1
|
Nazir MM, Farzeen I, Fasial S, Ashraf A. Berberine in rheumatoid arthritis: a comprehensive review and meta-analysis of its anti-inflammatory and immunomodulatory mechanisms in animal models. Inflammopharmacology 2024:10.1007/s10787-024-01612-x. [PMID: 39710763 DOI: 10.1007/s10787-024-01612-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 11/22/2024] [Indexed: 12/24/2024]
Abstract
Berberine (BBR), an alkaloid derivative mostly found in Oregon grapes and barberry shoots, has several medical properties, including anti-microbial, anti-tumorigenic, and anti-inflammatory properties. As such, it is a superior alternative to presently recommended medications. From previous researches, which showed that BBR has anti-arthritic qualities by blocking a number of inflammatory signalling pathways. Furthermore, it has been demonstrated that BBR attenuates Beclin-1, which reduces autophagy-mediated survival of mature adipocytes. BBR has also been identified as an AhR inducer and a promoter of Treg differentiation. Berberine has been shown in earlier studies to be useful in treating rheumatoid arthritis (RA) in animal models. The pharmacological effects and possible action pathway of Berberine were evaluated in this study. We looked through three databases-PubMed, Web of Science, and Google Scholar-for pertinent research published from the time the databases were created and August 2024. This risk-of-bias measure was used to evaluate the methodological quality. Utilising RevMan 5.4, the statistical analysis was conducted. There were 12 studies in this research with 175 animals. The findings showed that Berberine lowers the levels of IL-1β, IL-17, IL-6, IL-10, and TNF-α), paw swelling, and histopathological scores. These connected to the anti-inflammatory, anti-oxidative stress, and osteoprotective qualities of berberine. Nonetheless, further superior animal research is required to evaluate berberine impact on rheumatoid arthritis (RA). Additionally, more research is needed to validate berberine safety. Considering the significance of the active component, further research is needed to determine the best dose and increase berberine bioavailability.
Collapse
Affiliation(s)
| | - Iqra Farzeen
- Department of Zoology, Government College University, Faisalabad, 38000, Pakistan
| | - Shahla Fasial
- Department of Statistics, Government College University, Faisalabad, 38000, Pakistan
| | - Asma Ashraf
- Department of Zoology, Government College University, Faisalabad, 38000, Pakistan.
| |
Collapse
|
2
|
Zhao M, Lin J, Wang X, Chen C, Li J, Yu J, Zhou T, Liang Y, Shen X, Shi R, Yang S, Zeng S, Deng Y, Duan X, Zhou L, Sun X, Wang Y, Shu Z. Multi-immunometabolomics mining: NP prevents hyperimmune in ALI by inhibiting Leucine/PI3K/Akt/mTOR signaling pathway. Free Radic Biol Med 2024; 225:302-315. [PMID: 39370053 DOI: 10.1016/j.freeradbiomed.2024.09.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
Acute lung injury (ALI) is currently a global health concern. Nicandra physalodes (L.) Gaertn. (NP) holds an important position in traditional Chinese medicine and nutrition. The potential protective mechanisms of NP against ALI remain unknown. The purpose of this study was to investigate the protective effects and molecular mechanisms of NP extract (NPE) on lipopolysaccharide (LPS)-induced ALI in mice. By utilizing network pharmacology to forecast the active ingredients in NP as well as possible signaling pathways. The composition of the NPE was analyzed using UPLC-Q-TOF-MS/MS. In addition, 1H-NMR immunometabolomics was employed to identify alterations in primary metabolic pathways and metabolites in the lung, serum, and fecal tissues. Finally, the protein and gene expression of key pathways were verified by IHC, IF, RT-qPCR, and ELISA. It was found that the main ingredients of NPE were revealed to be nicandrenone, withanolide A, and baicalin. NPE significantly improved lung injury, pulmonary edema, and inflammatory cell infiltration in mice with ALI. In addition, NPE improved autophagic activity and alleviated Th1 and Th17 cell-induced lung inflammation by suppressing the PI3K/Akt/mTOR signaling pathway. Importantly, immunometabolomic analysis of fecal, serum, and lung tissues revealed that NPE reversed ALI-induced leucine resistance by remodeling immunometabolism. We confirmed NPE prevents ALI by remodeling immunometabolism, regulating the Leucine/PI3K/Akt/mTOR signaling pathway, inhibiting Th1/Th17 cell differentiation, and providing a scientific immunological basis for the clinical application of NPE.
Collapse
Affiliation(s)
- Mantong Zhao
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiazi Lin
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xiao Wang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Chengkai Chen
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jianhua Li
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiamin Yu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Tong Zhou
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yefang Liang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xuejuan Shen
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ruixiang Shi
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Simin Yang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Shuting Zeng
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yongan Deng
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xiaodong Duan
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Lichang Zhou
- Ruyuan Yao Autonomous County Agricultural Technology Promotion Center, Shaoguan, 512700, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| | - Yi Wang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Zunpeng Shu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China.
| |
Collapse
|
3
|
Guo SF, Wang ZB, Xie DD, Cai Y, Wang Y, Wang X, Yang Q, Zhang AH, Qiu S. Berberine Mediates Exosomes Regulating the Lipid Metabolism Pathways to Promote Apoptosis of RA-FLS Cells. Pharmaceuticals (Basel) 2024; 17:1509. [PMID: 39598419 PMCID: PMC11597526 DOI: 10.3390/ph17111509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Objectives: Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by joint damage and commonly linked to symptoms such as inflammation, swelling, and pain. Traditional Chinese Medicine offers complementary and integrative approaches in the management of rheumatoid arthritis, potentially providing additional options that may help address treatment challenges and enhance overall patient care. This paper explores the mechanism of action of berberine from the perspective of cellular exosomes by mediating exosomal contents and thus treating RA. Methods: With the help of flow cytometry and confocal laser scanning microscope, it was determined that berberine promotes apoptosis in RA-FLS cells, and then lipid metabolomics technology was applied to screen and characterize the exosomes of RA-FLS cells to identify lipid core biomarkers closely related to RA, which were then projected into various databases for comprehensive analysis. Results: The data analysis showed that berberine could call back 11 lipid core biomarkers closely associated with RA, and interactive visualization of the database revealed that these markers were mainly focused on lipid metabolism aspects such as fatty acid elongation, degradation, and biosynthesis, as well as the biosynthesis of unsaturated fatty acids or PPARA activation of gene expression, PPARα's role in lipid metabolism regulation, glycerophospholipid metabolism, mitochondrial fatty acid oxidation disorders, and organelle biogenesis and maintenance. Conclusions: Berberine exerts its therapeutic effect on RA by mediating exosomal contents and thus regulating multiple lipid-related biological pathways, affecting the PPARγ-NF-κB complex binding rate, CREB and EGR-1 expression, cellular phagocytosis, and other aspects needed to inhibit proliferation and inflammatory responses in RA-FLS. This study offers a research foundation for exploring the mechanism of action of berberine in the treatment of RA.
Collapse
Affiliation(s)
- Si-Fan Guo
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Medical University, Haikou 570100, China or (S.-F.G.); (Z.-B.W.); (D.-D.X.); (Y.W.); (X.W.)
| | - Zhi-Bo Wang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Medical University, Haikou 570100, China or (S.-F.G.); (Z.-B.W.); (D.-D.X.); (Y.W.); (X.W.)
| | - Dan-Dan Xie
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Medical University, Haikou 570100, China or (S.-F.G.); (Z.-B.W.); (D.-D.X.); (Y.W.); (X.W.)
| | - Ying Cai
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Medical University, Haikou 570100, China or (S.-F.G.); (Z.-B.W.); (D.-D.X.); (Y.W.); (X.W.)
- GAP Center and Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Yan Wang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Medical University, Haikou 570100, China or (S.-F.G.); (Z.-B.W.); (D.-D.X.); (Y.W.); (X.W.)
| | - Xian Wang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Medical University, Haikou 570100, China or (S.-F.G.); (Z.-B.W.); (D.-D.X.); (Y.W.); (X.W.)
| | - Qiang Yang
- GAP Center and Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Ai-Hua Zhang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Medical University, Haikou 570100, China or (S.-F.G.); (Z.-B.W.); (D.-D.X.); (Y.W.); (X.W.)
- GAP Center and Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Shi Qiu
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Medical University, Haikou 570100, China or (S.-F.G.); (Z.-B.W.); (D.-D.X.); (Y.W.); (X.W.)
| |
Collapse
|
4
|
Qu X, Yi X, Zhong H, Ruan W, Huang D. Effect and mechanism of imbalance via Th9 cells and Th17/Treg cells in inflammatory and fibrotic phases of pulmonary fibrosis in mice. Biotechnol Genet Eng Rev 2024; 40:3007-3017. [PMID: 37083059 DOI: 10.1080/02648725.2023.2203002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/11/2023] [Indexed: 04/22/2023]
Abstract
We investigate the role and mechanism of imbalance via Th9 cells and Th17/Treg cells in the inflammatory and fibrotic phases of pulmonary fibrosis in mice. A total of mice were split into normal saline (control group) and inflammation and fibrosis mouse models (study group) randomly, and lung tissues and bronchoalveolar lavage fluid (BALF) were obtained from mice at the inflammatory and fibrotic phases on the 7th and 28th day, respectively. The degenerative changes in the mouse lung tissue were then visible using H&E staining. The expression of CCR6 and IL-9 in the lung tissues of two groups was examined through an immunohistochemistry assay. Fluorescence PCR was used to assess the expression of PU.1 mRNA in BALF, and flow cytometry was performed to identify the expression of Th17 and Treg. (1). The level of pulmonary fibrosis and lung inflammation in the research group was significantly higher than in the control group. (2). The expression of Th17, CCR6, IL-9 and PU.1 mRNA was substantially higher (P<0.05) in the research group at different time points; the expression level of Treg cells was considerably lower (P<0.05) in the research group than in the control group. (3). CCR6, IL-9 and PU.1 mRNA levels were statistically directly associated (P<0.05) with Th17 and inversely correlated 40 with Regulatory T cells (Tregs). CCR6 and Th9 cells may be involved in 45 developing Th17/Treg imbalance in the immune inflammation of pulmonary fibrosis, which promotes fibrocyte proliferation in lung tissue.
Collapse
Affiliation(s)
- Xiaoya Qu
- Department of Basic Medicine, Xiamen Medical College, Xiamen, Fujian, China
| | - Xue Yi
- Department of Basic Medicine, Xiamen Medical College, Xiamen, Fujian, China
| | - Hongyuan Zhong
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Wenwen Ruan
- Department of Basic Medicine, Xiamen Medical College, Xiamen, Fujian, China
| | - Dongmei Huang
- Department of Basic Medicine, Xiamen Medical College, Xiamen, Fujian, China
| |
Collapse
|
5
|
Qin Z, Tang R, Liang J, Jia X. Berberine, a natural alkaloid: Advances in its pharmacological effects and mechanisms in the treatment of autoimmune diseases. Int Immunopharmacol 2024; 137:112422. [PMID: 38880024 DOI: 10.1016/j.intimp.2024.112422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/18/2024]
Abstract
The rising prevalence of autoimmune diseases poses a significant challenge to global public health. Continual exploration of natural compounds for effective treatments for autoimmune diseases is crucial. Berberine, a benzylisoquinoline alkaloid, is a bioactive component found in various medicinal plants, exhibiting diverse pharmacological properties. This review aims to consolidate the current understanding of berberine's pharmacological effects and mechanisms in addressing four autoimmune diseases: rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease, and psoriasis. Overall, as a traditional Chinese medicinal preparation, berberine shows promise as an effective and safe treatment for autoimmune diseases. However, further comprehensive studies, particularly clinical trials, are essential to elucidate additional mechanisms and molecular targets, as well as to assess the efficacy and safety of berberine in treating these autoimmune diseases.
Collapse
Affiliation(s)
- Zhifang Qin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei Anhui 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei Anhui 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei Anhui 230012, China
| | - Ran Tang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei Anhui 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei Anhui 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei Anhui 230012, China
| | - Juan Liang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei Anhui 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei Anhui 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei Anhui 230012, China
| | - Xiaoyi Jia
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei Anhui 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei Anhui 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei Anhui 230012, China.
| |
Collapse
|
6
|
Bathaei P, Imenshahidi M, Hosseinzadeh H. Effects of Berberis vulgaris, and its active constituent berberine on cytochrome P450: a review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03326-x. [PMID: 39141022 DOI: 10.1007/s00210-024-03326-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/22/2024] [Indexed: 08/15/2024]
Abstract
The cytochrome P450 (CYP450) family is crucial for metabolizing drugs and natural substances. Numerous compounds, such as pharmaceuticals and dietary items, can influence CYP activity by either enhancing or inhibiting these enzymes, potentially leading to interactions between drugs or between drugs and food. This research explores the impact of barberry and its primary component "berberine" on key human CYP450 enzymes. The text discusses the effects of this plant on the 12 primary human CYP450 enzymes, with summarized data presented in tables. Berberine exerts an influence on the function of various CYP450 isoforms, including CYP3A4/5, CYP2D6, CYP2C9, CYP2E1, CYP1A1/2, and most isoforms within the CYP2B subfamily. Given the significant role of these CYP450 isoforms in metabolizing commonly used drugs and endogenous substances, as well as activating procarcinogens into carcinogenic metabolites, the influence of barberry and its active constituent on these enzymes may impact the pharmacokinetics and toxicity profiles of various compounds. More specifically, regarding the crucial role of CYP2D6 and CYP3A4 in metabolizing clinically used drugs, and the inhibitory effects of berberine on these two CYP450 isoforms, it seems that the most important drug interaction of berberine that should be considered is related to its inhibitory effect on CYP2D6 and CYP3A4. In conclusion, due to the impact of barberry on multiple CYP450 isoforms, healthcare providers should conduct thorough consultations and investigations to ensure patient safety and prevent any potential adverse interactions before recommending the consumption of these herbs. Additional research, particularly clinical trials is crucial for preventing any potentially adverse interactions in patients who consume this herb.
Collapse
Affiliation(s)
- Pooneh Bathaei
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Imenshahidi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Sun A, Yang H, Li T, Luo J, Zhou L, Chen R, Han L, Lin Y. Molecular mechanisms, targets and clinical potential of berberine in regulating metabolism: a review focussing on databases and molecular docking studies. Front Pharmacol 2024; 15:1368950. [PMID: 38957396 PMCID: PMC11217548 DOI: 10.3389/fphar.2024.1368950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/29/2024] [Indexed: 07/04/2024] Open
Abstract
Background: Metabolic imbalance is the common basis of many diseases. As natural isoquinoline alkaloid, berberine (BBR) has shown great promise in regulating glucose and lipids metabolism and treating metabolic disorders. However, the related mechanism still lacks systematic research. Aim: To discuss the role of BBR in the whole body's systemic metabolic regulation and further explore its therapeutic potential and targets. Method: Based on animal and cell experiments, the mechanism of BBR regulating systemic metabolic processes is reviewed. Potential metabolism-related targets were summarized using Therapeutic Target Database (TTD), DrugBank, GeneCards, and cutting-edge literature. Molecular modeling was applied to explore BBR binding to the potential targets. Results: BBR regulates the whole-body metabolic response including digestive, circulatory, immune, endocrine, and motor systems through adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR), sirtuin (SIRT)1/forkhead box O (FOXO)1/sterol regulatory element-binding protein (SREBP)2, nuclear factor erythroid 2-related factor (Nrf) 2/heme oxygenase (HO)-1, and other signaling pathways. Through these reactions, BBR exerts hypoglycemic, lipid-regulating, anti-inflammatory, anti-oxidation, and immune regulation. Molecular docking results showed that BBR could regulate metabolism targeting FOXO3, Nrf2, NAD(P)H quinone oxidoreductase 1 (NQO1), glutathione peroxidase (Gpx) 4 and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA). Evaluating the target clinical effects, we found that BBR has the therapeutic potential of anti-aging, anti-cancer, relieving kidney disease, regulating the nervous system, and alleviating other chronic diseases. Conclusion: This review elucidates the interaction between potential targets and small molecular metabolites by exploring the mechanism of BBR regulating metabolism. That will help pharmacologists to identify new promising metabolites interacting with these targets.
Collapse
Affiliation(s)
- Aru Sun
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Haoyu Yang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tao Li
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinli Luo
- China Traditional Chinese Medicine Holdings Co. Limited, Guangdong e-fong Pharmaceutical Co., Ltd., Foshan, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Ling Zhou
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Rui Chen
- College of Basic Medical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Lin Han
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yiqun Lin
- Department of Endocrinology, Guang’anmen Hospital South Campus, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Vyavahare S, Ahluwalia P, Gupta SK, Kolhe R, Hill WD, Hamrick M, Isales CM, Fulzele S. The Role of Aryl Hydrocarbon Receptor in Bone Biology. Int J Tryptophan Res 2024; 17:11786469241246674. [PMID: 38757095 PMCID: PMC11097734 DOI: 10.1177/11786469241246674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 03/25/2024] [Indexed: 05/18/2024] Open
Abstract
Aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, is crucial in maintaining the skeletal system. Our study focuses on encapsulating the role of AhR in bone biology and identifying novel signaling pathways in musculoskeletal pathologies using the GEO dataset. The GEO2R analysis identified 8 genes (CYP1C1, SULT6B1, CYB5A, EDN1, CXCR4B, CTGFA, TIPARP, and CXXC5A) involved in the AhR pathway, which play a pivotal role in bone remodeling. The AhR knockout in hematopoietic stem cells showed alteration in several novel bone-related transcriptomes (eg, Defb14, ZNF 51, and Chrm5). Gene Ontology Enrichment Analysis demonstrated 54 different biological processes associated with bone homeostasis. Mainly, these processes include bone morphogenesis, bone development, bone trabeculae formation, bone resorption, bone maturation, bone mineralization, and bone marrow development. Employing Functional Annotation and Clustering through DAVID, we further uncovered the involvement of the xenobiotic metabolic process, p450 pathway, oxidation-reduction, and nitric oxide biosynthesis process in the AhR signaling pathway. The conflicting evidence of current research of AhR signaling on bone (positive and negative effects) homeostasis may be due to variations in ligand binding affinity, binding sites, half-life, chemical structure, and other unknown factors. In summary, our study provides a comprehensive understanding of the underlying mechanisms of the AhR pathway in bone biology.
Collapse
Affiliation(s)
- Sagar Vyavahare
- Department of Medicine, Augusta University, Augusta, GA, USA
| | | | | | - Ravindra Kolhe
- Department of Pathology, Augusta University, Augusta, GA, USA
| | - William D Hill
- Department of Pathology, Medical University of South Carolina, Charleston, SC, USA
| | - Mark Hamrick
- Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, USA
- Center for Healthy Aging, Augusta University, Augusta, GA, USA
| | - Carlos M Isales
- Department of Medicine, Augusta University, Augusta, GA, USA
- Center for Healthy Aging, Augusta University, Augusta, GA, USA
| | - Sadanand Fulzele
- Department of Medicine, Augusta University, Augusta, GA, USA
- Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, USA
- Center for Healthy Aging, Augusta University, Augusta, GA, USA
| |
Collapse
|
9
|
Su QY, Li HC, Jiang XJ, Jiang ZQ, Zhang Y, Zhang HY, Zhang SX. Exploring the therapeutic potential of regulatory T cell in rheumatoid arthritis: Insights into subsets, markers, and signaling pathways. Biomed Pharmacother 2024; 174:116440. [PMID: 38518605 DOI: 10.1016/j.biopha.2024.116440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/24/2024] Open
Abstract
Rheumatoid arthritis (RA) is a complex autoimmune inflammatory rheumatic disease characterized by an imbalance between immunological reactivity and immune tolerance. Regulatory T cells (Tregs), which play a crucial role in controlling ongoing autoimmunity and maintaining peripheral tolerance, have shown great potential for the treatment of autoimmune inflammatory rheumatic diseases such as RA. This review aims to provide an updated summary of the latest insights into Treg-targeting techniques in RA. We focus on current therapeutic strategies for targeting Tregs based on discussing their subsets, surface markers, suppressive function, and signaling pathways in RA.
Collapse
Affiliation(s)
- Qin-Yi Su
- The Second Hospital of Shanxi Medical University, Department of Rheumatology, Taiyuan, China; Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Huan-Cheng Li
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Xiao-Jing Jiang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Zhong-Qing Jiang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Yan Zhang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - He-Yi Zhang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Sheng-Xiao Zhang
- The Second Hospital of Shanxi Medical University, Department of Rheumatology, Taiyuan, China; Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China.
| |
Collapse
|
10
|
Shakeri F, Kiani S, Rahimi G, Boskabady MH. Anti-inflammatory, antioxidant, and immunomodulatory effects of Berberis vulgaris and its constituent berberine, experimental and clinical, a review. Phytother Res 2024; 38:1882-1902. [PMID: 38358731 DOI: 10.1002/ptr.8077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 02/16/2024]
Abstract
Berberis vulgaris (B. vulgaris or barberry) is a medicinal plant that has been used for various purposes in traditional medicine. Berberine is one of the main alkaloids isolated from B. vulgaris and other plants. Both B. vulgaris and berberine have shown anti-inflammatory, antioxidant, and immunomodulatory effects in different experimental models and clinical trials. This review aims to summarize the current evidence on the mechanisms and applications of B. vulgaris and berberine in modulating inflammation, oxidative stress, and immune responses. The literature search was performed using PubMed, Scopus, and Google Scholar databases until August 2023. The results indicated that B. vulgaris and berberine could inhibit the production of pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), interleukin 6 (IL-6), and interleukin-17 (IL-17), and enhance the expression of anti-inflammatory cytokines, such as interleukin 10 (IL-10) and transforming growth factor-β (TGF-β), in various cell types and tissues. B. vulgaris and berberine can also scavenge free radicals, increase antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), and reduce lipid peroxidation and DNA damage. B. vulgaris and berberine have been reported to exert beneficial effects in several inflammatory, oxidative, and immune-related diseases, such as diabetes, obesity, cardiovascular diseases, neurodegenerative diseases, autoimmune diseases, allergic diseases, and infections. However, more studies are needed to elucidate the optimal doses, safety profiles, and potential interactions of B. vulgaris and berberine with other drugs or natural compounds.
Collapse
Affiliation(s)
- Farzaneh Shakeri
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Sahar Kiani
- Department of Stem Cell and Developmental Biology, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Brain and Cognitive Sciences, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Golnoosh Rahimi
- Department of Stem Cell and Developmental Biology, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Brain and Cognitive Sciences, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Zhang X, Hu Q, Jiang B, Xie F, Zhang Z, Hafezi-Moghadam A, Sun D. Role of Interleukin-21 in retinal ischemia-reperfusion injury: Unveiling the impact on retinal ganglion cell apoptosis. Int Immunopharmacol 2024; 128:111480. [PMID: 38194747 DOI: 10.1016/j.intimp.2023.111480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/22/2023] [Accepted: 12/30/2023] [Indexed: 01/11/2024]
Abstract
BACKGROUND Retinal ischemia-reperfusion (I/R) serves as a significant contributor to ocular diseases, triggering a cascade of pathological processes. The interplay between neuroinflammation and the apoptosis of retinal ganglion cell (RGC) is a well-explored aspect of retinal I/R-induced tissue damage. Within this intricate landscape, the inflammatory cytokine Interleukin-21 (IL21) emerges as a potent mediator of neuroinflammation with known detrimental effects on neuronal integrity. However, its specific impact on RGC apoptosis in the context of retinal I/R has remains to be uncovered. This study aims to unravel the potential anti-apoptotic effects of IL21 siRNA on RGC, shedding light on the neuroprotection of retinal I/R. METHODS Sprague-Dawley (SD) rats underwent a controlled elevation of intraocular pressure (IOP) to 110 mmHg for 60 min to simulate retinal I/R conditions. To explore the influence of IL21 on RGC apoptosis and its underlying molecular mechanisms, a comprehensive array of techniques such immunohistochemistry, immunofluorescence, TUNEL, Hematoxylin-eosin (H&E), immunoblotting, and qRT-PCR were carried out. RESULTS The landscape of retinal I/R injury revealed an increase in the expression of IL21, reaching its peak at 72 h. Notably, IL21 markedly induced RGC apoptosis within the retinal I/R milieu. The introduction of IL21 siRNA showed promising outcomes, manifesting as an amelioration of neurological function deficits, a reduction in RGC loss, and an increase in the thickness of the inner retinal layer at the 72-hour reperfusion. Additionally, IL21 siRNA demonstrated its ability to hinder the release of proteins associated with apoptosis via the JAK/STAT signaling pathway. In the in vitro setting, IL21 siRNA efficiently reduced R28 cell apoptosis by suppressing the production of proteins associated with apoptosis by regulating the JAK/STAT signaling pathway. CONCLUSIONS This study provides evidence for the pathogenic role of IL21 in retinal I/R. The findings underscore IL21 siRNA as a promising therapeutic target for ischemic retinal injury. Its efficacy lies in its ability to mitigate RGC apoptosis by suppressing the JAK/STAT signaling pathway. These findings not only enhance our comprehension of retinal I/R pathology but also suggests IL21 siRNA as a potential transformative factor in the development of targeted therapies for ischemic retinal injuries.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150086, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Qiang Hu
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150086, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Bo Jiang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Fang Xie
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Zhongyu Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Ali Hafezi-Moghadam
- Molecular Biomarkers Nano-Imaging Laboratory (MBNI), Brigham & Women's Hospital, Boston, MA 02115, USA
| | - Dawei Sun
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150086, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
| |
Collapse
|
12
|
Lin L, Zhang K, Xiong Q, Zhang J, Cai B, Huang Z, Yang B, Wei B, Chen J, Niu Q. Gut microbiota in pre-clinical rheumatoid arthritis: From pathogenesis to preventing progression. J Autoimmun 2023; 141:103001. [PMID: 36931952 DOI: 10.1016/j.jaut.2023.103001] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/30/2022] [Accepted: 01/31/2023] [Indexed: 03/17/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by progressive polyarthritis that leads to cartilage and bone damage. Pre-clinical RA is a prolonged state before clinical arthritis and RA develop, in which autoantibodies (antibodies against citrullinated proteins, rheumatoid factors) can be present due to the breakdown of immunologic self-tolerance. As early treatment initiation before the onset of polyarthritis may achieve sustained remission, optimize clinical outcomes, and even prevent RA progression, the pre-clinical RA stage is showing the prospect to be the window of opportunity for RA treatment. Growing evidence has shown the role of the gut microbiota in inducing systemic inflammation and polyarthritis via multiple mechanisms, which may involve molecular mimicry, impaired intestinal barrier function, gut microbiota-derived metabolites mediated immune regulation, modulation of the gut microbiota's effect on immune cells, intestinal epithelial cells autophagy, and the interaction between the microbiome and human leukocyte antigen alleles as well as microRNAs. Since gut microbiota alterations in pre-clinical RA have been reported, potential therapies for modifying the gut microbiota in pre-clinical RA, including natural products, antibiotic therapy, fecal microbiota transplantation, probiotics, microRNAs therapy, vitamin D supplementation, autophagy inducer-based treatment, prebiotics, and diet, holds great promise for the successful treatment and even prevention of RA via altering ongoing inflammation. In this review, we summarized current studies that include pathogenesis of gut microbiota in RA progression and promising therapeutic strategies to provide novel ideas for the management of pre-clinical RA and possibly preventing arthritis progression.
Collapse
Affiliation(s)
- Liyan Lin
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Keyi Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Qiao Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Infection Control, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Junlong Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Bei Cai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Zhuochun Huang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Bin Yang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Bin Wei
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.
| | - Qian Niu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
13
|
Chang L, Wu H, Huang W, Li Y, Chen Y, Li X, Yao Z, Chen X, Lai X, Zheng R, Huang Z, Wu X, Zhang G. IL-21 induces pyroptosis of Treg cells via Akt-mTOR-NLRP3-caspase 1 axis in eosinophilic chronic rhinosinusitis. J Allergy Clin Immunol 2023; 152:641-655.e14. [PMID: 37164271 DOI: 10.1016/j.jaci.2023.04.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND Regulatory T (Treg) cells, which prevent inflammation-induced eosinophil infiltration, are deficient in nasal polyps (NPs) in patients with eosinophilic chronic rhinosinusitis (ECRS). It is concomitant with loss of Foxp3 after certain inflammatory stimuli. OBJECTIVE We sought to determine the inflammatory cytokines involved in inducing the loss of Treg cells in NPs. METHODS The abundance of cytokines in ECRS patients or mice were tested using ELISA, immunochemistry, immunofluorescence, quantitative reverse transcription PCR (qPCR), and/or flow cytometry. Expression of eosinophil cationic protein (ECP), CD4+ T cells, IL-4, and IL-17A and eosinophils in nasal mucosa of mouse model was investigated by immunochemistry, immunofluorescence, and hematoxylin and eosin staining. The percentage and death of induced Treg (iTreg) cells, source of IL-21 in NPs from ECRS and non-ECRS patients, and abundance of different systemic phenotypes of CD4+ T cells in a mouse model were studied by flow cytometry. Western blot analysis, scanning, and transmission electronic microscopy were used to detect pyroptosis of iTreg cells. RESULTS IL-21 was highly expressed in nasal mucosa of ECRS patients and mice, causing pyroptosis and preventing development of iTreg cells in vitro. The elevated IL-21 in NPs from ECRS patients was mainly produced by CD3+ T cells, including T follicular helper, T peripheral helper, TH2, and TH17 cells and CD3+CD4- T cells. T peripheral helper cells and CD3+CD4- T cells were the predominant source of IL-21 in NPs from non-ECRS patients. Blocking IL-21/IL-21R signaling significantly reduced the number of eosinophils and CD4+ T cells along with ECP, IL-4, and IL-17A expression in the nasal mucosa of ECRS mice. It also increased Treg cell percentage and systemically decreased TH2 and TH17 ratios. Akt-mTOR inhibition prevented IL-21-induced pyroptosis in human and mouse iTreg cells. CONCLUSION Elevated IL-21 drives pyroptosis and prevents Treg cell development in ECRS patients. IL-21 induced pyroptosis via activating Akt-mTOR-NLRP3-caspase 1 signaling.
Collapse
Affiliation(s)
- Lihong Chang
- Department of Otorhinolaryngology-Head and Neck Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Haotian Wu
- Department of Otorhinolaryngology-Head and Neck Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Weiqiang Huang
- Department of Otorhinolaryngology-Head and Neck Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yue Li
- Department of Otorhinolaryngology-Head and Neck Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ye Chen
- Department of Internal Medicine, Division of Rheumatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Department of Clinical Immunology, the Third Hospital at Sun Yat-sen University, Guangzhou, China
| | - Xia Li
- Department of Otorhinolaryngology-Head and Neck Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhouzhou Yao
- Department of Otorhinolaryngology-Head and Neck Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaohong Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoping Lai
- Department of Otorhinolaryngology-Head and Neck Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Rui Zheng
- Department of Otorhinolaryngology-Head and Neck Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zizhen Huang
- Department of Otorhinolaryngology-Head and Neck Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xifu Wu
- Department of Otorhinolaryngology-Head and Neck Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Gehua Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
14
|
Li M, Tian F, Guo J, Li X, Ma L, Jiang M, Zhao J. Therapeutic potential of Coptis chinensis for arthritis with underlying mechanisms. Front Pharmacol 2023; 14:1243820. [PMID: 37637408 PMCID: PMC10450980 DOI: 10.3389/fphar.2023.1243820] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/01/2023] [Indexed: 08/29/2023] Open
Abstract
Arthritis is a common degenerative disease of joints, which has become a public health problem affecting human health, but its pathogenesis is complex and cannot be eradicated. Coptis chinensis (CC) has a variety of active ingredients, is a natural antibacterial and anti-inflammatory drug. In which, berberine is its main effective ingredient, and has good therapeutic effects on rheumatoid arthritis (RA), osteoarthritis (OA), gouty arthritis (GA). RA, OA and GA are the three most common types of arthritis, but the relevant pathogenesis is not clear. Therefore, molecular mechanism and prevention and treatment of arthritis are the key issues to be paid attention to in clinical practice. In general, berberine, palmatine, coptisine, jatrorrhizine, magnoflorine and jatrorrhizine hydrochloride in CC play the role in treating arthritis by regulating Wnt1/β-catenin and PI3K/AKT/mTOR signaling pathways. In this review, active ingredients, targets and mechanism of CC in the treatment of arthritis were expounded, and we have further explained the potential role of AHR, CAV1, CRP, CXCL2, IRF1, SPP1, and IL-17 signaling pathway in the treatment of arthritis, and to provide a new idea for the clinical treatment of arthritis by CC.
Collapse
Affiliation(s)
- Mengyuan Li
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Fei Tian
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jinling Guo
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Xiankuan Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Ma
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Miaomiao Jiang
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Zhao
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
- Department of Geriatric, Fourth Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
15
|
Ceballos FC, Chamizo-Carmona E, Mata-Martín C, Carrasco-Cubero C, Aznar-Sánchez JJ, Veroz-González R, Rojas-Herrera S, Dorado P, LLerena A. Pharmacogenetic Sex-Specific Effects of Methotrexate Response in Patients with Rheumatoid Arthritis. Pharmaceutics 2023; 15:1661. [PMID: 37376109 DOI: 10.3390/pharmaceutics15061661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/09/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Methotrexate (MTX) is a commonly used drug for the treatment of rheumatoid arthritis (RA), but its effectiveness can vary greatly among patients. Pharmacogenetics, the study of how genetic variations can affect drug response, has the potential to improve the personalized treatment of RA by identifying genetic markers that can predict a patient's response to MTX. However, the field of MTX pharmacogenetics is still in its early stages and there is a lack of consistency among studies. This study aimed to identify genetic markers associated with MTX efficacy and toxicity in a large sample of RA patients, and to investigate the role of clinical covariates and sex-specific effects. Our results have identified an association of ITPA rs1127354 and ABCB1 rs1045642 with response to MTX, polymorphisms of FPGS rs1544105, GGH rs1800909, and MTHFR genes with disease remission, GGH rs1800909 and MTHFR rs1801131 polymorphisms with all adverse events, and ADA rs244076 and MTHFR rs1801131 and rs1801133, However, clinical covariates were more important factors to consider when building predictive models. These findings highlight the potential of pharmacogenetics to improve personalized treatment of RA, but also emphasize the need for further research to fully understand the complex mechanisms involved.
Collapse
Affiliation(s)
| | | | - Carmen Mata-Martín
- MEPER Group-Clinical and Translational Research in Pharmacogenetics and Personalized Medicine, Biosanitary Research Institute of Extremadura (INUBE), 06080 Badajoz, Spain
- CICAB Clinical Research Center, Pharmacogenetics and Personalized Medicine Unit, Hospital Universitario de Badajoz, 06080 Badajoz, Spain
| | | | | | | | | | - Pedro Dorado
- MEPER Group-Clinical and Translational Research in Pharmacogenetics and Personalized Medicine, Biosanitary Research Institute of Extremadura (INUBE), 06080 Badajoz, Spain
- Faculty of Medicine, Universidad de Extremadura, 06071 Badajoz, Spain
| | - Adrián LLerena
- MEPER Group-Clinical and Translational Research in Pharmacogenetics and Personalized Medicine, Biosanitary Research Institute of Extremadura (INUBE), 06080 Badajoz, Spain
- CICAB Clinical Research Center, Pharmacogenetics and Personalized Medicine Unit, Hospital Universitario de Badajoz, 06080 Badajoz, Spain
- Faculty of Medicine, Universidad de Extremadura, 06071 Badajoz, Spain
| |
Collapse
|
16
|
Katturajan R, Evan Prince S. L-carnitine and Zinc supplementation impedes intestinal damage in methotrexate-treated adjuvant-induced arthritis rats: Reinstating enterocyte proliferation and trace elements. J Trace Elem Med Biol 2023; 78:127188. [PMID: 37163819 DOI: 10.1016/j.jtemb.2023.127188] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 02/02/2023] [Accepted: 04/26/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND Methotrexate (MTX), a folic acid analogue, is used as a first-line treatment for rheumatoid arthritis (RA) since it has more therapeutic mechanisms than any other drug. Being an undeniable drug for the treatment of arthritis, even low-dose MTX provokes intestinal toxicity as a primary adverse effect and does not revive an anti-inflammatory element. Thus, our study aims to elucidate the anti-arthritic and prophylactic activity of supplements L-carnitine (L) and zinc (Z) against MTX-mediated intestinal damage in arthritis rats. METHODS The rats were assessed for arthritic parameters such as body weight, paw volume, x-ray scan, and serum trace elements level. To analyze the toxic effects of MTX in the rats, intestine pH, mucosal weight, digestive enzymes, myeloperoxidase, histopathological, and immunohistochemical analysis were performed. RESULTS Our study demonstrated that the arthritic parameters have shown that MTX has an ameliorative effect on arthritic rats. Besides, our findings showed that low-dose MTX (2.5 mg/kg b.w.) given once a week for two weeks during arthritis treatment had toxic effects in the rat's intestine, as evidenced by changes in intestine pH and mucosal weight, decreased digestive enzymes, increased MPO, and degenerative changes in histopathological analysis. Concurrent therapy of LZ with MTX, on the other hand, restored the modifications in these parameters. CONCLUSION MTX in combination with LZ effectively manages arthritis than monotherapy and significantly prevents MTX-induced intestinal damage in arthritis rats. Thus, LZ could be used as an improved therapeutic and safety for MTX-instigated intestinal damage during arthritis treatments. Therefore, our combination of L-carnitine and zinc with MTX would be promising prophylactic activity for arthritis patients.
Collapse
Affiliation(s)
- Ramkumar Katturajan
- Department of Biotechnology, School of Bio Sciences and Technology, VIT, Vellore, Tamil Nadu, India
| | - Sabina Evan Prince
- Department of Biotechnology, School of Bio Sciences and Technology, VIT, Vellore, Tamil Nadu, India.
| |
Collapse
|
17
|
Tan Y, Li C, Zhou J, Deng F, Liu Y. Berberine attenuates liver fibrosis by autophagy inhibition triggering apoptosis via the miR-30a-5p/ATG5 axis. Exp Cell Res 2023; 427:113600. [PMID: 37062521 DOI: 10.1016/j.yexcr.2023.113600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 03/03/2023] [Accepted: 04/09/2023] [Indexed: 04/18/2023]
Abstract
Berberine (BBR) is an effective drug against liver fibrosis (LF). Autophagy is involved in the pathogenesis of LF; however, the mechanism linking BBR to autophagy in LF remains unresolved. To explore the underlying mechanism, we assessed the effects of BBR on autophagy and apoptosis of activated hepatic stellate cells (HSCs) in vitro and in a murine model of fibrosis. The decreased expression of the autophagy activation marker ATG5, autophagosome formation, and autophagy flux in the HSC model confirmed that BBR inhibited autophagy in activated HSCs and in mice with liver fibrosis. Moreover, ATG5 was necessary for inducing autophagy and HSC activation. BBR suppressed ATG5 expression by upregulating miR-30a-5p expression, which affected the stability of ATG5 mRNA by binding to its 3'-untranslated region, an effect that was attenuated by treatment with a miR-30a-5p inhibitor. BBR also markedly induced HSC apoptosis, as indicated by the upregulated expression of the pro-apoptosis markers p53, BAX, and cleaved PARP and the downregulated expression of the anti-apoptosis marker BCL-2, effects that were reversed by ATG5 overexpression. In vivo, BBR improved mouse LF by decreasing collagen deposition, inflammatory cell infiltration, and expression of fibrosis markers hydroxyproline, α-smooth muscle actin, and collagen type 1-A1 and the autophagy marker LC3. BBR had a protective effect on mouse fibrotic livers and reduced serum aspartate aminotransferase and alanine aminotransferase levels. Collectively, these results reveal a novel mechanism of BBR-induced autophagy inhibition triggering apoptosis in HSCs, providing a reliable experimental and theoretical basis for developing BBR-based candidate drugs for LF.
Collapse
Affiliation(s)
- Yuehao Tan
- Sichuan Nursing Vocational College, Chengdu, 610100, China
| | - Can Li
- Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Jiali Zhou
- Sichuan Nursing Vocational College, Chengdu, 610100, China
| | - Fengmei Deng
- School of Basic Medical Science, Chengdu Medical College, Chengdu, 610500, China.
| | - Yilun Liu
- Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China; People's Hospital of Mingshan District, Ya'an, Sichuan, 625100, China.
| |
Collapse
|
18
|
Wang Z, Wang J, Lan T, Zhang L, Yan Z, Zhang N, Xu Y, Tao Q. Role and mechanism of fibroblast-activated protein-α expression on the surface of fibroblast-like synoviocytes in rheumatoid arthritis. Front Immunol 2023; 14:1135384. [PMID: 37006278 PMCID: PMC10064071 DOI: 10.3389/fimmu.2023.1135384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/07/2023] [Indexed: 03/19/2023] Open
Abstract
Fibroblast-activated protein-α (FAP) is a type II integrated serine protease expressed by activated fibroblasts during fibrosis or inflammation. Fibroblast-like synoviocytes (FLSs) in rheumatoid arthritis (RA) synovial sites abundantly and stably overexpress FAP and play important roles in regulating the cellular immune, inflammatory, invasion, migration, proliferation, and angiogenesis responses in the synovial region. Overexpression of FAP is regulated by the initial inflammatory microenvironment of the disease and epigenetic signaling, which promotes RA development by regulating FLSs or affecting the signaling cross-linking FLSs with other cells at the local synovium and inflammatory stimulation. At present, several treatment options targeting FAP are in the process of development. This review discusses the basic features of FAP expressed on the surface of FLSs and its role in RA pathophysiology and advances in targeted therapies.
Collapse
Affiliation(s)
- Zihan Wang
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
- Graduate school, Beijing University of Chinese Medicine, Beijing, China
| | - Jinping Wang
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Tianyi Lan
- Graduate school, Beijing University of Chinese Medicine, Beijing, China
| | - Liubo Zhang
- Graduate school, Beijing University of Chinese Medicine, Beijing, China
| | - Zeran Yan
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Nan Zhang
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Yuan Xu
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Yuan Xu, ; Qingwen Tao,
| | - Qingwen Tao
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Yuan Xu, ; Qingwen Tao,
| |
Collapse
|
19
|
Wang T, Wang Z, Qi W, Jiang G, Wang G. The role, targets and mechanisms of traditional Chinese medicine in regulating the balance of T helper type 17/regulatory Tcells in rheumatoid arthritis. Int J Rheum Dis 2023; 26:613-624. [PMID: 36680325 DOI: 10.1111/1756-185x.14560] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/14/2022] [Accepted: 12/24/2022] [Indexed: 01/22/2023]
Abstract
Rheumatoid arthritis (RA) is a persistent systemic autoimmune disease, having all the hallmarks of joint swelling, joint tenderness, and progressive joint destruction, with synovitis and pannus formation as the basic pathological changes. T-lymphocyte infiltration is the key to its pathogenesis. During the growth of RA, the share of regulatory T (Treg) cells decreases, while the percentage of T helper type 17 (Th17) cells increases, giving rise to an imbalance of Th17/Treg cells. Modern medicine has made great advances in the treatment of RA and the selection of available drugs, but there are also the disadvantages of gastrointestinal reaction, high price, and low patient compliance. Therapy of RA remains a problem. Traditional Chinese medicine (TCM) has RA therapy developments, both in experimental research and clinical research, and its advantages of lasting effects and less detrimental reactions and fewer adverse effects are accepted by most patients. Numerous clinical and experimental studies have been performed in TCM on regulating Th17/Treg balance. However, the detailed mechanism of TCM intervention in Th17/Treg equilibrium in preventing and treating RA has not been discovered. In this article, the theory of regulating Th17/Treg cell equilibrium in RA is described from the perspectives of single Chinese medicine, active components of Chinese medicine, Chinese medicine compounds, and other therapies of TCM. It was found that TCM can regulate Th17/Treg cell balance and inhibit immunoreaction by intervening in cytokines, transcription factors, and signal pathways. It enables us to comprehensively and deeply understand the mechanism of TCM intervening in Th17/Treg balance in RA; provides direction for clinical therapy of RA; and offers new thoughts for understanding the pathogenesis of RA.
Collapse
Affiliation(s)
- Tao Wang
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhandong Wang
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Wenxia Qi
- Gansu University of Chinese Medicine, Lanzhou, China
| | | | - Gang Wang
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
20
|
Is Curcumine Useful in the Treatment and Prevention of the Tendinopathy and Myotendinous Junction Injury? A Scoping Review. Nutrients 2023; 15:nu15020384. [PMID: 36678255 PMCID: PMC9860696 DOI: 10.3390/nu15020384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Physical activity in general and sports in particular, is a mechanism that produces stress and generates great force in the tendon and in the muscle-tendon unit, which increases the risk of injury (tendinopathies). Eccentric and repetitive contraction of the muscle precipitates persistent microtraumatism in the tendon unit. In the development of tendinopathies, the cellular process includes inflammation, apoptosis, vascular, and neuronal changes. Currently, treatments with oral supplements are frequently used. Curcumin seems to preserve, and even repair, damaged tendons. In this systematic review, we focus more especially on the benefits of curcumin. The biological actions of curcumin are diverse, but act around three systems: (a) inflammatory, (b) nuclear factor B (NF-κB) related apoptosis pathways, and (c) oxidative stress systems. A bibliographic search is conducted under the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) as a basis for reporting reliable systematic reviews to perform a Scoping review. After analysing the manuscripts, we can conclude that curcumin is a product that demonstrates a significant biological antialgic, anti-inflammatory, and antioxidant power. Therefore, supplementation has a positive effect on the inflammatory and regenerative response in tendinopathies. In addition, curcumin decreases and modulates the cell infiltration, activation, and maturation of leukocytes, as well as the production of pro-inflammatory mediators at the site of inflammation.
Collapse
|
21
|
Yoshikawa S, Taniguchi K, Sawamura H, Ikeda Y, Asai T, Tsuji A, Matsuda S. Metabolic Associated Fatty Liver Disease as a Risk Factor for the Development of Central Nervous System Disorders. LIVERS 2023; 3:21-32. [DOI: 10.3390/livers3010002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
MAFLD/NAFLD is the most ordinary liver disease categorized by hepatic steatosis with the increase of surplus fat in the liver and metabolic liver dysfunction, which is associated with bigger mortality and a high medical burden. An association between MAFLD/NAFLD and central nervous system disorders including psychological disorders has been demonstrated. Additionally, MAFLD/NAFLD has been correlated with various types of neurodegenerative disorders such as amyotrophic lateral sclerosis or Parkinson’s disease. Contrasted to healthy controls, patients with MAFLD/NAFLD have a greater prevalence risk of extrahepatic complications within multiple organs. Dietary interventions have emerged as effective strategies for MAFLD/NAFLD. The PI3K/AKT/mTOR signaling pathway involved in the regulation of Th17/Treg balance might promote the pathogenesis of several diseases including MAFLD/NAFLD. As extrahepatic complications may happen across various organs including CNS, cooperative care with individual experts is also necessary for managing patients with MAFLD/NAFLD.
Collapse
Affiliation(s)
- Sayuri Yoshikawa
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Kurumi Taniguchi
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Haruka Sawamura
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Yuka Ikeda
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Tomoko Asai
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Ai Tsuji
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| |
Collapse
|
22
|
Chen L, Liu X, Wang X, Lu Z, Ye Y. Berberine Alleviates Acute Lung Injury in Septic Mice by Modulating Treg/Th17 Homeostasis and Downregulating NF-κB Signaling. Drug Des Devel Ther 2023; 17:1139-1151. [PMID: 37077411 PMCID: PMC10108910 DOI: 10.2147/dddt.s401293] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/06/2023] [Indexed: 04/21/2023] Open
Abstract
Purpose A common complication of sepsis is acute lung injury (ALI), which is associated with an acute onset, rapid disease changes, and high mortality. Regulatory T (Treg) and T helper 17 (Th17) cells comprise CD4+ T cell subsets, which strongly influence inflammation during ALI. In this study, we investigated the effect of berberine (BBR), an antioxidant, anti-inflammatory, and immunomodulatory drug, on the inflammatory response and immune state in mice with sepsis. Methods A mouse model of cecal ligation and puncture (CLP) was established. The mice were intragastrically administered 50 mg/kg BBR. We used histological techniques to evaluate inflammatory tissue injury and flow cytometry for analyzing Treg/Th17 levels. We also assessed NF-κB signaling pathways by Western blotting assays and immunofluorescence staining. Enzyme-linked immunosorbent assay (ELISA) was performed to measure the content of cytokines. Results Treatment with BBR considerably mitigated lung injury while improving survival, post-cecal ligation, and puncture (CLP). Treatment with BBR ameliorated pulmonary edema and hypoxemia in septic mice and inhibited the NF-κB signaling pathway. BBR also increased Treg cells and decreased Th17 proportions in the spleen and lung tissue of CLP-treated mice. Blocking Treg cells weakened the protective effect of BBR on sepsis-associated lung injury. Conclusion Overall, these results suggested that BBR is a potential therapeutic agent for sepsis.
Collapse
Affiliation(s)
- Longwang Chen
- Department of Emergency, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Xinyong Liu
- Department of Critical Care Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, People’s Republic of China
| | - Xuetao Wang
- Department of Intensive Care Unit, Wenzhou Longwan District First People’s Hospital, Wenzhou, Zhejiang, People’s Republic of China
| | - Zhongqiu Lu
- Department of Emergency, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Yumei Ye
- Department of Ultrasound Imaging, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
- Correspondence: Yumei Ye, Department of Ultrasound Imaging, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China, Tel +860577-5557-9410, Email
| |
Collapse
|
23
|
Babalghith AO, Al-kuraishy HM, Al-Gareeb AI, De Waard M, Al-Hamash SM, Jean-Marc S, Negm WA, Batiha GES. The role of berberine in Covid-19: potential adjunct therapy. Inflammopharmacology 2022; 30:2003-2016. [PMID: 36183284 PMCID: PMC9526677 DOI: 10.1007/s10787-022-01080-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/09/2022] [Indexed: 12/16/2022]
Abstract
Coronavirus disease 2019 (Covid-19) is a global diastrophic disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Covid-19 leads to inflammatory, immunological, and oxidative changes, by which SARS-CoV-2 leads to endothelial dysfunction (ED), acute lung injury (ALI), acute respiratory distress syndrome (ARDS), and multi-organ failure (MOF). Despite evidence illustrating that some drugs and vaccines effectively manage and prevent Covid-19, complementary herbal medicines are urgently needed to control this pandemic disease. One of the most used herbal medicines is berberine (BBR), which has anti-inflammatory, antioxidant, antiviral, and immune-regulatory effects; thus, BBR may be a prospective candidate against SARS-CoV-2 infection. This review found that BBR has anti-SARS-CoV-2 effects with mitigation of associated inflammatory changes. BBR also reduces the risk of ALI/ARDS in Covid-19 patients by inhibiting the release of pro-inflammatory cytokines and inflammatory signaling pathways. In conclusion, BBR has potent anti-inflammatory, antioxidant, and antiviral effects. Therefore, it can be utilized as a possible anti-SARS-CoV-2 agent. BBR inhibits the proliferation of SARS-CoV-2 and attenuates the associated inflammatory disorders linked by the activation of inflammatory signaling pathways. Indeed, BBR can alleviate ALI/ARDS in patients with severe Covid-19. In this sense, clinical trials and prospective studies are suggested to illustrate the potential role of BBR in treating Covid-19.
Collapse
Affiliation(s)
- Ahmad O. Babalghith
- Medical Genetics Department, College of Medicine, Umm Al-Qura University, Mecca, Kingdom of Saudi Arabia
| | - Hayder M. Al-kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Ali I. Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Michel De Waard
- Smartox Biotechnology, 6 rue des Platanes, 38120 Saint-Egrève, France
- L’institut du Thorax, INSERM, CNRS, UNIV NANTES, 44007 Nantes, France
- LabEx « Ion Channels, Science and Therapeutics», Université de Nice Sophia-Antipolis, 06560 Valbonne, France
| | - Sadiq Mohammed Al-Hamash
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Sabatier Jean-Marc
- Faculté des sciences médicales et paramédicales, Aix-Marseille Université, Institut de Neurophysiopathologie (INP), CNRS UMR, 7051, 27 Bd Jean Moulin, 13005 Marseille, France
| | - Walaa A. Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, 31527 Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511 Al Beheira Egypt
| |
Collapse
|
24
|
Li Z, Li D, Su H, Xue H, Tan G, Xu Z. Autophagy: An important target for natural products in the treatment of bone metabolic diseases. Front Pharmacol 2022; 13:999017. [PMID: 36467069 PMCID: PMC9716086 DOI: 10.3389/fphar.2022.999017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/08/2022] [Indexed: 12/28/2024] Open
Abstract
Bone homeostasis depends on a precise dynamic balance between bone resorption and bone formation, involving a series of complex and highly regulated steps. Any imbalance in this process can cause disturbances in bone metabolism and lead to the development of many associated bone diseases. Autophagy, one of the fundamental pathways for the degradation and recycling of proteins and organelles, is a fundamental process that regulates cellular and organismal homeostasis. Importantly, basic levels of autophagy are present in all types of bone-associated cells. Due to the cyclic nature of autophagy and the ongoing bone metabolism processes, autophagy is considered a new participant in bone maintenance. Novel therapeutic targets have emerged as a result of new mechanisms, and bone metabolism can be controlled by interfering with autophagy by focusing on certain regulatory molecules in autophagy. In parallel, several studies have reported that various natural products exhibit a good potential to mediate autophagy for the treatment of metabolic bone diseases. Therefore, we briefly described the process of autophagy, emphasizing its function in different cell types involved in bone development and metabolism (including bone marrow mesenchymal stem cells, osteoblasts, osteocytes, chondrocytes, and osteoclasts), and also summarized research advances in natural product-mediated autophagy for the treatment of metabolic bone disease caused by dysfunction of these cells (including osteoporosis, rheumatoid joints, osteoarthritis, fracture nonunion/delayed union). The objective of the study was to identify the function that autophagy serves in metabolic bone disease and the effects, potential, and challenges of natural products for the treatment of these diseases by targeting autophagy.
Collapse
Affiliation(s)
- Zhichao Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dandan Li
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Hui Su
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haipeng Xue
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guoqing Tan
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhanwang Xu
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
25
|
Lu Q, Xu J, Jiang H, Wei Q, Huang R, Huang G. The bone-protective mechanisms of active components from TCM drugs in rheumatoid arthritis treatment. Front Pharmacol 2022; 13:1000865. [PMID: 36386147 PMCID: PMC9641143 DOI: 10.3389/fphar.2022.1000865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/10/2022] [Indexed: 12/02/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease whose hallmarks are synovial inflammation and irreversible bone destruction. Bone resorption resulting from osteoclasts involves the whole immune and bone systems. Breakdown of bone remodeling is attributed to overactive immune cells that produce large quantities of cytokines, upregulated differentiation of osteoclasts with enhanced resorptive activities, suppressed differentiation of osteoblasts, invading fibroblasts and microbiota dysbiosis. Despite the mitigation of inflammation, the existing treatment in Western medicine fails to prevent bone loss during disease progression. Traditional Chinese medicine (TCM) has been used for thousands of years in RA treatment, showing great efficacy in bone preservation. The complex components from the decoctions and prescriptions exhibit various pharmacological activities. This review summarizes the research progress that has been made in terms of the bone-protective effect of some representative compounds from TCM drugs and proposes the substantial mechanisms involved in bone metabolism to provide some clues for future studies. These active components systemically suppress bone destruction via inhibiting joint inflammation, osteoclast differentiation, and fibroblast proliferation. Neutrophil, gut microenvironment and microRNA has been proposed as future focus.
Collapse
Affiliation(s)
- Qingyi Lu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Haixu Jiang
- School of Chinese Materia, Beijing University of Chinese Medicine, Beijing, China
| | - Qiuzhu Wei
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Runyue Huang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- *Correspondence: Guangrui Huang, ; Runyue Huang,
| | - Guangrui Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Guangrui Huang, ; Runyue Huang,
| |
Collapse
|
26
|
Tu J, Huang W, Zhang W, Mei J, Zhu C. Two Main Cellular Components in Rheumatoid Arthritis: Communication Between T Cells and Fibroblast-Like Synoviocytes in the Joint Synovium. Front Immunol 2022; 13:922111. [PMID: 35844494 PMCID: PMC9284267 DOI: 10.3389/fimmu.2022.922111] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/25/2022] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that endangers the health of approximately 1% of the global population. Current RA medications on the market mainly include non-steroidal anti-inflammatory drugs, biological agents, and disease-modifying drugs. These drugs aim to inhibit the overactivated immune response or inflammation of RA, but they cannot cure RA. A better understanding of the pathogenesis of RA will provide a new understanding to search for RA targets and for drug development. The infiltration of T cells and hyper-proliferation of fibroblast-like synoviocytes (FLS) in the synovium of patients with RA are significantly upregulated. Furthermore, the abnormal activation of these two types of cells has been confirmed to promote development of the course of A by many studies. This article systematically summarizes the interactions between T cells and FLS in RA synovial tissues, including one-way/mutual regulation and direct/indirect regulation between the two. It further aims to investigate the pathogenesis of RA from the perspective of mutual regulation between T cells and FLS and to provide new insights into RA research.
Collapse
Affiliation(s)
- Jiajie Tu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
- Department of Gynecology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Wei Huang
- Department of Orthopaedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Weiwei Zhang
- Departments of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jiawei Mei
- Department of Orthopaedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chen Zhu
- Department of Orthopaedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- *Correspondence: Chen Zhu,
| |
Collapse
|
27
|
Zhou Q, Zhang D, Zhang H, Wan X, Hu B, Zou Q, Su D, Peng H, Huang D, Ren D. Effects of Xiao Chengqi Formula on Slow Transit Constipation by Assessing Gut Microbiota and Metabolomics Analysis in vitro and in vivo. Front Pharmacol 2022; 13:864598. [PMID: 35774604 PMCID: PMC9237644 DOI: 10.3389/fphar.2022.864598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/19/2022] [Indexed: 11/20/2022] Open
Abstract
The Xiao Chengqi (XCQ) formula is a newly constituted traditional Chinese medicine prescription in the treatment of intestinal motility deficiency and is effective in patients with slow transit constipation (STC). XCQ formula was reconstructed based on a "Chengqi" decoction. Astragali Radix, Angelicae Sinensis Radix, and cooked ground Salviae Miltiorrhizae Radix et Rhizoma were added to the prescription to enhance. An STC rat model was constructed and treated with the formula to understand the detailed mechanism by which XCQ promotes intestinal peristalsis. The effects of the XCQ formula on intestinal microflora and metabolic levels and the possible molecular mechanism of its regulation were explored using 16S rDNA sequencing, metabolomics sequencing, and tissue RNA sequencing. The results showed a significant decrease in the abundance of Roseburia spp. in the feces of STC rats, a significant decrease in the content of butyl aminobenzene (BAB) in feces, and an increase in the number of interstitial cells of Cajal (ICC) in the colon of STC rats. Furthermore, in vitro and in vivo experiments revealed that BAB could activate IL-21R on the ICC surface, upregulate the phosphorylation of the downstream molecules STAT3 and ERK, and inhibit loperamide-induced ICC apoptosis. Therefore, the XCQ formula can improve the defecation status of patients with STC by protecting ICC activity, promoting the colonization of Roseburia spp. to promote peristalsis, and increasing the BAB content after metabolism.
Collapse
Affiliation(s)
- Qian Zhou
- Department of Coloproctology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Di Zhang
- Department of Coloproctology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Heng Zhang
- Department of Coloproctology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xingyang Wan
- Department of Coloproctology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bang Hu
- Department of Coloproctology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qi Zou
- Department of Coloproctology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dan Su
- Department of Coloproctology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hui Peng
- Department of Coloproctology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dandan Huang
- Department of Coloproctology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Donglin Ren
- Department of Coloproctology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
28
|
Yang CE, Wang YN, Hua MR, Miao H, Zhao YY, Cao G. Aryl hydrocarbon receptor: From pathogenesis to therapeutic targets in aging-related tissue fibrosis. Ageing Res Rev 2022; 79:101662. [PMID: 35688331 DOI: 10.1016/j.arr.2022.101662] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 04/22/2022] [Accepted: 06/02/2022] [Indexed: 11/27/2022]
Abstract
Aging promotes chronic inflammation, which contributes to fibrosis and decreases organ function. Fibrosis, the excessive synthesis and deposition of extracellular matrix components, is the main cause of most chronic diseases including aging-related organ failure. Organ fibrosis in the heart, liver, and kidneys is the final manifestation of many chronic diseases. The aryl hydrocarbon receptor (AHR) is a cytoplasmic receptor and highly conserved transcription factor that is activated by a variety of small-molecule ligands to affect a wide array of tissue homeostasis functions. In recent years, mounting evidence has revealed that AHR plays an important role in multi-organ fibrosis initiation, progression, and therapy. In this review, we summarise the relationship between AHR and the pathogenesis of aging-related tissue fibrosis, and further discuss how AHR modulates tissue fibrosis by regulating transforming growth factor-β signalling, immune response, and mitochondrial function, which may offer novel targets for the prevention and treatment of this condition.
Collapse
Affiliation(s)
- Chang-E Yang
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Yan-Ni Wang
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Meng-Ru Hua
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Hua Miao
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China.
| | - Ying-Yong Zhao
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China.
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China.
| |
Collapse
|
29
|
Qiu D, Zhang W, Song Z, Xue M, Zhang Y, Yang Y, Tong C, Cai D. Berberine suppresses cecal ligation and puncture induced intestinal injury by enhancing Treg cell function. Int Immunopharmacol 2022; 106:108564. [DOI: 10.1016/j.intimp.2022.108564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/24/2021] [Accepted: 01/20/2022] [Indexed: 11/17/2022]
|
30
|
Haftcheshmeh SM, Abedi M, Mashayekhi K, Mousavi MJ, Navashenaq JG, Mohammadi A, Momtazi-Borojeni AA. Berberine as a natural modulator of inflammatory signaling pathways in the immune system: Focus on NF-κB, JAK/STAT, and MAPK signaling pathways. Phytother Res 2022; 36:1216-1230. [PMID: 35142403 DOI: 10.1002/ptr.7407] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/16/2022] [Accepted: 01/26/2022] [Indexed: 12/14/2022]
Abstract
Three main inflammatory signaling pathways include nuclear factor-κB (NF-κB), Janus kinases/Signal transducer and activator of transcriptions (JAKs/STATs), and mitogen-activated protein kinases (MAPKs) play crucial roles in inducing, promoting, and regulating inflammatory responses in the immune system. Importantly, the breakdown of mechanisms that tightly regulate inflammatory signaling pathways can be the underlying cause of uncontrolled inflammatory responses and be associated with the generation and development of several inflammatory diseases. Hence, therapeutic strategies targeting inflammatory signaling pathways and their downstream components may promise to treat inflammatory diseases. Studies over the past two decades have provided important information on the polytrophic pharmacological and biochemical properties of berberine (BBR) as a naturally occurring compound, such as antioxidant, antitumor, antimicrobial, and antiinflammatory activates. Interestingly, the modulatory effects of BBR on inflammatory signaling cascades, which lead to the inhibition of inflammation, have been widely investigated in several in vitro and in vivo studies. For the first time, herein, this comprehensive review attempts to put together these studies and provide important insight into the modulatory effects of BBR on NF-κB, JAKs/STATs, and MAPKs signaling pathways in vitro in various types of immune cells and in vivo in several experimental inflammatory diseases. As the second achievement of this review, we also explore the therapeutic efficacy and antiinflammatory effects of BBR regarding its modulatory action.
Collapse
Affiliation(s)
- Saeed Mohammadian Haftcheshmeh
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran.,Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Maliheh Abedi
- Center for Reference and Research on Rabies, Pasteur Institute of Iran, Tehran, Iran
| | - Kazem Mashayekhi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Javad Mousavi
- Department of Immunology and Allergy, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | | | - Asadollah Mohammadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Amir Abbas Momtazi-Borojeni
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
31
|
Prediction of Drug Targets for Specific Diseases Leveraging Gene Perturbation Data: A Machine Learning Approach. Pharmaceutics 2022; 14:pharmaceutics14020234. [PMID: 35213968 PMCID: PMC8878225 DOI: 10.3390/pharmaceutics14020234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/08/2022] [Accepted: 01/14/2022] [Indexed: 12/15/2022] Open
Abstract
Identification of the correct targets is a key element for successful drug development. However, there are limited approaches for predicting drug targets for specific diseases using omics data, and few have leveraged expression profiles from gene perturbations. We present a novel computational approach for drug target discovery based on machine learning (ML) models. ML models are first trained on drug-induced expression profiles with outcomes defined as whether the drug treats the studied disease. The goal is to “learn” the expression patterns associated with treatment. Then, the fitted ML models were applied to expression profiles from gene perturbations (overexpression (OE)/knockdown (KD)). We prioritized targets based on predicted probabilities from the ML model, which reflects treatment potential. The methodology was applied to predict targets for hypertension, diabetes mellitus (DM), rheumatoid arthritis (RA), and schizophrenia (SCZ). We validated our approach by evaluating whether the identified targets may ‘re-discover’ known drug targets from an external database (OpenTargets). Indeed, we found evidence of significant enrichment across all diseases under study. A further literature search revealed that many candidates were supported by previous studies. For example, we predicted PSMB8 inhibition to be associated with the treatment of RA, which was supported by a study showing that PSMB8 inhibitors (PR-957) ameliorated experimental RA in mice. In conclusion, we propose a new ML approach to integrate the expression profiles from drugs and gene perturbations and validated the framework. Our approach is flexible and may provide an independent source of information when prioritizing drug targets.
Collapse
|
32
|
Song J, Yang J, Jing S, Yan C, Huan X, Chen S, Zhong H, Lu J, Xi J, Luo L, Chen X, Wang Z, Zhao C, Chu M, Luo S. Berberine attenuates experimental autoimmune myasthenia gravis via rebalancing the T cell subsets. J Neuroimmunol 2022; 362:577787. [PMID: 34923373 DOI: 10.1016/j.jneuroim.2021.577787] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 01/18/2023]
Abstract
Myasthenia Gravis (MG) is a T cell-driven, autoantibody-mediated disease. Here we show that oral Berberine (BBR) ameliorated clinical symptoms of experimental autoimmune myasthenia gravis(EAMG) rat model via decreasing the frequencies of Th1, Th17, Th1/17 cell subsets. JAK-STAT pathway was highlighted by transcriptomic analysis with EAMG mononuclear cells (MNCs). Surface plasmon resonance identified ligand binding interaction between BBR and JAK2, and electrostatic interaction was proposed by molecular dynamic simulation. Reduced phosphorylated JAK1/2/3 and STAT1/3 in MNCs from BBR-fed EAMG rats were demonstrated. These results suggest that BBR might improve EAMG by rebalancing T cell subsets through targeting JAK-STAT pathway.
Collapse
Affiliation(s)
- Jie Song
- Department of Neurology, Huashan hospital Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai 200040, China
| | - Jie Yang
- Department of Neurology, Wuhan No.1 Hospital, Wuhan, Hubei 430020, China
| | - Sisi Jing
- Department of Neurology, Jing'an District Center Hospital of Shanghai, Shanghai 200040, China
| | - Chong Yan
- Department of Neurology, Huashan hospital Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai 200040, China
| | - Xiao Huan
- Department of Neurology, Huashan hospital Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai 200040, China
| | - Sheng Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Huahua Zhong
- Department of Neurology, Huashan hospital Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai 200040, China
| | - Jun Lu
- Department of Neurology, Huashan hospital Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai 200040, China
| | - Jianying Xi
- Department of Neurology, Huashan hospital Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai 200040, China
| | - Lijun Luo
- Department of Neurology, Wuhan No.1 Hospital, Wuhan, Hubei 430020, China
| | - Xi Chen
- Department of Immunology, School of Basic Medical Sciences, Peking University. NHC Key Laboratory of Medical Immunology (Peking University), Beijing 100191, China
| | - Ziyuan Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University. NHC Key Laboratory of Medical Immunology (Peking University), Beijing 100191, China
| | - Chongbo Zhao
- Department of Neurology, Huashan hospital Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai 200040, China
| | - Ming Chu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China; Department of Immunology, School of Basic Medical Sciences, Peking University. NHC Key Laboratory of Medical Immunology (Peking University), Beijing 100191, China.
| | - Sushan Luo
- Department of Neurology, Huashan hospital Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai 200040, China.
| |
Collapse
|
33
|
Ye Q, Xi X, Fan D, Cao X, Wang Q, Wang X, Zhang M, Wang B, Tao Q, Xiao C. Polycyclic aromatic hydrocarbons in bone homeostasis. Biomed Pharmacother 2021; 146:112547. [PMID: 34929579 DOI: 10.1016/j.biopha.2021.112547] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/03/2021] [Accepted: 12/13/2021] [Indexed: 01/16/2023] Open
Abstract
Prolonged exposure to polycyclic aromatic hydrocarbons (PAHs) may result in autoimmune diseases, such as rheumatoid arthritis (RA) and osteoporosis (OP), which are based on an imbalance in bone homeostasis. These diseases are characterized by bone erosion and even a disruption in homeostasis, including in osteoblasts and osteoclasts. Current evidence indicates that multiple factors affect the progression of bone homeostasis, such as genetic susceptibility and epigenetic modifications. However, environmental factors, especially PAHs from various sources, have been shown to play an increasingly prominent role in the progression of bone homeostasis. Hence, it is essential to investigate the effects and pathogenesis of PAHs in bone homeostasis. In this review, recent progress is summarized concerning the effects and mechanisms of PAHs and their ligands and receptors in bone homeostasis. Moreover, strategies based on the effects and mechanisms of PAHs in the regulation of the bone balance and alleviation of bone destruction are also reviewed. We further discuss the future challenges and perspectives regarding the roles of PAHs in autoimmune diseases based on bone homeostasis.
Collapse
Affiliation(s)
- Qinbin Ye
- Beijing University of Chinese Medicine, Beijing 100029, China; Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xiaoyu Xi
- Beijing University of Chinese Medicine, Beijing 100029, China; Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Danping Fan
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100193, China
| | - Xiaoxue Cao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100193, China
| | - Qiong Wang
- Beijing University of Chinese Medicine, Beijing 100029, China; Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xing Wang
- Beijing University of Chinese Medicine, Beijing 100029, China; Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Mengxiao Zhang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Bailiang Wang
- Department of Orthopaedic Surgery, Center for Osteonecrosis and Joint Preserving & Reconstruction, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Qingwen Tao
- Department of TCM Rheumatology, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; Department of Emergency, China-Japan Friendship Hospital, Beijing 100029, China.
| |
Collapse
|
34
|
Patidar V, Shah S, Kumar R, Singh PK, Singh SB, Khatri DK. A molecular insight of inflammatory cascades in rheumatoid arthritis and anti-arthritic potential of phytoconstituents. Mol Biol Rep 2021; 49:2375-2391. [PMID: 34817776 DOI: 10.1007/s11033-021-06986-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/18/2021] [Indexed: 02/08/2023]
Abstract
Rheumatoid arthritis (RA) is an auto-immune inflammatory disorder of the synovial lining of joints marked by immune cells infiltration and hyperplasia of synovial fibroblasts which results in articular cartilage destruction and bone erosion. The current review will provide comprehensive information and results obtained from the recent research on the phytochemicals which were found to have potential anti-arthritic activity along with the molecular pathway that were targeted to control RA progression. In this review, we have summarized the scientific data from various animal studies about molecular mechanisms, possible side effects, associations with conventional therapies, and the role of complementary and alternative medicines (CAM) for RA such as ayurvedic medicines in arthritis. In the case of RA, phytochemicals have been shown to act through different pathways such as regulation of inflammatory signaling pathways, T cell differentiation, inhibition of angiogenic factors, induction of the apoptosis of fibroblast-like synoviocytes (FLS), inhibition of autophagic pathway by inhibiting High-mobility group box 1 protein (HMGB-1), Akt/ mTOR pathway and HIF-1α mediated Vascular endothelial growth (VEGF) expression. Also, osteoclasts differentiation is inhibited by down-regulating the VEGF expression by decreasing the accumulation of the ARNT (Aryl Hydrocarbon Receptor Nuclear Translocator)-HIF-1α complex Although phytochemicals have shown to exert potential anti-arthritic activity in many animal models and further clinical data is needed to confirm their safety, efficacy, and interactions in humans.
Collapse
Affiliation(s)
- Vaibhav Patidar
- Department of Biological Science, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Shruti Shah
- Department of Biological Science, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Rahul Kumar
- Department of Biological Science, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Shashi Bala Singh
- Department of Biological Science, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Dharmendra Kumar Khatri
- Department of Biological Science, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| |
Collapse
|
35
|
Larigot L, Benoit L, Koual M, Tomkiewicz C, Barouki R, Coumoul X. Aryl Hydrocarbon Receptor and Its Diverse Ligands and Functions: An Exposome Receptor. Annu Rev Pharmacol Toxicol 2021; 62:383-404. [PMID: 34499523 DOI: 10.1146/annurev-pharmtox-052220-115707] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a transcriptional factor that regulates multiple functions following its activation by a variety of ligands, including xenobiotics, natural products, microbiome metabolites, and endogenous molecules. Because of this diversity, the AhR constitutes an exposome receptor. One of its main functions is to regulate several lines of defense against chemical insults and bacterial infections. Indeed, in addition to its well-established detoxication function, it has several functions at physiological barriers, and it plays a critical role in immunomodulation. The AhR is also involved in the development of several organs and their homeostatic maintenance. Its activity depends on the type of ligand and on the time frame of the receptor activation, which can be either sustained or transient, leading in some cases to opposite modes of regulations as illustrated in the regulation of different cancer pathways. The development of selective modulators and their pharmacological characterization are important areas of research. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Lucie Larigot
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles thérapeutiques, Signalisation cellulaire et Biomarqueurs, and Université de Paris, 75006 Paris, France;
| | - Louise Benoit
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles thérapeutiques, Signalisation cellulaire et Biomarqueurs, and Université de Paris, 75006 Paris, France; .,Service de Chirurgie Cancérologique Gynécologique et du Sein, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, 75015 Paris, France
| | - Meriem Koual
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles thérapeutiques, Signalisation cellulaire et Biomarqueurs, and Université de Paris, 75006 Paris, France; .,Service de Chirurgie Cancérologique Gynécologique et du Sein, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, 75015 Paris, France
| | - Céline Tomkiewicz
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles thérapeutiques, Signalisation cellulaire et Biomarqueurs, and Université de Paris, 75006 Paris, France;
| | - Robert Barouki
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles thérapeutiques, Signalisation cellulaire et Biomarqueurs, and Université de Paris, 75006 Paris, France; .,Service de Chirurgie Cancérologique Gynécologique et du Sein, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, 75015 Paris, France
| | - Xavier Coumoul
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles thérapeutiques, Signalisation cellulaire et Biomarqueurs, and Université de Paris, 75006 Paris, France;
| |
Collapse
|
36
|
Katturajan R, S V, Rasool M, Evan Prince S. Molecular toxicity of methotrexate in rheumatoid arthritis treatment: A novel perspective and therapeutic implications. Toxicology 2021; 461:152909. [PMID: 34453959 DOI: 10.1016/j.tox.2021.152909] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/16/2021] [Accepted: 08/23/2021] [Indexed: 12/23/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune inflammatory systematic complication which is a chronic disorder that severely affects bones and joints and results in the quality of life impairment. Methotrexate (MTX), an FDA-approved drug has maintained the standard of care for treating patients affected with RA. The mechanism of MTX includes the inhibition of purine and pyrimidine synthesis, suppression of polyamine accumulation, promotion of adenosine release, adhesion of the inflammatory molecules, and controlling of cytokine cascade in RA. The recommended dose for RA patients is 5-25 mg of MTX per week, depending on the severity of the disease but MTX has proven to be cytotoxic with side effects affecting various tissues when treating RA patients even with low doses over a prolonged period of time. The mechanism of such toxicity is not entirely understood. This review strives to understand it by correlating the different pathways, including MTX in folate metabolism, Sirt1/Nrf2/γ-gcs, and γ-gcs/CaSR-TNF-α/NF-kB signaling. In addition to this, the importance of targeted therapy combination with MTX on RA treatment and combinations approved from the clinical trials are also briefly discussed. Overall, this review elucidates the various MTX molecular mechanisms and toxicity at the molecular level, the limitations, and the scope for future directions.
Collapse
Affiliation(s)
- Ramkumar Katturajan
- Department of Biomedical Sciences, School of Biosciences and Technology, VIT, Vellore, Tamil Nadu, India
| | - Vijayalakshmi S
- Department of English, School of Social Sciences and Languages, VIT, Vellore, Tamil Nadu, India
| | - Mahabookhan Rasool
- Immunopathology Lab, School of Biosciences and Technology, VIT, Vellore, Tamil Nadu, India.
| | - Sabina Evan Prince
- Department of Biomedical Sciences, School of Biosciences and Technology, VIT, Vellore, Tamil Nadu, India.
| |
Collapse
|
37
|
Torres W, Chávez-Castillo M, Peréz-Vicuña JL, Carrasquero R, Díaz MP, Gomez Y, Ramírez P, Cano C, Rojas-Quintero J, Chacín M, Velasco M, de Sanctis JB, Bermudez V. Potential role of bioactive lipids in rheumatoid arthritis. Curr Pharm Des 2021; 27:4434-4451. [PMID: 34036919 DOI: 10.2174/1381612827666210525164734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 04/08/2021] [Indexed: 11/22/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease, which involves a pathological inflammatory response against articular cartilage in multiple joints throughout the body. It is a complex disorder associated with comorbidities such as depression, lymphoma, osteoporosis and cardiovascular disease (CVD), which significantly deteriorate patients' quality of life and prognosis. This has ignited a large initiative to elucidate the physiopathology of RA, aiming to identify new therapeutic targets and approaches in its multidisciplinary management. Recently, various lipid bioactive products have been proposed to have an essential role in this process; including eicosanoids, specialized pro-resolving mediators, phospholipids/sphingolipids, and endocannabinoids. Dietary interventions using omega-3 polyunsaturated fatty acids or treatment with synthetic endocannabinoids agonists have been shown to significantly ameliorate RA symptoms. Indeed, the modulation of lipid metabolism may be crucial in the pathophysiology and treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Wheeler Torres
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo. Venezuela
| | - Mervin Chávez-Castillo
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo. Venezuela
| | - José L Peréz-Vicuña
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo. Venezuela
| | - Rubén Carrasquero
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo. Venezuela
| | - María P Díaz
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo. Venezuela
| | - Yosselin Gomez
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo. Venezuela
| | - Paola Ramírez
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo. Venezuela
| | - Clímaco Cano
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo. Venezuela
| | - Joselyn Rojas-Quintero
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston. 0
| | - Maricarmen Chacín
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla. Colombia
| | - Manuel Velasco
- Universidad Central de Venezuela, Escuela de Medicina José María Vargas, Caracas. Venezuela
| | - Juan Bautista de Sanctis
- Institute of Molecular and Translational Medicine. Faculty of Medicine and Dentistry. Palacky University. Czech Republic
| | - Valmore Bermudez
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla. Colombia
| |
Collapse
|
38
|
Huang DN, Wu FF, Zhang AH, Sun H, Wang XJ. Efficacy of berberine in treatment of rheumatoid arthritis: From multiple targets to therapeutic potential. Pharmacol Res 2021; 169:105667. [PMID: 33989762 DOI: 10.1016/j.phrs.2021.105667] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022]
Abstract
Rheumatoid arthritis is a systemic autoimmune disorder involved in persistent synovial inflammation. Berberine is a nature-derived alkaloid compound with multiple pharmacological activities in different pathologies, including RA. Recent experimental studies have clarified several determinant cellular and molecular targets of BBR in RA, and provided novel evidence supporting the promising therapeutic potential of BBR to combat RA. In this review, we recapitulate the therapeutic potential of BBR and its mechanism of action in ameliorating RA, and discuss the modulation of gut microbiota by BBR during RA. Collectively, BBR might be a promising lead drug with multi-functional activities for the therapeutic strategy of RA.
Collapse
Affiliation(s)
- Dan-Na Huang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China; National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, Guangxi, China
| | - Fang-Fang Wu
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, Guangxi, China
| | - Ai-Hua Zhang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Hui Sun
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Xi-Jun Wang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China; National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, Guangxi, China.
| |
Collapse
|
39
|
Lu H, Yao Y, Yang J, Zhang H, Li L. Microbiome-miRNA interactions in the progress from undifferentiated arthritis to rheumatoid arthritis: evidence, hypotheses, and opportunities. Rheumatol Int 2021; 41:1567-1575. [PMID: 33856544 PMCID: PMC8316166 DOI: 10.1007/s00296-021-04798-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/20/2021] [Indexed: 02/05/2023]
Abstract
The human microbiome has attracted attention for its potential utility in precision medicine. Increasingly, more researchers are recognizing changes in intestinal microbiome can upset the balance between pro- and anti-inflammatory factors of host immune system, potentially contributing to arthritis immunopathogenesis. Patients who develop rheumatoid arthritis from undifferentiated arthritis can face multiple irreversible joint lesions and even deformities. Strategies for identifying undifferentiated arthritis patients who have a tendency to develop rheumatoid arthritis and interventions to prevent rheumatoid arthritis development are urgently needed. Intestinal microbiome dysbiosis and shifts in the miRNA profile affect undifferentiated arthritis progression, and may play an important role in rheumatoid arthritis pathophysiologic process via stimulating inflammatory cytokines and disturbing host and microbial metabolic functions. However, a causal relationship between microbiome–miRNA interactions and rheumatoid arthritis development from undifferentiated arthritis has not been uncovered yet. Changes in the intestinal microbiome and miRNA profiles of undifferentiated arthritis patients with different disease outcomes should be studied together to uncover the role of the intestinal microbiome in rheumatoid arthritis development and to identify potential prognostic indicators of rheumatoid arthritis in undifferentiated arthritis patients. Herein, we discuss the possibility of microbiome–miRNA interactions contributing to rheumatoid arthritis development and describe the gaps in knowledge regarding their influence on undifferentiated arthritis prognosis that should be addressed by future studies.
Collapse
Affiliation(s)
- Haifeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 Zhejiang People’s Republic of China
| | - Yujun Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 Zhejiang People’s Republic of China
| | - Jiezuan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 Zhejiang People’s Republic of China
| | - Hua Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 Zhejiang People’s Republic of China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 Zhejiang People’s Republic of China
| |
Collapse
|
40
|
Niu W, Xu Y, Zha X, Zeng J, Qiao S, Yang S, Zhang H, Tan L, Sun L, Pang G, Liu T, Zhao H, Zheng N, Zhang Y, Bai H. IL-21/IL-21R Signaling Aggravated Respiratory Inflammation Induced by Intracellular Bacteria through Regulation of CD4 + T Cell Subset Responses. THE JOURNAL OF IMMUNOLOGY 2021; 206:1586-1596. [PMID: 33608454 DOI: 10.4049/jimmunol.2001107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/19/2021] [Indexed: 12/16/2022]
Abstract
The IL-21/IL-21R interaction plays an important role in a variety of immune diseases; however, the roles and mechanisms in intracellular bacterial infection are not fully understood. In this study, we explored the effect of IL-21/IL-21R on chlamydial respiratory tract infection using a chlamydial respiratory infection model. The results showed that the mRNA expression of IL-21 and IL-21R was increased in Chlamydia muridarum-infected mice, which suggested that IL-21 and IL-21R were involved in host defense against C. muridarum lung infection. IL-21R-/- mice exhibited less body weight loss, a lower bacterial burden, and milder pathological changes in the lungs than wild-type (WT) mice during C. muridarum lung infection. The absolute number and activity of CD4+ T cells and the strength of Th1/Th17 responses in IL-21R-/- mice were significantly higher than those in WT mice after C. muridarum lung infection, but the Th2 response was weaker. Consistently, IL-21R-/- mice showed higher mRNA expression of Th1 transcription factors (T-bet/STAT4), IL-12p40, a Th17 transcription factor (STAT3), and IL-23. The mRNA expression of Th2 transcription factors (GATA3/STAT6), IL-4, IL-10, and TGF-β in IL-21R-/- mice was significantly lower than that in WT mice. Furthermore, the administration of recombinant mouse IL-21 aggravated chlamydial lung infection in C57BL/6 mice and reduced Th1 and Th17 responses following C. muridarum lung infection. These findings demonstrate that IL-21/IL-21R may aggravate chlamydial lung infection by inhibiting Th1 and Th17 responses.
Collapse
Affiliation(s)
- Wenhao Niu
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Yueyue Xu
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Xiaoyu Zha
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Jiajia Zeng
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Sai Qiao
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Shuaini Yang
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Hong Zhang
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Lu Tan
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Lida Sun
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Gaoju Pang
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Tengli Liu
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Huili Zhao
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Ningbo Zheng
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Yongci Zhang
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Hong Bai
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| |
Collapse
|
41
|
Berberine Delays Onset of Collagen-Induced Arthritis through T Cell Suppression. Int J Mol Sci 2021; 22:ijms22073522. [PMID: 33805383 PMCID: PMC8037694 DOI: 10.3390/ijms22073522] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
There is evidence that berberine (BBR), a clinically relevant plant compound, ameliorates clinically apparent collagen-induced arthritis (CIA) in vivo. However, to date, there are no studies involving the use of BBR which explore its prophylactic potential in this model of rheumatoid arthritis (RA). The aim of this study was to determine if prophylactic BBR use during the preclinical phase of collagen-induced arthritis would delay arthritic symptom onset, and to characterize the cellular mechanism underlying such an effect. DBA/1J mice were injected with an emulsion of bovine type II collagen (CII) and complete Freund’s adjuvant (day 0) and a booster injection of CII in incomplete Freund’s adjuvant (day 18) to induce arthritis. Mice were then given i.p. injections of 1 mg/kg/day of BBR or PBS (vehicle with 0.01% DMSO) from days 0 to 28, were left untreated (CIA control), or were in a non-arthritic control group (n = 15 per group). Incidence of arthritis in BBR-treated mice was 50%, compared to 90% in both the CIA and PBS controls. Populations of B and T cells from the spleens and draining lymph nodes of mice were examined on day 14 (n = 5 per group) and day 28 (n = 10 per group). BBR-treated mice had significantly reduced populations of CD4+Th and CD4+CXCR5+ Tfh cells, and an increased proportion of Foxp3+ Treg at days 14 and 28, as well as reduced expression of co-stimulatory molecules CD28 and CD154 at both endpoints. The effect seen on T cell populations and co-stimulatory molecule expression in BBR-treated mice was not mirrored in CD19+ B cells. Additionally, BBR-treated mice experienced reduced anti-CII IgG2a and anti-CII total IgG serum concentrations. These results indicate a potential role for BBR as a prophylactic supplement for RA, and that its effect may be mediated specifically through T cell suppression. However, the cellular effector involved raises concern for BBR prophylactic use in the context of vaccine efficacy and other primary adaptive immune responses.
Collapse
|
42
|
Tian-Huang Formula, a Traditional Chinese Medicinal Prescription, Improves Hepatosteatosis and Glucose Intolerance Targeting AKT-SREBP Nexus in Diet-Induced Obese Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6617586. [PMID: 33763145 PMCID: PMC7955866 DOI: 10.1155/2021/6617586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/21/2021] [Accepted: 02/05/2021] [Indexed: 02/06/2023]
Abstract
The progressive increase of metabolic diseases underscores the necessity for developing effective therapies. Although we found Tian-Huang formula (THF) could alleviate metabolic disorders, the underlying mechanism remains to be fully understood. In the present study, firstly, male Sprague-Dawley rats were fed with high-fat diet plus high-fructose drink (HFF, the diet is about 60% of calories from fat and the drink is 12.5% fructose solution) for 14 weeks to induce hepatosteatosis and glucose intolerance and then treated with THF (200 mg/kg) for 4 weeks. Then, metabolomics analysis was performed with rat liver samples and following the clues illustrated by Ingenuity Pathway Analysis (IPA) with the metabolomics discoveries, RT-qPCR and Western blotting were carried out to validate the putative pathways. Our results showed that THF treatment reduced the body weight from 735.1 ± 81.29 to 616.3 ± 52.81 g and plasma triglyceride from 1.5 ± 0.42 to 0.88 ± 0.33 mmol/L; meanwhile, histological examinations of hepatic tissue and epididymis adipose tissue showed obvious alleviation. Compared with the HFF group, the fasting serum insulin and blood glucose level of the THF group were improved from 20.77 ± 6.58 to 9.65 ± 5.48 mIU/L and from 8.96 ± 0.56 to 7.66 ± 1.25 mmol/L, respectively, so did the serum aspartate aminotransferase, insulin resistance index, and oral glucose tolerance (p = 0.0019, 0.0053, and 0.0066, respectively). Furthermore, based on a list of 32 key differential endogenous metabolites, the molecular networks generated by IPA suggested that THF alleviated glucose intolerance and hepatosteatosis by activating phosphatidylinositol-3 kinase (PI3K) and low-density lipoprotein receptor (LDL-R) involved pathways. RT-qPCR and Western blotting results confirmed that THF alleviated hepatic steatosis and glucose intolerance partly through protein kinase B- (AKT-) sterol regulatory element-binding protein (SREBP) nexus. Our findings shed light on molecular mechanisms of THF on alleviating metabolic diseases and provided further evidence for developing its therapeutic potential.
Collapse
|
43
|
Wang RX, Zhou M, Ma HL, Qiao YB, Li QS. The Role of Chronic Inflammation in Various Diseases and Anti-inflammatory Therapies Containing Natural Products. ChemMedChem 2021; 16:1576-1592. [PMID: 33528076 DOI: 10.1002/cmdc.202000996] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Indexed: 12/13/2022]
Abstract
Chronic inflammation represents a long-term reaction of the body's immune system to noxious stimuli. Such a sustained inflammatory response sometimes results in lasting damage to healthy tissues and organs. In fact, chronic inflammation is implicated in the development and progression of various diseases, including cardiovascular diseases, respiratory diseases, metabolic diseases, neurodegenerative diseases, and even cancers. Targeting nonresolving inflammation thus provides new opportunities for treating relevant diseases. In this review, we will go over several chronic inflammation-associated diseases first with emphasis on the role of inflammation in their pathogenesis. Then, we will summarize a number of natural products that exhibit therapeutic effects against those diseases by acting on different markers in the inflammatory response. We envision that natural products will remain a rich resource for the discovery of new drugs treating diseases associated with chronic inflammation.
Collapse
Affiliation(s)
- Ren-Xiao Wang
- Shanxi Key Laboratory of Innovative Drugs for the, Treatment of Serious Diseases Based on Chronic Inflammation, College of Traditional Chinese Medicines, Shanxi University of Chinese Medicine, Taiyuan, Shanxi, 030619, P. R. China.,Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, P. R. China
| | - Mi Zhou
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, P. R. China
| | - Hui-Lai Ma
- Shanxi Key Laboratory of Innovative Drugs for the, Treatment of Serious Diseases Based on Chronic Inflammation, College of Traditional Chinese Medicines, Shanxi University of Chinese Medicine, Taiyuan, Shanxi, 030619, P. R. China
| | - Yuan-Biao Qiao
- Shanxi Key Laboratory of Innovative Drugs for the, Treatment of Serious Diseases Based on Chronic Inflammation, College of Traditional Chinese Medicines, Shanxi University of Chinese Medicine, Taiyuan, Shanxi, 030619, P. R. China
| | - Qing-Shan Li
- Shanxi Key Laboratory of Innovative Drugs for the, Treatment of Serious Diseases Based on Chronic Inflammation, College of Traditional Chinese Medicines, Shanxi University of Chinese Medicine, Taiyuan, Shanxi, 030619, P. R. China
| |
Collapse
|
44
|
Li S, Du J, Gan H, Chen J, Zhou Y, Tian J, Ling G, Li F. Resveratrol promotes apoptosis and G2/M cell cycle arrest of fibroblast-like synoviocytes in rheumatoid arthritis through regulation of autophagy and the serine-threonine kinase-p53 axis. Arch Med Sci 2021; 20:280-288. [PMID: 38414451 PMCID: PMC10895956 DOI: 10.5114/aoms/119022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 03/15/2020] [Indexed: 02/29/2024] Open
Abstract
Introduction Resveratrol, a polyphenol extracted from many plant species, has emerged as a promising pro-apoptotic agent in various cancer cells. However, the role of resveratrol in cell proliferation and apoptosis of fibroblast-like synoviocytes in rheumatoid arthritis (RA-FLS) is not fully understood. The study was aimed at elucidating the role of resveratrol in cell proliferation and apoptosis of RA-FLS and the underlying molecular mechanism. Material and methods Cultured RA-FLSs were subjected to tumour necrosis factor α (TNF-α). The cell proliferation was measured by Cell Counting Kit-8 assay. Cell apoptosis and cell cycle of RA-FLSs were determined by flow cytometry. The levels of apoptosis or autophagy or cell cycle-related protein were detected by immunoblot analysis. Results In our study, we confirmed that resveratrol reversed TNF-α mediated cell proliferation in RA-FLS. Meanwhile, resveratrol blocked cells at the G2/M stage and reduced the ratio of S phase cells through upregulation of p53 and consequently led to apoptotic cell death. Quite interestingly, we found that resveratrol reversed TNF-α-induced autophagy. Inhibition of autophagy by resveratrol or autophagy inhibitor or Beclin-1 siRNA suppressed TNF-α mediated cell survival and promoted cell apoptosis. However, the autophagy inducer rapamycin (RAPA) reversed the effect of resveratrol on autophagy and cell proliferation. Mechanistic studies revealed that resveratrol inhibited the activation of the phosphoinositide 3-kinases/serine-threonine kinase (PI3K/AKT) pathway. Inhibition of PI3K/AKT pathway by inhibitor LY294002 or resveratrol increased the expression of p53 and decreased the expression of cycle protein (cyclin B1), which further led to block cells in the G2/M arrest. Conclusions Our preliminary study indicated that resveratrol may suppress RA-FLS cell survival and promote apoptosis at least partly through regulation of autophagy and the AKT-p53 axis.
Collapse
Affiliation(s)
- Shu Li
- Department of Rheumatology and Immunology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jinfeng Du
- Department of Rheumatology and Immunology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haina Gan
- Department of Rheumatology and Immunology, The First People's Hospital of Changde City, Changde, Hunan, China
| | - Jinwei Chen
- Department of Rheumatology and Immunology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yang Zhou
- Department of Rheumatology and Immunology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Tian
- Department of Rheumatology and Immunology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guanghui Ling
- Department of Rheumatology and Immunology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fen Li
- Department of Rheumatology and Immunology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
45
|
Ashrafizadeh M, Zarrabi A, Hushmandi K, Zarrin V, Moghadam ER, Hashemi F, Makvandi P, Samarghandian S, Khan H, Hashemi F, Najafi M, Mirzaei H. Toward Regulatory Effects of Curcumin on Transforming Growth Factor-Beta Across Different Diseases: A Review. Front Pharmacol 2020; 11:585413. [PMID: 33381035 PMCID: PMC7767860 DOI: 10.3389/fphar.2020.585413] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022] Open
Abstract
Immune response, proliferation, migration and angiogenesis are juts a few of cellular events that are regulated by transforming growth factor-β (TGF-β) in cells. A number of studies have documented that TGF-β undergoes abnormal expression in different diseases, e.g., diabetes, cancer, fibrosis, asthma, arthritis, among others. This has led to great fascination into this signaling pathway and developing agents with modulatory impact on TGF-β. Curcumin, a natural-based compound, is obtained from rhizome and roots of turmeric plant. It has a number of pharmacological activities including antioxidant, anti-inflammatory, anti-tumor, anti-diabetes and so on. Noteworthy, it has been demonstrated that curcumin affects different molecular signaling pathways such as Wnt/β-catenin, Nrf2, AMPK, mitogen-activated protein kinase and so on. In the present review, we evaluate the potential of curcumin in regulation of TGF-β signaling pathway to corelate it with therapeutic impacts of curcumin. By modulation of TGF-β (both upregulation and down-regulation), curcumin ameliorates fibrosis, neurological disorders, liver disease, diabetes and asthma. Besides, curcumin targets TGF-β signaling pathway which is capable of suppressing proliferation of tumor cells and invading cancer cells.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Istanbul, Turkey
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Vahideh Zarrin
- Laboratory for Stem Cell Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ebrahim Rahmani Moghadam
- Department of Anatomical Sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Pooyan Makvandi
- Centre for Micro-BioRobotics, Istituto Italiano di Tecnologia, Pisa, Italy
| | | | - Haroon Khan
- Student Research Committee, Department of Physiotherapy, Faculty of Rehabilitation, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fardin Hashemi
- Medical Technology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
46
|
Ehteshamfar S, Akhbari M, Afshari JT, Seyedi M, Nikfar B, Shapouri‐Moghaddam A, Ghanbarzadeh E, Momtazi‐Borojeni AA. Anti-inflammatory and immune-modulatory impacts of berberine on activation of autoreactive T cells in autoimmune inflammation. J Cell Mol Med 2020; 24:13573-13588. [PMID: 33135395 PMCID: PMC7754052 DOI: 10.1111/jcmm.16049] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/29/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
Autoreactive inflammatory CD4+ T cells, such as T helper (Th)1 and Th17 subtypes, have been found to associate with the pathogenesis of autoimmune disorders. On the other hand, CD4+ Foxp3+ T regulatory (Treg) cells are crucial for the immune tolerance and have a critical role in the suppression of the excessive immune and inflammatory response promoted by these Th cells. In contrast, dendritic cells (DCs) and macrophages are immune cells that through their inflammatory functions promote autoreactive T-cell responses in autoimmune conditions. In recent years, there has been increasing attention to exploring effective immunomodulatory or anti-inflammatory agents from the herbal collection of traditional medicine. Berberine, an isoquinoline alkaloid, is one of the main active ingredients extracted from medicinal herbs and has been shown to exert various biological and pharmacological effects that are suggested to be mainly attributed to its anti-inflammatory and immunomodulatory properties. Several lines of experimental study have recently investigated the therapeutic potential of berberine for treating autoimmune conditions in animal models of human autoimmune diseases. Here, we aimed to seek mechanisms underlying immunomodulatory and anti-inflammatory effects of berberine on autoreactive inflammatory responses in autoimmune conditions. Reported data reveal that berberine can directly suppress functions and differentiation of pro-inflammatory Th1 and Th17 cells, and indirectly decrease Th cell-mediated inflammation through modulating or suppressing other cells assisting autoreactive inflammation, such as Tregs, DCs and macrophages.
Collapse
Affiliation(s)
- Seyed‐Morteza Ehteshamfar
- Department of ImmunologyFaculty of MedicineBuAli Research InstituteMashhad University of Medical SciencesMashhadIran
| | - Masoume Akhbari
- Department of Molecular MedicineSchool of MedicineQazvin University of Medical SciencesQazvinIran
| | - Jalil Tavakol Afshari
- Department of ImmunologyFaculty of MedicineBuAli Research InstituteMashhad University of Medical SciencesMashhadIran
| | | | - Banafsheh Nikfar
- Pars Advanced and Minimally Invasive Medical Manners Research CenterPars HospitalIran University of Medical SciencesTehranIran
| | - Abbas Shapouri‐Moghaddam
- Department of ImmunologyFaculty of MedicineBuAli Research InstituteMashhad University of Medical SciencesMashhadIran
| | | | | |
Collapse
|
47
|
Ding J, Liu M, Xuan Z, Liu ML, Wang N, Jia X. The Protective Effects of the Ethyl Acetate Part of Er MiaoSan on Adjuvant Arthritis Rats by Regulating the Function of Bone Marrow-Derived Dendritic Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:8791657. [PMID: 39295892 PMCID: PMC11410441 DOI: 10.1155/2020/8791657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/05/2020] [Accepted: 10/28/2020] [Indexed: 09/21/2024]
Abstract
Aims The aim of this study was to evaluate the protective effects of Er Miao San (EMS) and the regulative function of bone marrow-derived dendritic cells (BMDCs) on adjuvant arthritis (AA) in rats. Methods The ethyl acetate part of EMS (3 g/kg, 1.5 g/kg, and 0.75 g/kg) was orally administered from day 15 after immunization to day 29. The polyarthritis index and paw swelling were measured, the ankle joint pathological changes were observed using hematoxylin-eosin (HE) staining, and the spleen and thymus index were determined. Moreover, T and B cell proliferation were determined using the CCK-8 assay. The expression of BMDC surface costimulatory molecules and inflammatory factors were determined using flow cytometry and ELISA kits, respectively. Results Compared with the AA model rats, the ethyl acetate fraction of EMS obviously reduced paw swelling (from 1.0 to 0.7) and the polyarthritis index (from 12 to 9) (P < 0.01) and improved the severity of histopathology (P < 0.01). The treatment using ethyl acetate fraction of EMS significantly reduced the spleen and thymus index (P < 0.01) and inhibited T and B cell proliferation (P < 0.01). Moreover, EMS significantly modulated the expression of surface costimulatory molecules in BMDCs, including CD40, CD80, CD86, and major histocompatibility complex class II (MHC-II) (P < 0.01). The results also showed that the ethyl acetate part of EMS significant inhibited the levels of proinflammatory cytokines interleukin- (IL-) 23 tumor necrosis factor- (TNF-) α and inflammatory factor prostaglandin (PG) E2 in the supernatant of BMDCs. However, the level of anti-inflammatory cytokine IL-10 was significantly increased (P < 0.01). Conclusion These results suggest that the ethyl acetate part of EMS has better protective effects on AA rats, probably by regulating the function of BMDCs and modulating the balance of cytokines.
Collapse
Affiliation(s)
- Jiemin Ding
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui 230012, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China
| | - Min Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui 230012, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China
| | - Zihua Xuan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui 230012, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China
| | - Meng Li Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui 230012, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China
| | - Ning Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui 230012, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China
| | - Xiaoyi Jia
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui 230012, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China
| |
Collapse
|
48
|
Integrating Network Pharmacology with Molecular Docking to Unravel the Active Compounds and Potential Mechanism of Simiao Pill Treating Rheumatoid Arthritis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:5786053. [PMID: 33204288 PMCID: PMC7657688 DOI: 10.1155/2020/5786053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/05/2020] [Accepted: 10/20/2020] [Indexed: 12/25/2022]
Abstract
Objective To explore the main components and unravel the potential mechanism of simiao pill (SM) on rheumatoid arthritis (RA) based on network pharmacological analysis and molecular docking. Methods Related compounds were obtained from TCMSP and BATMAN-TCM database. Oral bioavailability and drug-likeness were then screened by using absorption, distribution, metabolism, and excretion (ADME) criteria. Additionally, target genes related to RA were acquired from GeneCards and OMIM database. Correlations about SM-RA, compounds-targets, and pathways-targets-compounds were visualized through Cytoscape 3.7.1. The protein-protein interaction (PPI) network was constructed by STRING. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed via R packages. Molecular docking analysis was constructed by the Molecular Operating Environment (MOE). Results A total of 72 potential compounds and 77 associated targets of SM were identified. The compounds-targets network analysis indicated that the 6 compounds, including quercetin, kaempferol, baicalein, wogonin, beta-sitosterol, and eugenol, were linked to ≥10 target genes, and the 10 target genes (PTGS1, ESR1, AR, PGR, CHRM3, PPARG, CHRM2, BCL2, CASP3, and RELA) were core target genes in the network. Enrichment analysis indicated that PI3K-Akt, TNF, and IL-17 signaling pathway may be a critical signaling pathway in the network pharmacology. Molecular docking showed that quercetin, kaempferol, baicalein, and wogonin have good binding activity with IL6, VEGFA, EGFR, and NFKBIA targets. Conclusion The integrative investigation based on bioinformatics/network topology strategy may elaborate on the multicomponent synergy mechanisms of SM against RA and provide the way out to develop new combination medicines for RA.
Collapse
|
49
|
Shen P, Jiao Y, Miao L, Chen J, Momtazi‐Borojeni AA. Immunomodulatory effects of berberine on the inflamed joint reveal new therapeutic targets for rheumatoid arthritis management. J Cell Mol Med 2020; 24:12234-12245. [PMID: 32969153 PMCID: PMC7687014 DOI: 10.1111/jcmm.15803] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/21/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory syndrome designated by synovial joint inflammation leading to cartilage degradation and bone damage as well as progressive disability. Synovial inflammation is promoted through the infiltration of mononuclear immune cells, dominated by CD4+ T cells, macrophages and dendritic cells (DCs), together with fibroblast-like synoviocytes (FLS), into the synovial compartment. Berberine is a bioactive isoquinoline alkaloid compound showing various pharmacological properties that are mainly attributed to immunomodulatory and anti-inflammatory effects. Several lines of experimental study have recently investigated the therapeutic potential of berberine and its underlying mechanisms in treating RA condition. The present review aimed to clarify determinant cellular and molecular targets of berberine in RA and found that berberine through modulating several signalling pathways involved in the joint inflammation, including PI3K/Akt, Wnt1/β-catenin, AMPK/lipogenesis and LPA/LPA1 /ERK/p38 MAPK can inhibit inflammatory proliferation of FLS cells, suppress DC activation and modulate Th17/Treg balance and thus prevent cartilage and bone destruction. Importantly, these molecular targets may explore new therapeutic targets for RA treatment.
Collapse
Affiliation(s)
- Peng Shen
- Department of StomatologyClinical Department of Aerospace CityNorthern Beijing Medical DistrictChinese PLA General HospitalBeijingChina
| | - Yang Jiao
- Department of StomatologyThe 7th Medical CenterChinese PLA General HospitalBeijingChina
- Outpatient Department of PLA Macao GarrisonMacaoChina
| | - Li Miao
- Department of StomatologyThe 7th Medical CenterChinese PLA General HospitalBeijingChina
| | - Ji‐hua Chen
- National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology & Shaanxi Key Laboratory of Oral DiseasesDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anChina
| | | |
Collapse
|
50
|
Long non-coding RNA PVT1 can regulate the proliferation and inflammatory responses of rheumatoid arthritis fibroblast-like synoviocytes by targeting microRNA-145-5p. Hum Cell 2020; 33:1081-1090. [PMID: 32918701 DOI: 10.1007/s13577-020-00419-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/24/2020] [Indexed: 10/23/2022]
Abstract
Long non-coding RNAs (lncRNAs) function in rheumatoid arthritis (RA). The present work was designed to explore the roles of lncRNA PVT1 in RA and the related mechanism. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to determine mRNA level. The binding sites between PVT1 and miR-145-5p were verified by a dual-luciferase reporter assay. Furthermore, RA-FLSs were treated with TNF-α to establish the RA model. 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) and 5-ethynyl-2'-deoxyuridine (EdU) assays were performed to detect cell proliferation. Flow cytometry and TUNEL assays were performed to detect cell apoptosis. Enzyme-linked immunosorbent assay (ELISA) was used to determine levels of inflammatory cytokines. PVT1 was significantly increased and miR-145-5p was decreased in synovial tissues of RA patients. miR-145-5p is a target miRNA of PVT1, and the levels of PVT1 and miR-145-5p in synovial tissues of RA patients were negatively correlated. In RA-FLSs, tumour necrosis factor-α (TNF-α) led to increased PVT1 levels and decreased miR-145-5p levels. Knockdown of PVT1 inhibited TNF-α-induced RA-FLS over-proliferation and reversed TNF-α-induced RA-FLS apoptosis reduction. Moreover, knockdown of PVT1 inhibited TNF-α-induced production of interleukin (IL)-1β and IL-6 and the activation of NF-κB through miR-145-5p. PVT1 can regulate apoptosis and inflammatory responses in RA-FLSs by targeting miR-145-5p.
Collapse
|