1
|
Prvulovic M, Sokanovic S, Simeunovic V, Vukojevic A, Jovic M, Todorovic S, Mladenovic A. The complex relationship between late-onset caloric restriction and synaptic plasticity in aged Wistar rats. IUBMB Life 2024; 76:548-562. [PMID: 38390757 DOI: 10.1002/iub.2812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/15/2024] [Indexed: 02/24/2024]
Abstract
Age-related reduction in spine density, synaptic marker expression, and synaptic efficiency are frequently reported. These changes provide the cellular and molecular basis for the cognitive decline characteristic for old age. Nevertheless, there are several approaches that have the potential to ameliorate these processes and improve cognition, caloric restriction being one of the most promising and widely studied. While lifelong caloric restriction is known for its numerous beneficial effects, including improved cognitive abilities and increased expression of proteins essential for synaptic structure and function, the effects of late-onset and/or short-term CR on synaptic plasticity have yet to be investigated. We have previously documented that the effects of CR are strongly dependent on whether CR is initiated in young or old subjects. With this in mind, we conducted a long-term study in aging Wistar rats to examine changes in the expression of several key synaptic markers under the regimen of CR started at different time points in life. We found a significant increase in the expression of both presynaptic and postsynaptic markers. However, taking into account previously reported changes in the behavior detected in these animals, we consider that this increase cannot represent beneficial effect of CR.
Collapse
Affiliation(s)
- Milica Prvulovic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Srdjan Sokanovic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Valentina Simeunovic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Andjela Vukojevic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milena Jovic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Smilja Todorovic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Mladenovic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
2
|
Blood-to-brain communication in aging and rejuvenation. Nat Neurosci 2023; 26:379-393. [PMID: 36646876 DOI: 10.1038/s41593-022-01238-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 11/21/2022] [Indexed: 01/18/2023]
Abstract
Aging induces molecular, cellular and functional changes in the adult brain that drive cognitive decline and increase vulnerability to dementia-related neurodegenerative diseases. Leveraging systemic and lifestyle interventions, such as heterochronic parabiosis, administration of 'young blood', exercise and caloric restriction, has challenged prevalent views of brain aging as a rigid process and has demonstrated that aging-associated cognitive and cellular impairments can be restored to more youthful levels. Technological advances in proteomic and transcriptomic analyses have further facilitated investigations into the functional impact of intertissue communication on brain aging and have led to the identification of a growing number of pro-aging and pro-youthful factors in blood. In this review, we discuss blood-to-brain communication from a systems physiology perspective with an emphasis on blood-derived signals as potent drivers of both age-related brain dysfunction and brain rejuvenation.
Collapse
|
3
|
The Effects of Dietary Interventions on Brain Aging and Neurological Diseases. Nutrients 2022; 14:nu14235086. [PMID: 36501116 PMCID: PMC9740746 DOI: 10.3390/nu14235086] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022] Open
Abstract
Dietary interventions can ameliorate age-related neurological decline. Decades of research of in vitro studies, animal models, and clinical trials support their ability and efficacy to improve behavioral outcomes by inducing biochemical and physiological changes that lead to a more resilient brain. Dietary interventions including calorie restriction, alternate day fasting, time restricted feeding, and fasting mimicking diets not only improve normal brain aging but also slow down, or even reverse, the progression of neurological diseases. In this review, we focus on the effects of intermittent and periodic fasting on improving phenotypic outcomes, such as cognitive and motor-coordination decline, in the normal aging brain through an increase in neurogenesis and synaptic plasticity, and decrease in neuroinflammation, mitochondrial dysfunction, and oxidative stress. We summarize the results of various dietary interventions in animal models of age-related neurological diseases such as Alzheimer's disease, Parkinson's disease, epilepsy, and Multiple Sclerosis and discuss the results of clinical trials that explore the feasibility of dietary interventions in the prevention and treatment of these diseases.
Collapse
|
4
|
Tesic V, Ciric J, Jovanovic Macura I, Zogovic N, Milanovic D, Kanazir S, Perovic M. Corticosterone and Glucocorticoid Receptor in the Cortex of Rats during Aging-The Effects of Long-Term Food Restriction. Nutrients 2021; 13:nu13124526. [PMID: 34960078 PMCID: PMC8703853 DOI: 10.3390/nu13124526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
Numerous beneficial effects of food restriction on aging and age-related pathologies are well documented. It is also well-established that both short- and long-term food restriction regimens induce elevated circulating levels of glucocorticoids, stress-induced hormones produced by adrenal glands that can also exert deleterious effects on the brain. In the present study, we examined the effect of long-term food restriction on the glucocorticoid hormone/glucocorticoid receptor (GR) system in the cortex during aging, in 18- and 24-month-old rats. Corticosterone level was increased in the cortex of aged ad libitum-fed rats. Food restriction induced its further increase, accompanied with an increase in the level of 11β-hydroxysteroid dehydrogenase type 1. However, alterations in the level of GR phosphorylated at Ser232 were not detected in animals on food restriction, in line with unaltered CDK5 level, the decrease of Hsp90, and an increase in a negative regulator of GR function, FKBP51. Moreover, our data revealed that reduced food intake prevented age-related increase in the levels of NFκB, gfap, and bax, confirming its anti-inflammatory and anti-apoptotic effects. Along with an increase in the levels of c-fos, our study provides additional evidences that food restriction affects cortical responsiveness to glucocorticoids during aging.
Collapse
Affiliation(s)
- Vesna Tesic
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, Bul. despota Stefana 142, 11060 Belgrade, Serbia; (V.T.); (J.C.); (I.J.M.); (D.M.); (M.P.)
| | - Jelena Ciric
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, Bul. despota Stefana 142, 11060 Belgrade, Serbia; (V.T.); (J.C.); (I.J.M.); (D.M.); (M.P.)
| | - Irena Jovanovic Macura
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, Bul. despota Stefana 142, 11060 Belgrade, Serbia; (V.T.); (J.C.); (I.J.M.); (D.M.); (M.P.)
| | - Nevena Zogovic
- Department of Neurophysiology, Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, Bul. despota Stefana 142, 11060 Belgrade, Serbia;
| | - Desanka Milanovic
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, Bul. despota Stefana 142, 11060 Belgrade, Serbia; (V.T.); (J.C.); (I.J.M.); (D.M.); (M.P.)
| | - Selma Kanazir
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, Bul. despota Stefana 142, 11060 Belgrade, Serbia; (V.T.); (J.C.); (I.J.M.); (D.M.); (M.P.)
- Correspondence:
| | - Milka Perovic
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, Bul. despota Stefana 142, 11060 Belgrade, Serbia; (V.T.); (J.C.); (I.J.M.); (D.M.); (M.P.)
| |
Collapse
|
5
|
Fontana L, Ghezzi L, Cross AH, Piccio L. Effects of dietary restriction on neuroinflammation in neurodegenerative diseases. J Exp Med 2021; 218:211666. [PMID: 33416892 PMCID: PMC7802371 DOI: 10.1084/jem.20190086] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/29/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Recent and accumulating work in experimental animal models and humans shows that diet has a much more pervasive and prominent role than previously thought in modulating neuroinflammatory and neurodegenerative mechanisms leading to some of the most common chronic central nervous system (CNS) diseases. Chronic or intermittent food restriction has profound effects in shaping brain and peripheral metabolism, immunity, and gut microbiome biology. Interactions among calorie intake, meal frequency, diet quality, and the gut microbiome modulate specific metabolic and molecular pathways that regulate cellular, tissue, and organ homeostasis as well as inflammation during normal brain aging and CNS neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis, among others. This review discusses these findings and their potential application to the prevention and treatment of CNS neuroinflammatory diseases and the promotion of healthy brain aging.
Collapse
Affiliation(s)
- Luigi Fontana
- Charles Perkins Center, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, Australia.,Department of Clinical and Experimental Sciences, Brescia University, Brescia, Italy
| | - Laura Ghezzi
- Department of Neurology, Washington University in St. Louis, St. Louis, MO.,University of Milan, Milan, Italy
| | - Anne H Cross
- Department of Neurology, Washington University in St. Louis, St. Louis, MO
| | - Laura Piccio
- Department of Neurology, Washington University in St. Louis, St. Louis, MO.,Brain and Mind Centre, School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
Bahadur Patel A, Veeraiah P, Shameem M, Mahesh Kumar J, Saba K. Impaired GABAergic and glutamatergic neurometabolic activity in aged mice brain as measured by 1 H-[ 13 C]-NMR spectroscopy. FASEB J 2021; 35:e21321. [PMID: 33543543 DOI: 10.1096/fj.202001704rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 01/04/2023]
Abstract
Healthy aging is associated with a decline in cognitive function, and is a major risk factor for many neurodegenerative diseases. Although, there are several evidence that brain mitochondrial function is altered with aging its significance at the cellular level is elusive. In this study, we have investigated mitochondrial TCA cycle and neurotransmitter cycle fluxes associated with glutamatergic, GABAergic neurons and astroglia in the cerebral cortex and hippocampus of young (6 months) and aged (24 months) C57BL6 mice by using 1 H-[13 C]-NMR spectroscopy together with timed infusion of 13 C-labeled glucose and acetate. The ratio VCyc /VTCA was determined from a steady-state [2-13 C]acetate experiment. Metabolic fluxes were obtained by fitting a three-compartment metabolic model to 13 C turnover of amino acids from glucose. Levels of glutamate, aspartate and taurine were reduced in the cerebral cortex, while glutamine and choline were elevated in the hippocampus of aged mice. Interestingly, the rate of acetate oxidation increased in the cerebral cortex, while the flux of mitochondrial TCA cycle of glutamatergic neurons decreased in the cerebral cortex (P < .0001) and hippocampus (P = .025) of aged mice. The glutamate-glutamine neurotransmitter cycle flux was reduced in the cerebral cortex (P < .0001). The GABAergic TCA cycle flux was reduced in the cerebral cortex (P = .0008), while GABA-glutamine neurotransmitter cycling flux was also reduced in the cerebral cortex (P = .011) and hippocampus (P = .042) of aged brain. In conclusion, the reduction in excitatory and inhibitory neurotransmitter activity of glutamatergic and GABAergic neurons in the cerebral cortex and hippocampus correlates qualitatively with declined cognitive function in aged mice.
Collapse
Affiliation(s)
- Anant Bahadur Patel
- NMR Microimaging and Spectroscopy, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pandichelvam Veeraiah
- NMR Microimaging and Spectroscopy, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Mohammad Shameem
- NMR Microimaging and Spectroscopy, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Jerald Mahesh Kumar
- NMR Microimaging and Spectroscopy, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Kamal Saba
- NMR Microimaging and Spectroscopy, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
7
|
Abstract
Life expectancy in most developed countries has been rising over the past century. In the UK alone, there are about 12 million people over 65 years old and centenarians have increased by 85% in the past 15 years. As a result of the ageing population, which is due mainly to improvements in medical treatments, public health, improved housing and lifestyle choices, there is an associated increase in the prevalence of pathological conditions, such as metabolic disorders, type 2 diabetes, cardiovascular and neurodegenerative diseases, many types of cancer and others. Statistics suggest that nearly 54% of elderly people in the UK live with at least two chronic conditions, revealing the urgency for identifying interventions that can prevent and/or treat such disorders. Non-pharmacological, dietary interventions such as energetic restriction (ER) and methionine restriction (MR) have revealed promising outcomes in increasing longevity and preventing and/or reversing the development of ageing-associated disorders. In this review, we discuss the evidence and mechanisms that are involved in these processes. Fibroblast growth factor 1 and hydrogen sulphide are important molecules involved in the effects of ER and MR in the extension of life span. Their role is also associated with the prevention of metabolic and cognitive disorders, highlighting these interventions as promising modulators for improvement of health span.
Collapse
|
8
|
Saini V, Kaur T, Kalotra S, Kaur G. The neuroplasticity marker PSA-NCAM: Insights into new therapeutic avenues for promoting neuroregeneration. Pharmacol Res 2020; 160:105186. [DOI: 10.1016/j.phrs.2020.105186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/25/2020] [Accepted: 08/30/2020] [Indexed: 02/06/2023]
|
9
|
Lazic D, Tesic V, Jovanovic M, Brkic M, Milanovic D, Zlokovic BV, Kanazir S, Perovic M. Every-other-day feeding exacerbates inflammation and neuronal deficits in 5XFAD mouse model of Alzheimer's disease. Neurobiol Dis 2020; 136:104745. [PMID: 31931140 DOI: 10.1016/j.nbd.2020.104745] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 11/22/2019] [Accepted: 01/09/2020] [Indexed: 02/04/2023] Open
Abstract
Food restriction has been widely associated with beneficial effects on brain aging and age-related neurodegenerative diseases such as Alzheimer's disease. However, previous studies on the effects of food restriction on aging- or pathology-related cognitive decline are controversial, emphasizing the importance of the type, onset and duration of food restriction. In the present study, we assessed the effects of preventive every-other-day (EOD) feeding regimen on neurodegenerative phenotype in 5XFAD transgenic mice, a commonly used mouse model of Alzheimer's disease. EOD feeding regimen was introduced to transgenic female mice at the age of 2 months and the effects on amyloid-β (Aβ) accumulation, gliosis, synaptic plasticity, and blood-brain barrier breakdown were analyzed in cortical tissue of 6-month-old animals. Surprisingly, significant increase of inflammation in the cortex of 5XFAD fed EOD mice was observed, reflected by the expression of microglial and astrocytic markers. This increase in reactivity and/or proliferation of glial cells was accompanied by an increase in proinflammatory cytokine TNF-α, p38 MAPK and EAAT2, and a decrease in GAD67. NMDA receptor subunit 2B, related to glutamate excitotoxicity, was increased in the cortex of 5XFAD-EOD mice indicating additional alterations in glutamatergic signaling. Furthermore, 4 months of EOD feeding regimen had led to synaptic plasticity proteins reduction and neuronal injury in 5XFAD mice. However, EOD feeding regimen did not affect Aβ load and blood-brain barrier permeability in the cortex of 5XFAD mice. Our results demonstrate that EOD feeding regimen exacerbates Alzheimer's disease-like neurodegenerative and neuroinflammatory changes irrespective of Aβ pathology in 5XFAD mice, suggesting that caution should be paid when using food restrictions in the prodromal phase of this neurodegenerative disease.
Collapse
Affiliation(s)
- Divna Lazic
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Bul. despota Stefana 142, 11000 Belgrade, Serbia; Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo St, 90033 Los Angeles, CA, USA; Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, 1501 San Pablo St, 90033 Los Angeles, CA, USA.
| | - Vesna Tesic
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Bul. despota Stefana 142, 11000 Belgrade, Serbia.
| | - Mirna Jovanovic
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Bul. despota Stefana 142, 11000 Belgrade, Serbia.
| | - Marjana Brkic
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Bul. despota Stefana 142, 11000 Belgrade, Serbia.
| | - Desanka Milanovic
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Bul. despota Stefana 142, 11000 Belgrade, Serbia.
| | - Berislav V Zlokovic
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo St, 90033 Los Angeles, CA, USA; Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, 1501 San Pablo St, 90033 Los Angeles, CA, USA.
| | - Selma Kanazir
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Bul. despota Stefana 142, 11000 Belgrade, Serbia.
| | - Milka Perovic
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Bul. despota Stefana 142, 11000 Belgrade, Serbia.
| |
Collapse
|
10
|
Chowen JA, Garcia-Segura LM. Microglia, neurodegeneration and loss of neuroendocrine control. Prog Neurobiol 2020; 184:101720. [DOI: 10.1016/j.pneurobio.2019.101720] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/19/2019] [Accepted: 11/02/2019] [Indexed: 02/07/2023]
|
11
|
Dietary Restriction and Neuroinflammation: A Potential Mechanistic Link. Int J Mol Sci 2019; 20:ijms20030464. [PMID: 30678217 PMCID: PMC6386998 DOI: 10.3390/ijms20030464] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 01/19/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic neuroinflammation is a common feature of the aged brain, and its association with the major neurodegenerative changes involved in cognitive impairment and motor dysfunction is well established. One of the most potent antiaging interventions tested so far is dietary restriction (DR), which extends the lifespan in various organisms. Microglia and astrocytes are two major types of glial cells involved in the regulation of neuroinflammation. Accumulating evidence suggests that the age-related proinflammatory activation of astrocytes and microglia is attenuated under DR. However, the molecular mechanisms underlying DR-mediated regulation of neuroinflammation are not well understood. Here, we review the current understanding of the effects of DR on neuroinflammation and suggest an underlying mechanistic link between DR and neuroinflammation that may provide novel insights into the role of DR in aging and age-associated brain disorders.
Collapse
|
12
|
Calorie restriction in rodents: Caveats to consider. Ageing Res Rev 2017; 39:15-28. [PMID: 28610949 DOI: 10.1016/j.arr.2017.05.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/30/2017] [Accepted: 05/31/2017] [Indexed: 02/08/2023]
Abstract
The calorie restriction paradigm has provided one of the most widely used and most useful tools for investigating mechanisms of aging and longevity. By far, rodent models have been employed most often in these endeavors. Over decades of investigation, claims have been made that the paradigm produces the most robust demonstration that aging is malleable. In the current review of the rodent literature, we present arguments that question the robustness of the paradigm to increase lifespan and healthspan. Specifically, there are several questions to consider as follows: (1) At what age does CR no longer produce benefits? (2) Does CR attenuate cognitive decline? (3) Are there negative effects of CR, including effects on bone health, wound healing, and response to infection? (4) How important is schedule of feeding? (5) How long does CR need to be imposed to be effective? (6) How do genotype and gender influence CR? (7) What role does dietary composition play? Consideration of these questions produce many caveats that should guide future investigations to move the field forward.
Collapse
|
13
|
Cutuli D. Functional and Structural Benefits Induced by Omega-3 Polyunsaturated Fatty Acids During Aging. Curr Neuropharmacol 2017; 15:534-542. [PMID: 27306037 PMCID: PMC5543674 DOI: 10.2174/1570159x14666160614091311] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/16/2016] [Accepted: 05/31/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Omega-3 polyunsaturated fatty acids (n-3 PUFA) are structural components of the brain and are indispensable for neuronal membrane synthesis. Along with decline in cognition, decreased synaptic density and neuronal loss, normal aging is accompanied by a reduction in n-3 PUFA concentration in the brain in both humans and rodents. Recently, many clinical and experimental studies have demonstrated the importance of n-3 PUFA in counteracting neurodegeneration and agerelated dysfunctions. METHODS This review will focus on the neuroprotective effects of n-3 PUFA on cognitive impairment, neuroinflammation and neurodegeneration during normal aging. Multiple pathways of n-3 PUFA preventive action will be examined. RESULTS Namely, n-3 PUFA have been shown to increase the levels of several signaling factors involved in synaptic plasticity, thus leading to the increase of dendritic spines and synapses as well as the enhancement of hippocampal neurogenesis even at old age. In elderly subjects n-3 PUFA exert anti-inflammatory effects associated with improved cognitive functions. Interestingly, growing evidence highlights n-3 PUFA efficacy in preventing the loss of both gray and white matter volume and integrity. CONCLUSION This review shows that n-3 PUFA are essential for a successful aging and appear as ideal cognitive enhancers to be implemented in nutritional interventions for the promotion of healthy aging.
Collapse
Affiliation(s)
- Debora Cutuli
- Fondazione Santa Lucia of Rome, Via del Fosso di Fiorano 64, 00143 Rome, Italy
| |
Collapse
|
14
|
Miwa S, Czapiewski R, Wan T, Bell A, Hill KN, von Zglinicki T, Saretzki G. Decreased mTOR signalling reduces mitochondrial ROS in brain via accumulation of the telomerase protein TERT within mitochondria. Aging (Albany NY) 2016; 8:2551-2567. [PMID: 27777385 PMCID: PMC5115906 DOI: 10.18632/aging.101089] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/02/2016] [Indexed: 01/11/2023]
Abstract
Telomerase in its canonical function maintains telomeres in dividing cells. In addition, the telomerase protein TERT has non-telomeric functions such as shuttling to mitochondria resulting in a decreased oxidative stress, DNA damage and apoptosis. TERT protein persists in adult neurons and can co-localise to mitochondria under various stress conditions. We show here that TERT expression decreased in mouse brain during aging while release of reactive oxygen species (ROS) from the mitochondrial electron transport chain increased. Dietary restriction (DR) caused accumulation of TERT protein in mouse brain mitochondria correlating to decreased ROS release and improved learning and spatial short-term memory. Decreased mTOR signalling is a mediator of DR. Accordingly, feeding mice with rapamycin increased brain mitochondrial TERT and reduced ROS release. Importantly, the beneficial effects of rapamycin on mitochondrial function were absent in brains and fibroblasts from first generation TERT -/- mice, and when TERT shuttling was inhibited by the Src kinase inhibitor bosutinib. Taken together, our data suggests that the mTOR signalling pathway impinges on the mitochondrial localisation of TERT protein, which might in turn contribute to the protection of the brain by DR or rapamycin against age-associated mitochondrial ROS increase and cognitive decline.
Collapse
Affiliation(s)
- Satomi Miwa
- Institute for Cell and Molecular Biosciences, Newcastle Institute for Ageing, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Rafal Czapiewski
- Institute for Cell and Molecular Biosciences, Newcastle Institute for Ageing, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Tengfei Wan
- Institute for Cell and Molecular Biosciences, Newcastle Institute for Ageing, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Amy Bell
- Institute for Cell and Molecular Biosciences, Newcastle Institute for Ageing, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Kirsten N. Hill
- Institute for Cell and Molecular Biosciences, Newcastle Institute for Ageing, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Thomas von Zglinicki
- Institute for Cell and Molecular Biosciences, Newcastle Institute for Ageing, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Gabriele Saretzki
- Institute for Cell and Molecular Biosciences, Newcastle Institute for Ageing, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| |
Collapse
|
15
|
Walker T, Michaelides C, Ekonomou A, Geraki K, Parkes HG, Suessmilch M, Herlihy AH, Crum WR, So PW. Dissociation between iron accumulation and ferritin upregulation in the aged substantia nigra: attenuation by dietary restriction. Aging (Albany NY) 2016; 8:2488-2508. [PMID: 27743512 PMCID: PMC5115902 DOI: 10.18632/aging.101069] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/26/2016] [Indexed: 01/13/2023]
Abstract
Despite regulation, brain iron increases with aging and may enhance aging processes including neuroinflammation. Increases in magnetic resonance imaging transverse relaxation rates, R2 and R2*, in the brain have been observed during aging. We show R2 and R2* correlate well with iron content via direct correlation to semi-quantitative synchrotron-based X-ray fluorescence iron mapping, with age-associated R2 and R2* increases reflecting iron accumulation. Iron accumulation was concomitant with increased ferritin immunoreactivity in basal ganglia regions except in the substantia nigra (SN). The unexpected dissociation of iron accumulation from ferritin-upregulation in the SN suggests iron dyshomeostasis in the SN. Occurring alongside microgliosis and astrogliosis, iron dyshomeotasis may contribute to the particular vulnerability of the SN. Dietary restriction (DR) has long been touted to ameliorate brain aging and we show DR attenuated age-related in vivo R2 increases in the SN over ages 7 - 19 months, concomitant with normal iron-induction of ferritin expression and decreased microgliosis. Iron is known to induce microgliosis and conversely, microgliosis can induce iron accumulation, which of these may be the initial pathological aging event warrants further investigation. We suggest iron chelation therapies and anti-inflammatory treatments may be putative 'anti-brain aging' therapies and combining these strategies may be synergistic.
Collapse
Affiliation(s)
- Thomas Walker
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Christos Michaelides
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Antigoni Ekonomou
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Kalotina Geraki
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom
| | - Harold G Parkes
- CR-UK Clinical MR Research Group, Institute of Cancer Research, London, United Kingdom
| | - Maria Suessmilch
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | | | - William R Crum
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Po-Wah So
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
16
|
Caloric restriction: beneficial effects on brain aging and Alzheimer’s disease. Mamm Genome 2016; 27:300-19. [DOI: 10.1007/s00335-016-9647-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 05/16/2016] [Indexed: 01/25/2023]
|
17
|
Kumar P, Singh R, Nazmi A, Lakhanpal D, Kataria H, Kaur G. Glioprotective effects of Ashwagandha leaf extract against lead induced toxicity. BIOMED RESEARCH INTERNATIONAL 2014; 2014:182029. [PMID: 24987671 PMCID: PMC4058459 DOI: 10.1155/2014/182029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/24/2014] [Accepted: 04/24/2014] [Indexed: 01/01/2023]
Abstract
Withania somnifera (Ashwagandha), also known as Indian Ginseng, is a well-known Indian medicinal plant due to its antioxidative, antistress, antigenotoxic, and immunomodulatory properties. The present study was designed to assess and establish the cytoprotective potential of Ashwagandha leaf aqueous extract against lead induced toxicity. Pretreatment of C6 cells with 0.1% Ashwagandha extract showed cytoprotection against 25 μM to 400 μM concentration of lead nitrate. Further pretreatment with Ashwagandha extract to lead nitrate exposed cells (200 μM) resulted in normalization of glial fibrillary acidic protein (GFAP) expression as well as heat shock protein (HSP70), mortalin, and neural cell adhesion molecule (NCAM) expression. Further, the cytoprotective efficacy of Ashwagandha extract was studied in vivo. Administration of Ashwagandha extract provided significant protection to lead induced altered antioxidant defense that may significantly compromise normal cellular function. Ashwagandha also provided a significant protection to lipid peroxidation (LPx) levels, catalase, and superoxide dismutase (SOD) but not reduced glutathione (GSH) contents in brain tissue as well as peripheral organs, liver and kidney, suggesting its ability to act as a free radical scavenger protecting cells against toxic insult. These results, thus, suggest that Ashwagandha water extract may have the potential therapeutic implication against lead poisoning.
Collapse
Affiliation(s)
- Praveen Kumar
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Raghavendra Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Arshed Nazmi
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Dinesh Lakhanpal
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Hardeep Kataria
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Gurcharan Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| |
Collapse
|
18
|
Murphy T, Dias GP, Thuret S. Effects of diet on brain plasticity in animal and human studies: mind the gap. Neural Plast 2014; 2014:563160. [PMID: 24900924 PMCID: PMC4037119 DOI: 10.1155/2014/563160] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/17/2014] [Indexed: 02/07/2023] Open
Abstract
Dietary interventions have emerged as effective environmental inducers of brain plasticity. Among these dietary interventions, we here highlight the impact of caloric restriction (CR: a consistent reduction of total daily food intake), intermittent fasting (IF, every-other-day feeding), and diet supplementation with polyphenols and polyunsaturated fatty acids (PUFAs) on markers of brain plasticity in animal studies. Moreover, we also discuss epidemiological and intervention studies reporting the effects of CR, IF and dietary polyphenols and PUFAs on learning, memory, and mood. In particular, we evaluate the gap in mechanistic understanding between recent findings from animal studies and those human studies reporting that these dietary factors can benefit cognition, mood, and anxiety, aging, and Alzheimer's disease-with focus on the enhancement of structural and functional plasticity markers in the hippocampus, such as increased expression of neurotrophic factors, synaptic function and adult neurogenesis. Lastly, we discuss some of the obstacles to harnessing the promising effects of diet on brain plasticity in animal studies into effective recommendations and interventions to promote healthy brain function in humans. Together, these data reinforce the important translational concept that diet, a modifiable lifestyle factor, holds the ability to modulate brain health and function.
Collapse
Affiliation(s)
- Tytus Murphy
- Institute of Psychiatry, King's College London, The James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Gisele Pereira Dias
- Institute of Psychiatry, King's College London, The James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Sandrine Thuret
- Institute of Psychiatry, King's College London, The James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| |
Collapse
|
19
|
Sauvant J, Delpech JC, Palin K, De Mota N, Dudit J, Aubert A, Orcel H, Roux P, Layé S, Moos F, Llorens-Cortes C, Nadjar A. Mechanisms involved in dual vasopressin/apelin neuron dysfunction during aging. PLoS One 2014; 9:e87421. [PMID: 24505289 PMCID: PMC3914823 DOI: 10.1371/journal.pone.0087421] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 12/21/2013] [Indexed: 12/28/2022] Open
Abstract
Normal aging is associated with vasopressin neuron adaptation, but little is known about its effects on the release of apelin, an aquaretic peptide colocalized with vasopressin. We found that plasma vasopressin concentrations were higher and plasma apelin concentrations lower in aged rats than in younger adults. The response of AVP/apelin neurons to osmotic challenge was impaired in aged rats. The overactivity of vasopressin neurons was sustained partly by the increased expression of Transient receptor potential vanilloid2 (Trpv2), because central Trpv blocker injection reversed the age-induced increase in plasma vasopressin concentration without modifying plasma apelin concentration. The morphofunctional plasticity of the supraoptic nucleus neuron-astrocyte network normally observed during chronic dehydration in adults appeared to be impaired in aged rats as well. IL-6 overproduction by astrocytes and low-grade microglial neuroinflammation may contribute to the modification of neuronal functioning during aging. Indeed, central treatment with antibodies against IL-6 decreased plasma vasopressin levels and increased plasma apelin concentration toward the values observed in younger adults. Conversely, minocycline treatment (inhibiting microglial metabolism) did not affect plasma vasopressin concentration, but increased plasma apelin concentration toward control values for younger adults. This study is the first to demonstrate dual vasopressin/apelin adaptation mediated by inflammatory molecules and neuronal Trpv2, during aging.
Collapse
Affiliation(s)
- Julie Sauvant
- Nutrition et Neurobiologie Intégrée, UMR 1286, INRA, Bordeaux, France
- Nutrition et Neurobiologie Intégrée, UMR 1286, Univ. Bordeaux, Bordeaux, France
| | - Jean-Christophe Delpech
- Nutrition et Neurobiologie Intégrée, UMR 1286, INRA, Bordeaux, France
- Nutrition et Neurobiologie Intégrée, UMR 1286, Univ. Bordeaux, Bordeaux, France
| | - Karine Palin
- Nutrition et Neurobiologie Intégrée, UMR 1286, INRA, Bordeaux, France
- Nutrition et Neurobiologie Intégrée, UMR 1286, Univ. Bordeaux, Bordeaux, France
| | - Nadia De Mota
- Center for Interdisciplinary Research in Biology (CIRB), U1050, INSERM, Collège de France, Université Pierre et Marie Curie-Paris VI, Paris, France
| | - Jennifer Dudit
- Nutrition et Neurobiologie Intégrée, UMR 1286, INRA, Bordeaux, France
- Nutrition et Neurobiologie Intégrée, UMR 1286, Univ. Bordeaux, Bordeaux, France
| | - Agnès Aubert
- Nutrition et Neurobiologie Intégrée, UMR 1286, INRA, Bordeaux, France
- Nutrition et Neurobiologie Intégrée, UMR 1286, Univ. Bordeaux, Bordeaux, France
| | - Hélène Orcel
- Institut de GénomiqueFonctionnelle, PharmacologieMoléculaire, UMR 5203, CNRS, Montpellier, France
| | - Pascale Roux
- Nutrition et Neurobiologie Intégrée, UMR 1286, INRA, Bordeaux, France
- Nutrition et Neurobiologie Intégrée, UMR 1286, Univ. Bordeaux, Bordeaux, France
| | - Sophie Layé
- Nutrition et Neurobiologie Intégrée, UMR 1286, INRA, Bordeaux, France
- Nutrition et Neurobiologie Intégrée, UMR 1286, Univ. Bordeaux, Bordeaux, France
| | - Françoise Moos
- Nutrition et Neurobiologie Intégrée, UMR 1286, INRA, Bordeaux, France
- Nutrition et Neurobiologie Intégrée, UMR 1286, Univ. Bordeaux, Bordeaux, France
| | - Catherine Llorens-Cortes
- Center for Interdisciplinary Research in Biology (CIRB), U1050, INSERM, Collège de France, Université Pierre et Marie Curie-Paris VI, Paris, France
| | - Agnès Nadjar
- Nutrition et Neurobiologie Intégrée, UMR 1286, INRA, Bordeaux, France
- Nutrition et Neurobiologie Intégrée, UMR 1286, Univ. Bordeaux, Bordeaux, France
- * E-mail:
| |
Collapse
|
20
|
Picca A, Fracasso F, Pesce V, Cantatore P, Joseph AM, Leeuwenburgh C, Gadaleta MN, Lezza AMS. Age- and calorie restriction-related changes in rat brain mitochondrial DNA and TFAM binding. AGE (DORDRECHT, NETHERLANDS) 2013; 35:1607-20. [PMID: 22945739 PMCID: PMC3776104 DOI: 10.1007/s11357-012-9465-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 07/27/2012] [Indexed: 06/01/2023]
Abstract
Aging markedly affects mitochondrial biogenesis and functions particularly in tissues highly dependent on the organelle's bioenergetics capability such as the brain's frontal cortex. Calorie restriction (CR) diet is, so far, the only intervention able to delay or prevent the onset of several age-related alterations in different organisms. We determined the contents of mitochondrial transcription factor A (TFAM), mitochondrial DNA (mtDNA), and the 4.8-kb mtDNA deletion in the frontal cortex from young (6-month-old) and aged (26-month-old), ad libitum-fed (AL) and calorie-restricted (CR), rats. We found a 70 % increase in TFAM amount, a 25 % loss in mtDNA content, and a 35 % increase in the 4.8-kb deletion content in the aged AL animals with respect to the young rats. TFAM-specific binding to six mtDNA regions was analyzed by mtDNA immunoprecipitation and semiquantitative polymerase chain reaction (PCR), showing a marked age-related decrease. Quantitative real-time PCR at two subregions involved in mtDNA replication demonstrated, in aged AL rats, a remarkable decrease (60-70 %) of TFAM-bound mtDNA. The decreased TFAM binding is a novel finding that may explain the mtDNA loss in spite of the compensatory TFAM increased amount. In aged CR rats, TFAM amount increased and mtDNA content decreased with respect to young rats' values, but the extent of the changes was smaller than in aged AL rats. Attenuation of the age-related effects due to the diet in the CR animals was further evidenced by the unchanged content of the 4.8-kb deletion with respect to that of young animals and by the partial prevention of the age-related decrease in TFAM binding to mtDNA.
Collapse
Affiliation(s)
- Anna Picca
- />Department of Biosciences, Biotechnologies and Pharmacological Sciences, University of Bari, Via Orabona, 4, 70125 Bari, Italy
| | - Flavio Fracasso
- />Department of Biosciences, Biotechnologies and Pharmacological Sciences, University of Bari, Via Orabona, 4, 70125 Bari, Italy
| | - Vito Pesce
- />Department of Biosciences, Biotechnologies and Pharmacological Sciences, University of Bari, Via Orabona, 4, 70125 Bari, Italy
| | - Palmiro Cantatore
- />Department of Biosciences, Biotechnologies and Pharmacological Sciences, University of Bari, Via Orabona, 4, 70125 Bari, Italy
- />Institute of Biomembranes and Bioenergetics, CNR-National Research Council of Italy, Via Amendola, 165/A, 70126 Bari, Italy
| | - Anna-Maria Joseph
- />Division of Biology of Aging, Department of Aging and Geriatric Research, Institute on Aging, University of Florida, Gainesville, FL USA
| | - Christiaan Leeuwenburgh
- />Division of Biology of Aging, Department of Aging and Geriatric Research, Institute on Aging, University of Florida, Gainesville, FL USA
| | - Maria Nicola Gadaleta
- />Department of Biosciences, Biotechnologies and Pharmacological Sciences, University of Bari, Via Orabona, 4, 70125 Bari, Italy
- />Institute of Biomembranes and Bioenergetics, CNR-National Research Council of Italy, Via Amendola, 165/A, 70126 Bari, Italy
| | - Angela Maria Serena Lezza
- />Department of Biosciences, Biotechnologies and Pharmacological Sciences, University of Bari, Via Orabona, 4, 70125 Bari, Italy
| |
Collapse
|
21
|
Sridharan A, Pehar M, Salamat MS, Pugh TD, Bendlin BB, Willette AA, Anderson RM, Kemnitz JW, Colman RJ, Weindruch RH, Puglielli L, Johnson SC. Calorie restriction attenuates astrogliosis but not amyloid plaque load in aged rhesus macaques: a preliminary quantitative imaging study. Brain Res 2013; 1508:1-8. [PMID: 23473840 DOI: 10.1016/j.brainres.2013.02.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 02/21/2013] [Accepted: 02/22/2013] [Indexed: 01/05/2023]
Abstract
While moderate calorie restriction (CR) in the absence of malnutrition has been consistently shown to have a systemic, beneficial effect against aging in several animals models, its effect on the brain microstructure in a non-human primate model remains to be studied using post-mortem histopathologic techniques. In the present study, we investigated differences in expression levels of glial fibrillary acid protein (GFAP) and β-amyloid plaque load in the hippocampus and the adjacent cortical areas of 7 Control (ad libitum)-fed and 6 CR male rhesus macaques using immunostaining methods. CR monkeys expressed significantly lower levels (∼30% on average) of GFAP than Controls in the CA region of the hippocampus and entorhinal cortex, suggesting a protective effect of CR in limiting astrogliosis. These results recapitulate the neuroprotective effects of CR seen in shorter-lived animal models. There was a significant positive association between age and average amyloid plaque pathology in these animals, but there was no significant difference in amyloid plaque distribution between the two groups. Two of the seven Control animals (28.6%) and one of the six CR animal (16.7%) did not express any amyloid plaques, five of seven Controls (71.4%) and four of six CR animals (66.7%) expressed minimal to moderate amyloid pathology, and one of six CR animals (16.7%) expressed severe amyloid pathology. That CR affects levels of GFAP expression but not amyloid plaque load provides some insight into the means by which CR is beneficial at the microstructural level, potentially by offsetting the increased load of oxidatively damaged proteins, in this non-human primate model of aging. The present study is a preliminary post-mortem histological analysis of the effects of CR on brain health, and further studies using molecular and biochemical techniques are warranted to elucidate underlying mechanisms.
Collapse
Affiliation(s)
- Aadhavi Sridharan
- Medical Scientist Training Program, University of Wisconsin-Madison, 750 Highland Ave, Madison, WI 53705, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Omega-3 fatty acids and brain resistance to ageing and stress: body of evidence and possible mechanisms. Ageing Res Rev 2013; 12:579-94. [PMID: 23395782 DOI: 10.1016/j.arr.2013.01.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 01/25/2013] [Accepted: 01/28/2013] [Indexed: 12/11/2022]
Abstract
The increasing life expectancy in the populations of rich countries raises the pressing question of how the elderly can maintain their cognitive function. Cognitive decline is characterised by the loss of short-term memory due to a progressive impairment of the underlying brain cell processes. Age-related brain damage has many causes, some of which may be influenced by diet. An optimal diet may therefore be a practical way of delaying the onset of age-related cognitive decline. Nutritional investigations indicate that the ω-3 poyunsaturated fatty acid (PUFA) content of western diets is too low to provide the brain with an optimal supply of docosahexaenoic acid (DHA), the main ω-3 PUFA in cell membranes. Insufficient brain DHA has been associated with memory impairment, emotional disturbances and altered brain processes in rodents. Human studies suggest that an adequate dietary intake of ω-3 PUFA can slow the age-related cognitive decline and may also protect against the risk of senile dementia. However, despite the many studies in this domain, the beneficial impact of ω-3 PUFA on brain function has only recently been linked to specific mechanisms. This review examines the hypothesis that an optimal brain DHA status, conferred by an adequate ω-3 PUFA intake, limits age-related brain damage by optimizing endogenous brain repair mechanisms. Our analysis of the abundant literature indicates that an adequate amount of DHA in the brain may limit the impact of stress, an important age-aggravating factor, and influences the neuronal and astroglial functions that govern and protect synaptic transmission. This transmission, particularly glutamatergic neurotransmission in the hippocampus, underlies memory formation. The brain DHA status also influences neurogenesis, nested in the hippocampus, which helps maintain cognitive function throughout life. Although there are still gaps in our knowledge of the way ω-3 PUFA act, the mechanistic studies reviewed here indicate that ω-3 PUFA may be a promising tool for preventing age-related brain deterioration.
Collapse
|
23
|
Genade T, Lang DM. Resveratrol extends lifespan and preserves glia but not neurons of the Nothobranchius guentheri optic tectum. Exp Gerontol 2012; 48:202-12. [PMID: 23220248 DOI: 10.1016/j.exger.2012.11.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 11/07/2012] [Accepted: 11/26/2012] [Indexed: 12/14/2022]
Abstract
Resveratrol is reported as having neuroprotective properties, however, much of this reputation has come from research using disease and injury models of neurodegeneration and not neurodegenerative-ageing. The results published here pertain to the affect resveratrol has on neurodegenerative-ageing. Resveratrol had previously been used to extend the lifespan of Nothobranchius furzeri wherein it preserved cognition and reduced ageing-associated neurodegeneration. No cell-type specific antibodies were then identified which could be used to investigate the nature of the neurodegeneration or resveratrols effect on CNS cells. Using wholemounts stained with SMI31 anti-phospho-neurolament, GA-5 and DAKO Z0334 anti-GFAP antibodies, E587 antiserum against NCAMs and anti-tenascin-R antibodies we determined what cellular changes occurred with age in the optic tectum of Nothobranchius guentheri. We show that resveratrol-treatment extended the lifespan of N. guentheri but did not preserve neuron density of the optic tectum stratum griseum superciale even though it did reduce the proportion of degenerate (SMI31 antigen accumulating) neurons in the optic tectum. Resveratrol-treatment did prevent the ageing-dependent loss of radial glia lining the optic tectum of N. guentheri. The ageing-related loss of NCAM expression and tenascin-R expressing perineuronal nets was also prevented by resveratrol-treatment. Glial and perineuronal density as well as NCAM expression appear to correlate well with age. These results suggest that the anti-ageing properties of resveratrol in vertebrates may be unrelated to the protection of neurons.
Collapse
Affiliation(s)
- T Genade
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Private Bag X3, Observatory, 7935, South Africa.
| | | |
Collapse
|
24
|
Singh R, Lakhanpal D, Kumar S, Sharma S, Kataria H, Kaur M, Kaur G. Late-onset intermittent fasting dietary restriction as a potential intervention to retard age-associated brain function impairments in male rats. AGE (DORDRECHT, NETHERLANDS) 2012; 34:917-33. [PMID: 21861096 PMCID: PMC3682068 DOI: 10.1007/s11357-011-9289-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 07/08/2011] [Indexed: 05/19/2023]
Abstract
Lifelong dietary restriction (DR) is known to have many potential beneficial effects on brain function as well as delaying the onset of neurological diseases. In the present investigation, the effect of late-onset short-term intermittent fasting dietary restriction (IF-DR) regimen was studied on motor coordination and cognitive ability of ageing male rats. These animals were further used to estimate protein carbonyl content and mitochondrial complex I-IV activity in different regions of brain and peripheral organs, and the degree of age-related impairment and reversion by late-onset short-term IF-DR was compared with their levels in 3-month-old young rats. The results of improvement in motor coordination by rotarod test and cognitive skills by Morris water maze in IF-DR rats were found to be positively correlated with the decline in the oxidative molecular damage to proteins and enhanced mitochondrial complex IV activity in different regions of ageing brain as well as peripheral organs. The work was further extended to study the expression of synaptic plasticity-related proteins, such as synaptophysin, calcineurin and CaM kinase II to explore the molecular basis of IF-DR regimen to improve cognitive function. These results suggest that even late-onset short-term IF-DR regimen have the potential to retard age-associated detrimental effects, such as cognitive and motor performance as well as oxidative molecular damage to proteins.
Collapse
Affiliation(s)
- Rumani Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, 143005 Punjab India
| | - Dinesh Lakhanpal
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, 143005 Punjab India
| | - Sushil Kumar
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, 143005 Punjab India
| | - Sandeep Sharma
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, 143005 Punjab India
| | - Hardeep Kataria
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, 143005 Punjab India
| | - Manpreet Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, 143005 Punjab India
| | - Gurcharan Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, 143005 Punjab India
| |
Collapse
|
25
|
Restoration of synaptic plasticity and learning in young and aged NCAM-deficient mice by enhancing neurotransmission mediated by GluN2A-containing NMDA receptors. J Neurosci 2012; 32:2263-75. [PMID: 22396402 DOI: 10.1523/jneurosci.5103-11.2012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Neural cell adhesion molecule (NCAM) is the predominant carrier of the unusual glycan polysialic acid (PSA). Deficits in PSA and/or NCAM expression cause impairments in hippocampal long-term potentiation and depression (LTP and LTD) and are associated with schizophrenia and aging. In this study, we show that impaired LTP in adult NCAM-deficient (NCAM(-/-)) mice is restored by increasing the activity of the NMDA subtype of glutamate receptor (GluN) through either reducing the extracellular Mg2+ concentration or applying d-cycloserine (DCS), a partial agonist of the GluN glycine binding site. Pharmacological inhibition of the GluN2A subtype reduced LTP to the same level in NCAM(-/-) and wild-type (NCAM(+/+)) littermate mice and abolished the rescue by DCS in NCAM(-/-) mice, suggesting that the effects of DCS are mainly mediated by GluN2A. The insufficient contribution of GluN to LTD in NCAM(-/-) mice was also compensated for by DCS. Furthermore, impaired contextual and cued fear conditioning levels were restored in NCAM(-/-) mice by administration of DCS before conditioning. In 12-month-old NCAM(-/-), but not NCAM(+/+) mice, there was a decline in LTP compared with 3-month-old mice that could be rescued by DCS. In 24-month-old mice of both genotypes, there was a reduction in LTP that could be fully restored by DCS in NCAM(+/+) mice but only partially restored in NCAM(-/-) mice. Thus, several deficiencies of NCAM(-/-) mice can be ameliorated by enhancing GluN2A-mediated neurotransmission with DCS.
Collapse
|
26
|
Spindler SR. Caloric restriction: from soup to nuts. Ageing Res Rev 2010; 9:324-53. [PMID: 19853062 DOI: 10.1016/j.arr.2009.10.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 10/07/2009] [Accepted: 10/09/2009] [Indexed: 12/25/2022]
Abstract
Caloric restriction (CR), reduced protein, methionine, or tryptophan diets; and reduced insulin and/or IGFI intracellular signaling can extend mean and/or maximum lifespan and delay deleterious age-related physiological changes in animals. Mice and flies can shift readily between the control and CR physiological states, even at older ages. Many health benefits are induced by even brief periods of CR in flies, rodents, monkeys, and humans. In humans and nonhuman primates, CR produces most of the physiologic, hematologic, hormonal, and biochemical changes it produces in other animals. In primates, CR provides protection from type 2 diabetes, cardiovascular and cerebral vascular diseases, immunological decline, malignancy, hepatotoxicity, liver fibrosis and failure, sarcopenia, inflammation, and DNA damage. It also enhances muscle mitochondrial biogenesis, affords neuroprotection; and extends mean and maximum lifespan. CR rapidly induces antineoplastic effects in mice. Most claims of lifespan extension in rodents by drugs or nutrients are confounded by CR effects. Transcription factors and co-activators involved in the regulation of mitochondrial biogenesis and energy metabolism, including SirT1, PGC-1alpha, AMPK and TOR may be involved in the lifespan effects of CR. Paradoxically, low body weight in middle aged and elderly humans is associated with increased mortality. Thus, enhancement of human longevity may require pharmaceutical interventions.
Collapse
|
27
|
Late-onset dietary restriction compensates for age-related increase in oxidative stress and alterations of HSP 70 and synapsin 1 protein levels in male Wistar rats. Biogerontology 2009; 11:197-209. [PMID: 19609710 DOI: 10.1007/s10522-009-9240-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2009] [Accepted: 06/30/2009] [Indexed: 12/17/2022]
Abstract
Numerous reports implicate increased oxidative stress in the functional and structural changes occurring in the brain and other organs as a part of the normal aging process. Dietary restriction (DR) has long been shown to be life-prolonging intervention in several species. This study was aimed to assess the potential efficacy of late-onset short term DR when initiated in 21 months old male wistar rats for 3 months on the antioxidant defense system and lipid peroxidation, cellular stress response protein HSP 70 and synaptic marker protein synapsin 1 in discrete brain regions such as cortex, hypothalamus, and hippocampus as well as liver, kidney and heart from 24 month old rats. Age-associated decline in activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione, and elevated levels of lipid peroxidation was observed in brain and peripheral organ as well as increased expression of HSP 70 and reduction in synapsin 1 was observed in brain studied. Late-onset short term DR was effective in partially restoring the antioxidant status and in decreasing lipid peroxidation level as well as enhancing the expression of HSP 70 and synapsin 1 in aged rats. Late onset short term DR also prevented age-related neurodegeneration as revealed by Fluoro-Jade B staining in hippocampus and cortex regions of rat brain. Thus our current results suggest that DR initiated even in old age has the potential to improve age related decline in body functions.
Collapse
|