1
|
Kuwata N, Mukohda H, Uchida H, Takamatsu R, Binici MM, Yamada T, Sugiyama T. Renal Endocytic Regulation of Vitamin D Metabolism during Maturation and Aging in Laying Hens. Animals (Basel) 2024; 14:502. [PMID: 38338146 PMCID: PMC10854989 DOI: 10.3390/ani14030502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Egg-laying hens undergo a specific and dramatic calcium metabolism to lay eggs with eggshells composed of calcium carbonate. Calcium metabolism is mainly regulated by vitamin D3. Although vitamin D3 metabolism is closely related to the deterioration of eggshell quality associated with aging and heat stress, the details of the mechanisms regulating vitamin D3 metabolism are not clear. In mammals, the vitamin D3 metabolite (25(OH)D3) produced in the liver binds to the vitamin binding protein (DBP), is subsequently taken up by renal proximal tubular cells via the endocytic receptors megalin (Meg) and cubilin (CUB), and is metabolized to 1,25-dihydroxyvitamin D3 (1,25(OH)2D3). Therefore, the present study aimed to examine the expression and localization of Meg and CUB in the kidneys of immature chicks and mature and aged laying hens to prevent eggshell quality deterioration. As a result, we showed that as circulating 1,25(OH)2D3 concentrations increased from 156.0 ± 13.5 pg/mL to 815.5 ± 61.4 pg/mL with maturation in immature chicks, relative expression levels (arbitrary units; AU) of Meg and CUB mRNA in the kidneys of mature hens significantly increased 1.92- and 2.75-fold, respectively, compared to those in immature chicks. On the other hand, the Meg mRNA expression levels of mature hens did not change with age, while CUB mRNA expression levels (1.03 ± 0.11 AU) were significantly decreased compared to mature hens (2.75 ± 0.24 AU). Immunohistochemical observations showed that Meg and CUB proteins were localized to the apical membrane of renal proximal tubular epithelial cells in immature chicks, mature hens, and aged hens, and that DBP protein was observed as granular endosomes in the cytoplasm of proximal tubular cells from the apical membrane to the cell nucleus. Especially in mature hens, the endosomes were larger and more numerous than those in immature chicks. In contrast, in aged hens, DBP-containing endosomes were smaller and limited to the apical cytoplasm. These results indicate that with maturation, the expression of Meg and CUB is promoted in the renal proximal tubules of laying hens, facilitating the uptake of the 25(OH)D3-DBP complex and its conversion to 1,25(OH)2D3, and regulating calcium metabolism in eggshell formation. On the other hand, it is suggested that the age-related decrease in CUB expression suppresses the uptake of the 25(OH)D3-DBP complex in the kidney, resulting in a deterioration of eggshell quality.
Collapse
Affiliation(s)
- Nami Kuwata
- Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata 9502181, Japan
| | - Hatsune Mukohda
- Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata 9502181, Japan
| | - Hiroto Uchida
- Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata 9502181, Japan
| | - Ryo Takamatsu
- Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata 9502181, Japan
| | - Muhammet Mustafa Binici
- Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata 9502181, Japan
| | - Takahisa Yamada
- Department of Animal Science, Faculty of Agriculture, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata 9502181, Japan;
| | - Toshie Sugiyama
- Department of Animal Science, Faculty of Agriculture, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata 9502181, Japan;
| |
Collapse
|
2
|
Barta P, Nachtigal P, Maixnerova J, Zemankova L, Trejtnar F. Validation of Freshly Isolated Rat Renal Cells as a Tool for Preclinical Assessment of Radiolabeled Receptor-Specific Peptide Uptake in the Kidney. Pharmaceuticals (Basel) 2023; 16:ph16050696. [PMID: 37242479 DOI: 10.3390/ph16050696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/19/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
The synthetic analogs of regulatory peptides radiolabeled with adequate radionuclides are perspective tools in nuclear medicine. However, undesirable uptake and retention in the kidney limit their application. Specific in vitro methods are used to evaluate undesirable renal accumulation. Therefore, we investigated the usefulness of freshly isolated rat renal cells for evaluating renal cellular uptake of receptor-specific peptide analogs. Special attention was given to megalin as this transport system is an important contributor to the active renal uptake of the peptides. Freshly isolated renal cells were obtained from native rat kidneys by the collagenase method. Compounds with known accumulation in renal cells were used to verify the viability of cellular transport systems. Megalin expressions in isolated rat renal cells were compared to two other potential renal cell models by Western blotting. Specific tubular cell markers were used to confirm the presence of proximal tubular cells expressing megalin in isolated rat renal cell preparations by immunohistochemistry. Colocalization experiments on isolated rat kidney cells confirmed the presence of proximal tubular cells bearing megalin in preparations. The applicability of the method was tested by an accumulation study with several analogs of somatostatin and gastrin labeled with indium-111 or lutetium-177. Therefore, isolated rat renal cells may be an effective screening tool for in vitro analyses of renal uptake and comparative renal accumulation studies of radiolabeled peptides or other radiolabeled compounds with potential nephrotoxicity.
Collapse
Affiliation(s)
- Pavel Barta
- Department of Biophysics and Physical Chemistry, Faculty of Pharmacy in Hradec Kralové, Charles University, Akademika Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| | - Petr Nachtigal
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralové, Charles University, Akademika Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| | - Jana Maixnerova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralové, Charles University, Akademika Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| | - Lenka Zemankova
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 78371 Olomouc, Czech Republic
| | - Frantisek Trejtnar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralové, Charles University, Akademika Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| |
Collapse
|
3
|
Pippin JW, Kaverina N, Wang Y, Eng DG, Zeng Y, Tran U, Loretz CJ, Chang A, Akilesh S, Poudel C, Perry HS, O’Connor C, Vaughan JC, Bitzer M, Wessely O, Shankland SJ. Upregulated PD-1 signaling antagonizes glomerular health in aged kidneys and disease. J Clin Invest 2022; 132:e156250. [PMID: 35968783 PMCID: PMC9374384 DOI: 10.1172/jci156250] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 06/24/2022] [Indexed: 01/21/2023] Open
Abstract
With an aging population, kidney health becomes an important medical and socioeconomic factor. Kidney aging mechanisms are not well understood. We previously showed that podocytes isolated from aged mice exhibit increased expression of programmed cell death protein 1 (PD-1) surface receptor and its 2 ligands (PD-L1 and PD-L2). PDCD1 transcript increased with age in microdissected human glomeruli, which correlated with lower estimated glomerular filtration rate and higher segmental glomerulosclerosis and vascular arterial intima-to-lumen ratio. In vitro studies in podocytes demonstrated a critical role for PD-1 signaling in cell survival and in the induction of a senescence-associated secretory phenotype. To prove PD-1 signaling was critical to podocyte aging, aged mice were injected with anti-PD-1 antibody. Treatment significantly improved the aging phenotype in both kidney and liver. In the glomerulus, it increased the life span of podocytes, but not that of parietal epithelial, mesangial, or endothelial cells. Transcriptomic and immunohistochemistry studies demonstrated that anti-PD-1 antibody treatment improved the health span of podocytes. Administering the same anti-PD-1 antibody to young mice with experimental focal segmental glomerulosclerosis (FSGS) lowered proteinuria and improved podocyte number. These results suggest a critical contribution of increased PD-1 signaling toward both kidney and liver aging and in FSGS.
Collapse
Affiliation(s)
| | | | - Yuliang Wang
- Paul G. Allen School of Computer Science and Engineering, and
| | | | - Yuting Zeng
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Uyen Tran
- Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | | | - Anthony Chang
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | - Shreeram Akilesh
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Chetan Poudel
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Hannah S. Perry
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | | | - Joshua C. Vaughan
- Department of Chemistry, University of Washington, Seattle, Washington, USA
- Department of Physiology and Biophysics and
| | - Markus Bitzer
- Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Oliver Wessely
- Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Stuart J. Shankland
- Division of Nephrology
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
4
|
Effective Removal of Dabigatran by Idarucizumab or Hemodialysis: A Physiologically Based Pharmacokinetic Modeling Analysis. Clin Pharmacokinet 2021; 59:809-825. [PMID: 32020532 PMCID: PMC7292816 DOI: 10.1007/s40262-019-00857-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background Application of idarucizumab and hemodialysis are options to reverse the action of the oral anticoagulant dabigatran in emergency situations. Objectives The objectives of this study were to build and evaluate a mechanistic, whole-body physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) model of idarucizumab, including its effects on dabigatran plasma concentrations and blood coagulation, in healthy and renally impaired individuals, and to include the effect of hemodialysis on dabigatran exposure. Methods The idarucizumab model was built with the software packages PK-Sim® and MoBi® and evaluated using the full range of available clinical data. The default kidney structure in MoBi® was extended to mechanistically describe the renal reabsorption of idarucizumab and to correctly reproduce the reported fractions excreted into urine. To model the PD effects of idarucizumab on dabigatran plasma concentrations, and consequently also on blood coagulation, idarucizumab-dabigatran binding was implemented and a previously established PBPK model of dabigatran was expanded to a PBPK/PD model. The effect of hemodialysis on dabigatran was implemented by the addition of an extracorporeal dialyzer compartment with a clearance process governed by dialysate and blood flow rates. Results The established idarucizumab-dabigatran-hemodialysis PBPK/PD model shows a good descriptive and predictive performance. To capture the clinical data of patients with renal impairment, both glomerular filtration and tubular reabsorption were modeled as functions of the individual creatinine clearance. Conclusions A comprehensive and mechanistic PBPK/PD model to study dabigatran reversal has been established, which includes whole-body PBPK modeling of idarucizumab, the idarucizumab-dabigatran interaction, dabigatran hemodialysis, the pharmacodynamic effect of dabigatran on blood coagulation, and the impact of renal function in these different scenarios. The model was applied to explore different reversal scenarios for dabigatran therapy. Electronic supplementary material The online version of this article (10.1007/s40262-019-00857-y) contains supplementary material, which is available to authorized users.
Collapse
|
5
|
The Dependence of Renal 68Ga[Ga]-DOTATOC Uptake on Kidney Function and Its Relevance for Peptide Receptor Radionuclide Therapy with 177Lu[Lu]-DOTATOC. Diagnostics (Basel) 2021; 11:diagnostics11071216. [PMID: 34359299 PMCID: PMC8307408 DOI: 10.3390/diagnostics11071216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/28/2021] [Accepted: 07/02/2021] [Indexed: 11/16/2022] Open
Abstract
Background: In addition to its SSTR-specific binding in tumors and healthy tissues, DOTATOC analogues accumulate in kidney parenchyma. Renal tracer uptake might be a surrogate of kidney function or dysfunction. This study aimed to evaluate if kidney function can be estimated from 68Ga[Ga]-DOTATOC uptake in PET/CT and its impact on the nephrotoxicity of 177Lu[Lu]-DOTATOC PRRT. Methods: Two cohorts of patients (A: 128 diagnostic patients; B: 32 PRRT patients) were evaluated retrospectively. SUV values of the kidneys, physiologically SSTR-expressing organs and in background compartments were assessed. Kidney function was calculated as eGFR by CKD-EPI creatinine equation. Pearson’s correlation coefficients and treatment-induced changes of uptake and kidney function were assessed and compared. Results: Kidney function and renal DOTATOC uptake showed a significant inverse correlation (R2 = 0.037; p = 0.029). Evaluated models of PET/CT measurements were not able to predict kidney function sufficiently. The uptake of other organs did not depend on eGFR. While the renal uptake increased after PRRT (p < 0.001), the kidney function did not change significantly (p = 0.382). Neither low pre-therapeutic eGFR nor high pre-therapeutic kidney uptake were risk factors of PRRT-induced deterioration in kidney function. Conclusion: The relevance of kidney function for renal 68Ga[Ga]-DOTATOC uptake is limited. The nephrotoxicity of 177Lu[Lu]-DOTATOC PRRT might be low and cannot be reliably predicted by pre-therapeutic measurements.
Collapse
|
6
|
Cabezas F, Farfán P, Marzolo MP. Participation of the SMAD2/3 signalling pathway in the down regulation of megalin/LRP2 by transforming growth factor beta (TGF-ß1). PLoS One 2019; 14:e0213127. [PMID: 31120873 PMCID: PMC6532859 DOI: 10.1371/journal.pone.0213127] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/08/2019] [Indexed: 12/19/2022] Open
Abstract
Megalin/LRP2 is a receptor that plays important roles in the physiology of several organs, such as kidney, lung, intestine, and gallbladder and also in the physiology of the nervous system. Megalin expression is reduced in diseases associated with fibrosis, including diabetic nephropathy, hepatic fibrosis and cholelithiasis, as well as in some breast and prostate cancers. One of the hallmarks of these conditions is the presence of the cytokine transforming growth factor beta (TGF-ß). Although TGF-ß has been implicated in the reduction of megalin levels, the molecular mechanism underlying this regulation is not well understood. Here, we show that treatment of two epithelial cell lines (from kidney and gallbladder) with TGF-ß1 is associated with decreased megalin mRNA and protein levels, and that these effects are reversed by inhibiting the TGF-ß1 type I receptor (TGF-ßRI). Based on in silico analyses, the two SMAD-binding elements (SBEs) in the megalin promoter are located at positions -57 and -605. Site-directed mutagenesis of the SBEs and chromatin immunoprecipitation (ChIP) experiments revealed that SMAD2/3 transcription factors interact with SBEs. Both the presence of SMAD2/3 and intact SBEs were associated with repression of the megalin promoter, in the absence as well in the presence of TGF-ß1. Also, reduced megalin expression and promoter activation triggered by high concentration of albumin are dependent on the expression of SMAD2/3. Interestingly, the histone deacetylase inhibitor Trichostatin A (TSA), which induces megalin expression, reduced the effects of TGF-ß1 on megalin mRNA levels. These data show the significance of TGF-ß and the SMAD2/3 signalling pathway in the regulation of megalin and explain the decreased megalin levels observed under conditions in which TGF-ß is upregulated, including fibrosis-associated diseases and cancer.
Collapse
Affiliation(s)
- Felipe Cabezas
- Laboratorio de Tráfico Intracelular y Señalización, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pamela Farfán
- Laboratorio de Tráfico Intracelular y Señalización, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María-Paz Marzolo
- Laboratorio de Tráfico Intracelular y Señalización, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
7
|
Kocełak P, Owczarek A, Bożentowicz-Wikarek M, Brzozowska A, Mossakowska M, Grodzicki T, Więcek A, Chudek J, Olszanecka-Glinianowicz M. Plasma concentration of Retinol Binding Protein 4 (RBP4) in relation to nutritional status and kidney function in older population of PolSenior Study. Adv Med Sci 2018; 63:323-328. [PMID: 30025358 DOI: 10.1016/j.advms.2018.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 01/22/2018] [Accepted: 04/26/2018] [Indexed: 12/24/2022]
Abstract
PURPOSE The aim of the study was to assess plasma RBP4 concentration in elderly subjects in relation to nutritional status and kidney function in the population of the PolSenior Study. MATERIAL AND METHODS We assessed RBP4, glucose, insulin, albumin, lipid profile, C-reactive protein, (hsCRP) and creatinine concentrations in 2614 PolSenior Study participants (1235 women and 1379 men). The study group was divided based on BMI and HOMA-IR values, and the occurrence of diabetes. RESULTS Plasma RBP4 concentration was similar in normal weight, overweight, and obese subgroups, both in women (40.4 vs 40.8 vs 41.8 ng/ml, respectively), and men (41.2 vs 40.3 vs 42.9 ng/ml, respectively). Similar values were found in subjects with HOMA-IR <2.5; ≥2.5 and diabetes, while those with decreased eGFR (<60 ml/min/1.73 m2) were characterized by increased RBP4 levels [46.0 (32.0-64.8) vs 39.4 (28.2-54.9) ng/ml; p < 0.001]. Plasma RBP4 level variability was explained by: age, waist circumference or BMI, and eGFR, but not HOMA-IR and/or hsCRP. The standardized coefficients β (slopes) for BMI and waist circumference were similar. CONCLUSIONS The results revealed that in older subjects, circulating RBP4 levels are mostly affected by kidney function and modestly by age, gender, and nutritional status, but not insulin resistance.
Collapse
Affiliation(s)
- Piotr Kocełak
- Health Promotion and Obesity Management Unit, Department of Pathophysiology, Medical Faculty in Katowice, Medical University of Silesia, Katowice, Poland
| | - Aleksander Owczarek
- Department of Statistics, Department of Instrumental Analysis, Faculty of Pharmacy and Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Maria Bożentowicz-Wikarek
- Pathophysiology Unit, Department of Pathophysiology, Medical Faculty in Katowice, Medical University of Silesia, Katowice, Poland
| | - Aniceta Brzozowska
- Health Promotion and Obesity Management Unit, Department of Pathophysiology, Medical Faculty in Katowice, Medical University of Silesia, Katowice, Poland
| | | | - Tomasz Grodzicki
- Department of Internal Medicine and Gerontology, Jagiellonian University Medical College, Krakow, Poland
| | - Andrzej Więcek
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, Katowice, Poland
| | - Jerzy Chudek
- Pathophysiology Unit, Department of Pathophysiology, Medical Faculty in Katowice, Medical University of Silesia, Katowice, Poland; Department of Internal Medicine and Oncological Chemotherapy, Medical Faculty in Katowice, Medical University of Silesia, Katowice, Poland
| | - Magdalena Olszanecka-Glinianowicz
- Health Promotion and Obesity Management Unit, Department of Pathophysiology, Medical Faculty in Katowice, Medical University of Silesia, Katowice, Poland.
| |
Collapse
|
8
|
Liu T, Liu M, Shang P, Jin X, Liu W, Zhang Y, Li X, Ding Y, Li Y, Wen A. Investigation into the underlying molecular mechanisms of hypertensive nephrosclerosis using bioinformatics analyses. Mol Med Rep 2018; 17:4440-4448. [PMID: 29328390 PMCID: PMC5802219 DOI: 10.3892/mmr.2018.8405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 11/24/2017] [Indexed: 12/11/2022] Open
Abstract
Hypertensive nephrosclerosis (HNS) is a major risk factor for end-stage renal disease. However, the underlying pathogenesis of HNS remains to be fully determined. The gene expression profile of GSE20602, which consists of 14 glomeruli samples from patients with HNS and 4 normal glomeruli control samples, was obtained from the Gene Expression Omnibus database. Gene ontology (GO) and pathway enrichment analyses were performed in order to investigate the functions and pathways of differentially expressed genes (DEGs). Pathway relation and co‑expression networks were constructed in order to identify key genes and signaling pathways involved in HNS. In total, 483 DEGs were identified to be associated with HNS, including 302 upregulated genes and 181 downregulated genes. Furthermore, GO analysis revealed that DEGs were significantly enriched in the small molecule metabolic process. In addition, pathway analysis also revealed that DEGs were predominantly involved in metabolic pathways. The tricarboxylic acid (TCA) cycle was identified as the hub pathway in the pathway relation network, whereas the sorbitol dehydrogenase (SORD) and cubulin (CUBN) genes were revealed to be the hub genes in the co‑expression network. The present study revealed that the SORD, CUBN and albumin genes as well as the TCA cycle and metabolic pathways are involved in the pathogenesis of HNS. The results of the present study may contribute to the determination of the molecular mechanisms underlying HNS, and provide insight into the exploration of novel targets for the diagnosis and treatment of HNS.
Collapse
Affiliation(s)
- Tianlong Liu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Minna Liu
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Peijin Shang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xin Jin
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Wenxing Liu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yikai Zhang
- Department of Pharmacy, General Hospital of Shenyang Military Region, Shenyang, Liaoning 110016, P.R. China
| | - Xinfang Li
- Department of Inorganic Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, P.R. China
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yuwen Li
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
9
|
Sun J, Hultenby K, Axelsson J, Nordström J, He B, Wernerson A, Lindström K. Proximal Tubular Expression Patterns of Megalin and Cubilin in Proteinuric Nephropathies. Kidney Int Rep 2017; 2:721-732. [PMID: 29142988 PMCID: PMC5678615 DOI: 10.1016/j.ekir.2017.02.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 02/09/2017] [Accepted: 02/21/2017] [Indexed: 01/10/2023] Open
Abstract
Introduction Receptor-mediated endocytosis is responsible for protein reabsorption in the proximal tubules. For albumin this process involves at least 2 interacting receptors, megalin and cubilin. Albumin is not usually present in the urine, indicating a highly efficient tubular reuptake under physiological conditions. However, early appearance of albuminuria may mean that the tubular system is overwhelmed by large quantities of albumin or that the function is impaired. Methods To better understand the physiological role of megalin and cubilin in human renal disease, renal biopsies from 15 patients with a range of albuminuria and 3 healthy living donors were analyzed for proximal tubular expression of megalin and cubilin using immunohistochemistry (IHC) and semiquantitative immune-electron microscopy. Their expression in proteinuric zebrafish was also studied. Results Megalin and cubilin were expressed in brush border and cytoplasmic vesicles. Patients with microalbuminuric IgA nephropathy and thin membrane disease had significantly higher megalin in proximal tubules, whereas those with macro- or nephrotic-range albuminuria had unchanged levels. Cubilin expression was significantly higher in all patients. In a proteinuric zebrafish nphs2 knockdown model, we found a dose-dependent increase in the expression of tubular megalin and cubilin in response to tubular protein uptake. Discussion Megalin and cubilin show different expression patterns in different human diseases, which indicates that the 2 tubular proteins differently cooperate in cleaning up plasma proteins in kidney tubules.
Collapse
Affiliation(s)
- Jia Sun
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Kjell Hultenby
- Division of Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jonas Axelsson
- Division of Matrix Biology, Department of Medical Biochemistry and Biophysics; Karolinska Institutet, Stockholm, Sweden.,Department Clinical Immunology, Karolinska University Hospital, Stockholm, Sweden
| | - Johan Nordström
- Division of Transplantation, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.,Department of Transplant Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Bing He
- Division of Matrix Biology, Department of Medical Biochemistry and Biophysics; Karolinska Institutet, Stockholm, Sweden
| | - Annika Wernerson
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.,Department of Pathology, Karolinska University Hospital, Stockholm, Sweden
| | - Karin Lindström
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.,Department of Nephrology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
10
|
Korkmaz L, Baştuğ O, Kurtoğlu S. Maternal Obesity and its Short- and Long-Term Maternal and Infantile Effects. J Clin Res Pediatr Endocrinol 2016; 8:114-24. [PMID: 26758575 PMCID: PMC5096465 DOI: 10.4274/jcrpe.2127] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Obesity, in childhood or in adulthood, remains to be a global health problem. The worldwide prevalence of obesity has increased in the last few decades, and consequently, the women of our time suffer more gestational problems than women in the past. The prevalence of obesity is greater in older women than in younger ones and in women with low educational level than in their counterparts with a higher level of education. Maternal obesity during pregnancy may increase congenital malformations and neonatal morbidity and mortality. Maternal obesity is associated with a decreased intention to breastfeed, decreased initiation of breastfeeding, and decreased duration of breastfeeding. We discuss the current epidemiological evidence for the association of maternal obesity with congenital structural neural tube and cardiac defects, fetal macrosomia that predisposes infants to birth injuries and to problems with physiological and metabolic transition, as well as potential for long-term complications secondary to prenatal and neonatal programming effects compounded by a reduction in sustained breastfeeding.
Collapse
Affiliation(s)
- Levent Korkmaz
- Erciyes University Faculty of Medicine, Department of Pediatrics, Division of Neonatology, Kayseri, Turkey E-mail:
| | - Osman Baştuğ
- Erciyes University Faculty of Medicine, Department of Pediatrics, Division of Neonatology, Kayseri, Turkey
| | - Selim Kurtoğlu
- Erciyes University Faculty of Medicine, Department of Pediatrics, Division of Endocrinology, Kayseri, Turkey
| |
Collapse
|
11
|
Sasaki H, Kimura J, Nagasaki KI, Marusugi K, Agui T, Sasaki N. Mouse chromosome 2 harbors genetic determinants of resistance to podocyte injury and renal tubulointerstitial fibrosis. BMC Genet 2016; 17:69. [PMID: 27230548 PMCID: PMC4882790 DOI: 10.1186/s12863-016-0378-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 05/22/2016] [Indexed: 01/16/2023] Open
Abstract
Background Tensin2 deficiency results in alterations in podocytes and subsequent glomerular and tubulointerstitial injuries. However, this pathology is critically dependent on genetic background. While the Tensin2-deficient podocytes of resistant murine strains, including C57BL/6J mice, remain almost intact, susceptible murine strains with Tensin2 deficency, including ICGN mice, develop chronic kidney disease following alterations in the podocyte foot processes. In a previous study, genome-wide linkage analysis was utilized to identify the quantitative trait loci associated with the disease phenotypes on mouse chromosome 2. This study investigated the disease phenotypes of chromosome 2 consomic and subcongenic strains. Results ICGN consomic mice introgressed with chromosome 2 from the C57BL/6J mouse were generated and found to exhibit milder renal failure than that in ICGN mice. We developed 6 subcongenic strains that carry C57BL/6J-derived chromosomal segments from the consomic strain. One showed significantly milder albuminuria, another showed significantly milder tubulointerstitial injury, and the both showed significantly milder glomerular injury. Conclusions These data indicate that mouse chromosome 2 harbors two major genes associated with the severities of nephropathy induced by Tensin2 deficiency. The proximal region on chromosome 2 contributes to the resistance to tubulointerstitial fibrosis. In contrast, the distal region on chromosome 2 contributes to the resistance to podocyte injury. This study would be helpful to discover the biological mechanism underlying the renal injury, and may lead to the identification of therapeutic targets. Electronic supplementary material The online version of this article (doi:10.1186/s12863-016-0378-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hayato Sasaki
- Laboratory of Laboratory Animal Science and Medicine, Faculty of Veterinary Medicine, Kitasato University, Higashi 23-35-1, Towada, 034-8628, Japan
| | - Junpei Kimura
- Laboratory of Anatomy, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita-18 Nishi-9, Kita-ku, Sapporo, 060-0818, Japan
| | - Ken-Ichi Nagasaki
- Section of Biological Safety Research, Chitose Laboratory, Japan Food Research Laboratories, Bunkyo 2-3, Chitose, 066-0052, Japan
| | - Kiyoma Marusugi
- Laboratory of Laboratory Animal Science and Medicine, Faculty of Veterinary Medicine, Kitasato University, Higashi 23-35-1, Towada, 034-8628, Japan
| | - Takashi Agui
- Laboratory of Laboratory Animal Science and Medicine, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Kita-18 Nishi-9, Kita-ku, Sapporo, 060-0818, Japan
| | - Nobuya Sasaki
- Laboratory of Laboratory Animal Science and Medicine, Faculty of Veterinary Medicine, Kitasato University, Higashi 23-35-1, Towada, 034-8628, Japan.
| |
Collapse
|
12
|
Abstract
Several studies show evidence for the genetic basis of renal disease, which renders some individuals more prone than others to accelerated renal aging. Studying the genetics of renal aging can help us to identify genes involved in this process and to unravel the underlying pathways. First, this opinion article will give an overview of the phenotypes that can be observed in age-related kidney disease. Accurate phenotyping is essential in performing genetic analysis. For kidney aging, this could include both functional and structural changes. Subsequently, this article reviews the studies that report on candidate genes associated with renal aging in humans and mice. Several loci or candidate genes have been found associated with kidney disease, but identification of the specific genetic variants involved has proven to be difficult. CUBN, UMOD, and SHROOM3 were identified by human GWAS as being associated with albuminuria, kidney function, and chronic kidney disease (CKD). These are promising examples of genes that could be involved in renal aging, and were further mechanistically evaluated in animal models. Eventually, we will provide approaches for performing genetic analysis. We should leverage the power of mouse models, as testing in humans is limited. Mouse and other animal models can be used to explain the underlying biological mechanisms of genes and loci identified by human GWAS. Furthermore, mouse models can be used to identify genetic variants associated with age-associated histological changes, of which Far2, Wisp2, and Esrrg are examples. A new outbred mouse population with high genetic diversity will facilitate the identification of genes associated with renal aging by enabling high-resolution genetic mapping while also allowing the control of environmental factors, and by enabling access to renal tissues at specific time points for histology, proteomics, and gene expression.
Collapse
Affiliation(s)
- Gerda A. Noordmans
- Department of Pathology and Medical Biology University of Groningen University Medical Center Groningen Groningen the Netherlands
| | - Jan‐Luuk Hillebrands
- Department of Pathology and Medical Biology University of Groningen University Medical Center Groningen Groningen the Netherlands
| | - Harry Goor
- Department of Pathology and Medical Biology University of Groningen University Medical Center Groningen Groningen the Netherlands
| | | |
Collapse
|
13
|
Otero Gonzalez A, Prol MPB, Caride MJC, Nores JS, Novoa E, Melon CP, Macia P, Alves MT, Cid M, Osorio E, Coto E, Macias Nuñez JF. Estimated glomerular filtration rate (eGFR), 25(OH) D3, chronic kidney disease (CKD), the MYH9 (myosin heavy chain 9) gene in old and very elderly people. Int Urol Nephrol 2015; 47:1403-8. [PMID: 26152646 DOI: 10.1007/s11255-015-1041-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 06/19/2015] [Indexed: 01/30/2023]
Abstract
It is known that the common physiological denominator of the ageing process is an attenuation of functional performance with respect to the situation of young people and adults. However, since the first cohort-based longitudinal studies, it has not been possible to establish a "linear" relationship between age and glomerular filtration in all cases. This does not mean that there is no physiological ageing process at all; in addition to those already elucidated, its mechanisms include cell senescence, podocyte dysfunction, a vitamin D deficiency, and homozygotic forms of the MYH9 gene. The aim of the present work was to analyse the prevalence of chronic kidney disease (CKD) and, where possible, the correlation between CKD, defined by an eGFR < 60 ml/min/1.73 m(2), plasma 25(OH)D3 levels and the MYH9 gene in a population of elderly and very elderly persons. These parameters have not been evaluated previously in populations of elderly and very elderly patients. It is concluded that a moderate decrease in the eGFR occurs with age. This does not imply the presence of CKD in elderly people, since in most individuals the reduced eGFR is not accompanied by anaemia, and no individuals show hypocalcaemia, hyperphosphataemia or a high Alb/Cr ratio. Here we observed a lower Hb level and an elevated Alb/Cr ratio in subjects heterozygotic for the MYH9 gene. This could be interpreted in the sense that the gene could exert some protective effect on renal function, whereas the heterozygotic form (allele A) of the MYH9 gene could be considered a very early marker, a new risk factor for the appearance of CKD, or a sign of renal frailty in elderly people.
Collapse
Affiliation(s)
- A Otero Gonzalez
- Servicio de Nefrología-Unidad Investigación, C.H Universitario de Ourense, Ourense, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Wood SH, Craig T, Li Y, Merry B, de Magalhães JP. Whole transcriptome sequencing of the aging rat brain reveals dynamic RNA changes in the dark matter of the genome. AGE (DORDRECHT, NETHERLANDS) 2013; 35:763-776. [PMID: 22555619 PMCID: PMC3636386 DOI: 10.1007/s11357-012-9410-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 04/12/2012] [Indexed: 05/31/2023]
Abstract
Brain aging frequently underlies cognitive decline and is a major risk factor for neurodegenerative conditions. The exact molecular mechanisms underlying brain aging, however, remain unknown. Whole transcriptome sequencing provides unparalleled depth and sensitivity in gene expression profiling. It also allows non-coding RNA and splice variant detection/comparison across phenotypes. Using RNA-seq to sequence the cerebral cortex transcriptome in 6-, 12- and 28-month-old rats, age-related changes were studied. Protein-coding genes related to MHC II presentation and serotonin biosynthesis were differentially expressed (DE) in aging. Relative to protein-coding genes, more non-coding genes were DE over the three age-groups. RNA-seq quantifies not only levels of whole genes but also of their individual transcripts. Over the three age-groups, 136 transcripts were DE, 37 of which were so-called dark matter transcripts that do not map to known exons. Fourteen of these transcripts were identified as novel putative long non-coding RNAs. Evidence of isoform switching and changes in usage were found. Promoter and coding sequence usage were also altered, hinting of possible changes to mitochondrial transport within neurons. Therefore, in addition to changes in the expression of protein-coding genes, changes in transcript expression, isoform usage, and non-coding RNAs occur with age. This study demonstrates dynamic changes in RNA with age at various genomic levels, which may reflect changes in regulation of transcriptional networks and provides non-coding RNA gene candidates for further studies.
Collapse
Affiliation(s)
- Shona H. Wood
- Integrative Genomics of Ageing Group, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Thomas Craig
- Integrative Genomics of Ageing Group, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Yang Li
- The Wellcome Trust Centre for Human Genetics & MRC Functional Genomics Unit, University of Oxford, Oxford, UK
| | - Brian Merry
- Integrative Genomics of Ageing Group, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
15
|
Josefson JL, Feinglass J, Rademaker AW, Metzger BE, Zeiss DM, Price HE, Langman CB. Maternal obesity and vitamin D sufficiency are associated with cord blood vitamin D insufficiency. J Clin Endocrinol Metab 2013; 98:114-9. [PMID: 23144468 PMCID: PMC3537089 DOI: 10.1210/jc.2012-2882] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
CONTEXT An inverse relationship between total serum 25-hydroxyvitamin D (25-OH D) and increased adiposity has been established in children, adolescents, and adults. However, the relationship between neonatal adiposity and vitamin D status has not been reported. Both maternal obesity and vitamin D deficiency in pregnancy are common and are associated with adverse pregnancy outcomes. OBJECTIVE The aim of the study was to determine the relationship between vitamin D levels in mothers and newborns, as influenced by maternal obesity, and evaluate these associations with neonatal adiposity. DESIGN, SETTING, AND PATIENTS Sixty-one maternal-neonatal pairs participated in this cross-sectional study at an academic medical center. Mothers had a prepregnancy body mass index that was normal or obese. OUTCOME MEASURES Maternal and cord blood sera were assayed for 25-OH D, and neonatal body composition was measured by air displacement plethysmography. RESULTS Mothers had similar and sufficient levels of 25-OH D when measured at 36-38 wk gestation, irrespective of body mass index category (normal weight, 46.05, vs. obese, 49.84 ng/ml; P = not significant). However, cord blood 25-OH D was higher in neonates of normal-weight mothers compared to neonates of obese mothers (27.45 vs. 20.81 ng/ml; P = 0.02). The variance in cord blood 25-OH D was explained by four factors: maternal 25-OH D level, the presence of maternal obesity, maternal age, and neonatal adiposity (r(2) = 0.66). CONCLUSION Obese women transfer less 25-OH D to offspring than normal-weight women, despite similar serum levels. Cord blood 25-OH D levels directly correlate to neonatal percentage body fat. These novel findings underscore the evolving relationships between maternal obesity, vitamin D nutritional status, and adiposity in the neonatal period that may influence subsequent childhood and adulthood vitamin D-dependent processes.
Collapse
Affiliation(s)
- Jami L Josefson
- Division of Pediatric Endocrinology, Ann and Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611-2605, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Prabakaran T, Christensen EI, Nielsen R, Verroust PJ. Cubilin is expressed in rat and human glomerular podocytes. Nephrol Dial Transplant 2012; 27:3156-9. [PMID: 22337902 DOI: 10.1093/ndt/gfr794] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The bulk of proteins filtered in the glomeruli are reabsorbed in the proximal tubule by endocytosis mediated by two multiligand receptors operating in concert, megalin and cubilin. Podocytes can also internalize protein and megalin; this was initially reported in rat proximal tubular and glomerular epithelial cells and has recently also been demonstrated in human podocytes. Cubilin, crucial for albumin reabsorption in the proximal tubule, has not been identified in glomerular epithelial cells. METHODS In the present study, we used immunocytochemistry and reverse transcription-polymerase chain reaction on laser-captured glomeruli to demonstrate synthesis and expression of cubilin in rat and human glomeruli. In parallel experiments, the expression of cubilin was studied in cultured podocytes. RESULTS This study identifies cubilin in rat and human glomeruli according to a pattern similar to that reported for megalin. Cubilin revealed a surface expression but also intracellular expression in the podocytes. CONCLUSION Our findings show that the podocytes display the two endocytic receptors which are responsible for the only documented process for protein reabsorption in proximal tubule cells.
Collapse
Affiliation(s)
- Thaneas Prabakaran
- Department of Biomedicine, Section of Cell Biology and Anatomy, University of Aarhus, Aarhus C, Denmark
| | | | | | | |
Collapse
|
17
|
Chang AM, Ohse T, Krofft RD, Wu JS, Eddy AA, Pippin JW, Shankland SJ. Albumin-induced apoptosis of glomerular parietal epithelial cells is modulated by extracellular signal-regulated kinase 1/2. Nephrol Dial Transplant 2011; 27:1330-43. [PMID: 21896500 DOI: 10.1093/ndt/gfr483] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The biological role(s) of glomerular parietal epithelial cells (PECs) is not fully understood in health or disease. Given its location, PECs are constantly exposed to low levels of filtered albumin, which is increased in nephrotic states. We tested the hypothesis that PECs internalize albumin and increased uptake results in apoptosis. METHODS Confocal microscopy of immunofluorescent staining and immunohistochemistry were used to demonstrate albumin internalization in PECs and to quantitate albumin uptake in normal mice and rats as well as experimental models of membranous nephropathy, minimal change disease/focal segmental glomerulosclerosis and protein overload nephropathy. Fluorescence-activated cell sorting analysis was performed on immortalized cultured PECs exposed to fluorescein isothiocyanate (FITC)-labeled albumin in the presence of an endosomal inhibitor or vehicle. Apoptosis was measured by Hoechst staining in cultured PECs exposed to bovine serum albumin. Levels of phosphorylated extracellular signal-regulated kinase 1 and 2 (p-ERK1/2) were restored by retroviral infection of mitogen-activated protein kinase (MEK) 1/2 and reduced by U0126 in PECs exposed to high albumin levels in culture and apoptosis measured by Hoechst staining. RESULTS PECs internalized albumin normally, and this was markedly increased in all of the experimental disease models (P<0.05 versus controls). Cultured immortalized PECs also internalize FITC-labeled albumin, which was reduced by endosomal inhibition. A consequence of increased albumin internalization was PEC apoptosis in vitro and in vivo. Candidate signaling pathways underlying these events were examined. Data showed markedly reduced levels of phosphorylated extracellular signal-regulated kinase 1 and 2 (ERK1/2) in PECs exposed to high albumin levels in nephropathy and in culture. A role for ERK1/2 in limiting albumin-induced apoptosis was shown by restoring p-ERK1/2 by retroviral infection, which reduced apoptosis in cultured PECs, while a forced decrease of p-ERK1/2 through inhibition of MEK 1/2 significantly increased albumin-induced PEC apoptosis. CONCLUSIONS A normal role of PECs is to take up filtered albumin. However, this is increased in proteinuric glomerular diseases, leading to apoptosis through changes in ERK1/2.
Collapse
Affiliation(s)
- Alice M Chang
- University of Washington, and Seattle Children's Hospital and Research Institute, Seattle, WA, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Megalin/LRP2 expression is induced by peroxisome proliferator-activated receptor -alpha and -gamma: implications for PPARs' roles in renal function. PLoS One 2011; 6:e16794. [PMID: 21311715 PMCID: PMC3032793 DOI: 10.1371/journal.pone.0016794] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 01/12/2011] [Indexed: 12/13/2022] Open
Abstract
Background Megalin is a large endocytic receptor with relevant functions during development and adult life. It is expressed at the apical surface of several epithelial cell types, including proximal tubule cells (PTCs) in the kidney, where it internalizes apolipoproteins, vitamins and hormones with their corresponding carrier proteins and signaling molecules. Despite the important physiological roles of megalin little is known about the regulation of its expression. By analyzing the human megalin promoter, we found three response elements for the peroxisomal proliferator-activated receptor (PPAR). The objective of this study was to test whether megalin expression is regulated by the PPARs. Methodology/Principal Findings Treatment of epithelial cell lines with PPARα or PPARγ ligands increased megalin mRNA and protein expression. The stimulation of megalin mRNA expression was blocked by the addition of specific PPARα or PPARγ antagonists. Furthermore, PPAR bound to three PPAR response elements located in the megalin promoter, as shown by EMSA, and PPARα and its agonist activated a luciferase construct containing a portion of the megalin promoter and the first response element. Accordingly, the activation of PPARα and PPARγ enhanced megalin expression in mouse kidney. As previously observed, high concentrations of bovine serum albumin (BSA) decreased megalin in PTCs in vitro; however, PTCs pretreated with PPARα and PPARγ agonists avoided this BSA-mediated reduction of megalin expression. Finally, we found that megalin expression was significantly inhibited in the PTCs of rats that were injected with BSA to induce tubulointerstitial damage and proteinuria. Treatment of these rats with PPARγ agonists counteracted the reduction in megalin expression and the proteinuria induced by BSA. Conclusions PPARα/γ and their agonists positively control megalin expression. This regulation could have an important impact on several megalin-mediated physiological processes and on pathophysiologies such as chronic kidney disease associated with diabetes and hypertension, in which megalin expression is impaired.
Collapse
|
19
|
Amelina H, Cristobal S. Proteomic study on gender differences in aging kidney of mice. Proteome Sci 2009; 7:16. [PMID: 19358702 PMCID: PMC2673210 DOI: 10.1186/1477-5956-7-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Accepted: 04/09/2009] [Indexed: 11/23/2022] Open
Abstract
Background This study aims to analyze sex differences in mice aging kidney. We applied a proteomic technique based on subfractionation, and liquid chromatography coupled with 2-DE. Samples from male and female CD1-Swiss outbred mice from 28 weeks, 52 weeks, and 76 weeks were analysed by 2-DE, and selected proteins were identified by matrix assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF MS). Results This proteomic analysis detected age-related changes in protein expression in 55 protein-spots, corresponding to 22 spots in males and 33 spots in females. We found a protein expression signature (PES) of aging composed by 8 spots, common for both genders. The identified proteins indicated increases in oxidative and proteolytic proteins and decreases in glycolytic proteins, and antioxidant enzymes. Conclusion Our results provide insights into the gender differences associated to the decline of kidney function in aging. Thus, we show that proteomics can provide valuable information on age-related changes in expression levels of proteins and related modifications. This pilot study is still far from providing candidates for aging-biomarkers. However, we suggest that the analysis of these proteins could suggest mechanisms of cellular aging in kidney, and improve the kidney selection for transplantation.
Collapse
Affiliation(s)
- Hanna Amelina
- Department of Biochemistry and Biophysics, Stockholm University, Sweden.
| | | |
Collapse
|
20
|
Séronie-Vivien S, Delanaye P, Piéroni L, Mariat C, Froissart M, Cristol JP. Cystatin C: current position and future prospects. Clin Chem Lab Med 2009; 46:1664-86. [PMID: 18973461 DOI: 10.1515/cclm.2008.336] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cystatin C is a low-molecular-weight protein which has been proposed as a marker of renal function that could replace creatinine. Indeed, the concentration of cystatin C is mainly determined by glomerular filtration and is particularly of interest in clinical settings where the relationship between creatinine production and muscle mass impairs the clinical performance of creatinine. Since the last decade, numerous studies have evaluated its potential use in measuring renal function in various populations. More recently, other potential developments for its clinical use have emerged. This review summarises current knowledge about the physiology of cystatin C and about its use as a renal marker, either alone or in equations developed to estimate the glomerular filtration rate. This paper also reviews recent data about the other applications of cystatin C, particularly in cardiology, oncology and clinical pharmacology.
Collapse
Affiliation(s)
- Sophie Séronie-Vivien
- Département de Biologie Clinique, Institut Claudius Regaud, Université Paul Sabatier, Toulouse, France.
| | | | | | | | | | | | | |
Collapse
|