1
|
Guan Q, Wang Z, Cao J, Dong Y, Chen Y. The role of light pollution in mammalian metabolic homeostasis and its potential interventions: A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:120045. [PMID: 36030956 DOI: 10.1016/j.envpol.2022.120045] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Irregular or unnatural artificial light causes severe environmental stress on the survival and health of organisms, which is rapidly becoming a widespread new type of environmental pollution. A series of disruptive behaviors to body homeostasis brought about by light pollution, including metabolic abnormalities, are likely to be the result of circadian rhythm disturbances. Recently, the proposed role of light pollution in metabolic dysregulation has accelerated it into an emerging field. Hence, the regulatory role of light pollution in mammalian metabolic homeostasis is reviewed in this contribution. Light at night is the most widely affected type of light pollution, which disrupts metabolic homeostasis largely due to its disruption of daily food intake patterns, alterations of hormone levels such as melatonin and glucocorticoids, and changes in the rhythm of inflammatory factor production. Besides, light pollution impairs mammalian metabolic processes in an intensity-, photoperiod-, and wavelength-dependent manner, and is also affected by species, gender, and diets. Nevertheless, metabolic disorders triggered by light pollution are not irreversible to some extent. Potential interventions such as melatonin supplementation, recovery to the LD cycle, time-restricted feeding, voluntary exercise, wearing blue light-shied goggles, and bright morning light therapy open a bright avenue to prevent light pollution. This work will help strengthen the relationship between light information and metabolic homeostasis and provide new insights for the better prevention of metabolic disorders and light pollution.
Collapse
Affiliation(s)
- Qingyun Guan
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Zixu Wang
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Jing Cao
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yulan Dong
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yaoxing Chen
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China; Department of Nutrition and Health, China Agricultural University, Haidian, Beijing 100193, China.
| |
Collapse
|
2
|
Mechanisms of Melatonin in Obesity: A Review. Int J Mol Sci 2021; 23:ijms23010218. [PMID: 35008644 PMCID: PMC8745381 DOI: 10.3390/ijms23010218] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/11/2022] Open
Abstract
Obesity and its complications have become a prominent global public health problem that severely threatens human health. Melatonin, originally known as an effective antioxidant, is an endogenous hormone found throughout the body that serves various physiological functions. In recent decades, increasing attention has been paid to its unique function in regulating energy metabolism, especially in glucose and lipid metabolism. Accumulating evidence has established the relationship between melatonin and obesity; nevertheless, not all preclinical and clinical evidence indicates the anti-obesity effect of melatonin, which makes it remain to conclude the clinical effect of melatonin in the fight against obesity. In this review, we have summarized the current knowledge of melatonin in regulating obesity-related symptoms, with emphasis on its underlying mechanisms. The role of melatonin in regulating the lipid profile, adipose tissue, oxidative stress, and inflammation, as well as the interactions of melatonin with the circadian rhythm, gut microbiota, sleep disorder, as well as the α7nAChR, the opioidergic system, and exosomes, make melatonin a promising agent to open new avenues in the intervention of obesity.
Collapse
|
3
|
Wang J, Li C, Li J, Qin S, Liu C, Wang J, Chen Z, Wu J, Wang G. Development and internal validation of risk prediction model of metabolic syndrome in oil workers. BMC Public Health 2020; 20:1828. [PMID: 33256679 PMCID: PMC7706262 DOI: 10.1186/s12889-020-09921-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 11/18/2020] [Indexed: 01/28/2023] Open
Abstract
Background The prevalence of metabolic syndrome continues to rise sharply worldwide, seriously threatening people’s health. The optimal model can be used to identify people at high risk of metabolic syndrome as early as possible, to predict their risk, and to persuade them to change their adverse lifestyle so as to slow down and reduce the incidence of metabolic syndrome. Methods Design existing circumstances research. A total of 1468 workers from an oil company who participated in occupational health physical examination from April 2017 to October 2018 were included in this study. We established the Logistic regression model, the random forest model and the convolutional neural network model, and compared the prediction performance of the models according to the F1 score, sensitivity, accuracy and other indicators of the three models. Results The results showed that the accuracy of the three models was 82.49,95.98 and 92.03%, the sensitivity was 87.94,95.52 and 90.59%, the specificity was 74.54, 96.65 and 94.14%, the F1 score was 0.86,0.97 and 0.93, and the area under ROC curve was 0.88,0.96 and 0.92, respectively. The Brier score of the three models was 0.15, 0.08 and 0.12, Observed-expected ratio was 0.83, 0.97 and 1.13, and the Integrated Calibration Index was 0.075,0.073 and 0.074, respectively, and explained how the random forest model was used for individual disease risk score. Conclusions The study showed that the prediction performance of random forest model is better than other models, and the model has higher application value, which can better predict the risk of metabolic syndrome in oil workers, and provide corresponding theoretical basis for the health management of oil workers. Supplementary Information The online version contains supplementary material available at 10.1186/s12889-020-09921-w.
Collapse
Affiliation(s)
- Jie Wang
- School of Public Health, North China University of Science and Technology, No.21 Bohai Avenue, Caofeidian New Town, Tangshan City, Hebei Province, 063210, P.R. China
| | - Chao Li
- School of Public Health, North China University of Science and Technology, No.21 Bohai Avenue, Caofeidian New Town, Tangshan City, Hebei Province, 063210, P.R. China
| | - Jing Li
- School of Public Health, North China University of Science and Technology, No.21 Bohai Avenue, Caofeidian New Town, Tangshan City, Hebei Province, 063210, P.R. China
| | - Sheng Qin
- School of Public Health, North China University of Science and Technology, No.21 Bohai Avenue, Caofeidian New Town, Tangshan City, Hebei Province, 063210, P.R. China
| | - Chunlei Liu
- College of Science, North China University of Science and Technology, Tangshan, Hebei, P.R. China
| | - Jiaojiao Wang
- School of Public Health, North China University of Science and Technology, No.21 Bohai Avenue, Caofeidian New Town, Tangshan City, Hebei Province, 063210, P.R. China
| | - Zhe Chen
- School of Public Health, North China University of Science and Technology, No.21 Bohai Avenue, Caofeidian New Town, Tangshan City, Hebei Province, 063210, P.R. China
| | - Jianhui Wu
- School of Public Health, North China University of Science and Technology, No.21 Bohai Avenue, Caofeidian New Town, Tangshan City, Hebei Province, 063210, P.R. China. .,Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, North China University of Science and Technology, Tangshan, Hebei, P.R. China.
| | - Guoli Wang
- School of Public Health, North China University of Science and Technology, No.21 Bohai Avenue, Caofeidian New Town, Tangshan City, Hebei Province, 063210, P.R. China.,Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, North China University of Science and Technology, Tangshan, Hebei, P.R. China
| |
Collapse
|
4
|
Otamas A, Grant PJ, Ajjan RA. Diabetes and atherothrombosis: The circadian rhythm and role of melatonin in vascular protection. Diab Vasc Dis Res 2020; 17:1479164120920582. [PMID: 32506946 PMCID: PMC7607413 DOI: 10.1177/1479164120920582] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Obesity-related euglycaemic insulin resistance clusters with cardiometabolic risk factors, contributing to the development of both type 2 diabetes and cardiovascular disease. An increased thrombotic tendency in diabetes stems from platelet hyperactivity, enhanced activity of prothrombotic coagulation factors and impaired fibrinolysis. Furthermore, a low-grade inflammatory response and increased oxidative stress accelerate the atherosclerotic process and, together with an enhanced thrombotic environment, result in premature and more severe cardiovascular disease. The disruption of circadian cycles in man secondary to chronic obesity and loss of circadian cues is implicated in the increased risk of developing diabetes and cardiovascular disease. Levels of melatonin, the endogenous synchronizer of circadian rhythm, are reduced in individuals with vascular disease and those with deranged glucose metabolism. The anti-inflammatory, antihypertensive, antioxidative and antithrombotic activities of melatonin make it a potential therapeutic agent to reduce the risk of vascular occlusive disease in diabetes. The mechanisms behind melatonin-associated reduction in procoagulant response are not fully known. Current evidence suggests that melatonin inhibits platelet aggregation and might affect the coagulation cascade, altering fibrin clot structure and/or resistance to fibrinolysis. Large-scale clinical trials are warranted to investigate the effects of modulating the circadian clock on insulin resistance, glycaemia and cardiovascular outcome.
Collapse
Affiliation(s)
- Anastasia Otamas
- The LIGHT Laboratories, Leeds Institute of Cardiovascular and Metabolic Medicine and Leeds Teaching Hospitals Trust, University of Leeds, Leeds, UK
| | - Peter J Grant
- The LIGHT Laboratories, Leeds Institute of Cardiovascular and Metabolic Medicine and Leeds Teaching Hospitals Trust, University of Leeds, Leeds, UK
| | - Ramzi A Ajjan
- The LIGHT Laboratories, Leeds Institute of Cardiovascular and Metabolic Medicine and Leeds Teaching Hospitals Trust, University of Leeds, Leeds, UK
| |
Collapse
|
5
|
Zheng PP, Zhang LN, Zhang J, Chang XM, Ding S, Xiao F, Guo LX. Evaluating the Effects of Different Sleep Supplement Modes in Attenuating Metabolic Consequences of Night Shift Work Using Rat Model. Nat Sci Sleep 2020; 12:1053-1065. [PMID: 33244284 PMCID: PMC7685379 DOI: 10.2147/nss.s271318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/04/2020] [Indexed: 01/05/2023] Open
Abstract
PURPOSE To study the effects of chronic-simulated night shift work using the rat model and examines if a particular sleep supplement mode could be better in alleviating the effects. METHODS The male Wistar rats were randomly divided into the control (CTL: 8 rats) and night shift work (NW: 24 rats) groups of rats. Based on the sleep supplement strategy, the NW group was further segregated into three subgroups (8 rats each); late sleep supplement group (LSS), early sleep supplement group (ESS), and intermittent sleep supplement group (ISS). Sleep deprivation was achieved using the standard small-platform-over water method. Parameters such as animal body weight and food intake were measured daily. The intraperitoneal glucose tolerance test, fasting plasma insulin concentration, insulin resistance index and insulin sensitivity were measured twice, in the 4th and 8th weeks of the study. Plasma corticosterone concentration and pathological changes in islets (insulitis) were measured at the end of the 8th week. RESULTS In NW group, night work resulted in a gain of body weight and albeit lower than that of the CTL group. NW rats also had higher food intake, showed impaired glucose metabolism and higher plasma corticosterone concentration. The sleep supplement experiments suggested that compared to the other modes, intermittent sleep supplement had significantly low changes in the body weight, glucose metabolism and the islet cells. CONCLUSION Similar to previous studies, we also found that night shift work adversely impacts the body weight and glucose metabolism in rats. However, upon evaluating different sleep supplement strategies, we found the intermittent sleep supplement strategy to be most effective.
Collapse
Affiliation(s)
- Pei-Pei Zheng
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, People's Republic of China.,Peking University Fifth School of Clinical Medicine, Beijing 100730, People's Republic of China
| | - Li-Na Zhang
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, People's Republic of China
| | - Jie Zhang
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, People's Republic of China
| | - Xin-Miao Chang
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, People's Republic of China
| | - Shan Ding
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, People's Republic of China
| | - Fei Xiao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Bejing Hospital, National Center of Gerontology, National Health Commission; Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing, 100730, People's Republic of China
| | - Li-Xin Guo
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, People's Republic of China
| |
Collapse
|
6
|
Khosravipour M, Shahmohammadi M, Athar HV. The effects of rotating and extended night shift work on the prevalence of metabolic syndrome and its components. Diabetes Metab Syndr 2019; 13:3085-3089. [PMID: 31765983 DOI: 10.1016/j.dsx.2019.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/11/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Some studies indicated night shift work can be associated with the higher risk of metabolic syndrome (MetS). However, the effect of both rotating and extended night shift work (12-hr rotating night) on MetS has not well-known. We aimed to examine and clarify the association among petrochemical workers. METHODS We recruited 1575 eligible workers in this study. According to shift work schedules the participants were divided into following groups: 12-hr fixed day and 12-hr rotating night. Biochemical data, including fasting blood sugar and lipid panel (TC, TG, LDL, and HDL) were determined by blood tests. Demographic data was obtained by interview at the time of blood pressure and anthropometric indices measurements. The National Cholesterol Education Program (NCEP) Adult Treatment Panel III (ATP III) was applied to identify subjects with MetS. The Logistic regression models were used to predict risk of MetS and its components between study groups. RESULTS The prevalence of MetS was showed 18.4% (290/1575). We found a significant difference between study groups in the prevalence of MetS (p < 0.05). The odds ratios (ORs) and 95% confidence intervals (CIs) in the 12-hr rotating night group in comparison to the 12-hr fixed day shift group according to unadjusted and full adjusted logistic regression models were estimated 1.26 (0.96, 1.65) and 1.34 (1.01, 1.76), respectively. Among MetS components, we observed the significant higher risk in TG and HDL (P < 0.05). CONCLUSION This study suggests 12-hr rotating night shift as the high-risk group for MetS. More studies needed to confirm our findings.
Collapse
Affiliation(s)
- Masoud Khosravipour
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Occupational Health Engineering, School of Public Health, Kermanshah University of Medical Science, Kermanshah, Iran; Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mostafa Shahmohammadi
- Department of Occupational Health Engineering, School of Public Health, Kermanshah University of Medical Science, Kermanshah, Iran; Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hossein Valadi Athar
- Department of Occupational Health Engineering, School of Public Health, Kermanshah University of Medical Science, Kermanshah, Iran; Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
7
|
Verma AK, Singh S, Rizvi SI. Redox homeostasis in a rodent model of circadian disruption: Effect of melatonin supplementation. Gen Comp Endocrinol 2019; 280:97-103. [PMID: 31002824 DOI: 10.1016/j.ygcen.2019.04.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/10/2019] [Accepted: 04/16/2019] [Indexed: 12/22/2022]
Abstract
Continuous light or dark photoperiods are the leading cause of disruption in the circadian rhythm of day-night cycle. The purpose of this study was to understand the cellular redox balance in a model of circadian disrupted rat model and determine the effect of melatonin supplementation. Young male Wistar rats were randomly divided into five groups (n = 4). Group (I): normal day-night (12 h:12 h) cycle, Group (II): normal rats treated with melatonin, Group (III): rats subjected to continuous light exposure (CLE), Group (IV): CLE rats treated with melatonin, and Group (V) Rats subjected to continuous dark. Melatonin (10 mg/kg) was administered orally at dusk to the Group (II) & (IV). Rats were sacrificed after 10 days of treatment and biomarkers of oxidative stress were evaluated. Results demonstrated significant (p < 0.05) increase of malondialdehyde (MDA), plasma membrane redox system (PMRS), protein carbonyl oxidation (PCO), advanced oxidation protein products (AOPPs), and advanced glycation end products (AGEs) during CLE. A significantly (p < 0.05) decreased level of reduced glutathione (GSH) and ferric reducing antioxidant potential in plasma (FRAP) was also observed during CLE. Treatment with melatonin in CLE rats showed reduced level of MDA, PMRS, PCO, AOPPs and AGEs while GSH and FRAP activity were increased. During continuous dark exposure (CDE) the biomarkers of oxidative stress were attenuated compared to control. Supplementation of melatonin could be a promising strategy to maintain redox homeostasis during prolonged condition of light exposure and other conditions of redox imbalance.
Collapse
Affiliation(s)
- Avnish Kumar Verma
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India
| | - Sandeep Singh
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India
| | - Syed Ibrahim Rizvi
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India.
| |
Collapse
|
8
|
Montalbano G, Mania M, Abbate F, Navarra M, Guerrera MC, Laura R, Vega JA, Levanti M, Germanà A. Melatonin treatment suppresses appetite genes and improves adipose tissue plasticity in diet-induced obese zebrafish. Endocrine 2018; 62:381-393. [PMID: 29926348 DOI: 10.1007/s12020-018-1653-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/12/2018] [Indexed: 12/17/2022]
Abstract
PURPOSE Overweight and obesity are important risk factors for diabetes, cardiovascular diseases, and premature death in modern society. Recently, numerous natural and synthetic compounds have been tested in diet-induced obese animal models, to counteract obesity. Melatonin is a circadian hormone, produced by pineal gland and extra-pineal sources, involved in processes which have in common a rhythmic expression. In teleost, it can control energy balance by activating or inhibiting appetite-related peptides. The study aims at testing effects of melatonin administration to control-fed and overfed zebrafish, in terms of expression levels of orexigenic (Ghrelin, orexin, NPY) and anorexigenic (leptin, POMC) genes expression and morphometry of visceral and subcutaneous fat depots. METHODS Adult male zebrafish (n = 56) were divided into four dietary groups: control, overfed, control + melatonin, overfed + melatonin. The treatment lasted 5 weeks and BMI levels of every fish were measured each week. After this period fishes were sacrificed; morphological and morphometric studies have been carried out on histological sections of adipose tissue and adipocytes. Moreover, whole zebrafish brain and intestine were used for qRT-PCR. RESULTS Our results demonstrate that melatonin supplementation may have an effect in mobilizing fat stores, in increasing basal metabolism and thus in preventing further excess fat accumulation. Melatonin stimulates the anorexigenic and inhibit the orexigenic signals. CONCLUSIONS It seems that adequate melatonin treatment exerts anti-obesity protective effects, also in a diet-induced obesity zebrafish model, that might be the result of the restoration of many factors: the final endpoint reached is weight loss and stabilization of weight gain.
Collapse
Affiliation(s)
- G Montalbano
- Department of Veterinary Sciences, University of Messina, Polo Universitario SS. Annunziata, Messina, 98168, Italy.
- Zebrafish Neuromorphology Lab, University of Messina, Polo Universitario SS. Annunziata, Messina, 98168, Italy.
| | - M Mania
- Department of Veterinary Sciences, University of Messina, Polo Universitario SS. Annunziata, Messina, 98168, Italy
| | - F Abbate
- Department of Veterinary Sciences, University of Messina, Polo Universitario SS. Annunziata, Messina, 98168, Italy
- Zebrafish Neuromorphology Lab, University of Messina, Polo Universitario SS. Annunziata, Messina, 98168, Italy
| | - M Navarra
- Department of Drug Sciences and products for Health, University of Messina, Polo Universitario SS. Annunziata, Messina, 98168, Italy
| | - M C Guerrera
- Department of Veterinary Sciences, University of Messina, Polo Universitario SS. Annunziata, Messina, 98168, Italy
- Zebrafish Neuromorphology Lab, University of Messina, Polo Universitario SS. Annunziata, Messina, 98168, Italy
| | - R Laura
- Department of Veterinary Sciences, University of Messina, Polo Universitario SS. Annunziata, Messina, 98168, Italy
| | - J A Vega
- Departamento de Morfología y Biología Celular, Universidad de Oviedo, Oviedo, España, 33006, Spain
- Facultad de Ciencias de la Salud, 5 Poniente 1670, Universidad Autónoma de Chile, Talca, Chile
| | - M Levanti
- Department of Veterinary Sciences, University of Messina, Polo Universitario SS. Annunziata, Messina, 98168, Italy
- Zebrafish Neuromorphology Lab, University of Messina, Polo Universitario SS. Annunziata, Messina, 98168, Italy
| | - A Germanà
- Department of Veterinary Sciences, University of Messina, Polo Universitario SS. Annunziata, Messina, 98168, Italy
- Zebrafish Neuromorphology Lab, University of Messina, Polo Universitario SS. Annunziata, Messina, 98168, Italy
| |
Collapse
|
9
|
Abstract
Inhibitors of mTOR, including clinically available rapalogs such as rapamycin (Sirolimus) and Everolimus, are gerosuppressants, which suppress cellular senescence. Rapamycin slows aging and extends life span in a variety of species from worm to mammals. Rapalogs can prevent age-related diseases, including cancer, atherosclerosis, obesity, neurodegeneration and retinopathy and potentially rejuvenate stem cells, immunity and metabolism. Here, I further suggest how rapamycin can be combined with metformin, inhibitors of angiotensin II signaling (Losartan, Lisinopril), statins (simvastatin, atorvastatin), propranolol, aspirin and a PDE5 inhibitor. Rational combinations of these drugs with physical exercise and an anti-aging diet (Koschei formula) can maximize their anti-aging effects and decrease side effects.
Collapse
|
10
|
Medical hypothesis: Light at night is a factor worth considering in critical care units. ADVANCES IN INTEGRATIVE MEDICINE 2017; 4:115-120. [PMID: 34094846 DOI: 10.1016/j.aimed.2017.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Exposure to light at night is not an innocuous consequence of modernization. There are compelling data linking long-term exposure to occupational and environmental light at night with serious health conditions, including heart disease, obesity, diabetes, and cancer. However, far less is known about the physiological and behavioral effects of acute exposure to light at night. Among healthy volunteers, acute night-time light exposure increases systolic blood pressure and inflammatory markers in the blood, and impairs glucose regulation. Whether critically ill patients in a hospital setting experience the same physiological shifts in response to evening light exposure is not known. This paper reviews the available data on light at night effects on health and wellbeing, and argues that the data are sufficiently compelling to warrant studies of how lighting in intensive care units may be influencing patient recovery.
Collapse
|
11
|
Cardinali DP, Vigo DE. Melatonin, mitochondria, and the metabolic syndrome. Cell Mol Life Sci 2017; 74:3941-3954. [PMID: 28819865 PMCID: PMC11107716 DOI: 10.1007/s00018-017-2611-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 08/03/2017] [Indexed: 12/12/2022]
Abstract
A number of risk factors for cardiovascular disease including hyperinsulinemia, glucose intolerance, dyslipidemia, obesity, and elevated blood pressure are collectively known as metabolic syndrome (MS). Since mitochondrial activity is modulated by the availability of energy in cells, the disruption of key regulators of metabolism in MS not only affects the activity of mitochondria but also their dynamics and turnover. Therefore, a link of MS with mitochondrial dysfunction has been suspected since long. As a chronobiotic/cytoprotective agent, melatonin has a special place in prevention and treatment of MS. Melatonin levels are reduced in diseases associated with insulin resistance like MS. Melatonin improves sleep efficiency and has antioxidant and anti-inflammatory properties, partly for its role as a metabolic regulator and mitochondrial protector. We discuss in the present review the several cytoprotective melatonin actions that attenuate inflammatory responses in MS. The clinical data that support the potential therapeutical value of melatonin in human MS are reviewed.
Collapse
Affiliation(s)
- Daniel P Cardinali
- BIOMED-UCA-CONICET and Department of Teaching and Research, Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Av. Alicia Moreau de Justo 1500, 4o piso, 1107, Buenos Aires, Argentina.
| | - Daniel E Vigo
- BIOMED-UCA-CONICET and Department of Teaching and Research, Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Av. Alicia Moreau de Justo 1500, 4o piso, 1107, Buenos Aires, Argentina
| |
Collapse
|
12
|
|
13
|
Panchenko AV, Gubareva EA, Anisimov VN. The role of circadian rhythms and the “cellular clock” in age-associated diseases. ADVANCES IN GERONTOLOGY 2017. [DOI: 10.1134/s2079057017010131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Hardeland R. Melatonin and the pathologies of weakened or dysregulated circadian oscillators. J Pineal Res 2017; 62. [PMID: 27763686 DOI: 10.1111/jpi.12377] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/18/2016] [Indexed: 12/20/2022]
Abstract
Dynamic aspects of melatonin's actions merit increasing future attention. This concerns particularly entirely different effects in senescent, weakened oscillators and in dysregulated oscillators of cancer cells that may be epigenetically blocked. This is especially obvious in the case of sirtuin 1, which is upregulated by melatonin in aged tissues, but strongly downregulated in several cancer cells. These findings are not at all controversial, but are explained on the basis of divergent changes in weakened and dysregulated oscillators. Similar findings can be expected to occur in other accessory oscillator components that are modulated by melatonin, among them several transcription factors and metabolic sensors. Another cause of opposite effects concerns differences between nocturnally active laboratory rodents and the diurnally active human. This should be more thoroughly considered in the field of metabolic syndrome and related pathologies, especially with regard to type 2 diabetes and other aspects of insulin resistance. Melatonin was reported to impair glucose tolerance in humans, especially in carriers of the risk allele of the MT2 receptor gene, MTNR1B, that contains the SNP rs10830963. These findings contrast with numerous reports on improvements of glucose tolerance in preclinical studies. However, the relationship between melatonin and insulin may be more complex, as indicated by loss-of-function mutants of the MT2 receptor that are also prodiabetic, by the age-dependent time course of risk allele overexpression, by progressive reduction in circadian amplitudes and melatonin secretion, which are aggravated in diabetes. By supporting high-amplitude rhythms, melatonin may be beneficial in preventing or delaying diabetes.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| |
Collapse
|
15
|
Jones TM, Durrant J, Michaelides EB, Green MP. Melatonin: a possible link between the presence of artificial light at night and reductions in biological fitness. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0122. [PMID: 25780235 DOI: 10.1098/rstb.2014.0122] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The mechanisms underpinning the ecological impacts of the presence of artificial night lighting remain elusive. One suspected underlying cause is that the presence of light at night (LAN) supresses nocturnal production of melatonin, a key driver of biological rhythm and a potent antioxidant with a proposed role in immune function. Here, we briefly review the evidence for melatonin as the link between LAN and changes in behaviour and physiology. We then present preliminary data supporting the potential for melatonin to act as a recovery agent mitigating the negative effects of LAN in an invertebrate. Adult crickets (Teleogryllus commodus), exposed to constant illumination, were provided with dietary melatonin (concentrations: 0, 10 or 100 µg ml(-1)) in their drinking water. We then compared survival, lifetime fecundity and, over a 4-week period, immune function (haemocyte concentration, lysozyme-like and phenoloxidase (PO) activity). Melatonin supplementation was able only partially to mitigate the detrimental effects of LAN: it did not improve survival or fecundity or PO activity, but it had a largely dose-dependent positive effect on haemocyte concentration and lysozyme-like activity. We discuss the implications of these relationships, as well as the usefulness of invertebrates as model species for future studies that explore the effects of LAN.
Collapse
Affiliation(s)
- Therésa M Jones
- Department of Zoology, The University of Melbourne, 3010 VIC, Australia
| | - Joanna Durrant
- Department of Zoology, The University of Melbourne, 3010 VIC, Australia
| | | | - Mark P Green
- Department of Zoology, The University of Melbourne, 3010 VIC, Australia
| |
Collapse
|
16
|
Abstract
Sleep and energy balance are essential for health. The two processes act in concert to regulate central and peripheral homeostasis. During sleep, energy is conserved due to suspended activity, movement, and sensory responses, and is redirected to restore and replenish proteins and their assemblies into cellular structures. During wakefulness, various energy-demanding activities lead to hunger. Thus, hunger promotes arousal, and subsequent feeding, followed by satiety that promotes sleep via changes in neuroendocrine or neuropeptide signals. These signals overlap with circuits of sleep-wakefulness, feeding, and energy expenditure. Here, we will briefly review the literature that describes the interplay between the circadian system, sleep-wake, and feeding-fasting cycles that are needed to maintain energy balance and a healthy metabolic profile. In doing so, we describe the neuroendocrine, hormonal/peptide signals that integrate sleep and feeding behavior with energy metabolism.
Collapse
Affiliation(s)
- Charu Shukla
- Department of Psychiatry, VA Boston Healthcare System, Harvard Medical School, West Roxbury, MA, USA
| | - Radhika Basheer
- Department of Psychiatry, VA Boston Healthcare System, Harvard Medical School, West Roxbury, MA, USA
| |
Collapse
|
17
|
Gubin DG, Weinert D. Temporal order deterioration and circadian disruption with age 1. Central and peripheral mechanisms. ADVANCES IN GERONTOLOGY 2015; 5:209-218. [DOI: 10.1134/s2079057015040086] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
|
18
|
Wilson AL, Downs CT. Light interference and melatonin affects digestion and glucocorticoid metabolites in striped mouse. BIOL RHYTHM RES 2015. [DOI: 10.1080/09291016.2015.1066546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Durrant J, Michaelides EB, Rupasinghe T, Tull D, Green MP, Jones TM. Constant illumination reduces circulating melatonin and impairs immune function in the cricket Teleogryllus commodus. PeerJ 2015; 3:e1075. [PMID: 26339535 PMCID: PMC4558066 DOI: 10.7717/peerj.1075] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 06/12/2015] [Indexed: 12/19/2022] Open
Abstract
Exposure to constant light has a range of negative effects on behaviour and physiology, including reduced immune function in both vertebrates and invertebrates. It is proposed that the associated suppression of melatonin (a ubiquitous hormone and powerful antioxidant) in response to the presence of light at night could be an underlying mechanistic link driving the changes to immune function. Here, we investigated the relationship between constant illumination, melatonin and immune function, using a model invertebrate species, the Australian black field cricket, Teleogryllus commodus. Crickets were reared under either a 12 h light: 12 h dark regimen or a constant 24 h light regimen. Circulating melatonin concentration and immune function (haemocyte concentration, lytic activity and phenoloxidase (PO) activity) were assessed in individual adult crickets through the analysis of haemolymph. Constant illumination reduced melatonin and had a negative impact on haemocyte concentrations and lytic activity, but its effect on PO activity was less apparent. Our data provide the first evidence, to our knowledge, of a link between exposure to constant illumination and variation in haemocyte concentration in an invertebrate model, while also highlighting the potential complexity of the immune response following exposure to constant illumination. This study provides insight into the possible negative effect of artificial night-time lighting on the physiology of invertebrates, but whether lower and potentially more ecologically relevant levels of light at night produce comparable results, as has been reported in several vertebrate taxa, remains to be tested.
Collapse
Affiliation(s)
- Joanna Durrant
- School of BioSciences, The University of Melbourne , Melbourne, Victoria , Australia
| | - Ellie B Michaelides
- School of BioSciences, The University of Melbourne , Melbourne, Victoria , Australia
| | - Thusitha Rupasinghe
- Metabolomics Australia, Bio21 Institute, The University of Melbourne , Melbourne, Victoria , Australia
| | - Dedreia Tull
- Metabolomics Australia, Bio21 Institute, The University of Melbourne , Melbourne, Victoria , Australia
| | - Mark P Green
- School of BioSciences, The University of Melbourne , Melbourne, Victoria , Australia
| | - Therésa M Jones
- School of BioSciences, The University of Melbourne , Melbourne, Victoria , Australia
| |
Collapse
|
20
|
Vinogradova IA, Ilyukha VA, Khizhkin EA, Uzenbaeva LB, Ilyina TN, Bukalev AV, Goranskii AI, Matveeva YP, Yunash VD, Lotosh TA. Light pollution, desynchronosis, and aging: State of the problem and solutions. ADVANCES IN GERONTOLOGY 2014. [DOI: 10.1134/s2079057014040213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Hardeland R. Melatonin, noncoding RNAs, messenger RNA stability and epigenetics--evidence, hints, gaps and perspectives. Int J Mol Sci 2014; 15:18221-52. [PMID: 25310649 PMCID: PMC4227213 DOI: 10.3390/ijms151018221] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 09/21/2014] [Accepted: 09/24/2014] [Indexed: 02/06/2023] Open
Abstract
Melatonin is a highly pleiotropic regulator molecule, which influences numerous functions in almost every organ and, thus, up- or down-regulates many genes, frequently in a circadian manner. Our understanding of the mechanisms controlling gene expression is actually now expanding to a previously unforeseen extent. In addition to classic actions of transcription factors, gene expression is induced, suppressed or modulated by a number of RNAs and proteins, such as miRNAs, lncRNAs, piRNAs, antisense transcripts, deadenylases, DNA methyltransferases, histone methylation complexes, histone demethylases, histone acetyltransferases and histone deacetylases. Direct or indirect evidence for involvement of melatonin in this network of players has originated in different fields, including studies on central and peripheral circadian oscillators, shift work, cancer, inflammation, oxidative stress, aging, energy expenditure/obesity, diabetes type 2, neuropsychiatric disorders, and neurogenesis. Some of the novel modulators have also been shown to participate in the control of melatonin biosynthesis and melatonin receptor expression. Future work will need to augment the body of evidence on direct epigenetic actions of melatonin and to systematically investigate its role within the network of oscillating epigenetic factors. Moreover, it will be necessary to discriminate between effects observed under conditions of well-operating and deregulated circadian clocks, and to explore the possibilities of correcting epigenetic malprogramming by melatonin.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Berliner Str. 28, Göttingen D-37073, Germany.
| |
Collapse
|
22
|
Laudon M, Frydman-Marom A. Therapeutic effects of melatonin receptor agonists on sleep and comorbid disorders. Int J Mol Sci 2014; 15:15924-50. [PMID: 25207602 PMCID: PMC4200764 DOI: 10.3390/ijms150915924] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 08/20/2014] [Accepted: 08/27/2014] [Indexed: 12/12/2022] Open
Abstract
Several melatonin receptors agonists (ramelteon, prolonged-release melatonin, agomelatine and tasimelteon) have recently become available for the treatment of insomnia, depression and circadian rhythms sleep-wake disorders. The efficacy and safety profiles of these compounds in the treatment of the indicated disorders are reviewed. Accumulating evidence indicates that sleep-wake disorders and co-existing medical conditions are mutually exacerbating. This understanding has now been incorporated into the new Diagnostic and Statistical Manual of Mental Disorders, 5th Edition (DSM-5). Therefore, when evaluating the risk/benefit ratio of sleep drugs, it is pertinent to also evaluate their effects on wake and comorbid condition. Beneficial effects of melatonin receptor agonists on comorbid neurological, psychiatric, cardiovascular and metabolic symptomatology beyond sleep regulation are also described. The review underlines the beneficial value of enhancing physiological sleep in comorbid conditions.
Collapse
Affiliation(s)
- Moshe Laudon
- Neurim Pharmaceuticals Ltd., 27 Habarzel St. Tel-Aviv 6971039, Israel.
| | | |
Collapse
|
23
|
Wang F, Zhang L, Zhang Y, Zhang B, He Y, Xie S, Li M, Miao X, Chan EYY, Tang JL, Wong MCS, Li Z, Yu ITS, Tse LA. Meta-analysis on night shift work and risk of metabolic syndrome. Obes Rev 2014; 15:709-20. [PMID: 24888416 DOI: 10.1111/obr.12194] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 04/30/2014] [Accepted: 04/30/2014] [Indexed: 12/30/2022]
Abstract
This study aims to quantitatively summarize the association between night shift work and the risk of metabolic syndrome (MetS), with special reference to the dose-response relationship with years of night shift work. We systematically searched all observational studies published in English on PubMed and Embase from 1971 to 2013. We extracted effect measures (relative risk, RR; or odd ratio, OR) with 95% confidence interval (CI) from individual studies to generate pooled results using meta-analysis approach. Pooled RR was calculated using random- or fixed-effect model. Downs and Black scale was applied to assess the methodological quality of included studies. A total of 13 studies were included. The pooled RR for the association between 'ever exposed to night shift work' and MetS risk was 1.57 (95% CI = 1.24-1.98, pheterogeneity = 0.001), while a higher risk was indicated in workers with longer exposure to night shifts (RR = 1.77, 95% CI = 1.32-2.36, pheterogeneity = 0.936). Further stratification analysis demonstrated a higher pooled effect of 1.84 (95% CI = 1.45-2.34) for studies using the NCEP-ATPIII criteria, among female workers (RR = 1.61, 95% CI = 1.10-2.34) and the countries other than Asia (RR = 1.65, 95% CI = 1.39-1.95). Sensitivity analysis confirmed the robustness of the results. No evidence of publication bias was detected. The present meta-analysis suggested that night shift work is significantly associated with the risk of MetS, and a positive dose-response relationship with duration of exposure was indicated.
Collapse
Affiliation(s)
- F Wang
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China; CUHK Centre for Public Health and Primary Care (Shenzhen), Shenzhen Research Institute of the Chinese University of Hong Kong, Shenzhen, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Navarro-Alarcón M, Ruiz-Ojeda FJ, Blanca-Herrera RM, A-Serrano MM, Acuña-Castroviejo D, Fernández-Vázquez G, Agil A. Melatonin and metabolic regulation: a review. Food Funct 2014; 5:2806-32. [DOI: 10.1039/c4fo00317a] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
25
|
Maganhin CC, Simões RS, Fuchs LFP, Sasso GRS, Simões MJ, Baracat EC, Soares JM. Melatonin influences on steroidogenic gene expression in the ovary of pinealectomized rats. Fertil Steril 2014; 102:291-8. [PMID: 24825418 DOI: 10.1016/j.fertnstert.2014.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/18/2014] [Accepted: 04/08/2014] [Indexed: 10/25/2022]
Abstract
OBJECTIVE To analyze the expression of genes related to steroidogenesis in the ovary of pinealectomized rats. DESIGN Experimental research. SETTING University research laboratory. ANIMAL(S) Thirty female adult rats. INTERVENTION(S) Administration of vehicle (GI), pinealectomy with vehicle (GII), or pinealectomy with melatonin replacement (10 μg/night) for 60 consecutive days (GIII), then euthanasia after 2 months of treatment, ovary collection complementary DNA microarray analyses, confirmatory quantitative reverse-transcriptase polymerase chain reaction analyses, and immunohistochemical analyses for localizing steroidogenesis changes in the ovary. MAIN OUTCOME MEASURE(S) Biologic molecular study followed by immunohistochemical analysis. RESULT(S) The changes in the expression of CYP11A1, CYP17A1, and CYP19A1 after pinealectomy (GII) compared with control (GI) showed the Cyp17a1 expression level increased in the theca interna and interstitial cells in the GII rats compared with the other groups. CONCLUSION(S) Melatonin deprivation (pinealectomy) or administration may influence the ovarian CYP17A1 expression and steroidogenesis.
Collapse
Affiliation(s)
- Carla C Maganhin
- Department of Gynecology, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil.
| | - Ricardo S Simões
- Department of Obstetrics and Gynecology, São Paulo School of Medicine, University São Paulo, São Paulo, Brazil
| | - Luiz F P Fuchs
- Department of Obstetrics and Gynecology, São Paulo School of Medicine, University São Paulo, São Paulo, Brazil
| | - Gisela R S Sasso
- Department of Morphology and Genetics Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Manuel J Simões
- Department of Morphology and Genetics Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Edmund C Baracat
- Department of Obstetrics and Gynecology, São Paulo School of Medicine, University São Paulo, São Paulo, Brazil
| | - Jose M Soares
- Department of Obstetrics and Gynecology, São Paulo School of Medicine, University São Paulo, São Paulo, Brazil
| |
Collapse
|
26
|
Hardeland R. Melatonin and the theories of aging: a critical appraisal of melatonin's role in antiaging mechanisms. J Pineal Res 2013; 55:325-56. [PMID: 24112071 DOI: 10.1111/jpi.12090] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 08/23/2013] [Indexed: 02/06/2023]
Abstract
The classic theories of aging such as the free radical theory, including its mitochondria-related versions, have largely focused on a few specific processes of senescence. Meanwhile, numerous interconnections have become apparent between age-dependent changes previously thought to proceed more or less independently. Increased damage by free radicals is not only linked to impairments of mitochondrial function, but also to inflammaging as it occurs during immune remodeling and by release of proinflammatory cytokines from mitotically arrested, DNA-damaged cells that exhibit the senescence-associated secretory phenotype (SASP). Among other effects, SASP can cause mutations in stem cells that reduce the capacity for tissue regeneration or, in worst case, lead to cancer stem cells. Oxidative stress has also been shown to promote telomere attrition. Moreover, damage by free radicals is connected to impaired circadian rhythmicity. Another nexus exists between cellular oscillators and metabolic sensing, in particular to the aging-suppressor SIRT1, which acts as an accessory clock protein. Melatonin, being a highly pleiotropic regulator molecule, interacts directly or indirectly with all the processes mentioned. These influences are critically reviewed, with emphasis on data from aged organisms and senescence-accelerated animals. The sometimes-controversial findings obtained either in a nongerontological context or in comparisons of tumor with nontumor cells are discussed in light of evidence obtained in senescent organisms. Although, in mammals, lifetime extension by melatonin has been rarely documented in a fully conclusive way, a support of healthy aging has been observed in rodents and is highly likely in humans.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| |
Collapse
|