1
|
Bruni M, Flax JF, Buyske S, Shindhelm AD, Witton C, Brzustowicz LM, Bartlett CW. Behavioral and Molecular Genetics of Reading-Related AM and FM Detection Thresholds. Behav Genet 2017; 47:193-201. [PMID: 27826669 PMCID: PMC5305590 DOI: 10.1007/s10519-016-9821-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/28/2016] [Indexed: 12/24/2022]
Abstract
Auditory detection thresholds for certain frequencies of both amplitude modulated (AM) and frequency modulated (FM) dynamic auditory stimuli are associated with reading in typically developing and dyslexic readers. We present the first behavioral and molecular genetic characterization of these two auditory traits. Two extant extended family datasets were given reading tasks and psychoacoustic tasks to determine FM 2 Hz and AM 20 Hz sensitivity thresholds. Univariate heritabilities were significant for both AM (h 2 = 0.20) and FM (h 2 = 0.29). Bayesian posterior probability of linkage (PPL) analysis found loci for AM (12q, PPL = 81 %) and FM (10p, PPL = 32 %; 20q, PPL = 65 %). Bivariate heritability analyses revealed that FM is genetically correlated with reading, while AM was not. Bivariate PPL analysis indicates that FM loci (10p, 20q) are not also associated with reading.
Collapse
Affiliation(s)
- Matthew Bruni
- The Battelle Center for Mathematical Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Judy F Flax
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers The State University of New Jersey, Piscataway, NJ, USA
| | - Steven Buyske
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers The State University of New Jersey, Piscataway, NJ, USA
- Department of Statistics, Rutgers The State University of New Jersey, Piscataway, NJ, USA
| | - Amber D Shindhelm
- The Battelle Center for Mathematical Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Caroline Witton
- Aston Brain Centre, School of Life and Health Sciences, Aston University, Birmingham, B4 7ET, UK
| | - Linda M Brzustowicz
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers The State University of New Jersey, Piscataway, NJ, USA
| | - Christopher W Bartlett
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA.
- Battelle Center for Mathematical Medicine, The Research Institute at Nationwide Children's Hospital & The Ohio State University, 575 Children's Crossroad, Columbus, OH, 43205, USA.
| |
Collapse
|
2
|
Little CW, Haughbrook R, Hart SA. Cross-Study Differences in the Etiology of Reading Comprehension: a Meta-Analytical Review of Twin Studies. Behav Genet 2016; 47:52-76. [PMID: 27630039 DOI: 10.1007/s10519-016-9810-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/24/2016] [Indexed: 11/28/2022]
Abstract
Numerous twin studies have examined the genetic and environmental etiology of reading comprehension, though it is likely that etiological estimates are influenced by unidentified sample conditions (e.g. Tucker-Drob and Bates, Psychol Sci:0956797615612727, 2015). The purpose of this meta-analysis was to average the etiological influences of reading comprehension and to explore the potential moderators influencing these estimates. Results revealed an average heritability estimate of h2 = 0.59, with significant variation in estimates across studies, suggesting potential moderation. Moderation results indicated publication year, grade level, project, zygosity methods, and response type moderated heritability estimates. The average shared environmental estimate was c2 = 0.16, with publication year, grade and zygosity methods acting as significant moderators. These findings support the role of genetics on reading comprehension, and a small significant role of shared environmental influences. The results suggest that our interpretation of how genes and environments influence reading comprehension should reflect aspects of study and sample.
Collapse
Affiliation(s)
- Callie W Little
- Department of Psychology, Florida State University, 1107 W. Call Street, Tallahassee, FL, 32306, USA.
| | - Rasheda Haughbrook
- Department of Psychology, Florida State University, 1107 W. Call Street, Tallahassee, FL, 32306, USA
| | - Sara A Hart
- Department of Psychology, Florida State University, 1107 W. Call Street, Tallahassee, FL, 32306, USA.,Florida Center for Reading Research, Florida State University, 2010 Levy Avenue, Tallahassee, FL, 32310, USA
| |
Collapse
|
3
|
Pettigrew KA, Frinton E, Nudel R, Chan MTM, Thompson P, Hayiou-Thomas ME, Talcott JB, Stein J, Monaco AP, Hulme C, Snowling MJ, Newbury DF, Paracchini S. Further evidence for a parent-of-origin effect at the NOP9 locus on language-related phenotypes. J Neurodev Disord 2016; 8:24. [PMID: 27307794 PMCID: PMC4908686 DOI: 10.1186/s11689-016-9157-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 06/03/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Specific language impairment (SLI) is a common neurodevelopmental disorder, observed in 5-10 % of children. Family and twin studies suggest a strong genetic component, but relatively few candidate genes have been reported to date. A recent genome-wide association study (GWAS) described the first statistically significant association specifically for a SLI cohort between a missense variant (rs4280164) in the NOP9 gene and language-related phenotypes under a parent-of-origin model. Replications of these findings are particularly challenging because the availability of parental DNA is required. METHODS We used two independent family-based cohorts characterised with reading- and language-related traits: a longitudinal cohort (n = 106 informative families) including children with language and reading difficulties and a nuclear family cohort (n = 264 families) selected for dyslexia. RESULTS We observed association with language-related measures when modelling for parent-of-origin effects at the NOP9 locus in both cohorts: minimum P = 0.001 for phonological awareness with a paternal effect in the first cohort and minimum P = 0.0004 for irregular word reading with a maternal effect in the second cohort. Allelic and parental trends were not consistent when compared to the original study. CONCLUSIONS A parent-of-origin effect at this locus was detected in both cohorts, albeit with different trends. These findings contribute in interpreting the original GWAS report and support further investigations of the NOP9 locus and its role in language-related traits. A systematic evaluation of parent-of-origin effects in genetic association studies has the potential to reveal novel mechanisms underlying complex traits.
Collapse
Affiliation(s)
| | - Emily Frinton
- />School of Medicine, University of St Andrews, St Andrews, KY16 9TF UK
| | - Ron Nudel
- />Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN UK
| | - May T. M. Chan
- />Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN UK
- />Worcester College, University of Oxford, Oxford, OX1 2HB UK
| | - Paul Thompson
- />Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford, OX1 3PT UK
| | | | - Joel B. Talcott
- />School of Life and Health Sciences, Aston University, Birmingham, B4 7ET UK
| | - John Stein
- />Department of Physiology, University of Oxford, Parks Road, Oxford, OX1 3PT UK
| | - Anthony P. Monaco
- />Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN UK
| | - Charles Hulme
- />Division of Psychology and Language Sciences, University College London, London, WC1 3PG UK
| | - Margaret J. Snowling
- />Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford, OX1 3PT UK
- />St John’s College, University of Oxford, Oxford, OX1 3JP UK
| | - Dianne F. Newbury
- />Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN UK
| | - Silvia Paracchini
- />School of Medicine, University of St Andrews, St Andrews, KY16 9TF UK
| |
Collapse
|
4
|
Lee JC, Mueller KL, Tomblin JB. Examining Procedural Learning and Corticostriatal Pathways for Individual Differences in Language: Testing Endophenotypes of DRD2/ANKK1. LANGUAGE, COGNITION AND NEUROSCIENCE 2016; 31:1098-1114. [PMID: 31768398 PMCID: PMC6876848 DOI: 10.1080/23273798.2015.1089359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The aim of the study was to explore whether genetic variation in the dopaminergic system is associated with procedural learning and the corticostriatal pathways in individuals with developmental language impairment (DLI). We viewed these two systems as endophenotypes and hypothesized that they would be more sensitive indicators of genetic effects than the language phenotype itself. Thus, we genotyped two SNPs in the DRD2/ANKK1 gene complex, and tested for their associations to the phenotype of DLI and the two endophenotypes. Results showed that individuals with DLI revealed poor procedural learning abilities and abnormal structures of the basal ganglia. Genetic variation in DRD2/ANKK1 was associated with procedural learning abilities and with microstructural differences of the caudate nucleus. The association of the language phenotype with these DRD2/ANKK1 polymorphisms was not significant, but the phenotype was significantly associated with the two endophenotypes. We suggest that procedural learning and the corticostriatal pathways could be used as effective endophenotypes to aid molecular genetic studies searching for genes predisposing to DLI.
Collapse
Affiliation(s)
- Joanna C. Lee
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA, USA
| | - Kathryn L. Mueller
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA, USA
| | - J. Bruce Tomblin
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
5
|
Justice L, Logan J, Kaderavek J, Schmitt MB, Tompkins V, Bartlett C. Empirically Based Profiles of the Early Literacy Skills of Children With Language Impairment in Early Childhood Special Education. JOURNAL OF LEARNING DISABILITIES 2015; 48:482-494. [PMID: 24232733 DOI: 10.1177/0022219413510179] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The purpose of this study was to empirically determine whether specific profiles characterize preschool-aged children with language impairment (LI) with respect to their early literacy skills (print awareness, name-writing ability, phonological awareness, alphabet knowledge); the primary interest was to determine if one or more profiles suggested vulnerability for future reading problems. Participants were 218 children enrolled in early childhood special education classrooms, 95% of whom received speech-language services. Children were administered an assessment of early literacy skills in the fall of the academic year. Based on results of latent profile analysis, four distinct literacy profiles were identified, with the single largest profile (55% of children) representing children with generally poor literacy skills across all areas examined. Children in the two low-risk categories had higher oral language skills than those in the high-risk and moderate-risk profiles. Across three of the four early literacy measures, children with language as their primary disability had higher scores than those with LI concomitant with other disabilities. These findings indicate that there are specific profiles of early literacy skills among children with LI, with about one half of children exhibiting a profile indicating potential susceptibility for future reading problems.
Collapse
Affiliation(s)
| | | | | | | | | | - Christopher Bartlett
- Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, USA
| |
Collapse
|
6
|
Gialluisi A, Newbury DF, Wilcutt EG, Olson RK, DeFries JC, Brandler WM, Pennington BF, Smith SD, Scerri TS, Simpson NH, Luciano M, Evans DM, Bates TC, Stein JF, Talcott JB, Monaco AP, Paracchini S, Francks C, Fisher SE. Genome-wide screening for DNA variants associated with reading and language traits. GENES BRAIN AND BEHAVIOR 2014; 13:686-701. [PMID: 25065397 PMCID: PMC4165772 DOI: 10.1111/gbb.12158] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 07/20/2014] [Accepted: 07/24/2014] [Indexed: 01/04/2023]
Abstract
Reading and language abilities are heritable traits that are likely to share some genetic influences with each other. To identify pleiotropic genetic variants affecting these traits, we first performed a genome-wide association scan (GWAS) meta-analysis using three richly characterized datasets comprising individuals with histories of reading or language problems, and their siblings. GWAS was performed in a total of 1862 participants using the first principal component computed from several quantitative measures of reading- and language-related abilities, both before and after adjustment for performance IQ. We identified novel suggestive associations at the SNPs rs59197085 and rs5995177 (uncorrected P ≈ 10–7 for each SNP), located respectively at the CCDC136/FLNC and RBFOX2 genes. Each of these SNPs then showed evidence for effects across multiple reading and language traits in univariate association testing against the individual traits. FLNC encodes a structural protein involved in cytoskeleton remodelling, while RBFOX2 is an important regulator of alternative splicing in neurons. The CCDC136/FLNC locus showed association with a comparable reading/language measure in an independent sample of 6434 participants from the general population, although involving distinct alleles of the associated SNP. Our datasets will form an important part of on-going international efforts to identify genes contributing to reading and language skills.
Collapse
Affiliation(s)
- A Gialluisi
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Harlaar N, Meaburn EL, Hayiou-Thomas ME, Davis OSP, Docherty S, Hanscombe KB, Haworth CMA, Price TS, Trzaskowski M, Dale PS, Plomin R. Genome-wide association study of receptive language ability of 12-year-olds. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2014; 57:96-105. [PMID: 24687471 PMCID: PMC3974169 DOI: 10.1044/1092-4388(2013/12-0303)] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
PURPOSE Researchers have previously shown that individual differences in measures of receptive language ability at age 12 are highly heritable. In the current study, the authors attempted to identify some of the genes responsible for the heritability of receptive language ability using a genome-wide association approach. METHOD The authors administered 4 Internet-based measures of receptive language (vocabulary, semantics, syntax, and pragmatics) to a sample of 2,329 twelve-year-olds for whom DNA and genome-wide genotyping were available. Nearly 700,000 single-nucleotide polymorphisms (SNPs) and 1 million imputed SNPs were included in a genome-wide association analysis of receptive language composite scores. RESULTS No SNP associations met the demanding criterion of genome-wide significance that corrects for multiple testing across the genome ( p < 5 × 10 -8). The strongest SNP association did not replicate in an additional sample of 2,639 twelve-year-olds. CONCLUSIONS These results indicate that individual differences in receptive language ability in the general population do not reflect common genetic variants that account for more than 3% of the phenotypic variance. The search for genetic variants associated with language skill will require larger samples and additional methods to identify and functionally characterize the full spectrum of risk variants.
Collapse
|
8
|
Gene × gene interaction in shared etiology of autism and specific language impairment. Biol Psychiatry 2012; 72:692-9. [PMID: 22704665 PMCID: PMC3449050 DOI: 10.1016/j.biopsych.2012.05.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 05/14/2012] [Accepted: 05/15/2012] [Indexed: 02/02/2023]
Abstract
BACKGROUND To examine the relationship between autism spectrum disorders (ASD) and specific language impairment (SLI), family studies typically take a comparative approach where families with one disease are examined for traits of the other disease. In contrast, the present report is the first study with both disorders required to be present in each family to provide a more direct test of the hypothesis of shared genetic etiology. METHODS We behaviorally assessed 51 families including at least one person with ASD and at least one person with SLI (without ASD). Pedigree members were tested with 22 standardized measures of language and intelligence. Because these extended families include a nonshared environmental contrast, we calculated heritability, not just familiality, for each measure twice: 1) baseline heritability analysis, compared with; 2) heritability estimates after statistically removing ASD subjects from pedigrees. RESULTS Significant increases in heritability on four supra-linguistic measures (including Pragmatic Judgment) and a composite language score but not on any other measures were observed when removing ASD subjects from the analysis, indicating differential genetic effects that are unique to ASD. Nongenetic explanations such as effects of ASD severity or measurement error or low score variability in ASD subjects were systematically ruled out, leaving the hypothesis of nonadditive genetics effects as the potential source of the heritability change caused by ASD. CONCLUSIONS Although the data suggest genetic risk factors common to both SLI and ASD, there are effects that seem unique to ASD, possibly caused by nonadditive gene-gene interactions of shared risk loci.
Collapse
|
9
|
Li N, Bartlett CW. Defining the genetic architecture of human developmental language impairment. Life Sci 2012; 90:469-75. [PMID: 22365959 DOI: 10.1016/j.lfs.2012.01.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 01/24/2012] [Accepted: 01/26/2012] [Indexed: 01/08/2023]
Abstract
Language is a uniquely human trait, which poses limitations on animal models for discovering biological substrates and pathways. Despite this challenge, rapidly developing biotechnology in the field of genomics has made human genetics studies a viable alternative route for defining the molecular neuroscience of human language. This is accomplished by studying families that transmit both normal and disordered language across generations. The language disorder reviewed here is specific language impairment (SLI), a developmental deficiency in language acquisition despite adequate opportunity, normal intelligence, and without any apparent neurological etiology. Here, we describe disease gene discovery paradigms as applied to SLI families and review the progress this field has made. After review the evidence that genetic factors influence SLI, we discuss methods and findings from scans of the human chromosomes, including the main replicated regions on chromosomes 13, 16 and 19 and two identified genes, ATP2C2 and CMIP that appear to account for the language variation on chromosome 16. Additional work has been done on candidate genes, i.e., genes chosen a priori and not through a genome scanning studies, including several studies of CNTNAP2 and some recent work implicating BDNF as a gene x gene interaction partner of genetic variation on chromosome 13 that influences language. These recent developments may allow for better use of post-mortem human brain samples functional studies and animal models for circumscribed language subcomponents. In the future, the identification of genetic variation associated with language phenotypes will provide the molecular pathways to understanding human language.
Collapse
Affiliation(s)
- Ning Li
- The Battelle Center for Mathematical Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | | |
Collapse
|