carrying. These pathogens also include vector-borne parasites and bacteria that can be spread by ectoparasites such as ticks and bat flies. In the present study, high-throughput screening was performed and we detected three bacterial pathogens: Bartonella spp., Neoehrlichia mikurensis and Mycoplasma spp., and a protozoan parasite: Theileria spp. in paired samples from bats (blood and ectoparasites). In the samples from the bat-arthropod pairs, we were able to detect Bartonella spp. and Mycoplasma spp. which also showed a high phylogenetic diversity, demonstrating the importance of these mammals and the arthropods associated with them in maintaining the spread of pathogens. Previous studies have also reported the presence of these pathogens, with one exception, Neoehrlichia mikurensis, for which phylogenetic analysis revealed less genetic divergence. High-throughput screening can detect more bacteria and parasites at once, reduce screening costs, and improve knowledge of bats as reservoirs of vector-borne pathogens. IMPORTANCE The increasing number of zoonotic pathogens is evident through extensive studies and expanded animal research. Bats, known for their role as reservoirs for various viruses, continue to be significant. However, new findings highlight the emergence of Bartonella spp., such as the human-infecting B. mayotimonensis from bats. Other pathogens like N. mikurensis, Mycoplasma spp., and Theileria spp. found in bat blood and ectoparasites raise concerns, as their impact remains uncertain. These discoveries underscore the urgency for heightened vigilance and proactive measures to understand and monitor zoonotic pathogens. By deepening our knowledge and collaboration, we can mitigate these risks, safeguarding human and animal well-being.
Collapse
Affiliation(s)
- Alexandra Corduneanu
- Department of Animal Breeding and Animal Production, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Zbigniew Zając
- Department of Biology and Parasitology, Medical University of Lublin, Lublin, Poland
| | - Joanna Kulisz
- Department of Biology and Parasitology, Medical University of Lublin, Lublin, Poland
| | - Aneta Wozniak
- Department of Biology and Parasitology, Medical University of Lublin, Lublin, Poland
| | - Angélique Foucault-Simonin
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Sara Moutailler
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Alejandra Wu-Chuang
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Áron Peter
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
| | - Attila D. Sándor
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
- ELKH-ÁTE Climate Change: New Blood-sucking Parasites and Vector-borne Pathogens Research Group, Budapest, Hungary
| | - Alejandro Cabezas-Cruz
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| |
Collapse
|
10
|
Margini C, Maldonado R, Keller P, Banz Y, Escher R, Waldegg G. Fever of Unknown Origin, a Vascular Event, and Immunosuppression in Tick-Endemic Areas: Think About Neoehrlichiosis. Cureus 2023; 15:e40617. [PMID: 37476120 PMCID: PMC10354681 DOI: 10.7759/cureus.40617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 07/22/2023] Open
Abstract
Three patients were referred to our hospital because of fever of unknown origin (FUO) and thrombosis or thrombophlebitis. All of them had been under immunosuppression (IS) with rituximab. Intensive diagnostics for FUO and blood cultures remained negative. Finally, the association of fever, immunosuppression, and a vascular event led to the suspicion of Candidatus Neoehrlichia mikurensis (CNM) infection. The diagnosis was confirmed by species-specific polymerase chain reaction (PCR) in the peripheral blood. Therapy with doxycycline or rifampicin led to the resolution of the disease. A liver biopsy was performed in one patient due to hepatomegaly and elevated liver enzymes demonstrating hemophagocytosis. To our knowledge, this is the first histopathological study of liver tissue in CNM infection. The evidence of hemophagocytosis raises the question of whether symptomatic CNM infection might be in part related to host inflammatory and immune responses.
Collapse
Affiliation(s)
| | | | - Peter Keller
- Infectious Disease, University of Bern, Bern, CHE
| | - Yara Banz
- Pathology, University of Bern, Bern, CHE
| | | | | |
Collapse
|
11
|
Haring V, Jacob J, Walther B, Trost M, Stubbe M, Mertens-Scholz K, Melzer F, Scuda N, Gentil M, Sixl W, Schäfer T, Stanko M, Wolf R, Pfeffer M, Ulrich RG, Obiegala A. White-Toothed Shrews (Genus Crocidura): Potential Reservoirs for Zoonotic Leptospira spp. and Arthropod-Borne Pathogens? Pathogens 2023; 12:781. [PMID: 37375471 DOI: 10.3390/pathogens12060781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Three species of white-toothed shrews of the order Eulipotyphla are present in central Europe: the bicolored (Crocidura leucodon), greater (Crocidura russula) and lesser (Crocidura suaveolens) white-toothed shrews. Their precise distribution in Germany is ill-defined and little is known about them as reservoirs for zoonotic pathogens (Leptospira spp., Coxiella burnetii, Brucella spp., Anaplasma phagocytophilum, Babesia spp., Neoehrlichia mikurensis and Bartonella spp.). We investigated 372 Crocidura spp. from Germany (n = 341), Austria (n = 18), Luxembourg (n = 2) and Slovakia (n = 11). West European hedgehogs (Erinaceus europaeus) were added to compare the presence of pathogens in co-occurring insectivores. Crocidura russula were distributed mainly in western and C. suaveolens mainly in north-eastern Germany. Crocidura leucodon occurred in overlapping ranges with the other shrews. Leptospira spp. DNA was detected in 28/227 C. russula and 2/78 C. leucodon samples. Further characterization revealed that Leptospira kirschneri had a sequence type (ST) 100. Neoehrlichia mikurensis DNA was detected in spleen tissue from 2/213 C. russula samples. Hedgehogs carried DNA from L. kirschneri (ST 100), L. interrogans (ST 24), A. phagocytophilum and two Bartonella species. This study improves the knowledge of the current distribution of Crocidura shrews and identifies C. russula as carrier of Leptospira kirschneri. However, shrews seem to play little-to-no role in the circulation of the arthropod-borne pathogens investigated.
Collapse
Affiliation(s)
- Viola Haring
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Jens Jacob
- Institute for Epidemiology and Pathogen Diagnostics, Rodent Research, Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Toppheideweg 88, 48161 Münster, Germany
| | - Bernd Walther
- Institute for Epidemiology and Pathogen Diagnostics, Rodent Research, Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Toppheideweg 88, 48161 Münster, Germany
| | - Martin Trost
- Dezernat Artenschutz, Staatliche Vogelschutzwarte und CITES, Landesamt für Umweltschutz Sachsen-Anhalt, Reideburger Straße 47, 06116 Halle (Saale), Germany
| | - Michael Stubbe
- Zentralmagazin Naturwissenschaftlicher Sammlungen, Martin-Luther-Universität Halle-Wittenberg, Domplatz 4, 06108 Halle (Saale), Germany
| | - Katja Mertens-Scholz
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Naumburger Str. 96a, 07743 Jena, Germany
| | - Falk Melzer
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Naumburger Str. 96a, 07743 Jena, Germany
| | - Nelly Scuda
- Bavarian Health and Food Safety Authority, Eggenreuther Weg 43, 91058 Erlangen, Germany
| | - Michaela Gentil
- Laboklin GmbH & Co.KG, Steubenstrasse 4, 97688 Bad Kissingen, Germany
| | - Wolfdieter Sixl
- Institute of Hygiene, University of Graz, 8010 Graz, Austria
| | - Tanja Schäfer
- Wildtierhilfe Schäfer e.V., Waldstraße 275, 63071 Offenbach, Germany
| | - Michal Stanko
- Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 04001 Košice, Slovakia
| | - Ronny Wolf
- Institute of Biology, Molecular Evolution and Systematics of Animals, University of Leipzig, Talstraße 33, 04103 Leipzig, Germany
| | - Martin Pfeffer
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, An den Tierkliniken 41-43, 04103 Leipzig, Germany
| | - Rainer G Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Anna Obiegala
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, An den Tierkliniken 41-43, 04103 Leipzig, Germany
| |
Collapse
|
12
|
Sun J, Liu H, Yao XY, Zhang YQ, Lv ZH, Shao JW. Circulation of four species of Anaplasmataceae bacteria in ticks in Harbin, northeastern China. Ticks Tick Borne Dis 2023; 14:102136. [PMID: 36736131 DOI: 10.1016/j.ttbdis.2023.102136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023]
Abstract
Ticks play an important role in the evolution and transmission of Anaplasmataceae bacteria which are agents of emerging infectious diseases. In this study, a total of 1286 adult ticks belonging to five species were collected from cattle, goats, horses and vegetation in Harbin area, Heilongjiang province, northeastern China. The tick-borne Anaplasmataceae bacteria were identified by amplifying and sequencing the 16S rRNA (rrs) and heat shock protein-60 encoding (groEL) genes. The results showed that Ixodes persulcatus was dominant (38.8%, 499/1283) among the five tick species, and Anaplasmataceae bacteria were detected in all tick species with an overall prevalence of 7.4%. Four species of Anaplasmataceae bacteria (Anaplasma phagocytophilum, Anaplasma ovis, Anaplasma bovis, and "Candidatus Neoehrlichia mikurensis"), which are pathogenic to humans and/or animals, were identified from tick samples by phylogenetic analyzes of the rrs and groEL gene sequences. Interestingly, the cluster 1 strains were first identified in Asian, and a novel cluster was also detected in this study. These data revealed the genetic diversity of Anaplasmataceae bacteria circulating in ticks in Harbin area, highlighting the need to investigate these tick-borne pathogens and their risks to human and animal health.
Collapse
Affiliation(s)
- Jing Sun
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong Province, China
| | - Hong Liu
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong Province, China
| | - Xin-Yan Yao
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong Province, China
| | - Yu-Qian Zhang
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong Province, China
| | - Zhi-Hang Lv
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong Province, China
| | - Jian-Wei Shao
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong Province, China.
| |
Collapse
|
13
|
Schiller D, Aufreiter L, Schöfl R. [Fever of unusual cause]. Rev Med Interne 2023; 44:146-147. [PMID: 36535845 DOI: 10.1016/j.revmed.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/11/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022]
Affiliation(s)
- D Schiller
- Service de médecine interne IV, Ordensklinikum Linz Barmherzige Schwestern, 4, Seilerstätte, 4010 Linz, Autriche.
| | - L Aufreiter
- Service de médecine interne IV, Ordensklinikum Linz Barmherzige Schwestern, 4, Seilerstätte, 4010 Linz, Autriche
| | - R Schöfl
- Service de médecine interne IV, Ordensklinikum Linz Barmherzige Schwestern, 4, Seilerstätte, 4010 Linz, Autriche
| |
Collapse
|
14
|
Tołkacz K, Kowalec M, Alsarraf M, Grzybek M, Dwużnik-Szarek D, Behnke JM, Bajer A. Candidatus Neoehrlichia mikurensis and Hepatozoon sp. in voles (Microtus spp.): occurrence and evidence for vertical transmission. Sci Rep 2023; 13:1733. [PMID: 36720952 PMCID: PMC9889374 DOI: 10.1038/s41598-023-28346-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/17/2023] [Indexed: 02/01/2023] Open
Abstract
Candidatus Neoehrlichia mikurensis (CNM) and Hepatozoon spp. are important vector-borne parasites of humans and animals. CNM is a relatively recently discovered pathogen of humans. Hepatozoon are parasites of reptiles, amphibians and mammals, commonly found in rodents and carnivores worldwide. The present study aimed to determine the prevalence of CNM and Hepatozoon spp. in three species of Microtus and to assess the occurrence of vertical transmission in naturally-infected voles. Molecular techniques were used to detect pathogen DNA in blood and tissue samples of captured voles and their offspring. The prevalence of CNM in the vole community ranged 24-47% depending on Microtus species. The DNA of CNM was detected in 21% of pups from three litters of six infected Microtus dams (two Microtus arvalis and one M. oeconomus) and in 3/45 embryos (6.6%) from two litters of eight CNM-infected pregnant females. We detected Hepatozoon infection in 14% of M. arvalis and 9% of M. oeconomus voles. Hepatozoon sp. DNA was detected in 48.7% of pups from seven litters (6 M. arvalis and 1 M. oeconomus) and in two embryos (14.3%) obtained from one M. arvalis litter. The high prevalence of CNM infections in the Microtus spp. community may be a result of a relatively high rate of vertical transmission among naturally infected voles. Vertical transmission was also demonstrated for Hepatozoon sp. in M. arvalis and M. oeconomus. Our study underlines the significance of alternative routes of transmission of important vector-borne pathogens.
Collapse
Affiliation(s)
- Katarzyna Tołkacz
- Department of Eco-epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland. .,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland.
| | - Maciej Kowalec
- Department of Eco-epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland
| | - Mohammed Alsarraf
- Department of Eco-epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland
| | - Maciej Grzybek
- Department of Tropical Parasitology, Institute of Maritime and Tropical Medicine in Gdynia, Medical University of Gdansk, Powstania Styczniowego 9, 81-512, Gdynia, Poland
| | - Dorota Dwużnik-Szarek
- Department of Eco-epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland
| | - Jerzy M Behnke
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Anna Bajer
- Department of Eco-epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland
| |
Collapse
|
15
|
Ouass S, Boulanger N, Lelouvier B, Insonere JLM, Lacroux C, Krief S, Asalu E, Rahola N, Duron O. Diversity and phylogeny of the tick-borne bacterial genus Candidatus Allocryptoplasma (Anaplasmataceae). Parasite 2023; 30:13. [PMID: 37162293 PMCID: PMC10171070 DOI: 10.1051/parasite/2023014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/20/2023] [Indexed: 05/11/2023] Open
Abstract
The family Anaplasmataceae includes tick-borne bacteria of major public and veterinary health interest, as best illustrated by members of the genera Anaplasma and Ehrlichia. Recent epidemiological surveys have also reported on the presence of a novel putative genus in the Anaplasmataceae, Candidatus Allocryptoplasma, previously described as Candidatus Cryptoplasma in the western black-legged tick, Ixodes pacificus. However, the genetic diversity of Ca. Allocryptoplasma and its phylogenetic relationship with other Anaplasmataceae remain unclear. In this study, we developed a multi-locus sequence typing approach, examining the DNA sequence variation at five genes of Ca. Allocryptoplasma found in ticks. Combining this multi-locus sequence typing and genetic data available on public databases, we found that substantial genetic diversity of Ca. Allocryptoplasma is present in Ixodes, Amblyomma and Haemaphysalis spp. ticks on most continents. Further analyses confirmed that the Ca. Allocryptoplasma of ticks, the Ca. Allocryptoplasma of lizards and some Anaplasma-like bacteria of wild mice cluster into a monophyletic genus, divergent from all other genera of the family Anaplasmataceae. Candidatus Allocryptoplasma appears as a sister genus of Anaplasma and, with the genera Ehrlichia and Neoehrlichia, they form a monophyletic subgroup of Anaplasmataceae associated with tick-borne diseases. The detection of genetically distinct Ca. Allocryptoplasma in ticks of significant medical or veterinary interest supports the hypothesis that it is an emergent genus of tick-borne pathogens of general concern.
Collapse
Affiliation(s)
- Sofian Ouass
- MIVEGEC, University of Montpellier (UM), Centre National de la Recherche Scientifique (CNRS), Institut pour la Recherche de la Développement (IRD), 34394 Montpellier, France
| | - Nathalie Boulanger
- University of Strasbourg, French National Reference Center for Borrelia, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | | | | | - Camille Lacroux
- UMR 7206 CNRS/MNHN/P7, Eco-anthropologie, Muséum National d'Histoire Naturelle, Musée de l'Homme, 17 place du Trocadéro, 75116, Paris, France - La Phocéenne de Cosmétique, ZA Les Roquassiers, 174 Rue de la Forge, 13300 Salon-de-Provence, France - Sebitoli Chimpanzee Project, Great Ape Conservation Project, Kibale National Park, Fort Portal, Uganda
| | - Sabrina Krief
- UMR 7206 CNRS/MNHN/P7, Eco-anthropologie, Muséum National d'Histoire Naturelle, Musée de l'Homme, 17 place du Trocadéro, 75116, Paris, France - Sebitoli Chimpanzee Project, Great Ape Conservation Project, Kibale National Park, Fort Portal, Uganda
| | - Edward Asalu
- Sebitoli Chimpanzee Project, Great Ape Conservation Project, Kibale National Park, Fort Portal, Uganda - Uganda Wildlife Authority, Kibale National Park, Uganda
| | - Nil Rahola
- MIVEGEC, University of Montpellier (UM), Centre National de la Recherche Scientifique (CNRS), Institut pour la Recherche de la Développement (IRD), 34394 Montpellier, France
| | - Olivier Duron
- MIVEGEC, University of Montpellier (UM), Centre National de la Recherche Scientifique (CNRS), Institut pour la Recherche de la Développement (IRD), 34394 Montpellier, France
| |
Collapse
|
16
|
Lu M, Meng C, Zhang B, Wang X, Tian J, Tang G, Wang W, Li N, Li M, Xu X, Sun Y, Duan C, Qin X, Li K. Prevalence of Spotted Fever Group Rickettsia and Candidatus Lariskella in Multiple Tick Species from Guizhou Province, China. Biomolecules 2022; 12:1701. [PMID: 36421715 PMCID: PMC9688252 DOI: 10.3390/biom12111701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2023] Open
Abstract
Rickettsiales (Rickettsia spp., Ehrlichia spp., and Anaplasma spp., etc.) are generally recognized as potentially emerging tick-borne pathogens. However, some bacteria and areas in China remain uninvestigated. In this study, we collected 113 ticks from mammals in Guizhou Province, Southwest China, and screened for the Rickettsiales bacteria. Subsequently, two spotted fever group Rickettsia species and one Candidatus Lariskella sp. were detected and characterized. "Candidatus Rickettsia jingxinensis" was detected in Rhipicephalus microplus (1/1), Haemaphysalis flava (1/3, 33.33%), Haemaphysalis kitaokai (1/3), and Ixodes sinensis (4/101, 3.96%), whereas Rickettsia monacensis was positive in H. flava (1/3), H. kitaokai (2/3), and I. sinensis ticks (74/101, 73.27%). At least two variants/sub-genotypes were identified in the R. monacensis isolates, and the strikingly high prevalence of R. monacensis may suggest a risk of human infection. Unexpectedly, a Candidatus Lariskella sp. belonging to the family Candidatus Midichloriaceae was detected from Ixodes ovatus (1/4) and I. sinensis (10/101, 9.90%). The gltA and groEL gene sequences were successfully obtained, and they show the highest (74.63-74.89% and 73.31%) similarities to "Candidatus Midichloria mitochondrii", respectively. Herein, we name the species "Candidatus Lariskella guizhouensis". These may be the first recovered gltA and groEL sequences of the genus Candidatus Lariskella.
Collapse
Affiliation(s)
- Miao Lu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping District, Beijing 102206, China
| | - Chao Meng
- College of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an 271016, China
| | - Bing Zhang
- School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830011, China
| | - Xiao Wang
- The Military General Hospital of Xinjiang PLA, Urumqi 830000, China
| | - Junhua Tian
- Wuhan Center for Disease Control and Prevention, Wuhan 430024, China
| | - Guangpeng Tang
- Guizhou Center for Disease Control and Prevention, Guiyang 550004, China
| | - Wen Wang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping District, Beijing 102206, China
| | - Na Li
- College of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an 271016, China
| | - Mengyao Li
- College of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an 271016, China
| | - Xiaoyu Xu
- College of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an 271016, China
| | - Yue Sun
- College of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an 271016, China
| | - Chengyu Duan
- College of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an 271016, China
| | - Xincheng Qin
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping District, Beijing 102206, China
| | - Kun Li
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping District, Beijing 102206, China
- Tianjin Key Laboratory of Food and Biotechnology, Tianjin University of Commerce, Beichen District, Tianjin 300134, China
| |
Collapse
|
17
|
Orkun Ö. Comprehensive screening of tick-borne microorganisms indicates that a great variety of pathogens are circulating between hard ticks (Ixodoidea: Ixodidae) and domestic ruminants in natural foci of Anatolia. Ticks Tick Borne Dis 2022; 13:102027. [PMID: 35970093 DOI: 10.1016/j.ttbdis.2022.102027] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022]
Abstract
Grazing domestic ruminants serve as important reservoirs and/or amplificatory hosts in the ecology of tick-borne pathogens (TBPs) and tick vectors in the natural foci; however, many enzootic life cycles including ruminants and ticks are still unknown. This study investigated a wide range of TBPs circulating among ticks and grazing ruminants in the natural foci of Anatolia, Turkey. Tick specimens (n = 1815) were collected from cattle, sheep, and goats in three ecologically distinct areas (wooded, transitional, and semi-arid zones) of Anatolia and identified by species: Dermacentor marginatus, Dermacentor reticulatus, Hyalomma anatolicum, Hyalomma excavatum, Hyalomma marginatum, Hyalomma scupense, Haemaphysalis inermis, Haemaphysalis parva, Haemaphysalis punctata, Haemaphysalis sulcata, Ixodes ricinus, Rhipicephalus bursa, and Rhipicephalus turanicus. PCR-sequencing analyses revealed TBPs of great diversity, with 32 different agents identified in the ticks: six Babesia spp. (Babesia occultans, Babesia crassa, Babesia microti, Babesia rossi, Babesia sp. tavsan1, and Babesia sp. Ucbas); four Theileria spp., including one putative novel species (Theileria annulata, Theileria orientalis, Theileria ovis, and Theileria sp.); one Hepatozoon sp.; four Anaplasma spp., including one novel genotype (Anaplasma phagocytophilum, Anaplasma marginale, Anaplasma ovis, and Anaplasma sp.); six unnamed Ehrlichia spp. genotypes; Neoehrlichia mikurensis; nine spotted fever group rickettsiae, including one putative novel species (Rickettsia aeschlimannii, Rickettsia slovaca, Rickettsia hoogstraalii, Rickettsia monacensis with strain IRS3, Rickettsia mongolitimonae, Rickettsia raoultii, Candidatus Rickettsia goldwasserii, Candidatus Rickettsia barbariae, and Rickettsia sp.); and Borrelia valaisiana. Detailed phylogenetic analyses showed that some of the detected pathogens represent more than one haplotype, potentially relating to the tick species or the host. Additionally, the presence of Neoehrlichia mikurensis, an emerging pathogen for humans, was reported for the first time in Turkey, expanding its geographical distribution. Consequently, this study describes some previously unknown tick-borne protozoan and bacterial species/genotypes and provides informative epidemiological data on TBPs, which are related to animal and human health, serving the one health concept.
Collapse
Affiliation(s)
- Ömer Orkun
- Ticks and Tick-Borne Diseases Research Laboratory, Department of Parasitology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey.
| |
Collapse
|
18
|
Krawczyk AI, Röttjers S, Coimbra-Dores MJ, Heylen D, Fonville M, Takken W, Faust K, Sprong H. Tick microbial associations at the crossroad of horizontal and vertical transmission pathways. Parasit Vectors 2022; 15:380. [PMID: 36271430 PMCID: PMC9585727 DOI: 10.1186/s13071-022-05519-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Microbial communities can affect disease risk by interfering with the transmission or maintenance of pathogens in blood-feeding arthropods. Here, we investigated whether bacterial communities vary between Ixodes ricinus nymphs which were or were not infected with horizontally transmitted human pathogens. METHODS Ticks from eight forest sites were tested for the presence of Borrelia burgdorferi sensu lato, Babesia spp., Anaplasma phagocytophilum, and Neoehrlichia mikurensis by quantitative polymerase chain reaction (qPCR), and their microbiomes were determined by 16S rRNA amplicon sequencing. Tick bacterial communities clustered poorly by pathogen infection status but better by geography. As a second approach, we analysed variation in tick microorganism community structure (in terms of species co-infection) across space using hierarchical modelling of species communities. For that, we analysed almost 14,000 nymphs, which were tested for the presence of horizontally transmitted pathogens B. burgdorferi s.l., A. phagocytophilum, and N. mikurensis, and the vertically transmitted tick symbionts Rickettsia helvetica, Rickettsiella spp., Spiroplasma ixodetis, and Candidatus Midichloria mitochondrii. RESULTS With the exception of Rickettsiella spp., all microorganisms had either significant negative (R. helvetica and A. phagocytophilum) or positive (S. ixodetis, N. mikurensis, and B. burgdorferi s.l.) associations with M. mitochondrii. Two tick symbionts, R. helvetica and S. ixodetis, were negatively associated with each other. As expected, both B. burgdorferi s.l. and N. mikurensis had a significant positive association with each other and a negative association with A. phagocytophilum. Although these few specific associations do not appear to have a large effect on the entire microbiome composition, they can still be relevant for tick-borne pathogen dynamics. CONCLUSIONS Based on our results, we propose that M. mitochondrii alters the propensity of ticks to acquire or maintain horizontally acquired pathogens. The underlying mechanisms for some of these remarkable interactions are discussed herein and merit further investigation. Positive and negative associations between and within horizontally and vertically transmitted symbionts.
Collapse
Affiliation(s)
- Aleksandra Iwona Krawczyk
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, 3720 MA, Bilthoven, The Netherlands. .,Laboratory of Entomology, Wageningen University & Research, 6708PB, Wageningen, The Netherlands.
| | - Sam Röttjers
- Department of Microbiology, Immunology and Transplantation, Laboratory of Molecular Bacteriology, KU Leuven, Rega Institute for Medical Research, 3000, Leuven, Belgium
| | - Maria João Coimbra-Dores
- Centre for Environmental and Marine Studies (CESAM), Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Dieter Heylen
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Diepenbeek, Belgium.,Department of Ecology and Evolutionary Biology, Princeton University, 106A Guyot Ln, Princeton, NJ, 08544, USA
| | - Manoj Fonville
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, 3720 MA, Bilthoven, The Netherlands
| | - Willem Takken
- Laboratory of Entomology, Wageningen University & Research, 6708PB, Wageningen, The Netherlands
| | - Karoline Faust
- Department of Microbiology, Immunology and Transplantation, Laboratory of Molecular Bacteriology, KU Leuven, Rega Institute for Medical Research, 3000, Leuven, Belgium
| | - Hein Sprong
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, 3720 MA, Bilthoven, The Netherlands.
| |
Collapse
|
19
|
Doi K, Tokuyoshi M, Morishima K, Kogi K, Watari Y. Differential Tick-Infestation Rate between Rattus norvegicus and R. rattus, with the First Records of the Ixodid Tick Ixodes granulatus and Its Infestation in Rodents, Free-Ranging Cats, and Humans from Mikura-Shima Island, Japan. MAMMAL STUDY 2022. [DOI: 10.3106/ms2022-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Kandai Doi
- JSPS research fellow, Forestry and Forest Products Research Institute, Matsunosato, Tsukuba, Ibaraki 305-8687, Japan
| | - Mikuni Tokuyoshi
- Graduate School of Agriculture and Life Science, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kaori Morishima
- Forestry and Forest Products Research Institute, Matsunosato, Tsukuba, Ibaraki 305-8687, Japan
| | - Kazunobu Kogi
- Mikura Island Tourist Information Center, Mikura-shima village, Tokyo 100-1301, Japan
| | - Yuya Watari
- Forestry and Forest Products Research Institute, Matsunosato, Tsukuba, Ibaraki 305-8687, Japan
| |
Collapse
|
20
|
Azagi T, Harms M, Swart A, Fonville M, Hoornstra D, Mughini-Gras L, Hovius JW, Sprong H, van den Wijngaard C. Self-reported symptoms and health complaints associated with exposure to Ixodes ricinus-borne pathogens. Parasit Vectors 2022; 15:93. [PMID: 35303944 PMCID: PMC8931963 DOI: 10.1186/s13071-022-05228-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The impact of infections with tick-borne pathogens (TBPs) other than Borrelia burgdorferi (s.l.) and tick-borne encephalitis virus (TBEV) on public health in Europe remains unclear. Our goal is to evaluate whether the presence of these TBPs in ticks can be associated with self-reported health complaints. METHODS We enrolled individuals who were bitten by I. ricinus between 2012 and 2015 and collected their relevant demographic and clinical information using a self-administered online questionnaire. A total of 4163 I. ricinus ticks sent by the participants were subject to molecular analyses for detection of specific TBPs. Associations between the presence of TBPs in ticks and self-reported complaints and symptoms were evaluated by means of a stepwise approach using a generalized linear model (GLM). RESULTS Of 17 self-reported complaints and symptoms significant in the univariate analyses, 3 had a highly significant association (P < 0.01) with at least one TBP in the multivariate analysis. Self-reported Lyme borreliosis was significantly associated (P < 0.001) with B. burgdorferi (s.l.) infection. Facial paralysis was associated (P < 0.01) with infection with B. miyamotoi, N. mikurensis and R. helvetica. Finally, a significant association (P < 0.001) was found between nocturnal sweating and A. phagocytophilum. CONCLUSIONS We found associations between the presence of TBPs in ticks feeding on humans and self-reported symptoms. Due to the subjective nature of such reports and the fact that infection was determined in the ticks and not in the patient samples, further prospective studies utilizing diagnostic modalities should be performed before any clinical outcome can be causally linked to infection with TBPs.
Collapse
Affiliation(s)
- Tal Azagi
- Centre for Infectious Diseases Research, National Institute for Public Health and the Environment, P.O. Box 1, Bilthoven, 3720 BA, The Netherlands.
| | - Margriet Harms
- Centre for Infectious Diseases Research, National Institute for Public Health and the Environment, P.O. Box 1, Bilthoven, 3720 BA, The Netherlands
| | - Arno Swart
- Centre for Infectious Diseases Research, National Institute for Public Health and the Environment, P.O. Box 1, Bilthoven, 3720 BA, The Netherlands
| | - Manoj Fonville
- Centre for Infectious Diseases Research, National Institute for Public Health and the Environment, P.O. Box 1, Bilthoven, 3720 BA, The Netherlands
| | - Dieuwertje Hoornstra
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers Location, Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Lapo Mughini-Gras
- Centre for Infectious Diseases Research, National Institute for Public Health and the Environment, P.O. Box 1, Bilthoven, 3720 BA, The Netherlands
| | - Joppe W Hovius
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers Location, Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Hein Sprong
- Centre for Infectious Diseases Research, National Institute for Public Health and the Environment, P.O. Box 1, Bilthoven, 3720 BA, The Netherlands
| | - Cees van den Wijngaard
- Centre for Infectious Diseases Research, National Institute for Public Health and the Environment, P.O. Box 1, Bilthoven, 3720 BA, The Netherlands
| |
Collapse
|
21
|
Wijburg SR, Fonville M, de Bruin A, van Rijn PA, Montizaan MGE, van den Broek J, Sprong H, Rijks JM. Prevalence and predictors of vector-borne pathogens in Dutch roe deer. Parasit Vectors 2022; 15:76. [PMID: 35248157 PMCID: PMC8898454 DOI: 10.1186/s13071-022-05195-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/09/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The main objective of this study was to determine the prevalence of nine vector-borne pathogens or pathogen genera in roe deer (Capreolus capreolus) in the Netherlands, and to identify which host variables predict vector-borne pathogen presence in roe deer. The host variables examined were the four host factors 'age category', 'sex', 'nutritional condition' and 'health status', as well as 'roe deer density'. METHODS From December 2009 to September 2010, blood samples of 461 roe deer were collected and analysed by polymerase chain reaction (PCR) for the presence of genetic material from Anaplasma phagocytophilum, Bartonella spp., Babesia spp., Borrelia burgdorferi sensu lato (s.l.), Borrelia miyamotoi, Neoehrlichia mikurensis, Rickettsia spp., and epizootic haemorrhagic disease virus (EHDV), and by commercial enzyme-linked immunosorbent assay (ELISA) for antibodies against bluetongue virus (BTV). The possible associations of host factors and density with pathogen prevalence and co-infection, and in the case of A. phagocytophilum with bacterial load, were assessed using generalized linear modelling. RESULTS AND CONCLUSION Analysis revealed the following prevalence in roe deer: A. phagocytophilum 77.9%, Bartonella spp. 77.7%, Babesia spp. 17.4%, Rickettsia spp. 3.3%, B. burgdorferi sensu lato 0.2%. Various co-infections were found, of which A. phagocytophilum and Bartonella spp. (49.7% of infected roe deer) and A. phagocytophilum, Bartonella spp. and Babesia spp. (12.2% of infected roe deer) were the most common. Anaplasma phagocytophilum, Babesia spp., and co-infection prevalence were significantly higher in calves than in adult roe deer, whereas the prevalence of Bartonella spp. was lower in roe deer in good nutritional condition than in deer in poor nutritional condition. Local roe deer density was not associated with pathogen presence. The high prevalence of A. phagocytophilum, Bartonella spp., and Babesia spp. is evidence for the role of roe deer as reservoirs for these pathogens. Additionally, the results suggest a supportive role of roe deer in the life-cycle of Rickettsia spp. in the Netherlands.
Collapse
Affiliation(s)
- Sara R. Wijburg
- Dutch Wildlife Health Centre, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Manoj Fonville
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Arnout de Bruin
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Piet A. van Rijn
- Department of Virology, Wageningen Bioveterinary Research, Wageningen University and Research, Lelystad, The Netherlands
- Centre for Human Metabolomics, Department of Biochemistry, North-West University, Potchefstroom, South Africa
| | - Margriet G. E. Montizaan
- Dutch Wildlife Health Centre, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jan van den Broek
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Hein Sprong
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Jolianne M. Rijks
- Dutch Wildlife Health Centre, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
22
|
Geebelen L, Lernout T, Tersago K, Terryn S, Hovius JW, Docters van Leeuwen A, Van Gucht S, Speybroeck N, Sprong H. No molecular detection of tick-borne pathogens in the blood of patients with erythema migrans in Belgium. Parasit Vectors 2022; 15:27. [PMID: 35057826 PMCID: PMC8772185 DOI: 10.1186/s13071-021-05139-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/20/2021] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
A number of tick-borne pathogens circulate in the Belgian tick population in addition to the causative agent of Lyme borreliosis. However, so far, only a few patients with tick-borne diseases other than Lyme borreliosis have been reported in Belgium. The aim of this study was to investigate the occurrence of other human tick-borne infections in Belgium and their possible clinical manifestation.
Methods
Patients with fever (> 37.5 °C) after a tick bite or those with erythema migrans (EM) were included in the study. EDTA-blood samples were screened for the presence of DNA from Borrelia burgdorferi sensu lato, Borrelia miyamotoi, Anaplasma phagocytophilum, Neoehrlichia mikurensis, spotted fever group rickettsiae (genus Rickettsia), Babesia spp., Bartonella spp., Spiroplasma ixodetis and tick-borne encephalitis virus, using multiplex PCR methods. A questionnaire on, among others, demographics and clinical symptoms, was also filled in.
Results
Over a period of 3 years, 119 patients with EM and 14 patients with fever after a recent tick bite were enrolled in the study. Three samples initially tested positive for N. mikurensis by quantitative PCR (qPCR), but the results could not be confirmed by other PCR methods, and repetition of the DNA extraction procedure and qPCR test was not successful. The qPCR test results for the other tick-borne pathogens were negative.
Conclusions
In general, only a few patients with fever after a tick bite could be identified. Although no tick-borne pathogens were detected, their occurrence cannot be excluded based on the limited number of patients and the limitations inherent to current methodologies. This study underscores the possibility of false-positive PCR results and the necessity for the development of multiple independent tools for the sensitive and specific detection of emerging tick-borne pathogens.
Graphical Abstract
Collapse
|
23
|
Jauregui J, Maniago E. Neoehrlichiosis: A Case Study of the Tick-Borne Pathogen That Can Cause Thromboembolic Events. Adv Emerg Nurs J 2022; 44:19-22. [PMID: 35089276 DOI: 10.1097/tme.0000000000000387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Candidatus Neoehrlichia mikurensis is a gram-negative bacterium carried and spread by Ixodes ricinus ticks often found in Europe and Asia. It causes a disease process called neoehrlichiosis, which can result in vasculitis and thromboembolic events. This pathogen does not grow in typical culture medium, and most laboratories do not carry the specific polymerase chain reaction (PCR) test needed to detect neoehrlichiosis. If a patient presents to an emergency department complaining of a recent tick bite and symptoms of a deep vein thrombosis or pulmonary embolism, consider that these symptoms may be related. Treat the tick bite with doxycycline for 3 weeks and manage the thromboembolic event according to standard treatment of care.
Collapse
Affiliation(s)
- Jean Jauregui
- Emergency Department, University of Maryland Shore Regional Medical Center at Chestertown
| | | |
Collapse
|
24
|
Insights from experience in the treatment of tick-borne bacterial coinfections with tick-borne encephalitis. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2022. [DOI: 10.1016/bs.armc.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Neoehrlichia mikurensis Causing Thrombosis and Relapsing Fever in a Lymphoma Patient Receiving Rituximab. Microorganisms 2021; 9:microorganisms9102138. [PMID: 34683459 PMCID: PMC8537581 DOI: 10.3390/microorganisms9102138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/26/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022] Open
Abstract
Neoehrlichia (N.) mikurensis, an intracellular tick-borne bacterium not detected by routine blood culture, is prevalent in ticks in Scandinavia, Central Europe and Northern Asia, and may cause long-standing fever, nightly sweats, migrating pain, skin rashes and thromboembolism, especially in patients treated with rituximab. The multiple symptoms may raise suspicion of both infection, inflammation and malignancy, and lead in most cases to extensive medical investigations across many medical specialist areas and a delay of diagnosis. We describe a complex, albeit typical, case of neoehrlichiosis in a middle-aged splenectomised male patient with a malignant lymphoma, receiving treatment with rituximab. The multifaceted clinical picture associated with this tick-borne disease is addressed, and longitudinal clinical and laboratory data, as well as imaging, are provided. Longstanding relapsing fever in combination with thrombosis in superficial and deep veins in an immunocompromised patient living in a tick-endemic region should raise the suspicion of the emerging tick-borne disease neoehrlichiosis. Given the varied clinical presentation and the risk of delay in diagnosis and treatment, we believe it is important to raise clinicians' awareness of this emerging infection, which is successfully treated with doxycycline.
Collapse
|
26
|
Cafiso A, Olivieri E, Floriano AM, Chiappa G, Serra V, Sassera D, Bazzocchi C. Investigation of Tick-Borne Pathogens in Ixodes ricinus in a Peri-Urban Park in Lombardy (Italy) Reveals the Presence of Emerging Pathogens. Pathogens 2021; 10:pathogens10060732. [PMID: 34200825 PMCID: PMC8230559 DOI: 10.3390/pathogens10060732] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/02/2022] Open
Abstract
Ticks are important vectors of a great range of pathogens of medical and veterinary importance. Lately, the spread of known tick-borne pathogens has been expanding, and novel ones have been identified as (re)emerging health threats. Updating the current knowledge on tick-borne pathogens in areas where humans and animals can be easily exposed to ticks represents a starting point for epidemiological studies and public awareness. A PCR screening for tick-borne pathogens was carried out in Ixodes ricinus ticks collected in a peri-urban recreational park in Ticino Valley, Italy. The presence of Rickettsia spp., Borrelia burgdorferi senso latu complex, Anaplasma spp. and Babesia spp. was evaluated in a total of 415 I. ricinus specimens. Rickettsia spp. (R monacensis and R. helvetica) were detected in 22.96% of the samples, while B. burgdorferi s.l. complex (B. afzelii and B. lusitaniae) were present in 10.94%. Neoehrlichia mikurensis (1.99%) and Babesia venatorum (0.73%) were reported in the area of study for the first time. This study confirmed the presence of endemic tick-borne pathogens and highlighted the presence of emerging pathogens that should be monitored especially in relation to fragile patients, the difficult diagnosis of tick-borne associated diseases and possible interactions with other tick-borne pathogens.
Collapse
Affiliation(s)
- Alessandra Cafiso
- Department of Veterinary Medicine, University of Milan, Via dell’Università 6, 26900 Lodi, Italy; (G.C.); (V.S.); (C.B.)
- Correspondence: ; Tel.: +39-0250334533
| | - Emanuela Olivieri
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy; (E.O.); (A.M.F.); (D.S.)
| | - Anna Maria Floriano
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy; (E.O.); (A.M.F.); (D.S.)
| | - Giulia Chiappa
- Department of Veterinary Medicine, University of Milan, Via dell’Università 6, 26900 Lodi, Italy; (G.C.); (V.S.); (C.B.)
| | - Valentina Serra
- Department of Veterinary Medicine, University of Milan, Via dell’Università 6, 26900 Lodi, Italy; (G.C.); (V.S.); (C.B.)
| | - Davide Sassera
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy; (E.O.); (A.M.F.); (D.S.)
| | - Chiara Bazzocchi
- Department of Veterinary Medicine, University of Milan, Via dell’Università 6, 26900 Lodi, Italy; (G.C.); (V.S.); (C.B.)
- Coordinated Research Center “EpiSoMI”, University of Milan, 20133 Milan, Italy
| |
Collapse
|
27
|
Hoornstra D, Harms MG, Gauw SA, Wagemakers A, Azagi T, Kremer K, Sprong H, van den Wijngaard CC, Hovius JW. Ticking on Pandora's box: a prospective case-control study into 'other' tick-borne diseases. BMC Infect Dis 2021; 21:501. [PMID: 34051756 PMCID: PMC8164744 DOI: 10.1186/s12879-021-06190-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/16/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tick-borne pathogens other than Borrelia burgdorferi sensu lato - the causative agent of Lyme borreliosis - are common in Ixodes ricinus ticks. How often these pathogens cause human disease is unknown. In addition, diagnostic tools to identify such diseases are lacking or reserved to research laboratories. To elucidate their prevalence and disease burden, the study 'Ticking on Pandora's Box' has been initiated, a collaborative effort between Amsterdam University Medical Center and the National Institute for Public Health and the Environment. METHODS The study investigates how often the tick-borne pathogens Anaplasma phagocytophilum, Babesia species, Borrelia miyamotoi, Neoehrlichia mikurensis, spotted fever group Rickettsia species and/or tick-borne encephalitis virus cause an acute febrile illness after tick-bite. We aim to determine the impact and severity of these tick-borne diseases in the Netherlands by measuring their prevalence and describing their clinical picture and course of disease. The study is designed as a prospective case-control study. We aim to include 150 cases - individuals clinically suspected of a tick-borne disease - and 3 matched healthy control groups of 200 persons each. The controls consist respectively of a group of individuals with either a tick-bite without complaints, the general population and of healthy blood donors. During a one-year follow-up we will acquire blood, urine and skin biopsy samples and ticks at baseline, 4 and 12 weeks. Additionally, participants answer modified versions of validated questionnaires to assess self-reported symptoms, among which the SF-36, on a 3 monthly basis. DISCUSSION This article describes the background and design of the study protocol of 'Ticking on Pandora's Box'. With our study we hope to provide insight into the prevalence, clinical presentation and disease burden of the tick-borne diseases anaplasmosis, babesiosis, B. miyamotoi disease, neoehrlichiosis, rickettsiosis and tick-borne encephalitis and to assist in test development as well as provide recommendations for national guidelines. TRIAL REGISTRATION NL9258 (retrospectively registered at Netherlands Trial Register, trialregister.nl in in February 2021).
Collapse
Affiliation(s)
- D Hoornstra
- Amsterdam UMC, Center for Experimental and Molecular Medicine, Amsterdam Institute of Infection and Immunology, University of Amsterdam, P.O. Box 22660 (1100 DD), Amsterdam, The Netherlands.
- National Institute for Public Health and the Environment (RIVM), Center of Infectious Disease Control, P.O. Box 1 (3720 BA), Bilthoven, The Netherlands.
| | - M G Harms
- National Institute for Public Health and the Environment (RIVM), Center of Infectious Disease Control, P.O. Box 1 (3720 BA), Bilthoven, The Netherlands
| | - S A Gauw
- Amsterdam UMC, Center for Experimental and Molecular Medicine, Amsterdam Institute of Infection and Immunology, University of Amsterdam, P.O. Box 22660 (1100 DD), Amsterdam, The Netherlands
| | - A Wagemakers
- Amsterdam UMC, Center for Experimental and Molecular Medicine, Amsterdam Institute of Infection and Immunology, University of Amsterdam, P.O. Box 22660 (1100 DD), Amsterdam, The Netherlands
| | - T Azagi
- National Institute for Public Health and the Environment (RIVM), Center of Infectious Disease Control, P.O. Box 1 (3720 BA), Bilthoven, The Netherlands
| | - K Kremer
- National Institute for Public Health and the Environment (RIVM), Center of Infectious Disease Control, P.O. Box 1 (3720 BA), Bilthoven, The Netherlands
| | - H Sprong
- National Institute for Public Health and the Environment (RIVM), Center of Infectious Disease Control, P.O. Box 1 (3720 BA), Bilthoven, The Netherlands
| | - C C van den Wijngaard
- National Institute for Public Health and the Environment (RIVM), Center of Infectious Disease Control, P.O. Box 1 (3720 BA), Bilthoven, The Netherlands
| | - J W Hovius
- Amsterdam UMC, Center for Experimental and Molecular Medicine, Amsterdam Institute of Infection and Immunology, University of Amsterdam, P.O. Box 22660 (1100 DD), Amsterdam, The Netherlands
| |
Collapse
|
28
|
Chandra S, Harvey E, Emery D, Holmes EC, Šlapeta J. Unbiased Characterization of the Microbiome and Virome of Questing Ticks. Front Microbiol 2021; 12:627327. [PMID: 34054743 PMCID: PMC8153229 DOI: 10.3389/fmicb.2021.627327] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/16/2021] [Indexed: 11/30/2022] Open
Abstract
Due to their vector capacity, ticks are ectoparasites of medical and veterinary significance. Modern sequencing tools have facilitated tick-associated microbiota studies, but these have largely focused on bacterial pathogens and symbionts. By combining 16S rRNA gene sequencing with total RNA-sequencing methods, we aimed to determine the complete microbiome and virome of questing, female Ixodes holocyclus recovered from coastal, north-eastern New South Wales (NSW), Australia. We present, for the first time, a robust and unbiased method for the identification of novel microbes in ticks that enabled us to identify bacteria, viruses, fungi and eukaryotic pathogens. The dominant bacterial endosymbionts were Candidatus Midichloria sp. Ixholo1 and Candidatus Midichloria sp. Ixholo2. Candidatus Neoehrlichia australis and Candidatus Neoehrlichia arcana were also recovered, confirming that these bacteria encompass I. holocyclus’ core microbiota. In addition, seven virus species were detected—four previously identified in I. holocyclus and three novel species. Notably, one of the four previously identified virus species has pathogenic potential based on its phylogenetic relationship to other tick-associated pathogens. No known pathogenic eukaryotes or fungi were identified. This study has revealed the microbiome and virome of female I. holocyclus from the environment in north-eastern NSW. We propose that future tick microbiome and virome studies utilize equivalent methods to provide an improved representation of the microbial diversity in ticks globally.
Collapse
Affiliation(s)
- Shona Chandra
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Erin Harvey
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - David Emery
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Jan Šlapeta
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
29
|
Boulanger N, Wikel S. Induced Transient Immune Tolerance in Ticks and Vertebrate Host: A Keystone of Tick-Borne Diseases? Front Immunol 2021; 12:625993. [PMID: 33643313 PMCID: PMC7907174 DOI: 10.3389/fimmu.2021.625993] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/22/2021] [Indexed: 12/23/2022] Open
Abstract
Ticks and tick transmitted infectious agents are increasing global public health threats due to increasing abundance, expanding geographic ranges of vectors and pathogens, and emerging tick-borne infectious agents. Greater understanding of tick, host, and pathogen interactions will contribute to development of novel tick control and disease prevention strategies. Tick-borne pathogens adapt in multiple ways to very different tick and vertebrate host environments and defenses. Ticks effectively pharmacomodulate by its saliva host innate and adaptive immune defenses. In this review, we examine the idea that successful synergy between tick and tick-borne pathogen results in host immune tolerance that facilitates successful tick infection and feeding, creates a favorable site for pathogen introduction, modulates cutaneous and systemic immune defenses to establish infection, and contributes to successful long-term infection. Tick, host, and pathogen elements examined here include interaction of tick innate immunity and microbiome with tick-borne pathogens; tick modulation of host cutaneous defenses prior to pathogen transmission; how tick and pathogen target vertebrate host defenses that lead to different modes of interaction and host infection status (reservoir, incompetent, resistant, clinically ill); tick saliva bioactive molecules as important factors in determining those pathogens for which the tick is a competent vector; and, the need for translational studies to advance this field of study. Gaps in our understanding of these relationships are identified, that if successfully addressed, can advance the development of strategies to successfully disrupt both tick feeding and pathogen transmission.
Collapse
Affiliation(s)
- Nathalie Boulanger
- Fédération de Médecine Translationnelle - UR7290, Early Bacterial Virulence, Group Borrelia, Université de Strasbourg, Strasbourg, France.,Centre National de Référence Borrelia, Centre Hospitalier Universitaire, Strasbourg, France
| | - Stephen Wikel
- Department of Medical Sciences, Frank H. Netter, M.D., School of Medicine, Quinnipiac University, Hamden, CT, United States
| |
Collapse
|
30
|
Wang Q, Pan YS, Jiang BG, Ye RZ, Chang QC, Shao HZ, Cui XM, Xu DL, Li LF, Wei W, Xia LY, Li J, Zhao L, Guo WB, Zhou YH, Jiang JF, Jia N, Cao WC. Prevalence of Multiple Tick-Borne Pathogens in Various Tick Vectors in Northeastern China. Vector Borne Zoonotic Dis 2020; 21:162-171. [PMID: 33347789 DOI: 10.1089/vbz.2020.2712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Background: Tick-borne bacteria and protozoa can cause a variety of human and animal diseases in China. It is of great importance to monitor the prevalence and dynamic variation of these pathogens in ticks in ever-changing natural and social environment. Materials and Methods: Ticks were collected from Heilongjiang and Jilin provinces of northeastern China during 2018-2019 followed by morphological identification. The presence of Rickettsia spp., Anaplasma spp., Ehrlichia spp., Borrelia spp., Babesia spp., and Theileria spp. was examined by PCR and Sanger sequencing. The obtained sequences were subjected to phylogenetic analysis through Mega 7.0. Statistical analysis was performed using SPSS 24.0. Results: A total of 250 ticks from 5 species of 3 genera were collected. Ixodes and Haemaphysalis ticks carried more species of pathogens than Dermacentor, and the pathogens detected in Haemaphysalis japonica varied significantly among different sampling sites. The infection rates of Rickettsia spp., Anaplasma spp., Ehrlichia spp., Borrelia spp., Babesia spp., and Theileria spp. were 41.2%, 0, 2.0%, 7.2%, 1.2%, and 7.2%, respectively. Twelve pathogens were identified, among which Rickettsia raoultii (29.6%), Candidatus Rickettsia tarasevichiae (9.2%), and Theileria equi (4.4%) were the three most common ones. Rickettsia had its dominant vector, that is, R. raoultii had high infection rates in Dermacentor nuttalli and Dermacentor silvarum, Ca. R. tarasevichiae in Ixodes persulcatus, and Rickettsia heilongjiangensis in H. japonica. Interestingly, unclassified species were observed, including a Rickettsia sp., an Ehrlichia sp., a Borrelia sp., and a Babesia sp. Coinfections with different pathogens were identified in 9.2% of all tested ticks, with I. persulcatus most likely to be coinfected (23.8%) and Rickettsia spp. and Borrelia spp. as the most common combination (16.7%). Conclusions: The results of this study reflect high diversity and complexity of pathogens in ticks, which are useful for designing more targeted and effective control measures for tick-borne diseases in China.
Collapse
Affiliation(s)
- Qian Wang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China.,State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P.R. China
| | - Yu-Sheng Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P.R. China
| | - Bao-Gui Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P.R. China
| | - Run-Ze Ye
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China.,State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P.R. China
| | - Qiao-Cheng Chang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Hong-Ze Shao
- Animal Husbandry and Veterinary Science Research Institute of Jilin Province, Changchun, P.R. China
| | - Xiao-Ming Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P.R. China
| | - Da-Li Xu
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China.,State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P.R. China
| | - Lian-Feng Li
- Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai, P.R. China
| | - Wei Wei
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Luo-Yuan Xia
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China.,State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P.R. China
| | - Jie Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P.R. China
| | - Lin Zhao
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China.,State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P.R. China
| | - Wen-Bin Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P.R. China
| | - Yu-Hao Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P.R. China
| | - Jia-Fu Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P.R. China
| | - Na Jia
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P.R. China
| | - Wu-Chun Cao
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China.,State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P.R. China
| |
Collapse
|
31
|
Václavík T, Balážová A, Baláž V, Tkadlec E, Schichor M, Zechmeisterová K, Ondruš J, Široký P. Landscape epidemiology of neglected tick-borne pathogens in central Europe. Transbound Emerg Dis 2020; 68:1685-1696. [PMID: 32966705 DOI: 10.1111/tbed.13845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/07/2020] [Accepted: 09/12/2020] [Indexed: 11/28/2022]
Abstract
Studies of tick-borne diseases (TBDs) in Europe focus on pathogens with principal medical importance (e.g. Lyme disease and tick-borne encephalitis), but we have limited epidemiological information on the neglected pathogens, such as the members of the genera Anaplasma, Rickettsia, Babesia and Candidatus Neoehrlichia mikurensis. Here, we integrated an extensive field sampling, laboratory analysis and GIS models to provide first publicly available information on pathogen diversity, prevalence and infection risk for four overlooked zoonotic TBDs in the Czech Republic. In addition, we assessed the effect of landscape variables on the abundance of questing ticks at different spatial scales and examined whether pathogen prevalence increased with tick density. Our data from 13,340 ticks collected in 142 municipalities showed that A. phagocytophilum (MIR = 3.5%) and Ca. Neoehrlichia mikurensis (MIR = 4.0%) pose geographically uneven risks with localized hotspots, while Rickettsia (MIR = 4.9%) and Babesia (MIR = 1.1%) had relatively homogeneous spatial distribution. Landscape variables had significant effect on tick abundance up to the scale of 1 km around the sampling sites. Questing ticks responded positively to landscape diversity and configuration, especially to forest patch density that strongly correlates with the amount of woodland-grassland ecotones. For all four pathogens, we found higher prevalence in places with higher densities of ticks, confirming the hypothesis that tick abundance amplifies the risk of TB infection. Our findings highlight the importance of landscape parameters for tick vectors, likely due to their effect on small vertebrates as reservoir hosts. Future studies should explicitly investigate the combined effect of landscape parameters and the composition and population dynamics of hosts on the host-vector-pathogen system.
Collapse
Affiliation(s)
- Tomáš Václavík
- Department of Ecology and Environmental Sciences, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Alena Balážová
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Vojtech Baláž
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic.,Department of Ecology and Diseases of Zoo-animals, Game, Fish and Bees, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Emil Tkadlec
- Department of Ecology and Environmental Sciences, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Marcel Schichor
- Department of Ecology and Environmental Sciences, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Kristína Zechmeisterová
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Jaroslav Ondruš
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic.,CEITEC - Central European Institute of Technology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Pavel Široký
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic.,CEITEC - Central European Institute of Technology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| |
Collapse
|
32
|
Barraza-Guerrero SI, Meza-Herrera CA, García-De la Peña C, González-Álvarez VH, Vaca-Paniagua F, Díaz-Velásquez CE, Sánchez-Tortosa F, Ávila-Rodríguez V, Valenzuela-Núñez LM, Herrera-Salazar JC. General Microbiota of the Soft Tick Ornithodoros turicata Parasitizing the Bolson Tortoise ( Gopherus flavomarginatus) in the Mapimi Biosphere Reserve, Mexico. BIOLOGY 2020; 9:biology9090275. [PMID: 32899580 PMCID: PMC7565578 DOI: 10.3390/biology9090275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/29/2020] [Accepted: 09/03/2020] [Indexed: 12/14/2022]
Abstract
The general bacterial microbiota of the soft tick Ornithodoros turicata found on Bolson tortoises (Gopherus flavomarginatus) were analyzed using next generation sequencing. The main aims of the study were to establish the relative abundance of bacterial taxa in the tick, and to document the presence of potentially pathogenic species for this tortoise, other animals, and humans. The study was carried-out in the Mapimi Biosphere Reserve in the northern-arid part of Mexico. Bolson tortoises (n = 45) were inspected for the presence of soft ticks, from which 11 tortoises (24.4%) had ticks in low loads (1–3 ticks per individual). Tick pools (five adult ticks each) were analyzed through 16S rRNA V3–V4 region amplification in a MiSeq Illumina, using EzBioCloud as a taxonomical reference. The operational taxonomic units (OTUs) revealed 28 phyla, 84 classes, 165 orders, 342 families, 1013 genera, and 1326 species. The high number of taxa registered for O. turicata may be the result of the variety of hosts that this tick parasitizes as they live inside G. flavomarginatus burrows. While the most abundant phyla were Proteobacteria, Actinobacteria, and Firmicutes, the most abundant species were two endosymbionts of ticks (Midichloria-like and Coxiella-like). Two bacteria documented as pathogenic to Gopherus spp. were registered (Mycoplasma spp. and Pasteurella testudinis). The bovine and ovine tick-borne pathogens A. marginale and A. ovis, respectively, were recorded, as well as the zoonotic bacteria A. phagocytophilum,Coxiella burnetii, and Neoehrlichia sp. Tortoises parasitized with O. turicata did not show evident signs of disease, which could indicate a possible ecological role as a reservoir that has yet to be demonstrated. In fact, the defense mechanisms of this tortoise against the microorganisms transmitted by ticks during their feeding process are still unknown. Future studies on soft ticks should expand our knowledge about what components of the microbiota are notable across multiple host–microbe dynamics. Likewise, studies are required to better understand the host competence of this tortoise, considered the largest terrestrial reptile in North America distributed throughout the Chihuahuan Desert since the late Pleistocene.
Collapse
Affiliation(s)
- Sergio I. Barraza-Guerrero
- Unidad Regional Universitaria de Zonas Áridas, Universidad Autónoma Chapingo, 35230 Bermejillo, Durango, Mexico; (S.I.B.-G.); (C.A.M.-H.)
| | - César A. Meza-Herrera
- Unidad Regional Universitaria de Zonas Áridas, Universidad Autónoma Chapingo, 35230 Bermejillo, Durango, Mexico; (S.I.B.-G.); (C.A.M.-H.)
| | - Cristina García-De la Peña
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, 35010 Gómez Palacio, Durango, Mexico; (V.Á.-R.); (L.M.V.-N.); (J.C.H.-S.)
- Correspondence: ; Tel.: +52-871-386-7276; Fax: +52-871-715-2077
| | - Vicente H. González-Álvarez
- Facultad de Medicina Veterinaria y Zootecnia No. 2, Universidad Autónoma de Guerrero, 41940 Cuajinicuilapa, Guerrero, Mexico;
| | - Felipe Vaca-Paniagua
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, 54090 Tlalnepantla, Estado de México, Mexico; (F.V.-P.); (C.E.D.-V.)
- Instituto Nacional de Cancerología, 14080 Ciudad de México, Mexico
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, 54090 Tlalnepantla, Estado de México, Mexico
| | - Clara E. Díaz-Velásquez
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, 54090 Tlalnepantla, Estado de México, Mexico; (F.V.-P.); (C.E.D.-V.)
| | - Francisco Sánchez-Tortosa
- Departamento de Zoología, Universidad de Córdoba.Edificio C-1, Campus Rabanales, 14071 Cordoba, Spain;
| | - Verónica Ávila-Rodríguez
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, 35010 Gómez Palacio, Durango, Mexico; (V.Á.-R.); (L.M.V.-N.); (J.C.H.-S.)
| | - Luis M. Valenzuela-Núñez
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, 35010 Gómez Palacio, Durango, Mexico; (V.Á.-R.); (L.M.V.-N.); (J.C.H.-S.)
| | - Juan C. Herrera-Salazar
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, 35010 Gómez Palacio, Durango, Mexico; (V.Á.-R.); (L.M.V.-N.); (J.C.H.-S.)
| |
Collapse
|
33
|
Biotic Factors Influence Microbiota of Nymph Ticks from Vegetation in Sydney, Australia. Pathogens 2020; 9:pathogens9070566. [PMID: 32668699 PMCID: PMC7400589 DOI: 10.3390/pathogens9070566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 01/17/2023] Open
Abstract
Ticks are haematophagous ectoparasites of medical and veterinary significance due to their excellent vector capacity. Modern sequencing techniques enabled the rapid sequencing of bacterial pathogens and symbionts. This study’s aims were two-fold; to determine the nymph diversity in Sydney, and to determine whether external biotic factors affect the microbiota. Tick DNA was isolated, and the molecular identity was determined for nymphs at the cox1 level. The tick DNA was subjected to high throughput DNA sequencing to determine the bacterial profile and the impact of biotic factors on the microbiota. Four nymph tick species were recovered from Sydney, NSW: Haemaphysalis bancrofti, Ixodes holocyclus, Ixodes trichosuri and Ixodes tasmani. Biotic factors, notably tick species and geography, were found to have a significance influence on the microbiota. The microbial analyses revealed that Sydney ticks display a core microbiota. The dominating endosymbionts among all tick species were Candidatus Midichloria sp. Ixholo1 and Candidatus Midichloria sp. Ixholo2. A novel Candidatus Midichloria sp. OTU_2090 was only found in I. holocyclus ticks (nymph: 96.3%, adult: 75.6%). Candidatus Neoehrlichia australis and Candidatus Neoehrlichia arcana was recovered from I. holocyclus and one I. trichosuri nymph ticks. Borrelia spp. was absent from all ticks. This study has shown that nymph and adult ticks carry different bacteria, and a tick bite in Sydney, Australia will result in different bacterial transfer depending on tick life stage, tick species and geography.
Collapse
|
34
|
Monitoring of ticks and tick-borne pathogens through a nationwide research station network in Finland. Ticks Tick Borne Dis 2020; 11:101449. [PMID: 32723639 DOI: 10.1016/j.ttbdis.2020.101449] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/14/2020] [Accepted: 04/17/2020] [Indexed: 12/30/2022]
Abstract
In 2015 a long-term, nationwide tick and tick-borne pathogen (TBP) monitoring project was started by the Finnish Tick Project and the Finnish Research Station network (RESTAT), with the goal of producing temporally and geographically extensive data regarding exophilic ticks in Finland. In the current study, we present results from the first four years of this collaboration. Ticks were collected by cloth dragging from 11 research stations across Finland in May-September 2015-2018 (2012-2018 in Seili). Collected ticks were screened for twelve different pathogens by qPCR: Borrelia afzelii, Borrelia garinii, Borrelia valaisiana, Borrelia burgdorferi sensu stricto, Borrelia miyamotoi, Babesia spp., Anaplasma phagocytophilum, Rickettsia spp., Candidatus Neoehrlichia mikurensis, Francisella tularensis, Bartonella spp. and tick-borne encephalitis virus (TBEV). Altogether 15 067 Ixodes ricinus and 46 Ixodes persulcatus were collected during 68 km of dragging. Field collections revealed different seasonal activity patterns for the two species. The activity of I. persulcatus adults (only one nymph detected) was unimodal, with activity only in May-July, whereas Ixodes ricinus was active from May to September, with activity peaks in September (nymphs) or July-August (adults). Overall, tick densities were higher during the latter years of the study. Borrelia burgdorferi sensu lato were the most common pathogens detected, with 48.9 ± 8.4% (95% Cl) of adults and 25.3 ± 4.4% of nymphs carrying the bacteria. No samples positive for F. tularensis, Bartonella or TBEV were detected. This collaboration project involving the extensive Finnish Research Station network has ensured enduring and spatially extensive, long-term tick data collection to the foreseeable future.
Collapse
|
35
|
Pedersen BN, Jenkins A, Kjelland V. Tick-borne pathogens in Ixodes ricinus ticks collected from migratory birds in southern Norway. PLoS One 2020; 15:e0230579. [PMID: 32271774 PMCID: PMC7145107 DOI: 10.1371/journal.pone.0230579] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/03/2020] [Indexed: 01/17/2023] Open
Abstract
Birds are important hosts for the first life stages of the Ixodes ricinus tick and they can transport their parasites over long distances. The aim of this study was to investigate the prevalence of Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum, Neoehrlichia mikurensis and Rickettsia helvetica in ticks collected from migratory birds in Norway. A total of 815 Ixodes ricinus ticks from 216 birds trapped at Lista Bird Observatory in southern Norway during spring and autumn migration in 2008 were analysed by real-time PCR. B. burgdorferi s. l. was the most prevalent pathogen, detected in 6.1% of the ticks. The prevalence of N. mikurensis, A. phagocytophilum and R. helvetica was 1.2%, 0.9% and 0.4% respectively. In addition, one sample (0.1%) was positive for B. miyamotoi. In total, 8.2% of the ticks were infected with at least one pathogen. Co-infection with B. burgdorferi s. l. and N. mikurensis or A. phagocytophilum was found in 6.0% of the infected ticks. Our results show that all the known major tick-borne bacterial pathogens in Norway are subject to transport by migratory birds, potentially allowing spread to new areas. Our study showed a surprisingly high number of samples with PCR inhibition (57%). These samples had been extracted using standard methodology (phenol-chloroform extraction). This illustrates the need for inhibition controls to determine true prevalence rates.
Collapse
Affiliation(s)
- Benedikte N. Pedersen
- Department of Natural Science and Environmental Health, University of South-Eastern Norway, Gullbringvegen, Norway
- * E-mail: (BNP); (AJ)
| | - Andrew Jenkins
- Department of Natural Science and Environmental Health, University of South-Eastern Norway, Gullbringvegen, Norway
- * E-mail: (BNP); (AJ)
| | - Vivian Kjelland
- Department of Natural Sciences, Faculty of Engineering and Science, University of Agder, Kristiansand, Norway
- Sørlandet Hospital Health Enterprise, Research Unit, Kristiansand, Norway
| |
Collapse
|
36
|
Krawczyk AI, van Duijvendijk GLA, Swart A, Heylen D, Jaarsma RI, Jacobs FHH, Fonville M, Sprong H, Takken W. Effect of rodent density on tick and tick-borne pathogen populations: consequences for infectious disease risk. Parasit Vectors 2020; 13:34. [PMID: 31959217 PMCID: PMC6971888 DOI: 10.1186/s13071-020-3902-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/08/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Rodents are considered to contribute strongly to the risk of tick-borne diseases by feeding Ixodes ricinus larvae and by acting as amplifying hosts for pathogens. Here, we tested to what extent these two processes depend on rodent density, and for which pathogen species rodents synergistically contribute to the local disease risk, i.e. the density of infected nymphs (DIN). METHODS In a natural woodland, we manipulated rodent densities in plots of 2500 m2 by either supplementing a critical food source (acorns) or by removing rodents during two years. Untreated plots were used as controls. Collected nymphs and rodent ear biopsies were tested for the presence of seven tick-borne microorganisms. Linear models were used to capture associations between rodents, nymphs, and pathogens. RESULTS Investigation of data from all plots, irrespective of the treatment, revealed a strong positive association between rodent density and nymphal density, nymphal infection prevalence (NIP) with Borrelia afzelii and Neoehrlichia mikurensis, and hence DIN's of these pathogens in the following year. The NIP, but not the DIN, of the bird-associated Borrelia garinii, decreased with increasing rodent density. The NIPs of Borrelia miyamotoi and Rickettsia helvetica were independent of rodent density, and increasing rodent density moderately increased the DINs. In addition, NIPs of Babesia microti and Spiroplasma ixodetis decreased with increasing rodent density, which had a non-linear association with DINs of these microorganisms. CONCLUSIONS A positive density dependence for all rodent- and tick-associated tick-borne pathogens was found, despite the observation that some of them decreased in prevalence. The effects on the DINs were variable among microorganisms, more than likely due to contrasts in their biology (including transmission modes, host specificity and transmission efficiency). The strongest associations were found in rodent-associated pathogens that most heavily rely on horizontal transmission. Our results draw attention to the importance of considering transmission mode of a pathogen while developing preventative measures to successfully reduce the burden of disease.
Collapse
Affiliation(s)
- Aleksandra I Krawczyk
- Laboratory of Entomology, Wageningen University and Research Centre, Wageningen, The Netherlands. .,Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, The Netherlands.
| | | | - Arno Swart
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, The Netherlands
| | - Dieter Heylen
- Interuniversity Institute for Biostatistics and statistical Bioinformatics, Hasselt University, Diepenbeek, Belgium.,Department of Ecology and Evolutionary Biology, Princeton University, 106A Guyot Ln, Princeton, NJ, 08544, USA
| | - Ryanne I Jaarsma
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, The Netherlands
| | - Frans H H Jacobs
- Laboratory of Entomology, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Manoj Fonville
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, The Netherlands
| | - Hein Sprong
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, The Netherlands.
| | - Willem Takken
- Laboratory of Entomology, Wageningen University and Research Centre, Wageningen, The Netherlands
| |
Collapse
|
37
|
Candidatus Neoehrlichia mikurensis is widespread in questing Ixodes ricinus ticks in the Czech Republic. Ticks Tick Borne Dis 2020; 11:101371. [PMID: 32057703 DOI: 10.1016/j.ttbdis.2020.101371] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 11/21/2022]
Abstract
Candidatus Neoehrlichia mikurensis, the causative agent of tick-borne "neoehrlichiosis" has recently been reported in humans, mammals and ticks in Europe. The aim of this study was to map the distribution of this bacterium in questing ticks in the Czech Republic. A total of 13,325 Ixodes ricinus including 445 larvae, 5270 nymphs and 7610 adults were collected from vegetation by flagging in 140 Czech towns and villages from every region of the Czech Republic. The ticks were pooled into 2665 groups of 5 individuals respecting life stage or sex and tested for the presence of Ca. Neoehrlichia mikurensis by conventional PCR targeting of the groEL gene. The bacterium was detected in 533/2665 pools and 125/140 areas screened, showing an overall estimated prevalence of 4.4 % in ticks of all life stages. Phylogenetic analysis revealed only small genetic diversity among the strains found. Two pools of questing larvae tested positive, suggesting transovarial transmission. According to this study, Ca. Neoehrlichia mikurensis is another tick-borne pathogen widespread in I. ricinus ticks in the Czech Republic.
Collapse
|
38
|
Pedersen BN, Jenkins A, Paulsen KM, Okbaldet YB, Edgar KS, Lamsal A, Soleng A, Andreassen ÅK. Distribution of Neoehrlichia mikurensis in Ixodes ricinus ticks along the coast of Norway: The western seaboard is a low-prevalence region. Zoonoses Public Health 2019; 67:130-137. [PMID: 31705635 DOI: 10.1111/zph.12662] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/03/2019] [Accepted: 10/16/2019] [Indexed: 01/05/2023]
Abstract
Neoehrlichia mikurensis is a tick-borne pathogen widespread among ticks and rodents in Europe and Asia. A previous study on Ixodes ricinus ticks in Norway suggested that N. mikurensis was scarce or absent on the south-west coast of Norway, but abundant elsewhere. The aim of this study was to further investigate the prevalence and distribution of N. mikurensis along the western seaboard of Norway in comparison with more eastern and northern areas. The second aim of the study was to examine seasonal variation of the bacterium in one specific location in the south-eastern part of Norway. Questing I. ricinus were collected from 13 locations along the coast of Norway, from Brønnøysund in Nordland County to Spjaerøy in Østfold County. In total, 11,113 nymphs in 1,113 pools and 718 individual adult ticks were analysed for N. mikurensis by real-time PCR. The mean prevalence of N. mikurensis in adult ticks was 7.9% while the estimated pooled prevalence in nymphs was 3.5%. The prevalence ranged from 0% to 25.5%, with the highest prevalence in the southernmost and the northernmost locations. The pathogen was absent, or present only at low prevalence (<5%), at eight locations, all located in the west, from 58.9°N to 64.9°N. The prevalence of N. mikurensis was significantly different between counties (p < .0001). No significant seasonal variation of N. mikurensis prevalence was observed in the period May to October 2015. Our results confirm earlier findings of a low prevalence of N. mikurensis in the western seaboard of Norway.
Collapse
Affiliation(s)
- Benedikte N Pedersen
- Department of Natural Science and Environmental Health, University of South-Eastern Norway, Bø, Norway
| | - Andrew Jenkins
- Department of Natural Science and Environmental Health, University of South-Eastern Norway, Bø, Norway
| | - Katrine M Paulsen
- Faculty of Veterinary Medicine, Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Oslo, Norway.,Division for Infection Control and Environmental Health, Department of Virology, Norwegian Institute of Public Health, Oslo, Norway
| | - Yohannes B Okbaldet
- Division for Infection Control and Environmental Health, Department of Virology, Norwegian Institute of Public Health, Oslo, Norway
| | - Kristin S Edgar
- Division for Infection Control and Environmental Health, Department of Pest Control, Norwegian Institute of Public Health, Oslo, Norway
| | - Alaka Lamsal
- Department of Natural Science and Environmental Health, University of South-Eastern Norway, Bø, Norway.,Division for Infection Control and Environmental Health, Department of Virology, Norwegian Institute of Public Health, Oslo, Norway
| | - Arnulf Soleng
- Division for Infection Control and Environmental Health, Department of Pest Control, Norwegian Institute of Public Health, Oslo, Norway
| | - Åshild K Andreassen
- Division for Infection Control and Environmental Health, Department of Virology, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
39
|
Jenkins A, Raasok C, Pedersen BN, Jensen K, Andreassen Å, Soleng A, Edgar KS, Lindstedt HH, Kjelland V, Stuen S, Hvidsten D, Kristiansen BE. Detection of Candidatus Neoehrlichia mikurensis in Norway up to the northern limit of Ixodes ricinus distribution using a novel real time PCR test targeting the groEL gene. BMC Microbiol 2019; 19:199. [PMID: 31462211 PMCID: PMC6714093 DOI: 10.1186/s12866-019-1502-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 05/31/2019] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Candidatus Neoehrlichia mikurensis is an emerging tick-borne pathogen. It is widely distributed in Ixodes ricinus ticks in Europe, but knowledge of its distribution in Norway, where I. ricinus reaches its northern limit, is limited. In this study we have developed a real time PCR test for Ca. N. mikurensis and used it to investigate the distribution of Ca. N. mikurensis in Norway. RESULTS Real time PCR targeting the groEL gene was developed and shown to be highly sensitive. It was used to detect Ca. N. mikurensis in 1651 I. ricinus nymphs and adults collected from twelve locations in Norway, from the eastern Oslo Fjord in the south to near the Arctic Circle in the north. The overall prevalence was 6.5% and varied locally between 0 and 16%. Prevalence in adults and nymphs was similar, suggesting that ticks acquire Ca. N. mikurensis predominantly during their first blood meal. In addition, 123 larvae were investigated; Ca. N. mikurensis was not found in larvae, suggesting that transovarial transmission is rare or absent. Sequence analysis suggests that a single variant dominates in Norway. CONCLUSIONS Ca. N. mikurensis is widespread and common in ticks in Norway and reaches up to their northern limit near the Arctic Circle. Ticks appear to acquire Ca. N. mikurensis during their first blood meal. No evidence for transovarial transmission was found.
Collapse
Affiliation(s)
- Andrew Jenkins
- Department of Natural Science and Environmental Health, University of South-Eastern Norway, Bø, Norway.
| | - Cecilie Raasok
- Department of Natural Science and Environmental Health, University of South-Eastern Norway, Bø, Norway.,Present address: Nittedal Municipal Water and Drainage Authority, Nittedal, Norway
| | - Benedikte N Pedersen
- Department of Natural Science and Environmental Health, University of South-Eastern Norway, Bø, Norway
| | - Kristine Jensen
- Department of Natural Science and Environmental Health, University of South-Eastern Norway, Bø, Norway.,Present address: Telemark Trust Hospital, Section for Pathology, Skien, Norway
| | - Åshild Andreassen
- Department of Natural Science and Environmental Health, University of South-Eastern Norway, Bø, Norway.,Department of Virology, Norwegian Institute of Public Health, Oslo, Norway
| | - Arnulf Soleng
- Department of Pest Control, Norwegian Institute of Public Health, Oslo, Norway
| | | | | | - Vivian Kjelland
- Department of Engineering and Science, University of Agder, Kristiansand, Norway.,Sørlandet Trust Hospital Research Unit, Kristiansand, Norway
| | - Snorre Stuen
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Sandnes, Norway
| | - Dag Hvidsten
- Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Bjørn-Erik Kristiansen
- Department of Process, Energy, and Environmental Technology, University of South-Eastern Norway, Porsgrunn, Norway
| |
Collapse
|
40
|
Černý J, Buyannemekh B, Needham T, Gankhuyag G, Oyuntsetseg D. Hard ticks and tick-borne pathogens in Mongolia-A review. Ticks Tick Borne Dis 2019; 10:101268. [PMID: 31471272 DOI: 10.1016/j.ttbdis.2019.101268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 08/12/2019] [Accepted: 08/14/2019] [Indexed: 01/20/2023]
Abstract
Ticks and tick-borne pathogens (TBPs) pose a considerable threat to human and animal health in Mongolia; a large and sparsely inhabited country whose economy is largely dependent on animal production. Intensive contact between herdsmen and their livestock, together with the use of pastures without fencing, allows contact between wildlife, domestic animals and humans, thus creating ideal conditions for epizoonoses and zoonoses. Consequently, ticks and TBPs cause significant medical, veterinary, and economical concern. This review summarizes the current state of knowledge about this zoonotic problem in Mongolia, focusing on tick species from the genera Ixodes, Haemaphysalis, Dermacentor, Hyalomma, and Rhipicephalus, which are associated with particular vegetation zones of the country. The most important tick species of medical and veterinary concern are Ixodes persulcatus and Dermacentor nuttalli, which are found in northern boreal forests and central steppes, respectively. These tick species transmit a wide variety of TBPs, including tick-borne encephalitis virus, Borrelia, Anaplasma, and Rickettsia bacteria, and Babesia parasites infecting rodents, wild ungulates, livestock, and humans. Despite basic characteristics of the biology of ticks and TBPs in Mongolia being known, further research is needed to gain more precise and quantitative data on what tick species and TBPs are currently present within Mongolia, and their effects on human health and animal production.
Collapse
Affiliation(s)
- Jiří Černý
- Department of Animal Science and Food Processing, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czech Republic.
| | | | - Tersia Needham
- Department of Animal Science and Food Processing, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Gantulga Gankhuyag
- Institute of General and Experimental Biology of Mongolian Academy of Sciences, Ulaanbaatar, Mongolia
| | | |
Collapse
|
41
|
Alanazi AD, Al-Mohammed HI, Alyousif MS, Said AE, Salim B, Abdel-Shafy S, Shaapan RM. Species Diversity and Seasonal Distribution of Hard Ticks (Acari: Ixodidae) Infesting Mammalian Hosts in Various Districts of Riyadh Province, Saudi Arabia. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:1027-1032. [PMID: 30937441 DOI: 10.1093/jme/tjz036] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Indexed: 06/09/2023]
Abstract
Hard ticks are among the most important blood sucking arthropods that transmit pathogens to humans and animals. This study was designed to determine prevalence, mapping, geographical distribution, and seasonal activity of hard tick species infesting the most common domestic and wild mammals in various districts of Riyadh Province, Saudi Arabia, during the period January to December 2017. In total, 10,832 adult hard ticks were collected from the bodies of 8,435 animals belonging to 18 different mammalian species. The ticks were preserved in 70% alcohol and microscopy was used to identify species. Two genera, Hyalomma and Rhipicephalus, were identified, comprising 10 species of hard ticks, with Hyalomma comprising 68.3% and Rhipicephalus comprising 31.7% of species. The most common species on domestic mammalian hosts was Hyalomma dromedarii (Koch 1844) (39.9%) followed by Rhipicephalus turanicus (Pomerantsev, Matikashvili & Lotosky 1936) (34.9%), whereas on wild mammalian hosts Rhipicephalus sanguineus (Latreille 1806) was by far the most prevalent species (83.0%). However, ticks were most abundant during May through July (36.0%) in the studied areas, and tick intensity and abundance differed among seasons. Our results provide information for human and animal health service managers, as well as governmental authorities, to gain a better understanding of hard ticks infesting mammalian hosts in Riyadh Province, Saudi Arabia, which can help improve prevention and control of tick-borne diseases, especially during outbreaks.
Collapse
Affiliation(s)
- Abdullah D Alanazi
- Department of Biological Science, Faculty of Science and Humanities, Shaqra University, Ad-Dawadimi, Saudi Arabia
| | - Hamdan I Al-Mohammed
- Department of Parasitology, Faculty of Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mohamed S Alyousif
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ashraf E Said
- Department of Biological Science, Faculty of Science and Humanities, Shaqra University, Ad-Dawadimi, Saudi Arabia
- Department of Zoology, Faculty of Science, Damietta University, New Damietta, Damietta, Egypt
| | - Bashir Salim
- Department of Parasitology, Faculty of Veterinary Medicine, University of Khartoum, Khartoum-North. Sudan
| | - Sobhy Abdel-Shafy
- Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre, Dokki, Giza, Egypt
| | - Raafat M Shaapan
- Department of Zoonotic Disease, Veterinary Research Division, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
42
|
Nebbak A, Dahmana H, Almeras L, Raoult D, Boulanger N, Jaulhac B, Mediannikov O, Parola P. Co-infection of bacteria and protozoan parasites in Ixodes ricinus nymphs collected in the Alsace region, France. Ticks Tick Borne Dis 2019; 10:101241. [PMID: 31279737 DOI: 10.1016/j.ttbdis.2019.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 05/08/2019] [Accepted: 06/01/2019] [Indexed: 10/26/2022]
Abstract
Fifty nymphal Ixodes ricinus ticks collected in Alsace, France, identified by morphological criteria and using MALDI-TOF MS, were tested by PCR to detect tick-associated bacteria and protozoan parasites. Seventy percent (35/50) of ticks contained at least one microorganism; 26% (9/35) contained two or more species. Several human pathogens were identified including Borrelia burgdorferi s.s. (4%), Borrelia afzelii (2%), Borrelia garinii (2%), Borrelia valaisiana (4%), Borrelia miyamotoi (2%), Rickettsia helvetica (6%) and "Babesia venatorum" (2%). Bartonella spp. (10%) and a Wolbachia spp. (8%) were also detected. The most common co-infections involved Anaplasmataceae with Borrelia spp. (4%), Anaplasmataceae with Bartonella spp. (6%) and Anaplasmataceae with Rickettsia spp. (6%). Co-infection involving three different groups of bacteria was seen between bacteria of the family Anaplasmataceae, Borrelia spp. and Bartonella spp. (2%). Results highlight the panel of infectious agents carried by Ixodes ricinus. Co-infection suggests the possibility of transmission of more than one pathogen to human and animals during tick blood feeding.
Collapse
Affiliation(s)
- Amira Nebbak
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC). Zone Industrielle, BP 384 Bou-Ismail, Tipaza Algeria.
| | - Handi Dahmana
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France.
| | - Lionel Almeras
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; Unité de Parasitologie et Entomologie, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France.
| | | | - Nathalie Boulanger
- Centre National de Reference Borrelia, Centre Hospitalier Universitaire, Strasbourg, France; EA7290Virulence bactérienne précoce: groupe borréliose de Lyme, Facultés de pharmacie et de médecine, Université de Strasbourg, France.
| | - Benoit Jaulhac
- Centre National de Reference Borrelia, Centre Hospitalier Universitaire, Strasbourg, France; EA7290Virulence bactérienne précoce: groupe borréliose de Lyme, Facultés de pharmacie et de médecine, Université de Strasbourg, France.
| | | | - Philippe Parola
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France.
| |
Collapse
|
43
|
Beck A, Huber D, Antolić M, Anzulović Ž, Reil I, Polkinghorne A, Baneth G, Beck R. Retrospective study of canine infectious haemolytic anaemia cases reveals the importance of molecular investigation in accurate postmortal diagnostic protocols. Comp Immunol Microbiol Infect Dis 2019; 65:81-87. [PMID: 31300132 DOI: 10.1016/j.cimid.2019.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 05/06/2019] [Indexed: 11/30/2022]
Abstract
Infectious haemolytic anaemia (IHA) in dogs share similar clinical signs including fever, lethargy, icterus, paleness of mucous membranes and splenomegaly. Postmortal findings are similar and, without additional diagnostic methods, an accurate aetiological diagnosis is difficult to achieve. In order to investigate causes of lethal IHA in Croatian dogs, we performed a retrospective study on archived formalin-fixed, paraffin-embedded tissue blocks (FFPEB) from dogs that died due to haemolytic crisis, using microscopic and molecular diagnostic tools to determine the aetiological cause of disease. Molecular analysis was performed on kidney, lung, myocardium and spleen on FFPEB from all dogs. The originally stated aetiological diagnosis of B. canis or leptospirosis was confirmed in only 53% of the dogs. PCR and sequencing revealed that, in addition to the expected pathogens, B. canis and Leptospira interrogans, the presence of previously undiagnosed "new" pathogens causing anaemia including Candidatus Neoehrlichia mikurensis and Anaplasma phagocytophilum. Furthermore, Theileria capreoli was detected for the first time in a dog with postmortal descriptions of lesions. Intensive extravascular hemolysis was noticeable as jaundice of the mucosa, subcutis and fat tissue, green or yellow discoloration of renal parenchyma caused by bilirubin excretion in the renal tubules and bile accumulation within the liver in 90% of the dogs. This work highlights the value of molecular diagnostics to complement traditional ante-mortem and post-mortem diagnostic protocols for the aetiological diagnosis of pathogens associated with IHA.
Collapse
Affiliation(s)
- Ana Beck
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Zagreb, Vjekoslava Heinzela 55, 10000 Zagreb, Croatia
| | - Doroteja Huber
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Zagreb, Vjekoslava Heinzela 55, 10000 Zagreb, Croatia
| | - Maja Antolić
- Faculty of Veterinary Medicine, University of Zagreb, Vjekoslava Heinzela 55, 10000 Zagreb, Croatia
| | - Željka Anzulović
- Faculty of Veterinary Medicine, University of Zagreb, Vjekoslava Heinzela 55, 10000 Zagreb, Croatia
| | - Irena Reil
- Department for Bacteriology and Parasitology, Croatian Veterinary Institute, Savska cesta 143, 10000 Zagreb, Croatia
| | - Adam Polkinghorne
- Animal Research Centre, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, 4556, Australia
| | - Gad Baneth
- Koret School of Veterinary Medicine, Hebrew University, Rehovot, Israel
| | - Relja Beck
- Department for Bacteriology and Parasitology, Croatian Veterinary Institute, Savska cesta 143, 10000 Zagreb, Croatia.
| |
Collapse
|
44
|
Kowalec M, Szewczyk T, Welc-Falęciak R, Siński E, Karbowiak G, Bajer A. Rickettsiales Occurrence and Co-occurrence in Ixodes ricinus Ticks in Natural and Urban Areas. MICROBIAL ECOLOGY 2019; 77:890-904. [PMID: 30327827 PMCID: PMC6478632 DOI: 10.1007/s00248-018-1269-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 10/02/2018] [Indexed: 05/19/2023]
Abstract
Bacteria of Rickettsiaceae and Anaplasmataceae families include disease agents spread by Ixodes ricinus ticks, the most common tick vector in Europe. The aim of the study was to compare the prevalence and co-infection prevalence of particular tick-transmitted Rickettsiales members: Rickettsia spp. (further referred as Rs), Anaplasma phagocytophilum (Ap), and "Candidatus Neoehrlichia mikurensis" (CNM) in I. ricinus ticks in two types of areas, different in terms of human impact: natural and urban. Using additional data, we aimed at investigating co-occurrence of these Rickettsiales with Borreliella spp. A total of 4189 tick specimens, 2363 from the urban area (Warsaw park and forests) and 1826 from the natural area (forests and park in the vicinity of National Parks), were tested for the presence of Rickettsiales DNA by PCRs. The prevalence of selected Rickettsiales was twice higher in urban than natural areas (13.2% vs. 6.9%, respectively). In total ticks, the prevalence of Rs, Ap, and CNM was 6.5%, 5.3%, and 3.6% in urban areas vs. 4.4%, 1.1%, and 2.1% in natural areas, respectively. Co-infections of Rickettsiales were also more prevalent in urban areas (2.6% vs. 0.3%, respectively). The most common Rs was R. helvetica; also R. monacensis and novel "Candidatus Rickettsia mendelii" were detected. Positive association between Ap and CNM infections was discovered. Rickettsiales bacteria occurrence was not associated with Borreliella occurrence, but co-infections with these two groups were more common in ticks in urban areas. In conclusion, three groups of Rickettsiales constituted the important part of the tick pathogen community in Poland, especially in the urbanized central Poland (Mazovia). In the Warsaw agglomeration, there is a greater risk of encountering the I. ricinus tick infected with Rickettsiales and co-infected with Lyme spirochaetes, in comparison to natural areas. This finding raises the question whether cities might in fact be the hot spots for TBDs.
Collapse
Affiliation(s)
- Maciej Kowalec
- Department of Parasitology, Institute of Zoology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096 Warszawa, Poland
| | - Tomasz Szewczyk
- W. Stefański Institute of Parasitology of the Polish Academy of Sciences, 51/55 Twarda Street, 00-818 Warszawa, Poland
| | - Renata Welc-Falęciak
- Department of Parasitology, Institute of Zoology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096 Warszawa, Poland
| | - Edward Siński
- Department of Parasitology, Institute of Zoology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096 Warszawa, Poland
| | - Grzegorz Karbowiak
- W. Stefański Institute of Parasitology of the Polish Academy of Sciences, 51/55 Twarda Street, 00-818 Warszawa, Poland
| | - Anna Bajer
- Department of Parasitology, Institute of Zoology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096 Warszawa, Poland
| |
Collapse
|
45
|
Klitgaard K, Højgaard J, Isbrand A, Madsen JJ, Thorup K, Bødker R. Screening for multiple tick-borne pathogens in Ixodes ricinus ticks from birds in Denmark during spring and autumn migration seasons. Ticks Tick Borne Dis 2019; 10:546-552. [DOI: 10.1016/j.ttbdis.2019.01.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 12/15/2022]
|
46
|
Abstract
Ticks are a major group of arthropod vectors, characterized by the diversity of pathogens they transmit, by their impact on human and animal health, and by their socioeconomic implication especially in countries of the Southern Hemisphere. In Europe, Ixodes is the most important tick due to its wide distribution in the ecosystems and the variety of transmitted pathogens, in particular Borrelia (responsible for Lyme borreliosis), but also the tick-borne encephalitis virus. Their increased presence in the environment since the beginning of the 20th century is undeniable, because of major modifications in the biodiversity caused by humans. Increasing the awareness of health professionals and the general population is required to achieve better control of these infections. Thus, "a better understanding of these tick-borne diseases for a better control" is a simple but effective approach, considering their ubiquity in the environment and their particular mode of pathogen transmission (long-lasting blood meal for hard ticks and delayed transmission for bacteria and parasites). Finally, these ectoparasites are problematic due to the potential allergic reactions and other damages caused by their saliva, in humans and animals.
Collapse
|
47
|
Jha P, Kim CM, Kim DM, Yoon NR, Jha B, Park JW, Chung JK. First detection and identification of Candidatus Neoehrlichia mikurensis in South Korea. PLoS One 2018; 13:e0209685. [PMID: 30592745 PMCID: PMC6310361 DOI: 10.1371/journal.pone.0209685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/10/2018] [Indexed: 12/20/2022] Open
Abstract
Candidatus Neoehrlichia mikurensis (Ca. N. mikurensis; family Anaplasmataceae) is an emerging tick-borne pathogen that causes a systemic inflammatory syndrome with thrombotic complications. We report here the first identification of Ca. N. mikurensis in organ samples from small mammals captured in southwest South Korea. Nested PCR of groEL and 16S rRNA genes was used to confirm the identity of the bacteria present, and successfully amplified fragments were sequenced. All captured animals were identified as striped field mice (Apodemus agrarius), approximately 28.6% (4/14) and 21.4% (3/14) of which were found to be PCR-positive for Ca. N. mikurensis and Anaplasma phagocytophilum, respectively. The detection of Ca. N. mikurensis in these animals represents the first evidence of this pathogen in South Korea. Carriage of this bacterium by rodents highlights the need for more detailed investigation of their role in its transmission to humans.
Collapse
Affiliation(s)
- Piyush Jha
- Deaprtment of Internal Medicine, School of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Choon-Mee Kim
- Department of Premedical Science, School of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Dong-Min Kim
- Deaprtment of Internal Medicine, School of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Na-Ra Yoon
- Deaprtment of Internal Medicine, School of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Babita Jha
- Deaprtment of Internal Medicine, School of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Jung Wook Park
- Division of Infectious Disease Investigation, Health and Environment Research Institute of Gwangju City, Gwangju, Republic of Korea
| | - Jae Keun Chung
- Division of Infectious Disease Investigation, Health and Environment Research Institute of Gwangju City, Gwangju, Republic of Korea
| |
Collapse
|
48
|
Larsson C, Hvidsten D, Stuen S, Henningsson AJ, Wilhelmsson P. "Candidatus Neoehrlichia mikurensis" in Ixodes ricinus ticks collected near the Arctic Circle in Norway. Parasit Vectors 2018; 11:620. [PMID: 30514355 PMCID: PMC6278014 DOI: 10.1186/s13071-018-3168-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/25/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND "Candidatus Neoehrlichia mikurensis" is a gram-negative bacterium belonging to the family Anaplasmataceae that, in Europe, is transmitted by Ixodes ricinus ticks. "Candidatus N. mikurensis" can cause a severe systemic inflammatory syndrome, neoehrlichiosis, mostly in persons with other underlying diseases. To date, "Ca. N. mikurensis" has been found in ticks in different countries in Asia and Europe, but never as far north as at the Arctic Circle. METHODS A total of 1104 I. ricinus ticks collected from vegetation and from animals in northern Norway (64-68°N) were analysed for the prevalence of "Ca. N. mikurensis". Of them, 495 ticks were collected from vegetation by flagging and 609 ticks were collected from dogs and cats. Total nucleic acid extracted from the ticks were converted to cDNA and analyzed with real-time PCR targeting the 16S rRNA gene of "Ca. N. mikurensis". Positive samples were further analysed by nested PCR and sequencing. RESULTS "Candidatus N. mikurensis" was detected in 11.2% of all collected I. ricinus ticks in northern Norway. The prevalence differed between ticks collected from vegetation (18.2%; 90/495) compared to ticks collected from dogs and cats (5.6%; 34/609). The ticks from dogs and cats were collected in Brønnøy area and seven additional districts further north. The prevalence of "Ca. N. mikurensis" in these ticks differed between geographical localities, with the highest prevalence in the Brønnøy area. CONCLUSIONS The detection of "Ca. N. mikurensis" in I. ricinus ticks from the Arctic Circle in northern Norway indicates potential risk for tick-bitten humans at this latitude to be infected with "Ca. N. mikurensis".
Collapse
Affiliation(s)
- Clarinda Larsson
- Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Dag Hvidsten
- Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway.,Department of Laboratory Medicine, Nordland Hospital, Bodø, Norway
| | - Snorre Stuen
- Department of Production Animal Clinical Sciences, Section of Small Ruminant Research and Herd Health, Norwegian University of Life Sciences, Sandnes, Norway
| | - Anna J Henningsson
- Clinical Microbiology, Laboratory Medicine, County Hospital Ryhov, Jönköping, Sweden.,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Peter Wilhelmsson
- Division of Medical Microbiology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden. .,Department of Medical Microbiology, Laboratory Medicine, County Hospital Ryhov, Jönkoping, Sweden.
| |
Collapse
|
49
|
Sormunen JJ, Klemola T, Hänninen J, Mäkelä S, Vuorinen I, Penttinen R, Sääksjärvi IE, Vesterinen EJ. The importance of study duration and spatial scale in pathogen detection-evidence from a tick-infested island. Emerg Microbes Infect 2018; 7:189. [PMID: 30482899 PMCID: PMC6258729 DOI: 10.1038/s41426-018-0188-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/24/2018] [Accepted: 10/21/2018] [Indexed: 12/11/2022]
Abstract
Ticks (Acari: Ixodoidea) are among the most common vectors of zoonotic pathogens worldwide. While research on tick-borne pathogens is abundant, few studies have thoroughly investigated small-scale spatial differences in their occurrence. Here, we used long-term cloth-dragging data of Ixodes ricinus and its associated, known and putative pathogens (Borrelia burgdorferi s.l., Borrelia miyamotoi, Anaplasma phagocytophilum, Rickettsia spp., Candidatus Neoehrlichia mikurensis, Bartonella spp., Babesia spp., and tick-borne encephalitis virus, TBEV) from a small, well-studied island in southwestern Finland to analyze potential temporal and spatial differences in pathogen prevalence and diversity between and within different biotopes. We found robust evidence indicating significant dissimilarities in B. burgdorferi s.l., A. phagocytophilum, Rickettsia, and Ca. N. mikurensis prevalence, even between proximal study areas on the island. Moreover, during the 6 years of the ongoing study, we witnessed the possible emergence of TBEV and Ca. N. mikurensis on the island. Finally, the stable occurrence of a protozoan pathogen that has not been previously reported in Finland, Babesia venatorum, was observed on the island. Our study underlines the importance of detailed, long-term tick surveys for public health. We propose that by more precisely identifying different environmental factors associated with the emergence and upkeep of enzootic pathogen populations through rigorous longitudinal surveys, we may be able to create more accurate models for both current and future pathogen distributions.
Collapse
Affiliation(s)
- Jani Jukka Sormunen
- Department of Biology, University of Turku, FI-20014, Turku, Finland. .,Biodiversity Unit, University of Turku, FI-20014, Turku, Finland.
| | - Tero Klemola
- Department of Biology, University of Turku, FI-20014, Turku, Finland
| | - Jari Hänninen
- Biodiversity Unit, University of Turku, FI-20014, Turku, Finland
| | - Satu Mäkelä
- Department of Biology, University of Turku, FI-20014, Turku, Finland
| | - Ilppo Vuorinen
- Biodiversity Unit, University of Turku, FI-20014, Turku, Finland
| | - Ritva Penttinen
- Biodiversity Unit, University of Turku, FI-20014, Turku, Finland
| | | | - Eero Juhani Vesterinen
- Biodiversity Unit, University of Turku, FI-20014, Turku, Finland.,Deparment of Agricultural Sciences, University of Helsinki, FI-00014, Helsinki, Finland
| |
Collapse
|
50
|
Hofmeester TR, Krawczyk AI, van Leeuwen AD, Fonville M, Montizaan MGE, van den Berge K, Gouwy J, Ruyts SC, Verheyen K, Sprong H. Role of mustelids in the life-cycle of ixodid ticks and transmission cycles of four tick-borne pathogens. Parasit Vectors 2018; 11:600. [PMID: 30458847 PMCID: PMC6245527 DOI: 10.1186/s13071-018-3126-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 09/28/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Elucidating which wildlife species significantly contribute to the maintenance of Ixodes ricinus populations and the enzootic cycles of the pathogens they transmit is imperative in understanding the driving forces behind the emergence of tick-borne diseases. Here, we aimed to quantify the relative contribution of four mustelid species in the life-cycles of I. ricinus and Borrelia burgdorferi (sensu lato) in forested areas and to investigate their role in the transmission of other tick-borne pathogens. Road-killed badgers, pine martens, stone martens and polecats were collected in Belgium and the Netherlands. Their organs and feeding ticks were tested for the presence of tick-borne pathogens. RESULTS Ixodes hexagonus and I. ricinus were found on half of the screened animals (n = 637). Pine martens had the highest I. ricinus burden, whereas polecats had the highest I. hexagonus burden. We detected DNA from B. burgdorferi (s.l.) and Anaplasma phagocytophilum in organs of all four mustelid species (n = 789), and Neoehrlichia mikurensis DNA was detected in all species, except badgers. DNA from B. miyamotoi was not detected in any of the investigated mustelids. From the 15 larvae of I. ricinus feeding on pine martens (n = 44), only one was positive for B. miyamotoi DNA, and all tested negative for B. burgdorferi (s.l.), N. mikurensis and A. phagocytophilum. The two feeding larvae from the investigated polecats (n = 364) and stone martens (n = 39) were negative for all four pathogens. The infection rate of N. mikurensis was higher in feeding nymphs collected from mustelids compared to questing nymphs, but not for B. burgdorferi (s.l.), B. miyamotoi or A. phagocytophilum. CONCLUSIONS Although all stages of I. ricinus can be found on badgers, polecats, pine and stone martens, their relative contribution to the life-cycle of I. ricinus in forested areas is less than 1%. Consequently, the relative contribution of mustelids to the enzootic cycles of I. ricinus-borne pathogens is negligible, despite the presence of these pathogens in organs and feeding ticks. Interestingly, all four mustelid species carried all stages of I. hexagonus, potentially maintaining enzootic cycles of this tick species apart from the cycle involving hedgehogs as main host species.
Collapse
Affiliation(s)
- Tim R Hofmeester
- Resource Ecology Group, Wageningen University, Wageningen, the Netherlands. .,Present address: Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd 17, 907 36, Umeå, Sweden.
| | - Aleksandra I Krawczyk
- Centre for Zoonoses and Environmental Microbiology, Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Arieke Docters van Leeuwen
- Centre for Zoonoses and Environmental Microbiology, Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Manoj Fonville
- Centre for Zoonoses and Environmental Microbiology, Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | | | - Koen van den Berge
- Research Institute for Nature and Forest (INBO), Geraardsbergen, Belgium
| | - Jan Gouwy
- Research Institute for Nature and Forest (INBO), Geraardsbergen, Belgium
| | - Sanne C Ruyts
- Forest and Nature Lab, Department of Environment, Ghent University, Geraardsbergsesteenweg 267, 9090, Gontrode, Melle, Belgium
| | - Kris Verheyen
- Forest and Nature Lab, Department of Environment, Ghent University, Geraardsbergsesteenweg 267, 9090, Gontrode, Melle, Belgium
| | - Hein Sprong
- Centre for Zoonoses and Environmental Microbiology, Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.
| |
Collapse
|