1
|
Roque W, Romero F. Cellular metabolomics of pulmonary fibrosis, from amino acids to lipids. Am J Physiol Cell Physiol 2021; 320:C689-C695. [PMID: 33471621 PMCID: PMC8163573 DOI: 10.1152/ajpcell.00586.2020] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/25/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease of unknown etiology with limited treatment options. It is characterized by repetitive injury to alveolar epithelial cells and aberrant activation of numerous signaling pathways. Recent evidence suggests that metabolic reprogramming, metabolic dysregulation, and mitochondria dysfunction are distinctive features of the IPF lungs. Through numerous mechanisms, metabolomic abnormalities in alveolar epithelial cells, myofibroblast, macrophages, and fibroblasts contribute to the abnormal collagen synthesis and dysregulated airway remodeling described in lung fibrosis. This review summarizes the metabolomic changes in amino acids, lipids, glucose, and heme seen in IPF lungs. Simultaneously, we provide new insights into potential therapeutic strategies by targeting a variety of metabolites.
Collapse
Affiliation(s)
- Willy Roque
- Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Freddy Romero
- Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
2
|
Heme Oxygenase-1 as a Pharmacological Target for Host-Directed Therapy to Limit Tuberculosis Associated Immunopathology. Antioxidants (Basel) 2021; 10:antiox10020177. [PMID: 33530574 PMCID: PMC7911872 DOI: 10.3390/antiox10020177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 12/11/2022] Open
Abstract
Excessive inflammation and tissue damage are pathological hallmarks of chronic pulmonary tuberculosis (TB). Despite decades of research, host regulation of these clinical consequences is poorly understood. A sustained effort has been made to understand the contribution of heme oxygenase-1 (HO-1) to this process. HO-1 is an essential cytoprotective enzyme in the host that controls inflammation and oxidative stress in many pathological conditions. While HO-1 levels are upregulated in animals and patients infected with Mycobacterium tuberculosis (Mtb), how it regulates host responses and disease pathology during TB remains unclear. This lack of clarity is due in part to contradictory studies arguing that HO-1 induction contributes to both host resistance as well as disease progression. In this review, we discuss these conflicting studies and the role of HO-1 in modulating myeloid cell functions during Mtb disease progression. We argue that HO-1 is a promising target for host-directed therapy to improve TB immunopathology.
Collapse
|
3
|
Thorenoor N, S. Phelps D, Kala P, Ravi R, Floros Phelps A, M. Umstead T, Zhang X, Floros J. Impact of Surfactant Protein-A Variants on Survival in Aged Mice in Response to Klebsiella pneumoniae Infection and Ozone: Serendipity in Action. Microorganisms 2020; 8:microorganisms8091276. [PMID: 32825654 PMCID: PMC7570056 DOI: 10.3390/microorganisms8091276] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/16/2020] [Accepted: 08/19/2020] [Indexed: 01/10/2023] Open
Abstract
Innate immune molecules, SP-A1 (6A2, 6A4) and SP-A2 (1A0, 1A3), differentially affect young mouse survival after infection. Here, we investigated the impact of SP-A variants on the survival of aged mice. hTG mice carried a different SP-A1 or SP-A2 variant and SP-A-KO were either infected with Klebsiella pneumoniae or exposed to filtered air (FA) or ozone (O3) prior to infection, and their survival monitored over 14 days. In response to infection alone, no gene- or sex-specific (except for 6A2) differences were observed; variant-specific survival was observed (1A0 > 6A4). In response to O3, gene-, sex-, and variant-specific survival was observed with SP-A2 variants showing better survival in males than females, and 1A0 females > 1A3 females. A serendipitous, and perhaps clinically important observation was made; mice exposed to FA prior to infection exhibited significantly better survival than infected alone mice. 1A0 provided an overall better survival in males and/or females indicating a differential role for SP-A genetics. Improved ventilation, as provided by FA, resulted in a survival of significant magnitude in aged mice and perhaps to a lesser extent in young mice. This may have clinical application especially within the context of the current pandemic.
Collapse
Affiliation(s)
- Nithyananda Thorenoor
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.S.P.); (T.M.U.); (X.Z.)
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Correspondence: (N.T.); (J.F.)
| | - David S. Phelps
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.S.P.); (T.M.U.); (X.Z.)
| | - Padma Kala
- Independent Consultant, Upper Saddle River, NJ 07458, USA;
| | - Radhika Ravi
- Division of Anesthesia, Department of Surgery, Veterans Affairs New Jersey Health Care System, 385 Tremont Avenue, East Orange, NJ 07018, USA;
| | | | - Todd M. Umstead
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.S.P.); (T.M.U.); (X.Z.)
| | - Xuesheng Zhang
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.S.P.); (T.M.U.); (X.Z.)
| | - Joanna Floros
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.S.P.); (T.M.U.); (X.Z.)
- Department of Obstetrics & Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Correspondence: (N.T.); (J.F.)
| |
Collapse
|
4
|
Wagener FADTG, Pickkers P, Peterson SJ, Immenschuh S, Abraham NG. Targeting the Heme-Heme Oxygenase System to Prevent Severe Complications Following COVID-19 Infections. Antioxidants (Basel) 2020; 9:E540. [PMID: 32575554 PMCID: PMC7346191 DOI: 10.3390/antiox9060540] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 01/08/2023] Open
Abstract
SARS-CoV-2 is causing a pandemic resulting in high morbidity and mortality. COVID-19 patients suffering from acute respiratory distress syndrome (ARDS) are often critically ill and show lung injury and hemolysis. Heme is a prosthetic moiety crucial for the function of a wide variety of heme-proteins, including hemoglobin and cytochromes. However, injury-derived free heme promotes adhesion molecule expression, leukocyte recruitment, vascular permeabilization, platelet activation, complement activation, thrombosis, and fibrosis. Heme can be degraded by the anti-inflammatory enzyme heme oxygenase (HO) generating biliverdin/bilirubin, iron/ferritin, and carbon monoxide. We therefore postulate that free heme contributes to many of the inflammatory phenomena witnessed in critically ill COVID-19 patients, whilst induction of HO-1 or harnessing heme may provide protection. HO-activity not only degrades injurious heme, but its effector molecules possess also potent salutary anti-oxidative and anti-inflammatory properties. Until a vaccine against SARS-CoV-2 becomes available, we need to explore novel strategies to attenuate the pro-inflammatory, pro-thrombotic, and pro-fibrotic consequences of SARS-CoV-2 leading to morbidity and mortality. The heme-HO system represents an interesting target for novel "proof of concept" studies in the context of COVID-19.
Collapse
Affiliation(s)
- Frank A. D. T. G. Wagener
- Department of Dentistry-Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Philips van Leydenlaan 25, 6525EX Nijmegen, The Netherlands
| | - Peter Pickkers
- Department of Intensive Care Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500HB Nijmegen, The Netherlands;
| | | | - Stephan Immenschuh
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany;
| | - Nader G. Abraham
- Departments of Medicine and Pharmacology, New York Medical College, Valhalla, NY 10595, USA;
| |
Collapse
|
5
|
|
6
|
Surolia R, Karki S, Wang Z, Kulkarni T, Li FJ, Vohra S, Batra H, Nick JA, Duncan SR, Thannickal VJ, Steyn AJC, Agarwal A, Antony VB. Attenuated heme oxygenase-1 responses predispose the elderly to pulmonary nontuberculous mycobacterial infections. Am J Physiol Lung Cell Mol Physiol 2016; 311:L928-L940. [PMID: 27694475 DOI: 10.1152/ajplung.00397.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 09/22/2016] [Indexed: 12/22/2022] Open
Abstract
Pulmonary infections with nontuberculous mycobacteria (P-NTM), such as by Mycobacterium avium complex (M. avium), are increasingly found in the elderly, but the underlying mechanisms are unclear. Recent studies suggest that adaptive immunity is necessary, but not sufficient, for host defense against mycobacteria. Heme oxygenase-1 (HO-1) has been recognized as a critical modulator of granuloma formation and programmed cell death in mycobacterial infections. Old mice (18-21 mo) infected with M. avium had attenuated HO-1 response with diffuse inflammation, high burden of mycobacteria, poor granuloma formation, and decreased survival (45%), while young mice (4-6 mo) showed tight, well-defined granuloma, increased HO-1 expression, and increased survival (95%). To further test the role of HO-1 in increased susceptibility to P-NTM infections in the elderly, we used old and young HO-1+/+ and HO-1-/- mice. The transcriptional modulation of the JAK/STAT signaling pathway in HO-1-/- mice due to M. avium infection demonstrated similarities to infected wild-type old mice with upregulation of SOCS3 and inhibition of Bcl2. Higher expression of SOCS3 with downregulation of Bcl2 resulted in higher macrophage death via cellular necrosis. Finally, peripheral blood monocytes (PBMCs) from elderly patients with P-NTM also demonstrated attenuated HO-1 responses after M. avium stimulation and increased cell death due to cellular necrosis (9.69% ± 2.02) compared with apoptosis (4.75% ± 0.98). The augmented risk for P-NTM in the elderly is due, in part, to attenuated HO-1 responses, subsequent upregulation of SOCS3, and inhibition of Bcl2, leading to programmed cell death of macrophages, and sustained infection.
Collapse
Affiliation(s)
- Ranu Surolia
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, University of Alabama at Birmingham, Birmingham, Alabama
| | - Suman Karki
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, University of Alabama at Birmingham, Birmingham, Alabama
| | - Zheng Wang
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, University of Alabama at Birmingham, Birmingham, Alabama
| | - Tejaswini Kulkarni
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, University of Alabama at Birmingham, Birmingham, Alabama
| | - Fu Jun Li
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, University of Alabama at Birmingham, Birmingham, Alabama
| | - Shikhar Vohra
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, University of Alabama at Birmingham, Birmingham, Alabama
| | - Hitesh Batra
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jerry A Nick
- Department of Medicine, National Jewish Health, University of Colorado, Denver, Colorado
| | - Steven R Duncan
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, University of Alabama at Birmingham, Birmingham, Alabama
| | - Victor J Thannickal
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, University of Alabama at Birmingham, Birmingham, Alabama
| | - Adrie J C Steyn
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama.,KwaZulu-Natal Research Institute for TB and HIV, Durban, South Africa; and
| | - Anupam Agarwal
- Department of Medicine, Division of Nephrology, University of Alabama at Birmingham, Birmingham, Alabama.,Birmingham VA Medical Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Veena B Antony
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, University of Alabama at Birmingham, Birmingham, Alabama;
| |
Collapse
|
7
|
Sobočanec S, Šafranko ŽM, Šarić A, Korolija M, Hadžija MP, Balog T. Response to hyperoxia is associated with similar ho-1 gene expression level in lungs of aging CBA mice of both sexes. Biochem Biophys Rep 2016; 5:55-62. [PMID: 28955806 PMCID: PMC5598368 DOI: 10.1016/j.bbrep.2015.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 08/31/2015] [Accepted: 09/06/2015] [Indexed: 11/18/2022] Open
|
8
|
Puig Á, Rancan L, Paredes SD, Carrasco A, Escames G, Vara E, Tresguerres JAF. Melatonin decreases the expression of inflammation and apoptosis markers in the lung of a senescence-accelerated mice model. Exp Gerontol 2015; 75:1-7. [PMID: 26656745 DOI: 10.1016/j.exger.2015.11.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 10/30/2015] [Accepted: 11/30/2015] [Indexed: 12/21/2022]
Abstract
Aging is associated with an increase in oxidative stress and inflammation. The aging lung is particularly affected since it is continuously exposed to environmental oxidants while antioxidant machinery weakens with age. Melatonin, a free radical scavenger, counteracts inflammation and apoptosis in healthy cells from several tissues. Its effects on the aging lung are, however, not yet fully understood. This study aimed to investigate the effect of chronic administration of melatonin on the expression of inflammation markers (TNF-α, IL-1β, NFκB2, HO-1) and apoptosis parameters (BAD, BAX, AIF) in the lung tissue of male senescence-accelerated prone mice (SAMP8). In addition, RNA oxidative damage, as the formation of 8-hydroxyguanosine (8-OHG), was also evaluated. Young and old animals, aged 2 and 10 months respectively, were divided into 4 groups: untreated young, untreated old, old mice treated with 1mg/kg/day melatonin, and old animals treated with 10mg/kg/day melatonin. Untreated young and old male senescence accelerated resistant mice (SAMR1) were used as controls. After 30 days of treatment, animals were sacrificed. Lungs were collected and immediately frozen in liquid nitrogen. mRNA and protein expressions were measured by RT-PCR and Western blotting, respectively. Levels of 8-OHG were quantified by ELISA. Mean values were analyzed using ANOVA. Old nontreated SAMP8 animals showed increased (p<0.05) mRNA and protein levels of TNF-α, IL-1β, NFκB2, and HO-1 compared to young mice and SAMR1 mice. Melatonin treatment with either dose reversed the aging-derived inflammation (p<0.05). BAD, BAX and AIF expressions also rose with aging, the effect being counteracted with melatonin (p<0.05). Aging also caused a significant elevation (p<0.05) in SAMP8 8-OHG values. This increase was not observed in animals treated with melatonin (p<0.05). In conclusion, melatonin treatment was able to modulate the inflammatory and apoptosis status of the aging lungs, exerting a protective effect on age-induced damage.
Collapse
Affiliation(s)
- Ángela Puig
- Department of Biochemistry and Molecular Biology III, School of Medicine, Complutense University of Madrid, Avda. Complutense s/n, 28040 Madrid, Spain.
| | - Lisa Rancan
- Department of Biochemistry and Molecular Biology III, School of Medicine, Complutense University of Madrid, Avda. Complutense s/n, 28040 Madrid, Spain.
| | - Sergio D Paredes
- Department of Physiology, School of Medicine, Complutense University of Madrid, Avda. Complutense s/n, 28040 Madrid, Spain.
| | - Adrián Carrasco
- Department of Biochemistry and Molecular Biology III, School of Medicine, Complutense University of Madrid, Avda. Complutense s/n, 28040 Madrid, Spain.
| | - Germaine Escames
- University of Granada, Institute of Biotechnology, Center of Biomedical Investigation, Edificio Fray Luis de Granada C/ Ramón y Cajal, 4, 18003 Granada, Spain.
| | - Elena Vara
- Department of Biochemistry and Molecular Biology III, School of Medicine, Complutense University of Madrid, Avda. Complutense s/n, 28040 Madrid, Spain.
| | - Jesús A F Tresguerres
- Department of Physiology, School of Medicine, Complutense University of Madrid, Avda. Complutense s/n, 28040 Madrid, Spain.
| |
Collapse
|
9
|
Zhang H, Davies KJA, Forman HJ. Oxidative stress response and Nrf2 signaling in aging. Free Radic Biol Med 2015; 88:314-336. [PMID: 26066302 PMCID: PMC4628850 DOI: 10.1016/j.freeradbiomed.2015.05.036] [Citation(s) in RCA: 599] [Impact Index Per Article: 59.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/29/2015] [Accepted: 05/31/2015] [Indexed: 12/20/2022]
Abstract
Increasing oxidative stress, a major characteristic of aging, has been implicated in a variety of age-related pathologies. In aging, oxidant production from several sources is increased, whereas antioxidant enzymes, the primary lines of defense, are decreased. Repair systems, including the proteasomal degradation of damaged proteins, also decline. Importantly, the adaptive response to oxidative stress declines with aging. Nrf2/EpRE signaling regulates the basal and inducible expression of many antioxidant enzymes and the proteasome. Nrf2/EpRE activity is regulated at several levels, including transcription, posttranslation, and interactions with other proteins. This review summarizes current studies on age-related impairment of Nrf2/EpRE function and discusses the changes in Nrf2 regulatory mechanisms with aging.
Collapse
Affiliation(s)
- Hongqiao Zhang
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology
| | - Kelvin J A Davies
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology; Division of Molecular & Computational Biology, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Henry Jay Forman
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology; School of Natural Science, University of California at Merced, Merced, CA 95344, USA.
| |
Collapse
|
10
|
Fernandez-Bustamante A, Agazio A, Wilson P, Elkins N, Domaleski L, He Q, Baer KA, Moss AFD, Wischmeyer PE, Repine JE. Brief Glutamine Pretreatment Increases Alveolar Macrophage CD163/Heme Oxygenase-1/p38-MAPK Dephosphorylation Pathway and Decreases Capillary Damage but Not Neutrophil Recruitment in IL-1/LPS-Insufflated Rats. PLoS One 2015; 10:e0130764. [PMID: 26147379 PMCID: PMC4493112 DOI: 10.1371/journal.pone.0130764] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 05/23/2015] [Indexed: 02/06/2023] Open
Abstract
Background Glutamine (GLN) attenuates acute lung injury (ALI) but its effect on alveolar macrophages is unknown. We hypothesized that GLN pretreatment would induce the anti-inflammatory CD163/heme oxygenase (HO)-1/p38-MAPK dephosphorylation pathway in alveolar macrophages and reduce ALI in rats insufflated with interleukin-1 (IL-1) and lipopolysaccharide (LPS). Methods Male Sprague-Dawley rats were randomized to the following groups: GLN-IL-1/LPS-, GLN+IL-1/LPS-, GLN-IL-1/LPS+, and GLN+IL-1/LPS+. GLN pretreatment was given via gavage (1g/kg L-alanyl-L-glutamine) daily for 2 days. ALI was subsequently induced by insufflating 50ng IL-1 followed by 5mg/kg E.coli LPS. After 24h, bronchoalveolar lavage (BAL) protein, lactate dehydrogenase (LDH) and neutrophil concentrations were analyzed. BAL alveolar macrophage CD163+ expression, HO-1 and p38-MAPK concentrations were measured, as well as alveolar macrophage tumor necrosis factor (TNF)-α and interleukin (IL)-10 concentrations. Histology and immunofluorescence studies were also performed. Results Following IL-1/LPS insufflation, GLN pretreated rats had significantly decreased BAL protein and LDH concentrations, but not BAL neutrophil counts, compared to non-GLN pretreated rats. The number of alveolar macrophages and the number of CD163+ macrophages were significantly increased in GLN pretreated IL-1/LPS-insufflated rats compared to non-GLN pretreated, IL-1/LPS-insufflated rats. GLN pretreatment before IL-1/LPS also significantly increased HO-1 concentrations and dephosphorylated p38-MAPK levels but not cytokine levels in alveolar macrophages. Immunofluorescence localized CD163 and HO-1 in alveolar macrophages. Conclusion Short-term GLN pretreatment activates the anti-inflammatory CD163/HO-1/p38-MAPK dephosphorylation pathway of alveolar macrophages and decreases capillary damage but not neutrophil recruitment in IL-1/LPS-insufflated rats.
Collapse
Affiliation(s)
- Ana Fernandez-Bustamante
- Department of Anesthesiology, University of Colorado SOM, Aurora, Colorado, United States of America; Webb-Waring Center, University of Colorado SOM, Aurora, Colorado, United States of America
| | - Amanda Agazio
- Department of Anesthesiology, University of Colorado SOM, Aurora, Colorado, United States of America; Webb-Waring Center, University of Colorado SOM, Aurora, Colorado, United States of America
| | - Paul Wilson
- Webb-Waring Center, University of Colorado SOM, Aurora, Colorado, United States of America
| | - Nancy Elkins
- Webb-Waring Center, University of Colorado SOM, Aurora, Colorado, United States of America
| | - Luke Domaleski
- Webb-Waring Center, University of Colorado SOM, Aurora, Colorado, United States of America
| | - Qianbin He
- Department of Anesthesiology, University of Colorado SOM, Aurora, Colorado, United States of America; Webb-Waring Center, University of Colorado SOM, Aurora, Colorado, United States of America
| | - Kaily A Baer
- Webb-Waring Center, University of Colorado SOM, Aurora, Colorado, United States of America
| | - Angela F D Moss
- Adult and Child Center for Health Outcomes and Delivery Science (ACCORDS), University of Colorado SOM, Aurora, Colorado, United States of America
| | - Paul E Wischmeyer
- Department of Anesthesiology, University of Colorado SOM, Aurora, Colorado, United States of America
| | - John E Repine
- Department of Medicine, University of Colorado SOM, Aurora, Colorado, United States of America; Webb-Waring Center, University of Colorado SOM, Aurora, Colorado, United States of America
| |
Collapse
|
11
|
Li Y, Xie K, Chen H, Wang G, Yu Y. Hydrogen gas inhibits high-mobility group box 1 release in septic mice by upregulation of heme oxygenase 1. J Surg Res 2015; 196:136-48. [PMID: 25818978 DOI: 10.1016/j.jss.2015.02.042] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 02/15/2015] [Accepted: 02/18/2015] [Indexed: 12/30/2022]
Abstract
BACKGROUND Sepsis is a potentially fatal whole-body inflammation caused by severe infection. Hydrogen gas (H2) is effective for treating sepsis. In this study, we hypothesized that the protective function of H2 in mice with septic lung injury occurred through the activation of heme oxygenase 1 (HO-1) and its upstream regulator nuclear factor-erythroid 2 p45-related factor 2 (Nrf2). MATERIALS AND METHODS Male institute of cancer research mice were subjected to sepsis by cecal ligation and puncture (CLP) with the presence or absence of H2. Beginning at 1 and 6 h after CLP or sham operation, respectively, 2% H2 was inhaled for 1 h. We intraperitoneally injected the HO-1 inhibitor zinc protoporphyrin IX (40 mg/kg) 1 h before CLP. To assess the severity of septic lung injury, we observed the 7-d survival rate, wet/dry weight ratio of lung, lung histopathologic score, oxygenation index, and so forth. Serum and homogenates from the lung, liver, and kidney were acquired for measuring the levels of high-mobility group box 1 (HMGB1) at 6, 12, and 24 h after CLP or sham operation. Furthermore, the protein and messenger RNA expression of Nrf2, HO-1, and HMGB1 was measured at 6, 12, and 24 h. RESULTS Septic mice had a lower survival rate and more severe lung injury compared with the sham group. However, therapy with H2 increased the survival rate and alleviated the severity of lung injury, reduced the HMGB1 level, and increased the HO-1 and Nrf2 levels in septic mice. Moreover, the HO-1 inhibitor zinc protoporphyrin IX significantly eliminated the protective effect of H2 on septic lung injury. CONCLUSIONS H2 plays a significant role in regulating the release of the inflammatory cytokine HMGB1 in septic mice, which is partially mediated through the activation of HO-1 as a downstream molecule of Nrf2.
Collapse
Affiliation(s)
- Yuan Li
- Department of Anesthesiology, General Hospital of Tianjin Medical University, Tianjin, China; Tianjin Institute of Anesthesiology, Tianjin, China
| | - Keliang Xie
- Department of Anesthesiology, General Hospital of Tianjin Medical University, Tianjin, China; Tianjin Institute of Anesthesiology, Tianjin, China.
| | - Hongguang Chen
- Department of Anesthesiology, General Hospital of Tianjin Medical University, Tianjin, China; Tianjin Institute of Anesthesiology, Tianjin, China
| | - Guolin Wang
- Department of Anesthesiology, General Hospital of Tianjin Medical University, Tianjin, China; Tianjin Institute of Anesthesiology, Tianjin, China
| | - Yonghao Yu
- Department of Anesthesiology, General Hospital of Tianjin Medical University, Tianjin, China; Tianjin Institute of Anesthesiology, Tianjin, China.
| |
Collapse
|
12
|
Yoshida T, Nagai K, Inomata T, Ito Y, Betsuyaku T, Nishimura M. Relationship between neutrophil influx and oxidative stress in alveolar space in lipopolysaccharide-induced lung injury. Respir Physiol Neurobiol 2014; 191:75-83. [DOI: 10.1016/j.resp.2013.11.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 11/18/2013] [Accepted: 11/22/2013] [Indexed: 10/25/2022]
|
13
|
Beneficial effect of melatonin treatment on inflammation, apoptosis and oxidative stress on pancreas of a senescence accelerated mice model. Mech Ageing Dev 2011; 132:573-82. [DOI: 10.1016/j.mad.2011.10.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 10/04/2011] [Accepted: 10/08/2011] [Indexed: 12/30/2022]
|
14
|
Forman K, Vara E, Garcia C, Kireev R, Cuesta S, Escames G, Tresguerres JAF. Effect of a Combined Treatment With Growth Hormone and Melatonin in the Cardiological Aging on Male SAMP8 Mice. J Gerontol A Biol Sci Med Sci 2011; 66:823-34. [DOI: 10.1093/gerona/glr083] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
15
|
The induction of macrophage hemeoxygenase-1 is protective during acute kidney injury in aging mice. Kidney Int 2011; 79:966-76. [PMID: 21248714 DOI: 10.1038/ki.2010.535] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aging is thought to be associated with a higher susceptibility to renal ischemia-reperfusion injury (IRI). To study whether defective induction of hemeoxygenase-1 (HO-1, a protective and anti-inflammatory enzyme) might contribute to this, we found that while 12-month-old mice had similar baseline renal function and HO-1 expression, the induction of HO-1 usually seen in ischemia-reperfusion was reduced. This was also associated with worsened renal function and acute tubular necrosis in the aged compared with young mice. In the older mice, heme arginate (HA) induced HO-1 in the cortex and medulla, significantly improved renal function, and reduced tissue injury. Cellular HO-1 induction in the medulla in response to injury or HA treatment was found to be interstitial rather than epithelial, as evidenced by its colocalization with macrophage markers. In vitro, HA treatment of primary macrophages resulted in marked HO-1 induction without impairment of classical activation pathways. Macrophage depletion, caused by diphtheria toxin treatment of 12-month-old CD11b-DTR transgenic animals, resulted in the loss of interstitial HO-1-positive cells and reversal of the protective phenotype of HA treatment. Thus, failure of HO-1 induction following renal IRI worsens structural and functional injury in older mice and represents a therapeutic target in the elderly. Hence, HO-1-positive renal macrophages mediate HA-induced protection in IRI.
Collapse
|
16
|
Lima CF, Pereira-Wilson C, Rattan SIS. Curcumin induces heme oxygenase-1 in normal human skin fibroblasts through redox signaling: Relevance for anti-aging intervention. Mol Nutr Food Res 2010; 55:430-42. [DOI: 10.1002/mnfr.201000221] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2010] [Revised: 08/06/2010] [Accepted: 08/26/2010] [Indexed: 11/11/2022]
|
17
|
Forman K, Vara E, García C, Kireev R, Cuesta S, Acuña-Castroviejo D, Tresguerres JAF. Beneficial effects of melatonin on cardiological alterations in a murine model of accelerated aging. J Pineal Res 2010; 49:312-20. [PMID: 20738757 DOI: 10.1111/j.1600-079x.2010.00800.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This study investigated the effect of aging-related parameters such as inflammation, oxidative stress and cell death in the heart in an animal model of accelerated senescence and analyzed the effects of chronic administration of melatonin on these markers. Thirty male mice of senescence-accelerated prone (SAMP8) and 30 senescence-accelerated-resistant mice (SAMR1) at 2 and 10 months of age were used. Animals were divided into eight experimental groups, four from each strain: two young control groups, two old untreated control groups, and four melatonin-treated groups. Melatonin was provided at two different dosages (1 and 10 mg/kg/day) in the drinking water. After 30 days of treatment, the expression of inflammatory mediators (tumor necrosis factor-alpha, interleukin 1 and 10, NFkBp50 and NFkBp52), apoptosis markers (BAD, BAX and Bcl2) and parameters related to oxidative stress (heme oxygenases 1 and 2, endothelial and inducible nitric oxide synthases) were determined in the heart by real-time reverse transcription polymerase chain reaction (RT-PCR). Inflammation, as well as, oxidative stress and apoptosis markers was increased in old SAMP8 males, when compared to its young controls. SAMR1 mice showed significantly lower basal levels of the measured parameters and smaller increases with age or no increases at all. After treatment with melatonin, these age-altered parameters were partially reversed, especially in SAMP8 mice. The results suggest that oxidative stress and inflammation increase with aging and that chronic treatment with melatonin, a potent antioxidant, reduces these parameters. The effects were more marked in the SAMP8 animals.
Collapse
Affiliation(s)
- Katherine Forman
- Department of Physiology, Medical School, University Complutense of Madrid, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Elderly individuals display increased susceptibility to chronic inflammatory diseases and microbial infections, such as periodontitis and oral aspiration pneumonia. The resurgent interest in innate immunity in the 2000s has been accompanied by parallel studies to understand the impact of aging on the function of the innate immune system, which not only provides first-line defense but is essential for the development of adaptive immunity. This review summarizes and discusses our current understanding of age-associated molecular alterations in neutrophils and macrophages, key inflammatory phagocytes implicated in both protective and destructive host responses. The analysis of recent literature suggests that, in advanced age, phagocytes undergo significant changes in signal transduction pathways that may affect their ability to perform antimicrobial functions or regulate the inflammatory response. These abnormalities are expected to contribute to the pathology of oral infection-driven inflammatory diseases in the elderly. Moreover, the elucidation of age-associated defects in the innate immune system will facilitate the development of intervention therapeutic strategies to promote or restore innate immune function and improve the quality of health in old age.
Collapse
Affiliation(s)
- George Hajishengallis
- Oral Health and Systemic Disease, University of Louisville School of Dentistry, 501 South Preston Street, Louisville, KY 40292, USA.
| |
Collapse
|
19
|
Abstract
Elderly individuals display increased susceptibility to chronic inflammatory diseases and microbial infections, such as periodontitis and oral aspiration pneumonia. The resurgent interest in innate immunity in the 2000s has been accompanied by parallel studies to understand the impact of aging on the function of the innate immune system, which not only provides first-line defense but is essential for the development of adaptive immunity. This review summarizes and discusses our current understanding of age-associated molecular alterations in neutrophils and macrophages, key inflammatory phagocytes implicated in both protective and destructive host responses. The analysis of recent literature suggests that, in advanced age, phagocytes undergo significant changes in signal transduction pathways that may affect their ability to perform antimicrobial functions or regulate the inflammatory response. These abnormalities are expected to contribute to the pathology of oral infection-driven inflammatory diseases in the elderly. Moreover, the elucidation of age-associated defects in the innate immune system will facilitate the development of intervention therapeutic strategies to promote or restore innate immune function and improve the quality of health in old age.
Collapse
Affiliation(s)
- George Hajishengallis
- Oral Health and Systemic Disease, University of Louisville School of Dentistry, 501 South Preston Street, Louisville, KY 40292, USA.
| |
Collapse
|
20
|
Anderson J, Sandhir R, Hamilton ES, Berman NEJ. Impaired expression of neuroprotective molecules in the HIF-1alpha pathway following traumatic brain injury in aged mice. J Neurotrauma 2009; 26:1557-66. [PMID: 19203226 DOI: 10.1089/neu.2008.0765] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Elderly traumatic brain injury (TBI) patients have higher rates of mortality and worse functional outcome than non-elderly TBI patients. The mechanisms involved in poor outcomes in the elderly are not well understood. Hypoxia-inducible factor-1 alpha (HIF-1alpha) is a basic helix-loop-helix transcription factor that modulates expression of key genes involved in neuroprotection. In this study, we studied the expression of HIF-1alpha and its target survival genes, heme oxygenase-1 (HO-1), vascular endothelial growth factor (VEGF), and erythropoietin (EPO) in the brains of adult versus aged mice following controlled cortical impact (CCI) injury. Adult (5-6 months) and aged (23-24 months) C57Bl/6 mice were injured using a CCI device. At 72 h post-injury, mice were sacrificed and the injured cortex was used for mRNA and protein analysis using real-time reverse transcription--polymerase chain reaction (RT-PCR) and Western blotting protocols. Following injury, HIF-1alpha, HO-1, and VEGF showed upregulation in both the young and aged mice, but in the aged animals the increase in HIF-1alpha and VEGF in response to injury was much lower than in the adult injured animals. EPO was upregulated in the adult injured brain, but not in the aged injured brain. These results support the hypothesis that reduced expression of genes in the HIF-1alpha neuroprotective pathway in aging may contribute to poor prognosis in the elderly following TBI.
Collapse
Affiliation(s)
- Joshua Anderson
- Steve Palermo Nerve Regeneration Laboratory, University of Kansas Medical Center, Kansas City, Kansas, USA
| | | | | | | |
Collapse
|
21
|
Moriyama C, Betsuyaku T, Ito Y, Hamamura I, Hata J, Takahashi H, Nasuhara Y, Nishimura M. Aging enhances susceptibility to cigarette smoke-induced inflammation through bronchiolar chemokines. Am J Respir Cell Mol Biol 2009; 42:304-11. [PMID: 19491340 DOI: 10.1165/rcmb.2009-0025oc] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cigarette smoking and aging are major risk factors for chronic obstructive pulmonary disease. An unsolved question is whether elderly lungs are particularly vulnerable to cigarette smoke (CS) exposure. In this study, we used a mouse model to test the hypothesis that aging increases the susceptibility to CS-induced pulmonary inflammation. We subjected 9-week-old and 69-week-old C57BL/6J mice to CS (whole-body exposure, 90 min/d), and evaluated neutrophil infiltration in the lungs, the levels of keratinocyte-derived chemokine (KC) and macrophage inflammatory protein (MIP)-2 in bronchoalveolar lavage fluid, and mRNA expression in bronchiolar epithelium retrieved by laser capture microdissection. The 69-week-old mice showed a greater number of neutrophils and higher levels of bronchiolar KC and MIP-2 expression than 9-week-old mice after 9 days of CS exposure. Furthermore, single CS exposure induced the rapid up-regulation of KC and MIP-2 in bronchiolar epithelium in both 9-week-old and 69-week-old mice, and the much higher levels in 69-week-old mice were associated with greater nuclear translocation of NF-kappaB. In contrast, no age-related differences were observed in the bronchiolar expression of NF-E2-related factor 2-regulated antioxidant and detoxification genes, heme oxygenase-1, reduced nicotinamide adenine dinucleotide phosphate quinone reductase 1, and glutamate-cysteine ligase, modifier unit, or antioxidant activity in bronchoalveolar lavage fluid, regardless of CS exposure. In summary, aging increases susceptibility to CS-induced inflammation in a mouse model, and robust mRNA up-regulation and nuclear translocation of NF-kappaB in bronchiolar epithelium may be involved.
Collapse
Affiliation(s)
- Chinatsu Moriyama
- First Department of Medicine, Hokkaido University School of Medicine, N-15, W-7, Kita-ku, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|