1
|
Huang J, Bao C, Yang C, Qu Y. Dual-tDCS Ameliorates Cerebral Injury and Promotes Motor Function Recovery via cGAS-STING Signaling Pathway in a Rat Model of Ischemic Stroke. Mol Neurobiol 2024:10.1007/s12035-024-04574-x. [PMID: 39455539 DOI: 10.1007/s12035-024-04574-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Ischemic stroke is one of the leading causes of death and disability. Dual transcranial direct current stimulation (dual-tDCS) is a promising intervention to treat ischemic stroke, but its efficacy and underlying mechanism remain to be verified. Cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway has recently emerged as a key mediator in cerebral injury. However, little is known about the effect of cGAS-STING on neuronal damage in ischemic stroke, and it remains to be studied whether the cGAS-STING pathway is involved in tDCS intervention for ischemic stroke. Therefore, we aimed to investigate whether dual-tDCS can alleviate ischemic brain injury in a rat model of ischemic stroke and if so, whether via cGAS-STING pathway. Middle cerebral artery occlusion (MCAO) was employed to induce a rat model of ischemic stroke. Male SD rats weighing 250-280 g were randomly assigned to the Sham, MCAO, Dual-tDCS, Dual-tDCS + RU.521, and Dual-tDCS + 2'3'-cGAMP groups, with 10 rats in each group completing the experiment. Behavioral, morphological, MRI, and molecular biological methods were performed. We found that the cGAS-STING pathway was activated and expressed in neurons after MCAO. Dual-tDCS improved motor function and infarct volume, inhibited neuronal apoptosis, promoted the expression of neurotrophins (BDNF and NGF), CD31, and VEGF, and suppressed inflammation reaction after MCAO via the cGAS-STING pathway. Taken together, dual-tDCS may improve MCAO-induced brain injury and promote the recovery of motor function, resulting from the inhibition of neuronal apoptosis and inflammation reaction, as well as promotion of the expression of nerve plasticity- and angiogenesis-related proteins, via cGAS-STING pathway.
Collapse
Affiliation(s)
- Jiapeng Huang
- Clinical Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Research Laboratory of Neurorehabilitation, Research Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chuncha Bao
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chunlan Yang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Research Laboratory of Neurorehabilitation, Research Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yun Qu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Research Laboratory of Neurorehabilitation, Research Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Lv W, Hu S, Yang F, Lin D, Zou H, Zhang W, Yang Q, Li L, Chen X, Wu Y. Heme oxygenase-1: potential therapeutic targets for periodontitis. PeerJ 2024; 12:e18237. [PMID: 39430558 PMCID: PMC11488498 DOI: 10.7717/peerj.18237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/15/2024] [Indexed: 10/22/2024] Open
Abstract
Periodontitis is one of the most prevalent inflammatory disease worldwide, which affects 11% of the global population and is a major cause of tooth loss. Recently, oxidative stress (OS) has been found to be the pivital pathophysiological mechanism of periodontitis, and overactivated OS will lead to inflammation, apoptosis, pyroptosis and alveolar bone resorption. Interestingly, heme oxygenase-1 (HO-1), a rate-limiting enzyme in heme degradation, can exert antioxidant activites through its products-carbon monoxide (CO), Fe2+, biliverdin and bilirubin in the inflammatory microenvironment, thus exhibiting anti-inflammatory, anti-apoptotic, anti-pyroptosis and bone homeostasis-regulating properties. In this review, particular focus is given to the role of HO-1 in periodontitis, including the spatial-temporal expression in periodental tissues and pathophysiological mechanisms of HO-1 in periodontitis, as well as the current therapeutic applications of HO-1 targeted drugs for periodontitis. This review aims to elucidate the potential applications of various HO-1 targeted drug therapy in the management of periodontitis, investigate the influence of diverse functional groups on HO-1 and periodontitis, and pave the way for the development of a new generation of therapeutics that will benefit patients suffering from periodontitis.
Collapse
Affiliation(s)
- Weiwei Lv
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Shichen Hu
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Fei Yang
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Dong Lin
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Haodong Zou
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Wanyan Zhang
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Qin Yang
- School of Pharmacy, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Lihua Li
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xiaowen Chen
- School of Medical Imaging, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yan Wu
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, Sichuan, China
| |
Collapse
|
3
|
Chen DT, Rao W, Shen X, Chen L, Wan ZJ, Sheng XP, Fan TY. Pharmacological effects of higenamine based on signalling pathways and mechanism of action. Front Pharmacol 2022; 13:981048. [PMID: 36188548 PMCID: PMC9520082 DOI: 10.3389/fphar.2022.981048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Higenamine (HG) is a chemical compound found in various plants, such as aconite. Recent pharmacological studies have demonstrated its effectiveness in the management of many diseases. Several mechanisms of action of HG have been proposed; however, they have not yet been classified. This review summarises the signalling pathways and pharmacological targets of HG, focusing on its potential as a naturally extracted drug. Articles related to the pharmacological effects, signalling pathways and pharmacological targets of HG were selected by searching the keyword "Higenamine" in the PubMed, Web of Science and Google Scholar databases without limiting the search by publication years. HG possesses anti-oxidant, anti-apoptotic, anti-inflammatory, electrophysiology regulatory, anti-fibrotic and lipid-lowering activities. It is a structural analogue of catecholamines and possesses characteristics similar to those of adrenergic receptor ligands. It can modulate multiple targets, including anti-inflammation- and anti-apoptosis-related targets and some transcription factors, which directly or indirectly influence the disease course. Other naturally occurring compounds, such as cucurbitacin B (Cu B) and 6-gingerol (6-GR), can be combined with HG to enhance its anti-apoptotic activity. Although significant research progress has been made, follow-up pharmacological studies are required to determine the exact mechanism of action, new signalling pathways and targets of HG and the effects of using it in combination with other drugs.
Collapse
Affiliation(s)
- De-ta Chen
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wu Rao
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xue Shen
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lin Chen
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zi-jian Wan
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-ping Sheng
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tian-you Fan
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
Deng C, Deng L, Lv J, Sun L. Therapeutic effects and long-term outcomes of HMGB1-targeted therapy in rats and mice with traumatic spinal cord injury: A systematic review and meta-analysis. Front Neurosci 2022; 16:968791. [PMID: 36161176 PMCID: PMC9489835 DOI: 10.3389/fnins.2022.968791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/18/2022] [Indexed: 12/09/2022] Open
Abstract
BackgroundTo date, the clinical need for therapeutic methods to prevent traumatic spinal cord injury (TSCI) progression and improve functional recovery has not been met. High mobility group box-1 (HMGB1) is released by necrotic neurons or secreted by glial cells after TSCI and plays an important role in pathophysiology.ObjectiveThe purpose of this study was to evaluate the effects of HMGB1-targeted therapy on locomotor function recovery, inflammation reduction, edema attenuation, and apoptosis reduction in rat and mouse models of TSCI.MethodsWe reviewed the literature on HMGB1-targeted therapy in the treatment and prognosis of TSCI. Twelve articles were identified and analyzed from four online databases (PubMed, Web of Science, Cochrane Library and Embase) based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and strict inclusion criteria.ResultsThe methodological quality of the 12 articles was poor. The results of the meta-analysis showed that compared with the SCI group, the treatment group had significantly increased locomotor function scores after SCI [n = 159, standardized mean difference (SMD) = 2.31, 95% confidence interval (CI) (1.52, 3.10), P < 0.00001], and the change in locomotor function scores was significantly increased in both the drug and anti-HMGB1 Ab groups (P < 0.000001 and P < 0.000001). A subgroup analysis showed significant differences (P > 0.05) between the drug group [(SMD) = 1.95, 95% CI (0.95, 2.94), P = 0.0001] and the anti-HMGB1 Ab group [(SMD) = 2.89, 95% CI (1.66, 4.13), P < 0.00001]. Compared with the SCI group, HMGB1 expression was significantly diminished [n = 76, SMD = −2.31, 95% CI (−3.71, −0.91), P = 0.001], TNF-α levels were significantly reduced [n = 76, SMD = −2.52, 95% CI (−3.77, −1.27), P < 0.0001], water content was significantly reduced [n = 44, SMD = −3.94, 95% CI (−6.28, −1.61), P = 0.0009], and the number of apoptotic cells was significantly diminished [n = 36, SMD = −3.31, 95% CI (−6.40, −0.22), P = 0.04] in the spinal cord of the treatment group.ConclusionHMGB1-targeted therapy improves locomotor function, reduces inflammation, attenuates edema, and reduces apoptosis in rats and mice with TSCI. Intrathecal injection of anti-HMGB1 Ab 0-3 h after SCI may be the most efficacious treatment.Systematic review registrationPROSPERO, identifier: CRD42022326114.
Collapse
|
5
|
Kang L, Zhang H, Jia C, Zhang R, Shen C. Targeting Oxidative Stress and Inflammation in Intervertebral Disc Degeneration: Therapeutic Perspectives of Phytochemicals. Front Pharmacol 2022; 13:956355. [PMID: 35903342 PMCID: PMC9315394 DOI: 10.3389/fphar.2022.956355] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Low back pain is a major cause of disability worldwide that declines the quality of life; it poses a substantial economic burden for the patient and society. Intervertebral disc (IVD) degeneration (IDD) is the main cause of low back pain, and it is also the pathological basis of several spinal degenerative diseases, such as intervertebral disc herniation and spinal stenosis. The current clinical drug treatment of IDD focuses on the symptoms and not their pathogenesis, which results in frequent recurrence and gradual aggravation. Moreover, the side effects associated with the long-term use of these drugs further limit their use. The pathological mechanism of IDD is complex, and oxidative stress and inflammation play an important role in promoting IDD. They induce the destruction of the extracellular matrix in IVD and reduce the number of living cells and functional cells, thereby destroying the function of IVD and promoting the occurrence and development of IDD. Phytochemicals from fruits, vegetables, grains, and other herbs play a protective role in the treatment of IDD as they have anti-inflammatory and antioxidant properties. This article reviews the protective effects of phytochemicals on IDD and their regulatory effects on different molecular pathways related to the pathogenesis of IDD. Moreover, the therapeutic limitations and future prospects of IDD treatment have also been reviewed. Phytochemicals are promising candidates for further development and research on IDD treatment.
Collapse
|
6
|
Kondo T, Ishida T, Ye K, Muraguchi M, Tanimura Y, Yoshida M, Ishiuchi K, Abe T, Nikawa T, Hagihara K, Hayashi H, Makino T. Suppressive effects of processed aconite root on dexamethasone-induced muscle ring finger protein-1 expression and its active ingredients. J Nat Med 2022; 76:594-604. [PMID: 35178660 PMCID: PMC10008256 DOI: 10.1007/s11418-022-01606-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/27/2022] [Indexed: 12/31/2022]
Abstract
Processed aconite root (PA), the tuberous root of Aconitum carmichaelii prepared by autoclaving, is a crude drug used in Japanese traditional Kampo medicine and traditional Chinese medicine for the symptoms of kidney deficiency, that is related to the muscle atrophy in modern medicine. The objective of the present study is to evaluate the effectiveness of PA on muscle atrophy and to find its active ingredients using dexamethasone-induced muscle ring finger protein-1 (MuRF1) mRNA expression in murine myoblast C2C12 cells. Dexamethasone-induced MuRF1 expression was significantly suppressed by methanol-soluble part of boiling water extract of PA in a concentration-dependent manner with its IC50 value of 1.5 mg/ml. By the activity-guided fractionations of PA extract using the partition between organic solvents and its aqueous solution, the activity of PA did not transfer into the fraction containing aconitine-type diterpenoid alkaloids but into BuOH layer. Then, we found higenamine and salsolinol as the active ingredients in PA. Higenamine and salsolinol significantly suppressed dexamethasone-induced MuRF1 expression, and their IC50 values were 0.49 and 50 µM, respectively. The contents of higenamine and salsolinol in the decoctions of commercially available fourteen PA products are 0.12 and 14 µg/ml as the average values, and varied with the coefficient of variation (CV) values of 97 and 63%, respectively. Higenamine also significantly suppressed dexamethasone-induced mRNA expressions of muscle atrophy F-box protein (MAFbx)/atrogin1, casitas B-lineage lymphoma-b (Cbl-b), troponin, branched-chain amino acid aminotransferase 2 (BCAT2), and Bcl-2 binding and pro-apoptotic protein3 (Bnip3). Although the quality control of PA is regulated by the contents of diterpene alkaloids, salsolinol and higenamine can be used as the marker compounds to certificate the pharmacological activities of PA.
Collapse
Affiliation(s)
- Taishi Kondo
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Tomoaki Ishida
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Ke Ye
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Marin Muraguchi
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Yohei Tanimura
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Masato Yoshida
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Kan'ichiro Ishiuchi
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Tomoki Abe
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Takeshi Nikawa
- Department of Nutritional Physiology, Institute of Medical Nutrition, Tokushima University Graduate School, 3-18 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Keisuke Hagihara
- Department of Advanced Hybrid Medicine, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 565-0871, Japan
| | - Hidetoshi Hayashi
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Toshiaki Makino
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan.
| |
Collapse
|
7
|
Effects of the Higenamine, a Potent Compound from Aconitum, on UVB-Induced Photoaging in Hairless Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9116642. [PMID: 35529934 PMCID: PMC9068300 DOI: 10.1155/2022/9116642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/13/2022] [Indexed: 01/01/2023]
Abstract
Aim Higenamine [1-[(4-hydroxyphenyl) methyl]-1, 2, 3, 4-tetrahydroisoquinoline-6, 7-diol], a potent cardiotonic compound from Aconitum, contributes to vascular relaxation and bronchodilation. However, the effects and mechanisms of action of higenamine on skin aging remain poorly understood. In this study, the effects of higenamine on UVB-induced photoaging were examined in the hairless mouse model. Methods The dorsal skin of hairless mice (CrlOri : SKH1) was exposed to chronic UVB irradiation (100–300 mJ/cm2 for 6 weeks), with subsequent administration of higenamine (1–20 mg/kg, p.o.) for 2 weeks. TGF-β, Smad3 DNA-binding phosphorylation, and COL1A1 levels were analyzed by immunohistochemistry, and histological analysis of the skin was performed via H&E and MT staining. Results Higenamine increased TGF-β, Smad3 DNA-binding phosphorylation, and COL1A1 expression in primary human fibroblast cells and mouse skin. Higenamine suppressed UVB-induced photoaging via skin recovery, improved epidermal thickness, and prevented Smad3, DNA-binding phosphorylation, and COL1A1 depletion via TGF-β signaling. Conclusion Higenamine enhances collagen production in the skin through TGF-β/Smad3 signaling and potentially suppresses UVB-induced skin aging.
Collapse
|
8
|
Wang Z, Li Y, Ma D, Zeng M, Wang Z, Qin F, Chen J, Christian M, He Z. Alkaloids from lotus ( Nelumbo nucifera): recent advances in biosynthesis, pharmacokinetics, bioactivity, safety, and industrial applications. Crit Rev Food Sci Nutr 2021:1-34. [PMID: 34845950 DOI: 10.1080/10408398.2021.2009436] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Different parts of lotus (Nelumbo nucifera Gaertn.) including the seeds, rhizomes, leaves, and flowers, are used for medicinal purposes with health promoting and illness preventing benefits. The presence of active chemicals such as alkaloids, phenolic acids, flavonoids, and terpenoids (particularly alkaloids) may account for this plant's pharmacological effects. In this review, we provide a comprehensive overview and summarize up-to-date research on the biosynthesis, pharmacokinetics, and bioactivity of lotus alkaloids as well as their safety. Moreover, the potential uses of lotus alkaloids in the food, pharmaceutical, and cosmetic sectors are explored. Current evidence shows that alkaloids, mainly consisting of aporphines, 1-benzylisoquinolines, and bisbenzylisoquinolines, are present in different parts of lotus. The bioavailability of these alkaloids is relatively low in vivo but can be enhanced by technological modification using nanoliposomes, liposomes, microcapsules, and emulsions. Available data highlights their therapeutic and preventive effects on obesity, diabetes, neurodegeneration, cancer, cardiovascular disease, etc. Additionally, industrial applications of lotus alkaloids include their use as food, medical, and cosmetic ingredients in tea, other beverages, and healthcare products; as lipid-lowering, anticancer, and antipsychotic drugs; and in facial masks, toothpastes, and shower gels. However, their clinical efficacy and safety remains unclear; hence, larger and longer human trials are needed to achieve their safe and effective use with minimal side effects.
Collapse
Affiliation(s)
- Zhenyu Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Yong Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Dandan Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Mark Christian
- School of Science and Technology, Nottingham Trent University, Clifton, Nottingham, UK
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
9
|
Zhang N, Zhu H, Li Z, Dong E. A novel β 2-AR agonist, Higenamine, induces β-arrestin-biased signaling. SCIENCE CHINA-LIFE SCIENCES 2021; 65:1357-1368. [PMID: 34783996 DOI: 10.1007/s11427-021-2008-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/12/2021] [Indexed: 12/11/2022]
Abstract
The biased ligands in G protein-coupled receptors (GPCRs) have opened new avenues for developing safer and more effective drugs. However, the identification of such biased ligands as drug candidates is highly desirable. Here, we report that Higenamine, a compound isolated from a Chinese herb, functions as a novel β-arrestin-biased ligand of the β2-adrenergic receptor (β2-AR). The radioligand binding assays demonstrated that Higenamine was the ligand of β2-AR. Higenamine induced phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), which can be blocked by propranolol, an inhibitor of β2-AR. The Gi protein inhibitor, pertussis toxin, had no effect on the phosphorylation of ERK1/2 induced by Higenamine. Furthermore, Higenamine induced ERK1/2 phosphorylation through transactivation of Epithelial growth factor receptor (EGFR). We also found that Higenamine-induced-ERK1/2 phosphorylation is dependent on β-arrestin1/2, and HG inhibits Doxorubicin-induced cardiomyocyte apoptosis. Our results identify Higenamine as a novel biased ligand via the β-arrestin-dependent pathway. These findings give us a better understanding of Higenamine's potential role in designing diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Nana Zhang
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines; Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study; Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Haibo Zhu
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines; Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study; Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Zijian Li
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; Key Laboratory of Cardiovascular Receptors Research, Beijing, China. .,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing, 100191, China.
| | - Erdan Dong
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; Key Laboratory of Cardiovascular Receptors Research, Beijing, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education; Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing, 100191, China
| |
Collapse
|
10
|
Fakhri S, Iranpanah A, Gravandi MM, Moradi SZ, Ranjbari M, Majnooni MB, Echeverría J, Qi Y, Wang M, Liao P, Farzaei MH, Xiao J. Natural products attenuate PI3K/Akt/mTOR signaling pathway: A promising strategy in regulating neurodegeneration. PHYTOMEDICINE 2021; 91:153664. [PMID: 34391082 DOI: 10.1016/j.phymed.2021.153664] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/04/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND As common, progressive, and chronic causes of disability and death, neurodegenerative diseases (NDDs) significantly threaten human health, while no effective treatment is available. Given the engagement of multiple dysregulated pathways in neurodegeneration, there is an imperative need to target the axis and provide effective/multi-target agents to tackle neurodegeneration. Recent studies have revealed the role of phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) in some diseases and natural products with therapeutic potentials. PURPOSE This is the first systematic and comprehensive review on the role of plant-derived secondary metabolites in managing and/or treating various neuronal disorders via the PI3K/Akt/mTOR signaling pathway. STUDY DESIGN AND METHODS A systematic and comprehensive review was done based on the PubMed, Scopus, Web of Science, and Cochrane electronic databases. Two independent investigators followed the PRISMA guidelines and included papers on PI3K/Akt/mTOR and interconnected pathways/mediators targeted by phytochemicals in NDDs. RESULTS Natural products are multi-target agents with diverse pharmacological and biological activities and rich sources for discovering and developing novel therapeutic agents. Accordingly, recent studies have shown increasing phytochemicals in combating Alzheimer's disease, aging, Parkinson's disease, brain/spinal cord damages, depression, and other neuronal-associated dysfunctions. Amongst the emerging targets in neurodegeneration, PI3K/Akt/mTOR is of great importance. Therefore, attenuation of these mediators would be a great step towards neuroprotection in such NDDs. CONCLUSION The application of plant-derived secondary metabolites in managing and/or treating various neuronal disorders through the PI3K/Akt/mTOR signaling pathway is a promising strategy towards neuroprotection.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Amin Iranpanah
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | | | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Mohammad Ranjbari
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | | | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
| | - Yaping Qi
- Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, IN 47907, USA.
| | - Mingfu Wang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, PR China.
| | - Pan Liao
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA.
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China; Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain.
| |
Collapse
|
11
|
Higenamine mitigates interleukin-1β-induced human nucleus pulposus cell apoptosis by ROS-mediated PI3K/Akt signaling. Mol Cell Biochem 2021; 476:3889-3897. [PMID: 34146182 DOI: 10.1007/s11010-021-04197-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
Intervertebral disc degeneration (IDD) is a natural problem linked to the inflammation. Higenamine exerts multiple pharmacological properties in inflammation-related disorders. Our study aimed to explore the function of higenamine on interleukin (IL)-1β-caused apoptosis of human nucleus pulposus cells (HNPCs). Cell apoptosis was investigated by TUNEL and flow cytometry. Apoptosis-related biomarkers were determined by qRT-PCR or Western blotting. The protein in the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling was measured by Western blotting. We found that higenamine showed little effect on cell apoptosis, but mitigated IL-1β-caused apoptosis in a dose-dependent pattern. Higenamine attenuated IL-1β-induced decrease of Bcl-2 and increase of Bax and cleaved caspase-3. Higenamine did not affect the reactive oxygen species (ROS) level and the PI3K/Akt signaling, but attenuated IL-1β-induced ROS production and inhibition of the PI3K/Akt signaling. IL-1β repressed the activation of the PI3K/Akt pathway, but ROS inhibition using N-acetylcysteine (NAC) rescued this pathway. The PI3K/Akt signaling suppression using LY294002 reversed the inhibitive effect of higenamine on IL-1β-caused apoptosis, and this effect was weakened by ROS inhibition. In conclusion, higenamine attenuates IL-1β-caused apoptosis of HNPCs via ROS-mediated PI3K/Akt pathway.
Collapse
|
12
|
Li WH, Yang YL, Cheng X, Liu M, Zhang SS, Wang YH, Du GH. Baicalein attenuates caspase-independent cells death via inhibiting PARP-1 activation and AIF nuclear translocation in cerebral ischemia/reperfusion rats. Apoptosis 2021; 25:354-369. [PMID: 32338336 DOI: 10.1007/s10495-020-01600-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It is reported that baicalein can activate PI3K/AKT pathway, inhibit caspase activation and reduce cerebral infarct volume in middle cerebral artery occlusion (MCAO) rats. However, a caspase-independent mechanism initiated by poly (ADP-ribose) polymerase-1 (PARP-1) activation has been reported to make more contribution to cells death after ischemic stroke. In the present study, we established a cerebral ischemia/reperfusion (I/R) rat model through middle cerebral artery occlusion following reperfusion to investigate the mechanisms of ischemic tissue recovery following baicalein treatment. The data showed that baicalein treatment at dose of 100 mg/kg for 7 days significantly inhibited the release of cytokines, activation of PARP-1, nuclear translocation of apoptosis-inducing factor (AIF) and macrophage migration inhibitory factor (MIF) in cerebral I/R rats, therefore decreased cerebral infarct volume and neurological scores. Then, we further investigated the signal transduction mechanisms of ischemic tissue protection by baicalein in vitro. Following oxygen and glucose deprivation (OGD) in SH-SY5Y cells, the mitochondrial AIF was translocated into nucleus after 12 h. The co-immunoprecipitation analysis showed that the interaction between AIF and MIF was activated by OGD and subsequently resulted in MIF nuclear translocation. Also, the baicalein inhibited apoptosis, reduced oxidative stress, protected mitochondrial function and restored mitochondrial membrane potential in OGD cells. The results obtained from both in vivo and in vitro study demonstrated the PARP-1/AIF pathway involved in mechanisms of baicalein to protect the cerebral tissues from ischemic injury.
Collapse
Affiliation(s)
- Wei-Han Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.,Beijing Key Laboratory of Drug Target Identification and New Drug Screening Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Ying-Lin Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.,Beijing Key Laboratory of Drug Target Identification and New Drug Screening Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xiao Cheng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.,Beijing Key Laboratory of Drug Target Identification and New Drug Screening Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Man Liu
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Shan-Shan Zhang
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yue-Hua Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China. .,Beijing Key Laboratory of Drug Target Identification and New Drug Screening Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Guan-Hua Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China. .,Beijing Key Laboratory of Drug Target Identification and New Drug Screening Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
13
|
Zhang XX, Wang HY, Yang XF, Lin ZQ, Shi N, Chen CJ, Yao LB, Yang XM, Guo J, Xia Q, Xue P. Alleviation of acute pancreatitis-associated lung injury by inhibiting the p38 mitogen-activated protein kinase pathway in pulmonary microvascular endothelial cells. World J Gastroenterol 2021; 27:2141-2159. [PMID: 34025070 PMCID: PMC8117735 DOI: 10.3748/wjg.v27.i18.2141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/06/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Previous reports have suggested that the p38 mitogen-activated protein kinase signaling pathway is involved in the development of severe acute pancreatitis (SAP)-related acute lung injury (ALI). Inhibition of p38 by SB203580 blocked the inflammatory responses in SAP-ALI. However, the precise mechanism associated with p38 is unclear, particularly in pulmonary microvascular endothelial cell (PMVEC) injury.
AIM To determine its role in the tumor necrosis factor-alpha (TNF-α)-induced inflammation and apoptosis of PMVECs in vitro. We then conducted in vivo experiments to confirm the effect of SB203580-mediated p38 inhibition on SAP-ALI.
METHODS In vitro, PMVEC were transfected with mitogen-activated protein kinase kinase 6 (Glu), which constitutively activates p38, and then stimulated with TNF-α. Flow cytometry and western blotting were performed to detect the cell apoptosis and inflammatory cytokine levels, respectively. In vivo, SAP-ALI was induced by 5% sodium taurocholate and three different doses of SB203580 (2.5, 5.0 or 10.0 mg/kg) were intraperitoneally injected prior to SAP induction. SAP-ALI was assessed by performing pulmonary histopathology assays, measuring myeloperoxidase activity, conducting arterial blood gas analyses and measuring TNF-α, interleukin (IL)-1β and IL-6 levels. Lung microvascular permeability was measured by determining bronchoalveolar lavage fluid protein concentration, Evans blue extravasation and ultrastructural changes in PMVECs. The apoptotic death of pulmonary cells was confirmed by performing a terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling analysis and examining the Bcl2, Bax, Bim and cle-caspase3 levels. The proteins levels of P-p38, NFκB, IκB, P-signal transducer and activator of transcription-3, nuclear factor erythroid 2-related factor 2, HO-1 and Myd88 were detected in the lungs to further evaluate the potential mechanism underlying the protective effect of SB203580.
RESULTS In vitro, mitogen-activated protein kinase (Glu) transfection resulted in higher apoptotic rates and cytokine (IL-1β and IL-6) levels in TNF-α-treated PMVECs. In vivo, SB2035080 attenuated lung histopathological injury, decreased inflammatory activity (TNF-α, IL-1β, IL-6 and myeloperoxidase) and preserved pulmonary function. Furthermore, SB203580 significantly reversed changes in the bronchoalveolar lavage fluid protein concentration, Evans blue accumulation, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive cell numbers, apoptosis-related proteins (cle-caspase3, Bim and Bax) and endothelial microstructure. Moreover, SB203580 significantly reduced the pulmonary P-p38, NFκB, P-signal transducer and activator of transcription-3 and Myd88 levels but increased the IκB and HO-1 levels.
CONCLUSION p38 inhibition may protect against SAP-ALI by alleviating inflammation and the apoptotic death of PMVECs.
Collapse
Affiliation(s)
- Xiao-Xin Zhang
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Hao-Yang Wang
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Xue-Fei Yang
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Zi-Qi Lin
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Na Shi
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Chan-Juan Chen
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Lin-Bo Yao
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Xin-Min Yang
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jia Guo
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Qing Xia
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Ping Xue
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
14
|
Xu H, Wang E, Chen F, Xiao J, Wang M. Neuroprotective Phytochemicals in Experimental Ischemic Stroke: Mechanisms and Potential Clinical Applications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6687386. [PMID: 34007405 PMCID: PMC8102108 DOI: 10.1155/2021/6687386] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/10/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
Ischemic stroke is a challenging disease with high mortality and disability rates, causing a great economic and social burden worldwide. During ischemic stroke, ionic imbalance and excitotoxicity, oxidative stress, and inflammation are developed in a relatively certain order, which then activate the cell death pathways directly or indirectly via the promotion of organelle dysfunction. Neuroprotection, a therapy that is aimed at inhibiting this damaging cascade, is therefore an important therapeutic strategy for ischemic stroke. Notably, phytochemicals showed great neuroprotective potential in preclinical research via various strategies including modulation of calcium levels and antiexcitotoxicity, antioxidation, anti-inflammation and BBB protection, mitochondrial protection and antiapoptosis, autophagy/mitophagy regulation, and regulation of neurotrophin release. In this review, we summarize the research works that report the neuroprotective activity of phytochemicals in the past 10 years and discuss the neuroprotective mechanisms and potential clinical applications of 148 phytochemicals that belong to the categories of flavonoids, stilbenoids, other phenols, terpenoids, and alkaloids. Among them, scutellarin, pinocembrin, puerarin, hydroxysafflor yellow A, salvianolic acids, rosmarinic acid, borneol, bilobalide, ginkgolides, ginsenoside Rd, and vinpocetine show great potential in clinical ischemic stroke treatment. This review will serve as a powerful reference for the screening of phytochemicals with potential clinical applications in ischemic stroke or the synthesis of new neuroprotective agents that take phytochemicals as leading compounds.
Collapse
Affiliation(s)
- Hui Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen 508060, China
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | | | - Feng Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen 508060, China
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Mingfu Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen 508060, China
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
15
|
Chen S, Li X, Wu J, Li J, Xiao M, Yang Y, Liu Z, Cheng Y. Plumula Nelumbinis: A review of traditional uses, phytochemistry, pharmacology, pharmacokinetics and safety. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113429. [PMID: 33011369 DOI: 10.1016/j.jep.2020.113429] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/06/2020] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plumula Nelumbinis, the green embryo of the mature seeds of Nelumbo nucifera Gaertn, has a medical history of over 400 years. It is widely used for clearing the heart and heat, calming the mind, and promoting astringent essence and hemostasis in traditional Chinese medicine. Moreover, it usually dual use as food and medicine. This review aimed to evaluate the therapeutic potential of Plumula Nelumbinis by summarizing its botany, traditional uses, phytochemistry, pharmacology, pharmacokinetics and safety. METHODS This review summarized published studies on Plumula Nelumbinis in the Chinese Pharmacopoeia and literature databases including PubMed, Web of Science, Baidu Scholar, Wiley and China Knowledge Resource Integrated Database (CNKI), and limits the different research articles in botany, traditional uses, phytochemistry, pharmacology, pharmacokinetics and safety about Plumula Nelumbinis. RESULTS Plumula Nelumbinis is used to treat hypertension, arrhythmia, severe aplastic anemia, insomnia, encephalopathy and gynecological disease in traditional Chinese medicine and clinical studies. More than 130 chemicals have been isolated and identified from Plumula Nelumbinis, including alkaloids, flavonoids, polysaccharides and volatile oil. In addition, pharmacological effects, such as protective effects against cardiovascular diseases, neurological diseases, lung and kidney injury, anti-inflammatory and anticancer activities, were also evaluated by in vitro and in vivo studies. Moreover, the potential signaling pathways regulated by Plumula Nelumbinis in cardiovascular and neurological diseases and perspectives on Plumula Nelumbinis research were discussed. CONCLUSION Plumula Nelumbinis, a commonly used Chinese medicine, has a variety of traditional and modern therapeutic uses. Some traditional uses, especially the treatment of cardiovascular and neurological diseases, have been verified by pharmacological investigation. However, the pharmacological molecular mechanisms, pharmacokinetics and toxicology of Plumula Nelumbinis are still incomplete. In the future, a series of systematic studies on active compounds identification, pharmacological mechanism clarification, quality and safety evaluation are necessary.
Collapse
Affiliation(s)
- Sixuan Chen
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Xuping Li
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Junxuan Wu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Jingyan Li
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Mingzhu Xiao
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Ying Yang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Zhongqiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Yuanyuan Cheng
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
16
|
Higenamine Improves Cardiac and Renal Fibrosis in Rats With Cardiorenal Syndrome via ASK1 Signaling Pathway. J Cardiovasc Pharmacol 2021; 75:535-544. [PMID: 32168151 DOI: 10.1097/fjc.0000000000000822] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The pathogenesis of cardiorenal syndrome (CRS) is very complex, and currently there is no effective treatment for CRS. Higenamine (HI) has been shown to improve cardiac function in rats with heart failure. However, the role of higenamine in CRS remains unknown. Here, in vitro, higenamine treatment markedly reduced neonatal rat cardiac fibroblast collagen synthesis and inhibited neonatal rat cardiac myocyte hypertrophy. In our study, a rat model of type 2 CRS was induced by left anterior descending coronary artery ligation combined with 5/6 subtotal nephrectomy (STNx). Higenamine treatment decreased serum creatinine (Scr), blood urea nitrogen, and brain natriuretic peptide levels and was capable of improving left ventricular remodeling and systolic function in CRS rats, accompanied with decreased expression of transforming growth factor-β1 (TGF-β1), α-smooth muscle actin (α-SMA) and collagen I (Col1A1). Moreover, higenamine significantly inhibited the protein expression of phosphorylated apoptosis signal-regulated kinase 1 (p-ASK1) and downstream mitogen-activated protein kinases (MAPK) (ERK, P38)/NF-κB in cardiorenal tissues of CRS rats and neonatal rat cardiac fibroblast/neonatal rat cardiac myocyte cells. Our study demonstrated that higenamine improved cardiorenal function in CRS rats and attenuated heart and kidney fibrosis possibly via targeting ASK1/MAPK (ERK, P38)/NF-κB signaling pathway. This finding extends our knowledge on the role of higenamine in cardiorenal fibrosis, providing a potential target to prevent the progression of CRS.
Collapse
|
17
|
Yang X, Du W, Zhang Y, Wang H, He M. Neuroprotective Effects of Higenamine Against the Alzheimer's Disease Via Amelioration of Cognitive Impairment, A β Burden, Apoptosis and Regulation of Akt/GSK3β Signaling Pathway. Dose Response 2020; 18:1559325820972205. [PMID: 33354171 PMCID: PMC7734528 DOI: 10.1177/1559325820972205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 01/01/2023] Open
Abstract
The present investigation was envisaged to elucidate the neuroprotective effect of Higenamine (HGN) against aluminum chloride (AlCl3) triggered experimental Alzheimer's disease (AD) rat model. Thirty-six male albino Wister rats were randomized and divided in 6 groups and subjected to experimentation for 6 weeks. Control group, AlCl3 (100 mg/kg orally), HGN (50 mg/kg orally), HGN25, HGN50, HGN75 (HGN 25, 50 and 75 mg/kg respectively and AlCl3 100 mg/kg orally). After completion of 42 days protocol, the animals were subjected to passive avoidance test. The animals were then anesthetized by intramuscularly injecting ketamine hydrochloride (24 mg/kg body weight) and euthanized by cervical amputation. Cortical and hippocampal tissues were carefully removed and were employed for quantification of aluminum and acetylcholinesterase. The tissues were quantified using Western blotting and detection kits for APP, Aβ1-42, β and γ secretases, Bax, Bad, caspases-9, cyto-c, pAkt and pGSK-3β, and oxidative markers. HGN significantly protected AlCl3 induced memory and learning impairments, Al overload, AChE hyperactivity, amyloid β (Aβ) burden and apoptosis in brain tissues via activating Akt/GSK3β pathway. HGN attenuated oxidative damage induced by Al by modulation of oxidative markers. Our findings advocate the neuroprotective effect of HGN in AlCl3 induced AD rat model.
Collapse
Affiliation(s)
- Xiaona Yang
- Department of Neurology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Wanliang Du
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yun Zhang
- Department of Neurology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Hui Wang
- Department of Neurology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Maolin He
- Department of Neurology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
18
|
Hahn D, Shin SH, Bae JS. Natural Antioxidant and Anti-Inflammatory Compounds in Foodstuff or Medicinal Herbs Inducing Heme Oxygenase-1 Expression. Antioxidants (Basel) 2020; 9:E1191. [PMID: 33260980 PMCID: PMC7761319 DOI: 10.3390/antiox9121191] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023] Open
Abstract
Heme oxygenase-1 (HO-1) is an inducible antioxidant enzyme that catalyzes heme group degradation. Decreased level of HO-1 is correlated with disease progression, and HO-1 induction suppresses development of metabolic and neurological disorders. Natural compounds with antioxidant activities have emerged as a rich source of HO-1 inducers with marginal toxicity. Here we discuss the therapeutic role of HO-1 in obesity, hypertension, atherosclerosis, Parkinson's disease and hepatic fibrosis, and present important signaling pathway components that lead to HO-1 expression. We provide an updated, comprehensive list of natural HO-1 inducers in foodstuff and medicinal herbs categorized by their chemical structures. Based on the continued research in HO-1 signaling pathways and rapid development of their natural inducers, HO-1 may serve as a preventive and therapeutic target for metabolic and neurological disorders.
Collapse
Affiliation(s)
- Dongyup Hahn
- School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Korea;
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Korea
| | - Seung Ho Shin
- Department of Food and Nutrition, Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea;
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
19
|
Nuntawong P, Ochi A, Chaingam J, Tanaka H, Sakamoto S, Morimoto S. The colloidal gold nanoparticle-based lateral flow immunoassay for fast and simple detection of plant-derived doping agent, higenamine. Drug Test Anal 2020; 13:762-769. [PMID: 33217196 DOI: 10.1002/dta.2981] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/30/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022]
Abstract
Higenamine (HM), an alkaloid found in various plant species, is obtained when norcoclaurine synthase selectively condenses dopamine and 4-hydroxyphenylacetaldehyde to give (S)-higenamine ((S)-HM). The World Anti-doping Agency has listed HM as a prohibited agent in athletics. As a result, many commercial, academic, and regulatory bodies across the globe are invested in finding a rapid method for (S)-HM detection. In the current study, a lateral flow immunoassay (LFA) was developed in which the relevant biosensor was generated as a conjugate of the monoclonal antibody against (S)-HM (namely, MAb E8) and colloidal gold nanoparticles. The HM-γ-globulin conjugates and rabbit anti-mouse IgG antibodies were placed in the test and control zones, respectively. The free (S)-HM molecules in the samples and the immobilized HM-γ-globulin conjugates competitively reacted with the developed biosensor in the LFA. An inverse relationship existed between the biosensors' visible response, which was noted by the variation in the intensity of a pinkish spot in the test zone, and the content of the free (S)-HM. The limit of detection of the developed LFA was 156 ng/mL. Various validation methods confirmed that the LFA exhibited sufficient sensitivity, selectivity, repeatability, and reliability, making it ideal for (S)-HM detection in plant samples and plant-containing products. The developed system required only a small sample volume (20 μL) and a concise sample preparation time compared with conventional LFAs. Thus, the LFA reported in this study could serve as a rapid response kit for the detection of (S)-HM in plant samples.
Collapse
Affiliation(s)
| | - Akihiro Ochi
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Jiranan Chaingam
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Hiroyuki Tanaka
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Seiichi Sakamoto
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoshi Morimoto
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
20
|
Bao K, Chen TL, Zhang S, Huang ZZ, Huang YF, Huang ZH, Zhu YY, Wu QN, Duan JA, Zhang ZZ, Wu CJ, Ding QQ. A succinyl isoflavone identified in natto promotes anti-ischemic effects in the middle cerebral artery occlusion rats. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
21
|
Anti-inflammatory effects of higenamine (Hig) on LPS-activated mouse microglia (BV2) through NF-κB and Nrf2/HO-1 signaling pathways. Int Immunopharmacol 2020; 85:106629. [DOI: 10.1016/j.intimp.2020.106629] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/09/2020] [Accepted: 05/20/2020] [Indexed: 12/19/2022]
|
22
|
Li H, Li J, Hou C, Li J, Peng H, Wang Q. The effect of astaxanthin on inflammation in hyperosmolarity of experimental dry eye model in vitro and in vivo. Exp Eye Res 2020; 197:108113. [PMID: 32531188 DOI: 10.1016/j.exer.2020.108113] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/24/2020] [Accepted: 06/05/2020] [Indexed: 01/10/2023]
Abstract
Hyperosmolarity is pro-inflammatory stress to the ocular surface epithelium associated with dry eye disease (DED). Astaxanthin (AST) is a kind of carotene, which exists in seafood and plays important roles in the amelioration of inflammatory diseases like arteriosclerosis, inflammatory bowel disease, sepsis, rheumatoid arthritis, gastric inflammation, brain inflammatory diseases. The aim of this study was to characterize the protective effect and potential mechanism of AST on DED in vitro and in vivo. Mouse models and human corneal epithelial cell (HCEC) cultures were exposed to hyperosmotic saline solution (HOSS) in in vitro and in vivo experiments, respectively. Experimental subjects were first pretreated with AST, and then the effect of the compound was assessed with clinical evaluation, real-time PCR (RT-PCR), western blot and immunofluorescent staining. We further investigated the possible mechanism of AST in DED by pre-treating with phosphoinositide 3-kinase inhibitor (LY294002). The addition of AST significantly reduced the expression of High-mobility group box 1 (HMGB1), as well as significantly inhibited the increases of TNF-α, IL-1β in a dose-dependent manner, but promoted the expression of phospho-Akt (p-Akt). BALB/c mice in DE group pretreated with AST showed significantly decreased corneal fluorescein staining scores. Moreover, pretreatment with LY294002 could eliminate the effects of AST preconditioning on the decrease of HMGB1. Our study provides evidence that AST could ameliorate DED which may be related to the inhibition of HMGB1, TNF-α, IL-1β, while PI3K/Akt signaling pathway may be involved in the expression of HMGB1 and the protective effect of AST preconditioning.
Collapse
Affiliation(s)
- Hui Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Jiangfeng Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Chenting Hou
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Jinjian Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Hui Peng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Qing Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.
| |
Collapse
|
23
|
CGRP Reduces Apoptosis of DRG Cells Induced by High-Glucose Oxidative Stress Injury through PI3K/AKT Induction of Heme Oxygenase-1 and Nrf-2 Expression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2053149. [PMID: 31885775 PMCID: PMC6899316 DOI: 10.1155/2019/2053149] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 10/22/2019] [Indexed: 01/26/2023]
Abstract
Dorsal root ganglion (DRG) neurons, which are sensitive to oxidative stress due to their anatomical and structural characteristics, play a complex role in the initiation and progression of diabetic bladder neuropathy. We investigated the hypothesis that the antioxidant and antiapoptotic effects of CGRP may be partly related to the expression of Nrf2 and HO-1, via the phosphatidylinositol 3-kinase (PI3K)/AKT pathway, thus reducing apoptosis and oxidative stress responses. This study shows that CGRP activates the PI3K/AKT pathway, thereby inducing increased expression of Nrf2 and HO-1 and resulting in the decrease of reactive oxygen species and malondialdehyde levels and reduced neuronal apoptosis. These effects were suppressed by LY294002, an inhibitor of the PI3K/AKT pathway. Therefore, regulation of Nrf2 and HO-1 expression by the PI3K/AKT pathway plays an important role in the regulation of the antioxidant and antiapoptotic responses in DRG cells in a high-glucose culture model.
Collapse
|
24
|
Li H, Lou B, Zhang Y, Zhang C. Retracted: Ganoderic Acid A exerts the cytoprotection against hypoxia‐triggered impairment in PC12 cells via elevating microRNA‐153. Phytother Res 2019; 34:640-648. [PMID: 31742778 DOI: 10.1002/ptr.6556] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/23/2019] [Accepted: 10/28/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Hong Li
- Department of NeurologyThe Affiliated Hospital of Qingdao University Qingdao Shandong China
| | - Bo Lou
- Department of Rehabilitation MedicineThe Third People's Hospital of Liaocheng Liaocheng Shandong China
| | - Yingying Zhang
- Department of NeurologyThe Affiliated Hospital of Qingdao University Qingdao Shandong China
| | - Changyuan Zhang
- Department of PharmacyJining No.1 People's Hospital Jining Shandong China
| |
Collapse
|
25
|
Network Pharmacology of Yougui Pill Combined with Buzhong Yiqi Decoction for the Treatment of Sexual Dysfunction. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:1243743. [PMID: 31814838 PMCID: PMC6877955 DOI: 10.1155/2019/1243743] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 10/10/2019] [Indexed: 12/16/2022]
Abstract
Purpose We aimed to find the possible key targets of Yougui pill and Buzhong Yiqi decoction for the treatment of sexual dysfunction. Materials and Methods The composition of Yougui pill combined with Buzhong Yiqi decoction was obtained, and its effective components of medicine were screened using ADME; the component target proteins were predicted and screened based on the TCMSP and BATMAN databases. Target proteins were cross-validated using the CTD database. We performed gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses for target proteins using the Cytoscape plugin ClueGO + CluePedia and the R package clusterProfiler, respectively. Subsequently, protein-protein interaction (PPI) analyses were conducted using the STRING database. Finally, a pharmacological network was constructed. Results The pharmacological network contained 89 nodes and 176 relation pairs. Among these nodes, there were 12 for herbal medicines (orange peel, licorice, Eucommia, Aconite, Astragalus, Chinese wolfberry, yam, dodder seed, ginseng, Cornus officinalis, Rehmannia, and Angelica), 9 for chemical components (18-beta-glycyrrhetinic acid, carvacrol, glycyrrhetinic acid, higenamine, nobilin, quercetin, stigmasterol, synephrine, and thymol), 62 for target proteins (e.g., NR3C1, ESR1, PTGS2, CAT, TNF, INS, and TP53), and 6 for pathways (MAPK signaling pathway, proteoglycans in cancer, dopaminergic synapse, thyroid hormone signaling pathway, cAMP signaling pathway, and neuroactive ligand-receptor interaction). Conclusion NR3C1, ESR1, PTGS2, CAT, TNF, INS, and TP53 may be important targets for the key active elements in the decoction combining Yougui pill and Buzhong Yiqi. Furthermore, these target proteins are relevant to the treatment of sexual dysfunction, probably via pathways associated with cancer and signal transduction.
Collapse
|
26
|
Evran S, Calis F, Akkaya E, Baran O, Cevik S, Katar S, Gurevin EG, Hanimoglu H, Hatiboglu MA, Armutak EI, Karatas E, Kocyigit A, Kaynar MY. The effect of high mobility group box-1 protein on cerebral edema, blood-brain barrier, oxidative stress and apoptosis in an experimental traumatic brain injury model. Brain Res Bull 2019; 154:68-80. [PMID: 31715313 DOI: 10.1016/j.brainresbull.2019.10.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 10/21/2019] [Accepted: 10/26/2019] [Indexed: 12/24/2022]
Abstract
Traumatic brain injury (TBI) is one of the important reason of morbidity and mortality. While the primary injury due to mechanical impact is unavoidable, the secondary injury which is formed as a result of primary injury and thought to occur due to neuroinflammation in the forefront can be prevented and by this way mortality and morbidity can be reduced. High mobility group box-1 (HMGB1) is a protein that triggers the neuroinflammatory process by being released from the nucleus of necrotic tissues after primary injury. The aim of this study is to investigate the effects of HMGB1 on its receptors TLR4 and RAGE, cerebral edema, blood-brain barrier, oxidative stress and apoptosis causing secondary damage in an experimental traumatic brain injury model. Weighing between 280-320 g, 10 to 12 weeks-old, a total of 30 adult male Sprague-Dawley rats were used for the experiments. The rats were randomly assigned to 3 groups: 1) Control, 2) TBI and 3) TBI + ethyl pyruvate group (n = 10 per group). Right parietal cortical contusion was made by using a weight-dropping TBI method. Brain samples were harvested from pericontusional area at 24 h after TBI. HMGB1, TLR4, RAGE, occludin, claudin-5, ZO-1 levels are investigated by western blot analyses and immunohistochemistry examinations. HMGB-1, TLR4 and RAGE expressions increased after TBI. Major tight junction proteins in the blood-brain barrier: occludin, claudin-5 and ZO-1 expressions decreased after TBI. Brain edema increased after TBI. Also, proapoptotic bax and active caspase 3 expressions increased, antiapoptotic bcl-2 levels decreased after TBI. Total oxidant status and oxidative stress increased, total antioxidant status decreased after TBI. HMGB-1 protein plays a key role in the pathophysiology of traumatic brain injury.
Collapse
Affiliation(s)
- Sevket Evran
- Department of Neurosurgery, Haseki Research and Training Hospital, Medical Faculty, Health Sciences University, Istanbul, Turkey.
| | - Fatih Calis
- Department of Neurosurgery, Goztepe Research and Training Hospital, Istanbul Medeniyet University, Istanbul, Turkey
| | - Enes Akkaya
- Department of Neurosurgery, Sisli Hamidiye Etfal Research and Training Hospital, Medical Faculty, Health Sciences University, Istanbul, Turkey
| | - Oguz Baran
- Department of Neurosurgery, Haseki Research and Training Hospital, Medical Faculty, Health Sciences University, Istanbul, Turkey
| | - Serdar Cevik
- Department of Neurosurgery, Medical Faculty, Koc University, Istanbul, Turkey
| | - Salim Katar
- Neurosurgery Clinic, Diyarbakir State Hospital, Diyarbakir, Turkey
| | - Ebru Gurel Gurevin
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Hakan Hanimoglu
- Department of Neurosurgery, Medical Faculty, Koc University, Istanbul, Turkey
| | - Mustafa Aziz Hatiboglu
- Department of Neurosurgery, Medical Faculty, Bezmialem Vakif University, Istanbul, Turkey
| | - Elif Ilkay Armutak
- Department of Histology and Embriology, Faculty of Veterinary Medicine, Istanbul University, Cerrahpasa, Istanbul, Turkey
| | - Ersin Karatas
- Department of Biochemistry, Medical Faculty, Bezmialem Vakif University, Istanbul, Turkey
| | - Abdurrahim Kocyigit
- Department of Biochemistry, Medical Faculty, Bezmialem Vakif University, Istanbul, Turkey
| | - Mehmet Yasar Kaynar
- Department of Neurosurgery, Medical Faculty, Koc University, Istanbul, Turkey
| |
Collapse
|
27
|
Bai X, Ding W, Yang S, Guo X. Higenamine inhibits IL-1β-induced inflammation in human nucleus pulposus cells. Biosci Rep 2019; 39:BSR20190857. [PMID: 31213577 PMCID: PMC6597855 DOI: 10.1042/bsr20190857] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/31/2019] [Accepted: 06/12/2019] [Indexed: 12/31/2022] Open
Abstract
Intervertebral disc degeneration (IDD) is a natural progression of the aging process associated with inflammation. Higenamine, a plant-based alkaloid, has been identified to possess various pharmacological properties, including anti-inflammatory activity. In the present study, we aimed to evaluate the role of higenamine in interleukin (IL)-1β-induced inflammation in human nucleus pulposus cells (NPCs). The results showed that higenamine improved cell viability in IL-1β-induced NPCs. The IL-1β-dependent up-regulation of inflammatory molecules including inducible nitric oxide synthase (iNOS), nitric oxide (NO), prostaglandin E2 (PGE2), cyclooxygenase-2 (COX-2), tumor necrosis factor alpha (TNF-α), and IL-6 was attenuated by higenamine in NPCs. The increased productions of matrix metalloproteinases (MMP-3 and MMP-13), as well as a disintegrin and metalloprotease with thrombospondin motifs (ADAMTS-4 and ADAMTS-5) were significantly mitigated by higenamine treatment. Furthermore, we also found that higenamine suppressed the IL-1β-induced activation of NF-κB signaling pathway in NPCs. In conclusion, the present study proved that higenamine exhibited anti-inflammatory activity against IL-1β-induced inflammation in NPCs via inhibiting NF-κB signaling pathway. These results suggested that higenamine might be a therapeutic agent for the treatment of IDD.
Collapse
Affiliation(s)
- Xiaoliang Bai
- Department of Spine, the Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
| | - Wenyuan Ding
- Department of Spine, the Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
| | - Sidong Yang
- Department of Spine, the Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
| | - Xiaohui Guo
- Department of Spine, the Second Hospital of Tangshan City, Tangshan 063000, China
| |
Collapse
|
28
|
Yang S, Lee W, Lee BS, Lee C, Park EK, Ku SK, Bae JS. Aloin Reduces HMGB1-Mediated Septic Responses and Improves Survival in Septic Mice by Activation of the SIRT1 and PI3K/Nrf2/HO-1 Signaling Axis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:613-633. [PMID: 30966773 DOI: 10.1142/s0192415x19500320] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
High mobility group box 1 (HMGB1) is recognized as a late mediator of sepsis, and the inhibition of HMGB1 release and recovery of vascular barrier integrity have emerged as attractive therapeutic strategies for the management of sepsis. We tested the hypothesis that aloin induces sirtuin 1 (SIRT1) and heme oxygenase (HO)-1, which inhibit HMGB1 release in lipopolysaccharide (LPS)-stimulated cells, thereby inhibiting HMGB1-induced hyperpermeability and increasing the survival of septic mice. Aloin was administered after LPS or HMGB1 challenge, and the antiseptic activity of aloin was determined from measurements of permeability, activation of pro-inflammatory proteins and production of markers for tissue injury in HMGB1-activated human umbilical vein endothelial cells (HUVECs) and a cecal ligation and puncture (CLP)-induced sepsis mouse model. Aloin significantly reduced HMGB1 release in LPS-activated HUVECs via SIRT1-mediated HMGB1 deacetylation and the PI3K/Nrf2/heme oxygenase (HO)-1 signaling axis. Aloin also suppressed the production of tumor necrosis factor (TNF)- α and interleukin (IL)-6, as well as the activation of nuclear factor (NF)- κ B and extracellular signal-regulated kinase 1/2 (ERK 1/2) by HMGB1. Moreover, aloin restored HMGB1-mediated vascular disruption and inhibited vascular hyperpermeability in mice. In addition, treatment with aloin reduced the CLP-induced release of HMGB1, sepsis-related mortality and tissue injury in vivo. Our results suggest that aloin reduces HMGB1 release and sepsis-related mortality by activating SIRT1 and PI3K/Nrf2/HO-1 signals, indicating that aloin has potential for the treatment of sepsis.
Collapse
Affiliation(s)
- Sumin Yang
- * College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Wonhwa Lee
- * College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Bong-Seon Lee
- * College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Changhun Lee
- * College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Eui Kyun Park
- † Department of Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Sae-Kwang Ku
- ‡ Department of Histology and Anatomy, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea
| | - Jong-Sup Bae
- * College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
29
|
Unc-51 like autophagy activating kinase 1 accelerates angiotensin II-induced cardiac hypertrophy through promoting oxidative stress regulated by Nrf-2/HO-1 pathway. Biochem Biophys Res Commun 2018; 509:32-39. [PMID: 30581007 DOI: 10.1016/j.bbrc.2018.11.190] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 11/29/2018] [Indexed: 12/21/2022]
Abstract
Unc-51 like autophagy activating kinase 1 (ULK1) is a serine/threonine kinase and the mammalian functional homolog of yeast Atg1, and plays an essential role in regulating various cellular processes. However, whether ULK1 can influence cardiac hypertrophy is unclear. In the study, we investigated the role of ULK1 in the pathogenesis of pathological cardiac hypertrophy and the molecular mechanism. We showed that ULK1 levels were increased in human dilated cardiomyopathic hearts and in mouse hypertrophic hearts. ULK1 knockout conferred resistance to angiotensin II (Ang II) infusion through markedly repressing hypertrophic growth, cardiac function and the deposition of fibrosis. In ULK1 transgenic (TG) mice with ULK1 over-expression, accelerated hypertrophy, reduced cardiac function and promoted fibrosis deposition were observed compared with non-transgenic mice following AngII challenge. In addition, mice lacking ULK1 showed alleviated oxidative stress by improving nuclear erythroid factor 2-related factor 2 (Nrf-2) and heme oxygenase-1 (HO-1) expression, whereas mice with ULK1 over-expression developed an accelerated reactive oxygen species (ROS) production. In vitro, we found that ULK1 knockdown-attenuated oxidative stress, inflammation and fibrosis deposition in AngII-exposed cardiomyocytes were significantly blunted by the inhibition of Nrf-2/HO-1 signaling. However, ULK1 overexpression-accelerated oxidative stress, inflammatory response and fibrosis were markedly ameliorated by the inhibition of ROS production. Our results indicated that ULK1 was a potential therapeutic target in pathological cardiac hypertrophy.
Collapse
|
30
|
Involvement of heme oxygenase-1 induction in anti-vascular inflammation effects of Xanthoceras sorbifolia in human umbilical vein endothelial cells. J TRADIT CHIN MED 2018. [DOI: 10.1016/s0254-6272(18)30979-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
31
|
Zhang Y, Zhang J, Wu C, Guo S, Su J, Zhao W, Xing H. Higenamine protects neuronal cells from oxygen‐glucose deprivation/reoxygenation‐induced injury. J Cell Biochem 2018; 120:3757-3764. [PMID: 30270549 DOI: 10.1002/jcb.27656] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 08/21/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Yi Zhang
- Department of Neurology The First Affiliated Hospital of Xinxiang Medical University Weihui China
| | - Jingjing Zhang
- Department of Neurology The First Affiliated Hospital of Xinxiang Medical University Weihui China
| | - Chuntao Wu
- Department of Neurology The First Affiliated Hospital of Xinxiang Medical University Weihui China
| | - Sheng Guo
- Department of Neurology The First Affiliated Hospital of Xinxiang Medical University Weihui China
| | - Jing Su
- Department of Neurology The First Affiliated Hospital of Xinxiang Medical University Weihui China
| | - Wendong Zhao
- Department of Neurology The First Affiliated Hospital of Xinxiang Medical University Weihui China
| | - Hongxia Xing
- Department of Neurology The First Affiliated Hospital of Xinxiang Medical University Weihui China
| |
Collapse
|
32
|
Yang X, Liu N, Li X, Yang Y, Wang X, Li L, Jiang L, Gao Y, Tang H, Tang Y, Xing Y, Shang H. A Review on the Effect of Traditional Chinese Medicine Against Anthracycline-Induced Cardiac Toxicity. Front Pharmacol 2018; 9:444. [PMID: 29867456 PMCID: PMC5963334 DOI: 10.3389/fphar.2018.00444] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 04/16/2018] [Indexed: 01/29/2023] Open
Abstract
Anthracyclines are effective agents generally used to treat solid-tumor and hematologic malignancies. The use of anthracyclines for over 40 years has improved cancer survival statistics. Nevertheless, the clinical utility of anthracyclines is limited by its dose-dependent cardiotoxicity that adversely affects 10-30% of patients. Anthracycline-induced cardiotoxicity may be classified as acute/subacute or chronic/late toxicity and leads to devastating adverse effects resulting in poor quality of life, morbidity, and premature mortality. Traditional Chinese medicine has a history of over 2,000 years, involving both unique theories and substantial experience. Several studies have investigated the potential of natural products to decrease the cardiotoxic effects of chemotherapeutic agents on healthy cells, without negatively affecting their antineoplastic activity. This article discusses the mechanism of anthracycline-induced cardiotoxicity, and summarizes traditional Chinese medicine treatment for anthracycline-induced heart failure (HF), cardiac arrhythmia, cardiomyopathy, and myocardial ischemia in recent years, in order to provide a reference for the clinical prevention and treatment of cardiac toxicity.
Collapse
Affiliation(s)
- Xinyu Yang
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China.,Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Nian Liu
- Department of Cardiology, Beijing Anzhen Hospital of the Capital University of Medical Sciences, Beijing, China
| | - Xinye Li
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China.,Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yihan Yang
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China.,Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xiaofeng Wang
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Linling Li
- Department of Cardiology, Beijing Anzhen Hospital of the Capital University of Medical Sciences, Beijing, China
| | - Le Jiang
- Department of Cardiology, Beijing Anzhen Hospital of the Capital University of Medical Sciences, Beijing, China
| | - Yonghong Gao
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Hebin Tang
- Department of Pharmacology, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Yong Tang
- Department of Pancreatic Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yanwei Xing
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
33
|
Yan R, Xu H, Fu X. Salidroside protects hypoxia-induced injury by up-regulation of miR-210 in rat neural stem cells. Biomed Pharmacother 2018; 103:1490-1497. [PMID: 29864934 DOI: 10.1016/j.biopha.2018.04.184] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 10/17/2022] Open
Abstract
Neonatal brain hypoxia is a disease that affects the nervous system in children. Salidroside is a compound that has an anti-hypoxic effect, but the mechanism of salidroside in neonatal cerebral hypoxia is unclear. Hence, we investigated the regulatory effect and mechanism of salidroside on hypoxic-induced injury of neural stem cells (NSCs). NSCs derived from embryo 14 Sprague-Dawley rats were treated by hypoxia, followed by the treatment of 0.8 mM salidroside. The expression levels of miR-210 and BTG3 in NSCs were altered by transfection. Cell viability and apoptosis were examined by CCK-8 and flow cytometry analysis. qRT-PCR and Western blot were performed to assess the expression changes of miR-210, BTG3, apoptosis-related factors and core factors in PI3K/AKT/mTOR pathway. We found that hypoxia induced an apoptosis-dependent death in NSCs. Salidroside exerted bFGF-like effect, as it alleviated hypoxia-induced viability impairment and apoptosis in NSCs. Further studies showed that hypoxia plus salidroside elevated miR-210 expression, and the protective actions of salidroside on hypoxia-modulated death in NSCs were attenuated by miR-210 suppression, while were enhanced by miR-210 overexpression. Besides, BTG3 was negatively regulated by miR-210. Overexpression of BTG3 inhibited the activation of PI3K/AKT/mTOR signaling pathway; of contrast, suppression of BTG3 promoted it. To conclude, this study provide in vitro evidence that salidroside protected NSCs against hypoxia-induced injury by up-regulation of miR-210, which in turn inhibited the expression of BTG3 and activated PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Rui Yan
- Department of Children Rehabilitation, Women & Children's Health Care Hospital of Linyi, Linyi 276016, Shandong, China
| | - Hua Xu
- Children's Hospital of Kaifeng City, Kaifeng 475000, Henan, China
| | - Xiaoxiang Fu
- Department of Child Health Care, Women & Children's Health Care Hospital of Linyi, Linyi 276016, Shandong, China.
| |
Collapse
|
34
|
Ko YS, Park EJ, Kim YM, Kim HJ, Yun-Choi H, Lee DH, Chang KC. A limited series of synthetic tetrahydroisoquinoline alkaloids reduce inflammatory gene iNOS via inhibition of p-STAT-1 and suppress HMGB1 secretion in LPS-treated mice lung tissue. Int Immunopharmacol 2017; 52:297-304. [DOI: 10.1016/j.intimp.2017.09.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/14/2017] [Accepted: 09/25/2017] [Indexed: 10/18/2022]
|
35
|
Zhang N, Lian Z, Peng X, Li Z, Zhu H. Applications of Higenamine in pharmacology and medicine. JOURNAL OF ETHNOPHARMACOLOGY 2017; 196:242-252. [PMID: 28007527 DOI: 10.1016/j.jep.2016.12.033] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/17/2016] [Accepted: 12/18/2016] [Indexed: 05/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aconitum has been used as local and traditional medicines in many asian regions for the treatment of various diseases such as collapse, syncope, painful joints, oedema, bronchial asthma et al. Higenamine, a plant-based alkaloid, was initially isolated from Aconitum and identified as the active cardiotonic component of Aconitum. It has been tested as a candidate of pharmacologic stress agent in the detection of coronary artery diseases (CADs) and now researchers have just accomplished the phase III clinical studies successfully in China. Besides, a large number of studies have revealed the various pharmacological properties and potentially multi-spectral medical applications of higenamine. However, to date, no comprehensive review on higenamine has been published. AIM OF THE REVIEW This present paper aims to compile a comprehensive update regarding the biochemistry, pharmacokinetic features, pharmacological activities, clinical and potential clinical uses and toxicities on higenamine with the ultimate objective of providing a guide for future research on this drug. MATERIALS AND METHODS The selection of relevant data was made through a search using the keyword "higenamine" in "Web of science", "Pubmed", and "China Knowledge Resource Integrated (CNKI)". Information was also acquired from local classic herbal literature, government reports and conference papers. RESULTS In addition to Aconitum, higenamine also exists in many other plants including Tinospora crispa, Nandina domestica THUNBERG, Gnetum Parvifolium C.Y. Cheng, sarum Heterotropoides,Nelumbo nucifera,N.nucifera. The pharmacokinetic studies conducted in animals and humans showed that higenamine conformed to a two-compartment pharmacokinetic model. Studies over the last four decades on higenamine have revealed its various pharmacological properties such as positive inotropic and chronotropic effect, activating slow channel effect, vascular and tracheal relaxation effect, anti-thrombotic, anti-apoptotic and anti-oxidative effect, anti-inflammatory and immunomodulatory effect. This phytochemical constituent has shown its potential therapeutic effects for diseases like heart failure, disseminated intravascular coagulation (DIC), shock, arthritis, asthma, ischemia/reperfusion (I/R) injuries and erectile dysfunction. CONCLUSIONS Extensive basic and clinical studies on higenamine showed valuable therapeutic effects on different disorders. However, the underlying mechanisms of higenamine have not been established. Therefore, the safety, tolerability and efficacy of higenamine are as yet, not fully understood. Additionally, some of the studies were small sample-sized and unreliable. To sum up, there is a need for deeper investigation in the mechanisms of higenamine action, as well as well-designed preclinical and clinical trials studies to test the safety and clinical value of the drug.
Collapse
Affiliation(s)
- Nana Zhang
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing, PR China; Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Beijing, PR China; Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Zeqin Lian
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing, PR China; Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Beijing, PR China; Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Xueying Peng
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing, PR China; Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Beijing, PR China; Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Zijian Li
- Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, PR China.
| | - Haibo Zhu
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing, PR China; Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Beijing, PR China; Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China.
| |
Collapse
|
36
|
Buendia I, Tenti G, Michalska P, Méndez-López I, Luengo E, Satriani M, Padín-Nogueira F, López MG, Ramos MT, García AG, Menéndez JC, León R. ITH14001, a CGP37157-Nimodipine Hybrid Designed to Regulate Calcium Homeostasis and Oxidative Stress, Exerts Neuroprotection in Cerebral Ischemia. ACS Chem Neurosci 2017; 8:67-81. [PMID: 27731633 DOI: 10.1021/acschemneuro.6b00181] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
During brain ischemia, oxygen and glucose deprivation induces calcium overload, extensive oxidative stress, neuroinflammation, and, finally, massive neuronal loss. In the search of a neuroprotective compound to mitigate this neuronal loss, we have designed and synthesized a new multitarget hybrid (ITH14001) directed at the reduction of calcium overload by acting on two regulators of calcium homeostasis; the mitochondrial Na+/Ca2+ exchanger (mNCX) and L-type voltage dependent calcium channels (VDCCs). This compound is a hybrid of CGP37157 (mNCX inhibitor) and nimodipine (L-type VDCCs blocker), and its pharmacological evaluation revealed a moderate ability to selectively inhibit both targets. These activities conferred concentration-dependent neuroprotection in two models of Ca2+ overload, such as toxicity induced by high K+ in the SH-SY5Y cell line (60% protection at 30 μM) and veratridine in hippocampal slices (26% protection at 10 μM). It also showed neuroprotective effect against oxidative stress, an activity related to its nitrogen radical scavenger effect and moderate induction of the Nrf2-ARE pathway. Its Nrf2 induction capability was confirmed by the increase of the expression of the antioxidant and anti-inflammatory enzyme heme-oxygenase I (3-fold increase). In addition, the multitarget profile of ITH14001 led to anti-inflammatory properties, shown by the reduction of nitrites production induced by lipopolysaccharide in glial cultures. Finally, it showed protective effect in two acute models of cerebral ischemia in hippocampal slices, excitotoxicity induced by glutamate (31% protection at 10 μM) and oxygen and glucose deprivation (76% protection at 10 μM), reducing oxidative stress and iNOS deleterious induction. In conclusion, our hybrid derivative showed improved neuroprotective properties when compared to its parent compounds CGP37157 and nimodipine.
Collapse
Affiliation(s)
- Izaskun Buendia
- Instituto
Teófilo Hernando y Departamento de Farmacología y Terapéutica,
Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Giammarco Tenti
- Departamento
de Química Orgánica y Farmacéutica, Facultad
de Farmacia, Universidad Complutense, 28040 Madrid, Spain
| | - Patrycja Michalska
- Instituto
Teófilo Hernando y Departamento de Farmacología y Terapéutica,
Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- Instituto
de Investigación Sanitaria, Servicio de Farmacología
Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | - Iago Méndez-López
- Instituto
Teófilo Hernando y Departamento de Farmacología y Terapéutica,
Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- Instituto
de Investigación Sanitaria, Servicio de Farmacología
Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | - Enrique Luengo
- Instituto
Teófilo Hernando y Departamento de Farmacología y Terapéutica,
Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- Instituto
de Investigación Sanitaria, Servicio de Farmacología
Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | - Michele Satriani
- Instituto
Teófilo Hernando y Departamento de Farmacología y Terapéutica,
Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- Departamento
de Química Orgánica y Farmacéutica, Facultad
de Farmacia, Universidad Complutense, 28040 Madrid, Spain
| | - Fernando Padín-Nogueira
- Instituto
Teófilo Hernando y Departamento de Farmacología y Terapéutica,
Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- Instituto
de Investigación Sanitaria, Servicio de Farmacología
Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | - Manuela G. López
- Instituto
Teófilo Hernando y Departamento de Farmacología y Terapéutica,
Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- Instituto
de Investigación Sanitaria, Servicio de Farmacología
Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | - M. Teresa Ramos
- Departamento
de Química Orgánica y Farmacéutica, Facultad
de Farmacia, Universidad Complutense, 28040 Madrid, Spain
| | - Antonio G. García
- Instituto
Teófilo Hernando y Departamento de Farmacología y Terapéutica,
Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- Instituto
de Investigación Sanitaria, Servicio de Farmacología
Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | - J. Carlos Menéndez
- Departamento
de Química Orgánica y Farmacéutica, Facultad
de Farmacia, Universidad Complutense, 28040 Madrid, Spain
| | - Rafael León
- Instituto
Teófilo Hernando y Departamento de Farmacología y Terapéutica,
Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- Instituto
de Investigación Sanitaria, Servicio de Farmacología
Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain
| |
Collapse
|
37
|
Gil M, Kim YK, Hong SB, Lee KJ. Naringin Decreases TNF-α and HMGB1 Release from LPS-Stimulated Macrophages and Improves Survival in a CLP-Induced Sepsis Mice. PLoS One 2016; 11:e0164186. [PMID: 27716835 PMCID: PMC5055320 DOI: 10.1371/journal.pone.0164186] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/29/2016] [Indexed: 12/12/2022] Open
Abstract
Naringin, a flavanone glycoside extracted from various plants, has a wide range of pharmacological effects. In the present study, we investigated naringin’s mechanism of action and its inhibitory effect on lipopolysaccharide-induced tumor necrosis factor-alpha and high-mobility group box 1 expression in macrophages, and on death in a cecal ligation and puncture induced mouse model of sepsis. Naringin increased heme oxygenase 1 expression in peritoneal macrophage cells through the activation of adenosine monophosphate-activated protein kinase, p38, and NF-E2-related factor 2. Inhibition of heme oxygenase 1 abrogated the naringin’s inhibitory effect on high-mobility group box 1 expression and NF-kB activation in lipopolysaccharide-stimulated macrophages. Moreover, mice pretreated with naringin (200 mg/kg) exhibited decreased sepsis-induced mortality and lung injury, and alleviated lung pathological changes. However, the naringin’s protective effects on sepsis-induced lung injury were eliminated by zinc protoporphyrin, a heme oxygenase 1 competitive inhibitor. These results revealed the mechanism underlying naringin’s protective effect in inflammation and may be beneficial for the treatment of sepsis.
Collapse
Affiliation(s)
- Minchan Gil
- Nano-Bio Resources center, Department of Cosmetic Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Yun Kyu Kim
- Department of Convergence Medicine, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Sang Bum Hong
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
- * E-mail: (KJL); (SBH)
| | - Kyung Jin Lee
- Department of Convergence Medicine, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
- * E-mail: (KJL); (SBH)
| |
Collapse
|
38
|
Duan W, Chen J, Wu Y, Zhang Y, Xu Y. Protective effect of higenamine ameliorates collagen-induced arthritis through heme oxygenase-1 and PI3K/Akt/Nrf-2 signaling pathways. Exp Ther Med 2016; 12:3107-3112. [PMID: 27882125 DOI: 10.3892/etm.2016.3730] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 08/11/2016] [Indexed: 01/20/2023] Open
Abstract
Existing in Ranunculaceae Aconitum and tomato, with the chemical name 1-phydroxybenzyl-1,2,3,4-tetrahy-droisoquinoline, higenamine is widely distributed in China. Higenamine's anti-inflammatory, antioxidant and anti-apoptotic effects have been identified in previous studies. The present study attempted to determine the protective effect of higenamine against collagen-induced arthritis through heme oxygenase-1 (HO-1) and PI3K/Akt/Nrf-2 signaling pathways. A type II collagen (CII)-induced arthritis (CIA) model was established and clinical arthritis scores were used to appraise the curative effect of higenamine. Inflammatory reactions, oxidative damage and caspase-3/9 activation were detected using specific ELISA kits. In addition, western blotting was used to evaluate the expression of HO-1, Akt and Nrf-2 protein in CII-induced CIA mice. In CII-induced CIA mice, the clinical arthritis scores, inflammatory reactions, oxidation damage and caspase-3/9 activation were increased and activated. The results demonstrated that treatment with higenamine significantly reduced the elevation of clinical arthritis scores (P<0.01), and suppressed the promotion of inflammatory reactions, oxidation damage and caspase-3/9 activation. Furthermore, higenamine significantly increased HO-1 protein expression (P<0.01) and upregulated the PI3K/Akt/Nrf-2 signal pathway in CII-induced CIA mice. Collectively, it is concluded that higenamine protects against CII-induced CIA through the induction of HO-1 and the upregulation of the PI3K/Akt/Nrf-2 signaling pathway. In conclusion, higenamine may be a beneficial drug for protecting against CIA.
Collapse
Affiliation(s)
- Wenjiang Duan
- Department of Orthopaedics, Jingdu Hospital, Nanjing, Jiangsu 210000, P.R. China
| | - Jianmin Chen
- Department of Orthopaedics, Jingdu Hospital, Nanjing, Jiangsu 210000, P.R. China
| | - Yu Wu
- Department of Orthopaedics, Jingdu Hospital, Nanjing, Jiangsu 210000, P.R. China
| | - Yong Zhang
- Department of Orthopaedics, Jingdu Hospital, Nanjing, Jiangsu 210000, P.R. China
| | - Yuansheng Xu
- Department of Orthopaedics, Jingdu Hospital, Nanjing, Jiangsu 210000, P.R. China
| |
Collapse
|
39
|
Yu Y, He J, Li S, Song L, Guo X, Yao W, Zou D, Gao X, Liu Y, Bai F, Ren G, Li D. Fibroblast growth factor 21 (FGF21) inhibits macrophage-mediated inflammation by activating Nrf2 and suppressing the NF-κB signaling pathway. Int Immunopharmacol 2016; 38:144-52. [DOI: 10.1016/j.intimp.2016.05.026] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/26/2016] [Accepted: 05/29/2016] [Indexed: 12/30/2022]
|
40
|
Cho BO, Yin HH, Park SH, Byun EB, Ha HY, Jang SI. Anti-inflammatory activity of myricetin from Diospyros lotus through suppression of NF-κB and STAT1 activation and Nrf2-mediated HO-1 induction in lipopolysaccharide-stimulated RAW264.7 macrophages. Biosci Biotechnol Biochem 2016; 80:1520-30. [PMID: 27068250 DOI: 10.1080/09168451.2016.1171697] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Diospyros lotus is traditionally used for the treatment of diabetes, diarrhea, tumor, and hypertension. The purpose of this study was to investigate the anti-inflammatory effect and underlying molecular mechanisms of myricetin in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Myricetin dose-dependently suppressed the production of pro-inflammatory mediators (NO, iNOS, PGE2, and COX-2) in LPS-stimulated RAW264.7 macrophages. Myricetin administration decreased the production of NO, iNOS, TNF-α, IL-6, and IL-12 in mice. Myricetin decreased NF-κB activation by suppressing the degradation of IκBα, nuclear translocation of p65 subunit of NF-κB, and NF-κB DNA binding activity in LPS-stimulated RAW264.7 macrophages. Moreover, myricetin attenuated the phosphorylation of STAT1 and the production of IFN-β in LPS-stimulated RAW264.7 macrophages. Furthermore, myricetin induced the expression of HO-1 through Nrf2 translocation. In conclusion, these results suggest that myricetin inhibits the production of pro-inflammatory mediators through the suppression of NF-κB and STAT1 activation and induction of Nrf2-mediated HO-1 expression in LPS-stimulated RAW264.7 macrophages.
Collapse
Affiliation(s)
- Byoung Ok Cho
- a Ato Q&A Corporation , Jeonju , Republic of Korea.,b Department of Health Care & Science , Jeonju University , Jeonju , Republic of Korea
| | - Hong Hua Yin
- a Ato Q&A Corporation , Jeonju , Republic of Korea
| | - Sang Hyun Park
- c Advanced Radiation Technology Institute , Korea Atomic Energy Research Institute , Jeongeup , Republic of Korea
| | - Eui Baek Byun
- c Advanced Radiation Technology Institute , Korea Atomic Energy Research Institute , Jeongeup , Republic of Korea
| | - Hun Yong Ha
- d Department of Pharmaceutical Science & Engineering , Seowon University , Cheongju , Republic of Korea
| | - Seon Il Jang
- a Ato Q&A Corporation , Jeonju , Republic of Korea.,b Department of Health Care & Science , Jeonju University , Jeonju , Republic of Korea
| |
Collapse
|
41
|
Li Q, Bi MJ, Bi WK, Kang H, Yan LJ, Guo YL. Edaravone attenuates brain damage in rats after acute CO poisoning through inhibiting apoptosis and oxidative stress. ENVIRONMENTAL TOXICOLOGY 2016; 31:372-379. [PMID: 25348283 DOI: 10.1002/tox.22052] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 09/10/2014] [Indexed: 06/04/2023]
Abstract
Acute carbon monoxide (CO) poisoning is the most common cause of death from poisoning all over the world and may result in neuropathologic and neurophysiologic changes. Acute brain damage and delayed encephalopathy are the most serious complication, yet their pathogenesis is poorly understood. The present study aimed to evaluate the neuroprotective effects of Edaravone against apoptosis and oxidative stress after acute CO poisoning. The rat model of CO poisoning was established in a hyperbaric oxygen chamber by exposed to CO. Ultrastructure changes were observed by transmission electron microscopy (TEM). TUNEL stain was used to assess apoptosis. Immunohistochemistry and immunofluorescence double stain were used to evaluate the expression levels of heme oxygenase-1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf-2) protein and their relationship. By dynamically monitored the carboxyhemoglobin (HbCO) level in blood, we successfully established rat model of severe CO poisoning. Ultrastructure changes, including chromatin condensation, cytoplasm dissolution, vacuoles formation, nucleus membrane and cell organelles decomposition, could be observed after CO poisoning. Edaravone could improve the ultrastructure damage. CO poisoning could induce apoptosis. Apoptotic cells were widely distributed in cortex, striatum and hippocampus. Edaravone treatment attenuated neuronal apoptosis as compared with the poisoning group (P < 0.01). Basal expressions of HO-1 and Nrf-2 proteins were found in normal brain tissue. CO poisoning could activate HO-1/Nrf-2 pathway, start oxidative stress response. After the administration of Edaravone, the expression of HO-1 and Nrf-2 significantly increased (P < 0.01). These findings suggest that Edaravone may inhibit apoptosis, activate the Keapl-Nrf/ARE pathway, and thus improve the ultrastructure damage and neurophysiologic changes following acute CO poisoning.
Collapse
Affiliation(s)
- Qin Li
- Emergency Centre, Yantai Yuhuangding Hospital Affiliated Hospital of Qingdao University Medical College, Yantai Shandong, 264000, People's Republic of China
| | - Ming Jun Bi
- Emergency Centre, Yantai Yuhuangding Hospital Affiliated Hospital of Qingdao University Medical College, Yantai Shandong, 264000, People's Republic of China
| | - Wei Kang Bi
- Department of Clinical Medicine, Qingdao University Medical College, Qingdao Shandong, 266003, People's Republic of China
| | - Hai Kang
- Emergency Centre, Yantai Yuhuangding Hospital Affiliated Hospital of Qingdao University Medical College, Yantai Shandong, 264000, People's Republic of China
| | - Le Jing Yan
- Emergency Centre, Yantai Yuhuangding Hospital Affiliated Hospital of Qingdao University Medical College, Yantai Shandong, 264000, People's Republic of China
| | - Yun-Liang Guo
- Institute of Cerebrovascular Diseases, Affiliated Hospital of Qingdao University Medical College, Qingdao Shandong, 266003, People's Republic of China
| |
Collapse
|
42
|
Li L, Tang J, Sun Y, Wu J, Yu P, Wang G. Upregulation of HO-1 Attenuates LPS-Stimulated Proinflammatory Responses Through Downregulation of p38 Signaling Pathways in Rat Ovary. Inflammation 2016; 38:1085-92. [PMID: 25448262 DOI: 10.1007/s10753-014-0074-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Heme oxygenase-1 (HO-1) plays a key role in the regulation of the inflammatory response. However, the specific mechanism underlying the anti-inflammatory role of HO-1 in the reproductive system is unclear. The aim of this study was to evaluate the role of the mechanism of HO-1 in the regulation of the inflammatory response stimulated by lipopolysaccharide (LPS) in rat ovary. LPS-stimulated inflammatory models were established. Rats were pretreated with HO-1 activator (hemin) or inhibitor (ZnPP) before LPS stimulation, and we evaluated the expression of HO-1 by real-time PCR and Western blot. The messenger RNA (mRNA) expression and secretion of IL-1β and IL-6 in rat ovary were analyzed using real-time PCR and ELISA. In addition, we also analyzed the p38 and p-p38 protein expression in the ovary. Our results demonstrate that HO-1 is an anti-inflammatory factor in LPS-stimulated ovary, which regulates the inflammatory response through downregulation of p38 signaling pathways in rat ovary.
Collapse
Affiliation(s)
- Lian Li
- College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China,
| | | | | | | | | | | |
Collapse
|
43
|
Wu MP, Zhang YS, Zhou QM, Xiong J, Dong YR, Yan C. Higenamine protects ischemia/reperfusion induced cardiac injury and myocyte apoptosis through activation of β2-AR/PI3K/AKT signaling pathway. Pharmacol Res 2015; 104:115-23. [PMID: 26746354 DOI: 10.1016/j.phrs.2015.12.032] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 12/08/2015] [Accepted: 12/26/2015] [Indexed: 10/22/2022]
Abstract
Cardiomyocyte apoptosis contributes to ischemic cardiac injury and the development of heart failure. Higenamine is a key component of the Chinese herb aconite root that has been prescribed for treating symptoms of heart failure for thousands of years in the oriental Asian countries. It has been shown that higenamine has anti-apoptotic effects in a few cell types including cardiomyocytes. However, the pharmacological target and molecular mechanism of higenamine in the heart are still not fully illustrated. Herein, we report that higenamine protected myocyte apoptosis and ischemia/reperfusion (I/R) injury through selective activation of beta2-adrenergic receptor (β2-AR). In particular, we show that higenamine significantly reduced I/R-induced myocardial infarction in mice. In both primary neonatal rat and adult mouse ventricular myocytes, we show higenamine inhibited cell apoptosis and also reduced biochemical markers of apoptosis such as cleaved caspase 3 and 9. More importantly, we show that the anti-apoptotic effects of higenamine in cardiomyocytes were completely abolished by β2-AR but not β1-AR antagonism. Furthermore, we confirmed that higenamine attenuated I/R-induced myocardial injury and reduced cleaved caspases in a β2-AR dependent manner in intact mouse hearts. Higenamine stimulated AKT phosphorylation and required PI3K activation for the anti-apoptotic effect in cardiomyocytes. These findings together suggest that anti-apoptotic and cardiac protective effects of higenamine are mediated by the β2-AR/PI3K/AKT cascade.
Collapse
Affiliation(s)
- Mei-ping Wu
- Department of Cardiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China; Aab Cardiovascular Research Institute, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Ave, Box CVRI, Rochester, NY 14642, United States.
| | - Yi-shuai Zhang
- Aab Cardiovascular Research Institute, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Ave, Box CVRI, Rochester, NY 14642, United States.
| | - Qian-mei Zhou
- Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jian Xiong
- Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100005, China; Aab Cardiovascular Research Institute, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Ave, Box CVRI, Rochester, NY 14642, United States.
| | - Yao-rong Dong
- Department of Cardiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China.
| | - Chen Yan
- Aab Cardiovascular Research Institute, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Ave, Box CVRI, Rochester, NY 14642, United States; Department of Cardiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China.
| |
Collapse
|
44
|
Steiger C, Wollborn J, Gutmann M, Zehe M, Wunder C, Meinel L. Controlled therapeutic gas delivery systems for quality-improved transplants. Eur J Pharm Biopharm 2015; 97:96-106. [PMID: 26527426 DOI: 10.1016/j.ejpb.2015.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/16/2015] [Accepted: 10/18/2015] [Indexed: 12/15/2022]
Abstract
Therapeutic gases enriched into perfusion solutions have been effectively used for the improvement of organ transplant quality. At present, the enrichment of perfusion solutions with gases requires complex machinery/containers and handling precautions. Alternatively, the gas is generated within the perfusion solution by supplemented carbonylated transition metal complexes with associated toxicological concerns when these metals contact the transplant. Therefore, we developed therapeutic gas releasing systems (TGRSs) allowing for the controlled generation and release of therapeutic gases (carbon monoxide and hydrogen sulfide) from otherwise hermetically sealed containers, such that the perfusion solution for the transplant is saturated with the gas but no other components from the TGRS are liberated in the solution. The release from the TGRS into the perfusion solution can be tailored as a function of the number and thickness of gas permeable membranes leading to release patterns having been linked to therapeutic success in previous trials. Furthermore, the surrogate biomarker HMGB1 was significantly downregulated in ischemic rat liver transplants perfused with enriched CO solution as compared to control. In conclusion, the TGRS allows for easy, reliable, and controlled generation and release of therapeutic gases while removing safety concerns of current approaches, thereby positively impacting the risk benefit profile of using therapeutic gases for transplant quality improvement in the future.
Collapse
Affiliation(s)
- Christoph Steiger
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, DE-97074 Wuerzburg, Germany
| | - Jakob Wollborn
- Department of Anaesthesia and Critical Care, University of Wuerzburg, Oberduerrbacherstraße 6, DE-97080 Wurzburg, Germany; Department of Anesthesiology and Intensive Care Medicine, University Medical Center Freiburg, Hugstetter Str. 55, DE-79106 Freiburg, Germany
| | - Marcus Gutmann
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, DE-97074 Wuerzburg, Germany
| | - Markus Zehe
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, DE-97074 Wuerzburg, Germany
| | - Christian Wunder
- Department of Anaesthesia and Critical Care, University of Wuerzburg, Oberduerrbacherstraße 6, DE-97080 Wurzburg, Germany
| | - Lorenz Meinel
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, DE-97074 Wuerzburg, Germany.
| |
Collapse
|
45
|
Chang KC. Cilostazol inhibits HMGB1 release in LPS-activated RAW 264.7 cells and increases the survival of septic mice. Thromb Res 2015; 136:456-64. [DOI: 10.1016/j.thromres.2015.06.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 05/11/2015] [Accepted: 06/14/2015] [Indexed: 10/23/2022]
|
46
|
Liu C, Zhu C, Wang G, Xu R, Zhu Y. Higenamine regulates Nrf2-HO-1-Hmgb1 axis and attenuates intestinal ischemia-reperfusion injury in mice. Inflamm Res 2015; 64:395-403. [PMID: 25929435 DOI: 10.1007/s00011-015-0817-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 03/12/2015] [Accepted: 04/02/2015] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Intestinal ischemia and reperfusion (IR) syndrome is a life-threatening dilemma caused by diverse events. Higenamine (HG), an active ingredient of Aconiti Lateralis Radix Praeparata, has been traditionally used as a heart stimulant and anti-inflammatory agent in oriental countries. But the function of HG on intestine IR injury has never been investigated. MATERIALS AND METHODS Mice underwent a 2 cm midline laparotomy, and the superior mesenteric artery (SMA) was obstructed by micro-vascular clamp to induce intestinal ischemia. RESULTS In our current study, HG increases mouse intestinal epithelial (IEC-6) cell viability through induced heme oxygenase-1 (HO-1) production in vitro. In our in vivo murine intestinal IR injury model, the increased HO-1 protein level and activity, decreased intestinal injury score, Myeloperoxidase (MPO) activity, and inflammatory cytokine expression induced by HG were all abolished with additional treatment of HO-1 inhibitor zinc protoporphyrin IX (ZnPPIX). Furthermore, HG reduced high mobility group box-1 (Hmgb1) expression in IR injury-performed intestine which was inhibited by additional administration of ZnPPIX. And HG treatment significantly decreased HO-1 expression in nuclear factor erythroid 2-related factor (Nrf-2) SiRNA-transfected cells but not in control SiRNA-transfected cells. CONCLUSION Our study provides evidence HG regulates Nrf2-HO-1-Hmgb1 axis and attenuates intestinal IR injury in mice.
Collapse
Affiliation(s)
- Chao Liu
- Department of General Surgery, Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, No.183, Yiling Road, Yichang, 443003, Hubei, China
| | | | | | | | | |
Collapse
|
47
|
Kim SR, Ha YM, Kim YM, Park EJ, Kim JW, Park SW, Kim HJ, Chung HT, Chang KC. Ascorbic acid reduces HMGB1 secretion in lipopolysaccharide-activated RAW 264.7 cells and improves survival rate in septic mice by activation of Nrf2/HO-1 signals. Biochem Pharmacol 2015; 95:279-89. [PMID: 25896849 DOI: 10.1016/j.bcp.2015.04.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 04/10/2015] [Indexed: 01/29/2023]
Abstract
High mobility group box 1 (HMGB1) is now recognized as a late mediator of sepsis. We tested hypothesis that ascorbic acid (AscA) induces heme oxygenase (HO)-1 which inhibits HMGB1 release in lipopolysaccharide (LPS)-stimulated cells and increases survival of septic mice. AscA increased HO-1 protein expression in a concentration- and time-dependent manner via Nrf2 activation in RAW 264.7 cells. HO-1 induction by AscA was significantly reduced by Nrf2 siRNA-transfected cells. Mutation of cysteine to serine of keap-1 proteins (C151S, C273S, and C288S) lost the ability of HO-1 induction by AscA, due to failure of translocation of Nrf-2 to nucleus. The PI3 kinase inhibitor, LY294002, inhibited HO-1 induction by AscA. Oxyhemoglobin (HbO2), LY294002, and ZnPPIX (HO-1 enzyme inhibitor) reversed effect of AscA on HMGB1 release. Most importantly, administration of AscA (200mg/kg, i.p.) significantly increased survival in LPS-induced endotoxemic mice. In cecal ligation and puncture (CLP)-induced septic mice, AscA reduced hepatic injury and serum HMGB1 and plasminogen activator inhibitor (PAI)-1 in a ZnPPIX-sensitive manner. In addition, AscA failed to increase survival in Nrf2 knockout mice by LPS. Thus, we concluded that high dose of AscA may be useful in the treatment of sepsis, at least, by activation of Nrf2/HO-1 signals.
Collapse
Affiliation(s)
- So Ra Kim
- Department of Pharmacology, School of Medicine and The Institute of Health Sciences, Gyeongsang National University, Jinju 660-751, Republic of Korea
| | - Yu Mi Ha
- Department of Pharmacology, Dong-A University College of Medicine, Busan 602-714, Republic of Korea
| | - Young Min Kim
- Department of Pharmacology, School of Medicine and The Institute of Health Sciences, Gyeongsang National University, Jinju 660-751, Republic of Korea
| | - Eun Jung Park
- Department of Pharmacology, School of Medicine and The Institute of Health Sciences, Gyeongsang National University, Jinju 660-751, Republic of Korea
| | - Jung Whan Kim
- Department of Pharmacology, School of Medicine and The Institute of Health Sciences, Gyeongsang National University, Jinju 660-751, Republic of Korea
| | - Sang Won Park
- Department of Pharmacology, School of Medicine and The Institute of Health Sciences, Gyeongsang National University, Jinju 660-751, Republic of Korea
| | - Hye Jung Kim
- Department of Pharmacology, School of Medicine and The Institute of Health Sciences, Gyeongsang National University, Jinju 660-751, Republic of Korea
| | - Hun Taeg Chung
- School of Biological Sciences, University of Ulsan (HTC), Ulsan 680-749, Republic of Korea
| | - Ki Churl Chang
- Department of Pharmacology, School of Medicine and The Institute of Health Sciences, Gyeongsang National University, Jinju 660-751, Republic of Korea.
| |
Collapse
|
48
|
Kwon HS, Kim YS, Park HH, Choi H, Lee KY, Lee YJ, Heo SH, Chang DI, Koh SH. Increased VEGF and decreased SDF-1α in patients with silent brain infarction are associated with better prognosis after first-ever acute lacunar stroke. J Stroke Cerebrovasc Dis 2015; 24:704-10. [PMID: 25601176 DOI: 10.1016/j.jstrokecerebrovasdis.2014.11.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/11/2014] [Accepted: 11/19/2014] [Indexed: 10/24/2022] Open
Abstract
BACKGROUND Pre-existing silent brain infarctions (SBIs) have been reported to be associated with better outcomes after first-ever symptomatic ischemic stroke, although the mechanism of this remains unclear. We investigated the association between SBIs, outcomes of acute lacunar infarction, and biomarkers including vascular endothelial growth factor (VEGF), stromal cell-derived factor-1α (SDF-1α), macrophage migration inhibitory factor (MIF), and high-mobility group box-1 (HMGB1). METHODS A total of 68 consecutive patients diagnosed with first-ever lacunar infarction (<20 mm) within 24 hours of symptom onset were included in this study. Clinical, laboratory, and imaging data were obtained. Plasma levels of VEGF, SDF-1α, MIF, and HMGB1 were assessed using Enzyme-Linked Immunosorbent Assay kits. RESULTS SBIs were noted in 31 of the 68 patients. Although the initial National Institutes of Health Stroke Scale scores were not related with the presence of SBIs (P = .313), patients with SBIs had better outcomes at 3 months (P = .029). Additionally, plasma VEGF levels were higher (P = .035) and SDF-1α levels were lower (P < .001) in patients with SBIs. Logistic regression analysis indicated that VEGF and SDF-1α were independently associated with the presence of SBIs. CONCLUSIONS SBIs are associated with favorable outcomes in patients with first-ever acute lacunar infarction and higher levels of VEGF, and lower levels of SDF-1α in these patients may contribute to their more favorable prognosis.
Collapse
Affiliation(s)
- Hyuk Sung Kwon
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Young Seo Kim
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Hyun-Hee Park
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Hojin Choi
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Kyu-Yong Lee
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Young Joo Lee
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Sung Hyuk Heo
- Department of Neurology, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - Dae-Il Chang
- Department of Neurology, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - Seong-Ho Koh
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea; Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, Republic of Korea.
| |
Collapse
|
49
|
Ai Q, Sun G, Luo Y, Dong X, Hu R, Meng X, Sun X. Ginsenoside Rb1 prevents hypoxia-reoxygenation-induced apoptosis in H9c2 cardiomyocytes via an estrogen receptor-dependent crosstalk among the Akt, JNK, and ERK 1/2 pathways using a label-free quantitative proteomics analysis. RSC Adv 2015. [DOI: 10.1039/c5ra02432c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Rb1 prevents H/R-induced apoptosis of H9c2 cells via an estrogen receptor-dependent crosstalk among the Akt, JNK, and ERK 1/2 pathways.
Collapse
Affiliation(s)
- Qidi Ai
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine
- Ministry of Education
- Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing
| | - Guibo Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine
- Ministry of Education
- Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing
| | - Yun Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine
- Ministry of Education
- Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing
| | - Xi Dong
- Wenzhou Medical University
- Wenzhou
- P. R. China
| | - Ruifeng Hu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine
- Ministry of Education
- Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing
| | - Xiangbao Meng
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine
- Ministry of Education
- Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing
| | - Xiaobo Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine
- Ministry of Education
- Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing
| |
Collapse
|
50
|
Kim KS, Cui X, Lee DS, Ko W, Sohn JH, Yim JH, An RB, Kim YC, Oh H. Inhibitory effects of benzaldehyde derivatives from the marine fungus Eurotium sp. SF-5989 on inflammatory mediators via the induction of heme oxygenase-1 in lipopolysaccharide-stimulated RAW264.7 macrophages. Int J Mol Sci 2014; 15:23749-65. [PMID: 25535073 PMCID: PMC4284790 DOI: 10.3390/ijms151223749] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 12/10/2014] [Accepted: 12/12/2014] [Indexed: 12/30/2022] Open
Abstract
Two benzaldehyde derivatives, flavoglaucin (1) and isotetrahydro-auroglaucin (2), were isolated from the marine fungus Eurotium sp. SF-5989 through bioassay- and 1H NMR-guided investigation. In this study, we evaluated the anti-inflammatory effects of these compounds in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. We demonstrated that compounds 1 and 2 markedly inhibited LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production by suppressing inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein expression without affecting cell viability. We also demonstrated that the compounds reduced the secretion of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6). Furthermore, compounds 1 and 2 inhibited LPS-induced nuclear factor-κB (NF-κB) activation by suppressing phosphorylation of IkappaB (IκB). These results indicated that the anti-inflammatory effects of these benzaldehyde derivatives in LPS-stimulated RAW264.7 macrophages were due to the inactivation of the NF-κB pathway. In addition, compounds 1 and 2 induced heme oxygenase-1 (HO-1) expression through the nuclear transcription factor-E2-related factor 2 (Nrf2) translocation. The inhibitory effects of compounds 1 and 2 on the production of pro-inflammatory mediators and on NF-κB binding activity were reversed by HO-1 inhibitor tin protoporphyrin (SnPP). Thus, the anti-inflammatory effects of compounds 1 and 2 also correlated with their ability of inducing HO-1 expression.
Collapse
Affiliation(s)
- Kyoung-Su Kim
- College of Pharmacy, Wonkwang University, Iksan 570-749, Korea.
| | - Xiang Cui
- College of Pharmacy, Wonkwang University, Iksan 570-749, Korea.
| | - Dong-Sung Lee
- Inha Research Institute for Medical Sciences, Inha University School of Medicine, Incheon 400-712, Korea.
| | - Wonmin Ko
- College of Pharmacy, Wonkwang University, Iksan 570-749, Korea.
| | - Jae Hak Sohn
- College of Medical and Life Sciences, Silla University, Busan 617-736, Korea.
| | - Joung Han Yim
- Korea Polar Research Institute, KORDI, 7-50 Songdo-dong, Yeonsu-gu, Incheon 406-840, Korea.
| | - Ren-Bo An
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, Yanbian University College of Pharmacy, 977 Gongyuan Road, Yanji 133002, China.
| | - Youn-Chul Kim
- College of Pharmacy, Wonkwang University, Iksan 570-749, Korea.
| | - Hyuncheol Oh
- College of Pharmacy, Wonkwang University, Iksan 570-749, Korea.
| |
Collapse
|