1
|
Walter-Manucharyan M, Martin M, Pfützner J, Markert F, Rödel G, Deussen A, Hermann A, Storch A. Mitochondrial DNA replication is essential for neurogenesis but not gliogenesis in fetal neural stem cells. Dev Growth Differ 2024; 66:398-413. [PMID: 39436959 DOI: 10.1111/dgd.12946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024]
Abstract
Mitochondria are unique organelles that have their own genome (mtDNA) and perform various pivotal functions within a cell. Recently, evidence has highlighted the role of mitochondria in the process of stem cell differentiation, including differentiation of neural stem cells (NSCs). Here we studied the importance of mtDNA function in the early differentiation process of NSCs in two cell culture models: the CGR8-NS cell line that was derived from embryonic stem cells by a lineage selection technique, and primary NSCs that were isolated from embryonic day 14 mouse fetal forebrain. We detected a dramatic increase in mtDNA content upon NSC differentiation to adapt their mtDNA levels to their differentiated state, which was not accompanied by changes in mitochondrial transcription factor A expression. As chemical mtDNA depletion by ethidium bromide failed to generate living ρ° cell lines from both NSC types, we used inhibition of mtDNA polymerase-γ by 2'-3'-dideoxycytidine to reduce mtDNA replication and subsequently cellular mtDNA content. Inhibition of mtDNA replication upon NSC differentiation reduced neurogenesis but not gliogenesis. The mtDNA depletion did not change energy production/consumption or cellular reactive oxygen species (ROS) content in the NSC model used. In conclusion, mtDNA replication is essential for neurogenesis but not gliogenesis in fetal NSCs through as yet unknown mechanisms, which, however, are largely independent of energy/ROS metabolism.
Collapse
Affiliation(s)
- Meri Walter-Manucharyan
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Dresden, Germany
| | - Melanie Martin
- Department of Physiology, Technische Universität Dresden, Dresden, Germany
| | - Julia Pfützner
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Dresden, Germany
| | - Franz Markert
- Department of Neurology, University of Rostock, Rostock, Germany
| | - Gerhard Rödel
- Institute of Genetics, Technische Universität Dresden, Dresden, Germany
| | - Andreas Deussen
- Department of Physiology, Technische Universität Dresden, Dresden, Germany
| | - Andreas Hermann
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden, Dresden, Germany
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University of Rostock, Rostock, Germany
- German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Rostock, Germany
| | - Alexander Storch
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Dresden, Germany
- Department of Neurology, University of Rostock, Rostock, Germany
- Center for Regenerative Therapies Dresden, Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Rostock, Germany
| |
Collapse
|
2
|
Diener C, Thüre K, Engel A, Hart M, Keller A, Meese E, Fischer U. Paving the way to a neural fate - RNA signatures in naive and trans-differentiating mesenchymal stem cells. Eur J Cell Biol 2024; 103:151458. [PMID: 39341198 DOI: 10.1016/j.ejcb.2024.151458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024] Open
Abstract
Mesenchymal Stem Cells (MSCs) derived from the embryonic mesoderm persist as a viable source of multipotent cells in adults and have a crucial role in tissue repair. One of the most promising aspects of MSCs is their ability to trans-differentiate into cell types outside of the mesodermal lineage, such as neurons. This characteristic positions MSCs as potential therapeutic tools for neurological disorders. However, the definition of a clear MSC signature is an ongoing topic of debate. Likewise, there is still a significant knowledge gap about functional alterations of MSCs during their transition to a neural fate. In this study, our focus is on the dynamic expression of RNA in MSCs as they undergo trans-differentiation compared to undifferentiated MSCs. To track and correlate changes in cellular signaling, we conducted high-throughput RNA expression profiling during the early time-course of human MSC neurogenic trans-differentiation. The expression of synapse maturation markers, including NLGN2 and NPTX1, increased during the first 24 h. The expression of neuron differentiation markers, such as GAP43 strongly increased during 48 h of trans-differentiation. Neural stem cell marker NES and neuron differentiation marker, including TUBB3 and ENO1, were highly expressed in mesenchymal stem cells and remained so during trans-differentiation. Pathways analyses revealed early changes in MSCs signaling that can be linked to the acquisition of neuronal features. Furthermore, we identified microRNAs (miRNAs) as potential drivers of the cellular trans-differentiation process. We also determined potential risk factors related to the neural trans-differentiation process. These factors include the persistence of stemness features and the expression of factors involved in neurofunctional abnormalities and tumorigenic processes. In conclusion, our findings contribute valuable insights into the intricate landscape of MSCs during neural trans-differentiation. These insights can pave the way for the development of safer treatments of neurological disorders.
Collapse
Affiliation(s)
- Caroline Diener
- Saarland University (USAAR), Institute of Human Genetics, Homburg 66421, Germany
| | - Konstantin Thüre
- Saarland University (USAAR), Institute of Human Genetics, Homburg 66421, Germany
| | - Annika Engel
- Saarland University (USAAR), Chair for Clinical Bioinformatics, Saarbrücken 66123, Germany; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University Campus, Saarbrücken 66123, Germany
| | - Martin Hart
- Saarland University (USAAR), Institute of Human Genetics, Homburg 66421, Germany
| | - Andreas Keller
- Saarland University (USAAR), Chair for Clinical Bioinformatics, Saarbrücken 66123, Germany; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University Campus, Saarbrücken 66123, Germany
| | - Eckart Meese
- Saarland University (USAAR), Institute of Human Genetics, Homburg 66421, Germany
| | - Ulrike Fischer
- Saarland University (USAAR), Institute of Human Genetics, Homburg 66421, Germany.
| |
Collapse
|
3
|
Di Maio G, Alessio N, Ambrosino A, Al Sammarraie SHA, Monda M, Di Bernardo G. Irisin influences the in vitro differentiation of human mesenchymal stromal cells, promoting a tendency toward beiging adipogenesis. J Cell Biochem 2024; 125:e30565. [PMID: 38591469 DOI: 10.1002/jcb.30565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/10/2024] [Accepted: 04/01/2024] [Indexed: 04/10/2024]
Abstract
Mammals exhibit two distinct types of adipose depots: white adipose tissue (WAT) and brown adipose tissue (BAT). While WAT primarily functions as a site for energy storage, BAT serves as a thermogenic tissue that utilizes energy and glucose consumption to regulate core body temperature. Under specific stimuli such as exercise, cold exposure, and drug treatment, white adipocytes possess a remarkable ability to undergo transdifferentiation into brown-like cells known as beige adipocytes. This transformation process, known as the "browning of WAT," leads to the acquisition of new morphological and physiological characteristics by white adipocytes. We investigated the potential role of Irisin, a 12 kDa myokine that is secreted in mice and humans by skeletal muscle after physical activity, in inducing the browning process in mesenchymal stromal cells (MSCs). A subset of the MSCs possesses the remarkable capability to differentiate into different cell types such as adipocytes, osteocytes, and chondrocytes. Consequently, comprehending the effects of Irisin on MSC biology becomes a crucial factor in investigating antiobesity medications. In our study, the primary objective is to evaluate the impact of Irisin on various cell types engaged in distinct stages of the differentiation process, including stem cells, committed precursors, and preadipocytes. By analyzing the effects of Irisin on these specific cell populations, our aim is to gain a comprehensive understanding of its influence throughout the entire differentiation process, rather than solely concentrating on the final differentiated cells. This approach enables us to obtain insights into the broader effects of Irisin on the cellular dynamics and mechanisms involved in adipogenesis.
Collapse
Affiliation(s)
- Girolamo Di Maio
- Human Physiology and Unit of Dietetic and Sports Medicine Section, Department of Experimental Medicine, School of Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Nicola Alessio
- Biotechnology and Molecular Biology Section, Department of Experimental Medicine, School of Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Alessia Ambrosino
- Biotechnology and Molecular Biology Section, Department of Experimental Medicine, School of Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Sura H A Al Sammarraie
- Biotechnology and Molecular Biology Section, Department of Experimental Medicine, School of Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Marcellino Monda
- Human Physiology and Unit of Dietetic and Sports Medicine Section, Department of Experimental Medicine, School of Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Giovanni Di Bernardo
- Biotechnology and Molecular Biology Section, Department of Experimental Medicine, School of Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
da Silva HNM, Mizobuti DS, Pereira VA, da Rocha GL, da Cruz MV, de Oliveira AG, Silveira LR, Minatel E. LED therapy plus idebenone treatment targeting calcium and mitochondrial signaling pathways in dystrophic muscle cells. Cell Stress Chaperones 2023; 28:773-785. [PMID: 37578579 PMCID: PMC10746663 DOI: 10.1007/s12192-023-01369-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/20/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023] Open
Abstract
Intracellular calcium dysregulation, oxidative stress, and mitochondrial dysfunction are some of the main pathway contributors towards disease progression in Duchenne muscular dystrophy (DMD). This study is aimed at investigating the effects of light emitting diode therapy (LEDT) and idebenone antioxidant treatment, applied alone or together in dystrophic primary muscle cells from mdx mice, the experimental model of DMD. Mdx primary muscle cells were submitted to LEDT and idebenone treatment and evaluated for cytotoxic effects and calcium and mitochondrial signaling pathways. LEDT and idebenone treatment showed no cytotoxic effects on the dystrophic muscle cells. Regarding the calcium pathways, after LEDT and idebenone treatment, a significant reduction in intracellular calcium content, calpain-1, calsequestrin, and sarcolipin levels, was observed. In addition, a significant reduction in oxidative stress level markers, such as H2O2, and 4-HNE levels, was observed. Regarding mitochondrial signaling pathways, a significant increase in oxidative capacity (by OCR and OXPHOS levels) was observed. In addition, the PGC-1α, SIRT-1, and PPARδ levels were significantly higher in the LEDT plus idebenone treated-dystrophic muscle cells. Together, the findings suggest that LEDT and idebenone treatment, alone or in conjunction, can modulate the calcium and mitochondrial signaling pathways, such as SLN, SERCA 1, and PGC-1α, contributing towards the improvement of the dystrophic phenotype in mdx muscle cells. In addition, data from the LEDT plus idebenone treatment showed slightly better results than those of each separate treatment in terms of SLN, OXPHOS, and SIRT-1.
Collapse
Affiliation(s)
| | - Daniela Sayuri Mizobuti
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Valéria Andrade Pereira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Guilherme Luiz da Rocha
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Marcos Vinícius da Cruz
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Obesity and Comorbidities Research Center (OCRC), Campinas, Brazil
| | - André Gustavo de Oliveira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Obesity and Comorbidities Research Center (OCRC), Campinas, Brazil
| | - Leonardo Reis Silveira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Obesity and Comorbidities Research Center (OCRC), Campinas, Brazil
| | - Elaine Minatel
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil.
| |
Collapse
|
5
|
Jaiswal J, Dhayal M. Rapid neurogenic differentiation of human mesenchymal stem cells through electrochemical stimulation. Bioelectrochemistry 2023; 153:108468. [PMID: 37224602 DOI: 10.1016/j.bioelechem.2023.108468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/26/2023]
Abstract
The neurogenic differentiation of human mesenchymal stem cells (hMSCs) has been substantially handicapped with the choice of chemical or electrical stimulations for long durations. We demonstrate an innovative strategy of stimulation with <1.0 V for <200 s to achieve hMSCs differentiation towards neural progenitor cells within 24 h and their commitment towards differentiation to neurons on day 3 with the use of three-electrode electrostimulation. Stimulated hMSCs (ES hMSCs) showed elevated expression of neural-specific markers and mitochondrial membrane potential. A voltage bias of ±0.5 V and ±1.0 V did not show any adverse effect on cell viability and proliferation, whereas cells stimulated with ±1.5 V showed an upsurge in the dead cell populations. With the progression of time after stimulation, a rise in mitochondrial membrane potential (MMP, ΔΨ M) was observed in the ES hMSCs and thereby generating intracellular reactive oxygen species (ROS), acting as a key messenger to induce neuronal differentiation. The stratagem may provide insightful handles to circumvent neurodifferentiation impediments, a focal issue for regenerative medicine.
Collapse
Affiliation(s)
- Juhi Jaiswal
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India; Nano-Cellular Medicine and Biophysics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Marshal Dhayal
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India; Nano-Cellular Medicine and Biophysics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
6
|
Ghosh D, Singh G, Mishra P, Singh A, Kumar A, Sinha N. Alteration in mitochondrial dynamics promotes the proinflammatory response of microglia and is involved in cerebellar dysfunction of young and aged mice following LPS exposure. Neurosci Lett 2023; 807:137262. [PMID: 37116576 DOI: 10.1016/j.neulet.2023.137262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/01/2023] [Accepted: 04/17/2023] [Indexed: 04/30/2023]
Abstract
Cerebellar dysfunction is implicated in impaired motor coordination and balance, thus disturbing the dynamics of sensorimotor integration. Neuroinflammation and aging could be prominent contributors to cerebellar aberration. Additionally, changes in mitochondrial dynamics may precede microglia activation in several chronic neurodegenerative diseases; however, the underlying mechanism remains largely unknown.Here using LPS (1 mg/kg i.p. for four consecutive days) stimulation in both young (3 months old) and aged (12 months old) mice, followed by molecular analysis on the 21st day, we have explored the correlation between aging and mitochondrial dynamic alteration in the backdrop of chronic neuroinflammation. Following LPS stimulation, we observed microglia activation and subsequent elevation in proinflammatory cytokines (M1; TNF-α, IFN-γ) with NLRP3 activationand a concomitant reduction in the expression of anti-inflammatory markers (M2; YM1, TGF-β1) in the cerebellar tissue of aged mice compared with the young LPS and aged controls. Remarkably, senescence (p21, p27, p53) and epigenetic (HDAC2) markers were found upregulated in the cerebellum tissue of the aged LPS group, suggesting their crucial role in LPS-induced cerebellar deficit. Further, we demonstrated alteration in the antagonistic forces of mitochondrial fusion and fission with increased expression of the mitochondrial fission-related gene [FIS1] and decreased fusion-related genes [MFN1 and MFN2]. We noted increased mtDNA copy number, microglia activation, and inflammatory response of IL1β and IFN-γ post-chronic neuroinflammation in aged LPS group. Our results suggest that the crosstalk between mitochondrial dynamics and altered microglial activation paradigm in chronic neuroinflammatory conditions may be the key to understanding the cerebellar molecular mechanism.
Collapse
Affiliation(s)
- Devlina Ghosh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Gomti Nagar Extension, Lucknow 226028, India; Centre of Biomedical Research, SGPGIMS-Campus, Raibareli Road, Lucknow 226014, India.
| | - Gajendra Singh
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Prabhaker Mishra
- Department of Biostatistics and Health Informatics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow 226 014, Uttar Pradesh, India
| | - Aditi Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Gomti Nagar Extension, Lucknow 226028, India
| | - Alok Kumar
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Neeraj Sinha
- Centre of Biomedical Research, SGPGIMS-Campus, Raibareli Road, Lucknow 226014, India.
| |
Collapse
|
7
|
Lew SY, Mohd Hisam NS, Phang MWL, Syed Abdul Rahman SN, Poh RYY, Lim SH, Kamaruzzaman MA, Chau SC, Tsui KC, Lim LW, Wong KH. Adenosine Improves Mitochondrial Function and Biogenesis in Friedreich's Ataxia Fibroblasts Following L-Buthionine Sulfoximine-Induced Oxidative Stress. BIOLOGY 2023; 12:biology12040559. [PMID: 37106759 PMCID: PMC10136261 DOI: 10.3390/biology12040559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/25/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023]
Abstract
Adenosine is a nucleoside that is widely distributed in the central nervous system and acts as a central excitatory and inhibitory neurotransmitter in the brain. The protective role of adenosine in different pathological conditions and neurodegenerative diseases is mainly mediated by adenosine receptors. However, its potential role in mitigating the deleterious effects of oxidative stress in Friedreich's ataxia (FRDA) remains poorly understood. We aimed to investigate the protective effects of adenosine against mitochondrial dysfunction and impaired mitochondrial biogenesis in L-buthionine sulfoximine (BSO)-induced oxidative stress in dermal fibroblasts derived from an FRDA patient. The FRDA fibroblasts were pre-treated with adenosine for 2 h, followed by 12.50 mM BSO to induce oxidative stress. Cells in medium without any treatments or pre-treated with 5 µM idebenone served as the negative and positive controls, respectively. Cell viability, mitochondrial membrane potential (MMP), aconitase activity, adenosine triphosphate (ATP) level, mitochondrial biogenesis, and associated gene expressions were assessed. We observed disruption of mitochondrial function and biogenesis and alteration in gene expression patterns in BSO-treated FRDA fibroblasts. Pre-treatment with adenosine ranging from 0-600 µM restored MMP, promoted ATP production and mitochondrial biogenesis, and modulated the expression of key metabolic genes, namely nuclear respiratory factor 1 (NRF1), transcription factor A, mitochondrial (TFAM), and NFE2-like bZIP transcription factor 2 (NFE2L2). Our study demonstrated that adenosine targeted mitochondrial defects in FRDA, contributing to improved mitochondrial function and biogenesis, leading to cellular iron homeostasis. Therefore, we suggest a possible therapeutic role for adenosine in FRDA.
Collapse
Affiliation(s)
- Sze Yuen Lew
- Department of Anatomy, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | | | - Michael Weng Lok Phang
- Department of Anatomy, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | | | - Rozaida Yuen Ying Poh
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Siew Huah Lim
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Mohd Amir Kamaruzzaman
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Cheras, Kuala Lumpur 56000, Malaysia
| | - Sze Chun Chau
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ka Chun Tsui
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Lee Wei Lim
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Kah Hui Wong
- Department of Anatomy, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
8
|
The Extracellular Matrix Vitalizer RATM Increased Skin Elasticity by Modulating Mitochondrial Function in Aged Animal Skin. Antioxidants (Basel) 2023; 12:antiox12030694. [PMID: 36978943 PMCID: PMC10044720 DOI: 10.3390/antiox12030694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Oxidative stress-induced cellular senescence and mitochondrial dysfunction result in skin aging by increasing ECM levels-degrading proteins such as MMPs, and decreasing collagen synthesis. MMPs also destroy the basement membrane, which is involved in skin elasticity. The extracellular matrix vitalizer RATM (RA) contains various antioxidants and sodium hyaluronate, which lead to skin rejuvenation. We evaluated whether RA decreases oxidative stress and mitochondrial dysfunction, eventually increasing skin elasticity in aged animals. Oxidative stress was assessed by assaying NADPH oxidase activity, which is involved in ROS generation, and the expression of SOD, which removes ROS. NADPH oxidase activity was increased in aged skin and decreased by RA injection. SOD expression was decreased in aged skin and increased by RA injection. Damage to mitochondrial DNA and mitochondrial fusion markers was increased in aged skin and decreased by RA. The levels of mitochondrial biogenesis markers and fission markers were decreased in aged skin and increased by RA. The levels of NF-κB/AP-1 and MMP1/2/3/9 were increased in aged skin and decreased by RA. The levels of TGF-β, CTGF, and collagen I/III were decreased in aged skin and increased by RA. The expression of laminin and nidogen and basement membrane density were decreased in aged skin and increased by RA. RA increased collagen fiber accumulation and elasticity in aged skin. In conclusion, RA improves skin rejuvenation by decreasing oxidative stress and mitochondrial dysfunction in aged skin.
Collapse
|
9
|
Singh G, Kumar A. Japanese Encephalitis Virus Infection Causes an Imbalance in the Activation of Mitochondrial Fusion/Fission Genes and Triggers the Activation of NOX2-mediated Oxidative Stress and Neuronal Cell Death. Neurochem Res 2023; 48:2196-2205. [PMID: 36856962 DOI: 10.1007/s11064-023-03898-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/05/2023] [Accepted: 02/19/2023] [Indexed: 03/02/2023]
Abstract
Mitochondria dysfunction may be an important contributor to Japanese encephalitis (JE) viral infection disease pathogenesis. In the current study, we define whether changes in mitochondrial DNA copy number (which is the biomarker for mitochondrial function) and alteration in mitochondria dynamics (fusion and fission) contribute to the pathology of the JE virus in vivo mice model. We found decreased mitochondria copy number, reduced activation of mitochondrial fission (FIS1/DRP1), and increased activation of mitochondrial fusion (MFN1/MFN2/OPA1) genes that are associated with increased NOX2-mediated ROS generation and neuronal cell death following JE virus infection. Furthermore, we found that antioxidant glutathione level decreases. In summary, the following study demonstrates that JE viral infection causes an imbalance in mitochondrial fission/fusion gene activation and promotes NOX2-mediated oxidative stress and cell death, suggesting that intervention in mitochondrial dynamics might be a potential therapeutic strategy for combating oxidative stress and inflammatory process in JE viral infection.
Collapse
Affiliation(s)
- Gajendra Singh
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, 226014, India
| | - Alok Kumar
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, 226014, India.
| |
Collapse
|
10
|
Augustyniak J, Kozlowska H, Buzanska L. Genes Involved in DNA Repair and Mitophagy Protect Embryoid Bodies from the Toxic Effect of Methylmercury Chloride under Physioxia Conditions. Cells 2023; 12:cells12030390. [PMID: 36766732 PMCID: PMC9913246 DOI: 10.3390/cells12030390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
The formation of embryoid bodies (EBs) from human pluripotent stem cells resembles the early stages of human embryo development, mimicking the organization of three germ layers. In our study, EBs were tested for their vulnerability to chronic exposure to low doses of MeHgCl (1 nM) under atmospheric (21%O2) and physioxia (5%O2) conditions. Significant differences were observed in the relative expression of genes associated with DNA repair and mitophagy between the tested oxygen conditions in nontreated EBs. When compared to physioxia conditions, the significant differences recorded in EBs cultured at 21% O2 included: (1) lower expression of genes associated with DNA repair (ATM, OGG1, PARP1, POLG1) and mitophagy (PARK2); (2) higher level of mtDNA copy number; and (3) higher expression of the neuroectodermal gene (NES). Chronic exposure to a low dose of MeHgCl (1 nM) disrupted the development of EBs under both oxygen conditions. However, only EBs exposed to MeHgCl at 21% O2 revealed downregulation of mtDNA copy number, increased oxidative DNA damage and DNA fragmentation, as well as disturbances in SOX17 (endoderm) and TBXT (mesoderm) genes expression. Our data revealed that physioxia conditions protected EBs genome integrity and their further differentiation.
Collapse
Affiliation(s)
- Justyna Augustyniak
- Department of Neurochemistry, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Correspondence: (J.A.); (L.B.); Tel.: +48-668500988 (L.B.)
| | - Hanna Kozlowska
- Laboratory of Advanced Microscopy Technique, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Leonora Buzanska
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Correspondence: (J.A.); (L.B.); Tel.: +48-668500988 (L.B.)
| |
Collapse
|
11
|
Li Z, Zong QQ, Zhai CX, Yu GH, Hu WQ, Wang YH, Wang LL, Yan ZY, Zhang TY, Teng Y, Liu S, Cai J, Li M, Chen YF, Ni J, Cai GQ, Cai PY, Pan HF, Zou YF. An association study on the risk, glucocorticoids effectiveness, and prognosis of systemic lupus erythematosus: insight from mitochondrial DNA copy number. Immunol Res 2022; 70:850-859. [DOI: 10.1007/s12026-022-09318-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/06/2022] [Indexed: 11/05/2022]
|
12
|
Augustyniak J, Lipka G, Kozlowska H, Caloni F, Buzanska L. Oxygen as an important factor modulating in vitro MeHgCl toxicity associated with mitochondrial genes in hiPSCs. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113737. [PMID: 35696963 DOI: 10.1016/j.ecoenv.2022.113737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Mitochondria are energy factories of cells and important targets for methylmercury chloride (MgHgCl). Methylmercury (MeHg) is a well-known environmental toxicant that bioaccumulates in fish and shellfish. It readily crosses the placental barrier, making it a threat to correct fetal development. Despite being comprehensively investigated for years, this compound has not been assessed for its in vitro mitochondrial toxicity under different oxygen conditions. In this study, human induced pluripotent stem cells (hiPSCs) were used to evaluate the dependence of the expression of genes associated with pluripotency and mitochondria on atmospheric (21% O2) and low (5% O2) oxygen concentrations upon MeHgCl treatment. We showed that the toxicity of MeHgCl was strongly related to an increased mtDNA copy number and downregulation of the expression of an mtDNA replication and damage repair-associated gene POLG1 (Mitochondrial Polymerase Gamma Catalytic Subunit) in both tested oxygen conditions. In addition, the viability and mitochondrial membrane potential of hiPSCs were significantly lowered by MeHgCl regardless of the oxygen concentration. However, reactive oxygen species accumulation significantly increased only under atmospheric oxygen conditions; what was associated with increased expression of TFAM (Transcription Factor A, Mitochondrial) and NRF1 (Nuclear Respiratory Factor 1) and downregulation of PARK2 (Parkin RBR E3 Ubiquitin Protein Ligase). Taken together, our results demonstrated that MeHgCl could induce in vitro toxicity in hiPSCs through altering mitochondria-associated genes in an oxygen level-dependent manner. Thus, our work suggests that oxygen should be considered a factor was modulating the in vitro toxicity of environmental pollutants. Typical atmospheric conditions of in vitro culture significantly lower the predictive value of studies of such toxicity.
Collapse
Affiliation(s)
- J Augustyniak
- Department of Neurochemistry, Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw, Poland
| | - G Lipka
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw, Poland
| | - H Kozlowska
- Laboratory of Advanced Microscopy Technique, Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw, Poland
| | - F Caloni
- Department of Environmental Science and Policy (ESP), Università degli Studi di Milano, Milan, Italy
| | - L Buzanska
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
13
|
Byun KA, Oh S, Yang JY, Lee SY, Son KH, Byun K. Ecklonia cava extracts decrease hypertension-related vascular calcification by modulating PGC-1α and SOD2. Biomed Pharmacother 2022; 153:113283. [PMID: 35717781 DOI: 10.1016/j.biopha.2022.113283] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 11/02/2022] Open
Abstract
Vascular calcification (VC) is induced by a decrease in sirtuin 3 (SIRT3) and superoxide dismutase (SOD)2 and increases mitochondrial reactive oxygen species (mtROS), eventually leading to mitochondrial dysfunction and phenotype alterations in vascular smooth muscle cells (VSMCs) into osteoblast-like cells in hypertension. Ecklonia cava extract (ECE) is known to increase peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1α) and SOD2. In this study, we evaluated the effect of ECE on decreasing VC by increasing PGC-1α which increased SOD2 activity and decreased mtROS in an in vitro VSMC model of treating serums from Wistar Kyoto (WKY), spontaneous hypertensive rats (SHRs), and ECE-treated SHRs. Furthermore, the decreasing effect of ECE on VC was evaluated with an in vivo SHR model. PGC-1α expression, SIRT3 expression, and SOD2 activity were decreased by the serum from the SHRs and increased by the serum from the ECE-treated SHRs in the VSMCs. PGC-1α silencing eliminated those increases. mtROS generation and mitochondrial DNA (mtDNA) damage increased in the SHRs but decreased with ECE. Mitochondrial fission increased in the SHRs but decreased by ECE. Mitochondrial fusion, mitophagy, and mitochondrial biogenesis were decreased in the SHRs but increased by ECE. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and calcium deposition in the medial layer of the aorta increased in the SHRs but decreased with ECE. Therefore, ECE decreases VC via the upregulation of PGC-1α and SIRT3, which increases SOD2 activity. Activated SOD2 decreases mtDNA damage and mtROS generation, which sequentially decreases NADPH oxidase activity and changes the mitochondrial dynamics, thereby decreasing VC.
Collapse
Affiliation(s)
- Kyung-A Byun
- Department of Anatomy & Cell Biology, Gachon University College of Medicine, Incheon 21936, Republic of Korea; Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon 21999, Republic of Korea
| | - Seyeon Oh
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon 21999, Republic of Korea
| | - Jin Young Yang
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon 21999, Republic of Korea
| | - So Young Lee
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea
| | - Kuk Hui Son
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea.
| | - Kyunghee Byun
- Department of Anatomy & Cell Biology, Gachon University College of Medicine, Incheon 21936, Republic of Korea; Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon 21999, Republic of Korea.
| |
Collapse
|
14
|
Kulbay M, Johnson B, Ricaud G, Séguin-Grignon MN, Bernier J. Energetic metabolic reprogramming in Jurkat DFF40-deficient cancer cells. Mol Cell Biochem 2022; 477:2213-2233. [PMID: 35460011 DOI: 10.1007/s11010-022-04433-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 04/04/2022] [Indexed: 11/25/2022]
Abstract
DNA fragmentation factor 40 (DFF40), or the caspase-activated DNase (CAD), is an endonuclease specific for double-stranded DNA. Alterations in its function and expression have been linked to apoptosis resistance, a mechanism likely used by cancer cells. However, how the DFF40-related apoptosis resistance pathway occurs remains unclear. Here, we sought to determine if DFF40 expression could be linked to cell metabolism through the regulation of mitochondrial integrity and function. We demonstrated that DFF40-deficient cells are more resistant to staurosporine and tributyltin (TBT)-induced apoptosis, and express higher levels of Mcl-1 at basal state. Treatment with TBT induces higher Bcl-2 and caspase-9 mRNA transcripts in DFF40 KO Jurkat cells, as well as enhanced Bcl-2 phosphorylation. A loss of DFF40 expression induces a higher mitochondrial mass, mtDNA copy number, mitochondrial membrane potential, and glycolysis rates in resting T cells. DFF40-deficient cells exhibit the Warburg effect phenotype, where they rely significantly more on glycolysis than oxidative phosphorylation and have a higher proliferative state, demonstrated by a higher Ki-67 transcription factor expression and AKT phosphorylation. Finally, we demonstrated with cell fractioning that DFF40 can translocate to the mitochondria following apoptosis induction. Our study reveals that DFF40 may act as a regulator of mitochondria during cell death and its loss could compromise mitochondrial integrity and cause an energetic reprogramming in pathologies such as cancer.
Collapse
Affiliation(s)
- Merve Kulbay
- INRS-Centre Armand-Frappier Santé Biotechnologie, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada
- Department of Medicine, Université de Montréal, 2900 Blvd. Edouard Montpetit, Montréal, QC, Canada
| | - Bruno Johnson
- INRS-Centre Armand-Frappier Santé Biotechnologie, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada
| | - Guillaume Ricaud
- INRS-Centre Armand-Frappier Santé Biotechnologie, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada
| | | | - Jacques Bernier
- INRS-Centre Armand-Frappier Santé Biotechnologie, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada.
| |
Collapse
|
15
|
Mitochondrial Transplantation Attenuates Cerebral Ischemia-Reperfusion Injury: Possible Involvement of Mitochondrial Component Separation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1006636. [PMID: 34849186 PMCID: PMC8627565 DOI: 10.1155/2021/1006636] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/28/2021] [Accepted: 10/27/2021] [Indexed: 12/22/2022]
Abstract
Background Mitochondrial dysfunctions play a pivotal role in cerebral ischemia-reperfusion (I/R) injury. Although mitochondrial transplantation has been recently explored for the treatment of cerebral I/R injury, the underlying mechanisms and fate of transplanted mitochondria are still poorly understood. Methods Mitochondrial morphology and function were assessed by fluorescent staining, electron microscopy, JC-1, PCR, mitochondrial stress testing, and metabolomics. Therapeutic effects of mitochondria were evaluated by cell viability, reactive oxygen species (ROS), and apoptosis levels in a cellular hypoxia-reoxygenation model. Rat middle cerebral artery occlusion model was applied to assess the mitochondrial therapy in vivo. Transcriptomics was performed to explore the underlying mechanisms. Mitochondrial fate tracking was implemented by a variety of fluorescent labeling methods. Results Neuro-2a (N2a) cell-derived mitochondria had higher mitochondrial membrane potential, more active oxidative respiration capacity, and less mitochondrial DNA copy number. Exogenous mitochondrial transplantation increased cellular viability in an oxygen-dependent manner, decreased ROS and apoptosis levels, improved neurobehavioral deficits, and reduced infarct size. Transcriptomic data showed that the differential gene enrichment pathways are associated with metabolism, especially lipid metabolism. Mitochondrial tracking indicated specific parts of the exogenous mitochondria fused with the mitochondria of the host cell, and others were incorporated into lysosomes. This process occurred at the beginning of internalization and its efficiency is related to intercellular connection. Conclusions Mitochondrial transplantation may attenuate cerebral I/R injury. The mechanism may be related to mitochondrial component separation, altering cellular metabolism, reducing ROS, and apoptosis in an oxygen-dependent manner. The way of isolated mitochondrial transfer into the cell may be related to intercellular connection.
Collapse
|
16
|
Kuroda R, Tominaga K, Kasashima K, Kuroiwa K, Sakashita E, Hayakawa H, Kouki T, Ohno N, Kawai K, Endo H. Loss of mitochondrial transcription factor A in neural stem cells leads to immature brain development and triggers the activation of the integral stress response in vivo. PLoS One 2021; 16:e0255355. [PMID: 34320035 PMCID: PMC8318236 DOI: 10.1371/journal.pone.0255355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 07/14/2021] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial dysfunction is significantly associated with neurological deficits and age-related neurological diseases. While mitochondria are dynamically regulated and properly maintained during neurogenesis, the manner in which mitochondrial activities are controlled and contribute to these processes is not fully understood. Mitochondrial transcription factor A (TFAM) contributes to mitochondrial function by maintaining mitochondrial DNA (mtDNA). To clarify how mitochondrial dysfunction affects neurogenesis, we induced mitochondrial dysfunction specifically in murine neural stem cells (NSCs) by inactivating Tfam. Tfam inactivation in NSCs resulted in mitochondrial dysfunction by reducing respiratory chain activities and causing a severe deficit in neural differentiation and maturation both in vivo and in vitro. Brain tissue from Tfam-deficient mice exhibited neuronal cell death primarily at layer V and microglia were activated prior to cell death. Cultured Tfam-deficient NSCs showed a reduction in reactive oxygen species produced by the mitochondria. Tfam inactivation during neurogenesis resulted in the accumulation of ATF4 and activation of target gene expression. Therefore, we propose that the integrated stress response (ISR) induced by mitochondrial dysfunction in neurogenesis is activated to protect the progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Rintaro Kuroda
- Department of Biochemistry, Jichi Medical University, Shimotsuke, Tochigi, Japan
- Department of Neurosurgery, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Kaoru Tominaga
- Department of Biochemistry, Jichi Medical University, Shimotsuke, Tochigi, Japan
- * E-mail: (KT); (HE)
| | - Katsumi Kasashima
- Department of Biochemistry, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Kenji Kuroiwa
- Department of Biochemistry, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Eiji Sakashita
- Department of Biochemistry, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Hiroko Hayakawa
- Core Center of Research Apparatus, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Tom Kouki
- Department of Anatomy, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Nobuhiko Ohno
- Department of Anatomy, Jichi Medical University, Shimotsuke, Tochigi, Japan
- Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Kensuke Kawai
- Department of Neurosurgery, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Hitoshi Endo
- Department of Biochemistry, Jichi Medical University, Shimotsuke, Tochigi, Japan
- * E-mail: (KT); (HE)
| |
Collapse
|
17
|
Bandara AB, Drake JC, Brown DA. Complex II subunit SDHD is critical for cell growth and metabolism, which can be partially restored with a synthetic ubiquinone analog. BMC Mol Cell Biol 2021; 22:35. [PMID: 34118887 PMCID: PMC8196461 DOI: 10.1186/s12860-021-00370-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 05/09/2021] [Indexed: 11/30/2022] Open
Abstract
Background Succinate dehydrogenase (Complex II) plays a dual role in respiration by catalyzing the oxidation of succinate to fumarate in the mitochondrial Krebs cycle and transferring electrons from succinate to ubiquinone in the mitochondrial electron transport chain (ETC). Mutations in Complex II are associated with a number of pathologies. SDHD, one of the four subunits of Complex II, serves by anchoring the complex to the inner-membrane and transferring electrons from the complex to ubiquinone. Thus, modeling SDHD dysfunction could be a valuable tool for understanding its importance in metabolism and developing novel therapeutics, however no suitable models exist. Results Via CRISPR/Cas9, we mutated SDHD in HEK293 cells and investigated the in vitro role of SDHD in metabolism. Compared to the parent HEK293, the knockout mutant HEK293ΔSDHD produced significantly less number of cells in culture. The mutant cells predictably had suppressed Complex II-mediated mitochondrial respiration, but also Complex I-mediated respiration. SDHD mutation also adversely affected glycolytic capacity and ATP synthesis. Mutant cells were more apoptotic and susceptible to necrosis. Treatment with the mitochondrial therapeutic idebenone partially improved oxygen consumption and growth of mutant cells. Conclusions Overall, our results suggest that SDHD is vital for growth and metabolism of mammalian cells, and that respiratory and growth defects can be partially restored with treatment of a ubiquinone analog. This is the first report to use CRISPR/Cas9 approach to construct a knockout SDHD cell line and evaluate the efficacy of an established mitochondrial therapeutic candidate to improve bioenergetic capacity.
Collapse
Affiliation(s)
- Aloka B Bandara
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA, 24061-0913, USA. .,Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, 24061-0342, USA.
| | - Joshua C Drake
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA, 24061-0913, USA
| | - David A Brown
- Mitochondrial Solutions, LLC, 800 Draper Road, Blacksburg, VA, 24060, USA
| |
Collapse
|
18
|
Li D, Ding Z, Gui M, Hou Y, Xie K. Metabolic Enhancement of Glycolysis and Mitochondrial Respiration Are Essential for Neuronal Differentiation. Cell Reprogram 2020; 22:291-299. [DOI: 10.1089/cell.2020.0034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Ding Li
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, China
| | - Zhexu Ding
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, China
| | - Manjin Gui
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, China
| | - Yanmei Hou
- Ausnutria Hyproca Nutrition Co. Ltd., Changsha, China
| | - Kui Xie
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, China
- Ausnutria Hyproca Nutrition Co. Ltd., Changsha, China
- Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
19
|
Gueven N, Ravishankar P, Eri R, Rybalka E. Idebenone: When an antioxidant is not an antioxidant. Redox Biol 2020; 38:101812. [PMID: 33254077 PMCID: PMC7708875 DOI: 10.1016/j.redox.2020.101812] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Idebenone is a well described drug that was initially developed against dementia. The current literature widely portrays this molecule as a potent antioxidant and CoQ10 analogue. While numerous papers seem to support this view, a closer look indicates that the pharmacokinetics of idebenone do not support these claims. A major discrepancy between achievable tissue levels, especially in target tissues such as the brain, and doses required to show the proposed effects, significantly questions our current understanding. This review explains how this has happened and highlights the discrepancies in the current literature. More importantly, based on some recent discoveries, a new framework is presented that can explain the mode of action of this molecule and can align formerly contradictory results. Finally, this new appreciation of the molecular activities of idebenone provides a rational approach to test idebenone in novel indications that might have not been considered previously for this drug.
Collapse
Affiliation(s)
- Nuri Gueven
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia.
| | - Pranathi Ravishankar
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Rajaraman Eri
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS, Australia
| | - Emma Rybalka
- Victoria University, Institute for Health and Sport, Melbourne, Victoria, Australia
| |
Collapse
|
20
|
Gambino G, Rizzo V, Giglia G, Ferraro G, Sardo P. Microtubule Dynamics and Neuronal Excitability: Advances on Cytoskeletal Components Implicated in Epileptic Phenomena. Cell Mol Neurobiol 2020; 42:533-543. [PMID: 32929563 PMCID: PMC8891195 DOI: 10.1007/s10571-020-00963-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/05/2020] [Indexed: 12/14/2022]
Abstract
Extensive researches have deepened knowledge on the role of synaptic components in epileptogenesis, but limited attention has been devoted to the potential implication of the cytoskeleton. The study of the development of epilepsy and hyperexcitability states involves molecular, synaptic, and structural alterations of neuronal bioelectric activity. In this paper we aim to explore the neurobiological targets involved in microtubule functioning and cytoskeletal transport, i.e. how dynamic scaffolding of microtubules can influence neuronal morphology and excitability, in order to suggest a potential role for microtubule dynamics in the processes turning a normal neuronal network in a hyperexcited one. Pathophysiological alterations of microtubule dynamics inducing neurodegeneration, network remodeling and relative impairment on synaptic transmission were overviewed. Recent researches were reported on the phosphorylation state of microtubule-associated proteins such as tau in neurodegenerative diseases and epileptic states, but also on the effect of microtubule-active agents influencing cytoskeleton destabilization in epilepsy models. The manipulation of microtubule polymerization was found effective in the modulation of hyperexcitability. In addition, it was considered the importance of microtubules and related neurotrophic factors during neural development since they are essential for the formation of a properly functional neuronal network. Otherwise, this can lead to cognitive deficits, hyperexcitability phenomena and neurodevelopmental disorders. Lastly, we evaluated the role of microtubule dynamics on neuronal efficiency considering their importance in the transport of mitochondria, cellular elements fulfilling energy requirements for neuronal activity, and a putative influence on cannabinoid-mediated neuroprotection. This review provides novel perspectives for the implication of microtubule dynamics in the development of epileptic phenomena.
Collapse
Affiliation(s)
- Giuditta Gambino
- Department of Experimental Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Sezione Di Fisiologia Umana G. Pagano, University of Palermo, Corso Tukory 129, Palermo, Italy
| | - Valerio Rizzo
- Department of Experimental Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Sezione Di Fisiologia Umana G. Pagano, University of Palermo, Corso Tukory 129, Palermo, Italy
| | - Giuseppe Giglia
- Department of Experimental Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Sezione Di Fisiologia Umana G. Pagano, University of Palermo, Corso Tukory 129, Palermo, Italy.
| | - Giuseppe Ferraro
- Department of Experimental Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Sezione Di Fisiologia Umana G. Pagano, University of Palermo, Corso Tukory 129, Palermo, Italy
| | - Pierangelo Sardo
- Department of Experimental Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Sezione Di Fisiologia Umana G. Pagano, University of Palermo, Corso Tukory 129, Palermo, Italy
| |
Collapse
|
21
|
Sunderland P, Augustyniak J, Lenart J, Bużańska L, Carlessi L, Delia D, Sikora E. ATM-deficient neural precursors develop senescence phenotype with disturbances in autophagy. Mech Ageing Dev 2020; 190:111296. [PMID: 32621937 DOI: 10.1016/j.mad.2020.111296] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/29/2020] [Accepted: 06/22/2020] [Indexed: 01/09/2023]
Abstract
ATM is a kinase involved in DNA damage response (DDR), regulation of response to oxidative stress, autophagy and mitophagy. Mutations in the ATM gene in humans result in ataxi A-Telangiectasia disease (A-T) characterized by a variety of symptoms with neurodegeneration and premature ageing among them. Since brain is one of the most affected organs in A-T, we have focused on senescence of neural progenitor cells (NPCs) derived from A-T reprogrammed fibroblasts. Accordingly, A-T NPCs obtained through neural differentiation of iPSCs in 5% oxygen possessed some features of senescence including increased activity of SA-β-gal and secretion of IL6 and IL8 in comparison to control NPCs. This phenotype of A-T NPC was accompanied by elevated oxidative stress. A-T NPCs exhibited symptoms of impaired autophagy and mitophagy with lack of response to chloroquine treatment. Additional sources of oxidative stress like increased oxygen concentration (20 %) and H2O2 respectively aggravated the phenotype of senescence and additionally disturbed the process of mitophagy. In both cases only A-T NPCs reacted to the treatment. We conclude that oxidative stress may be responsible for the phenotype of senescence and impairment of autophagy in A-T NPCs. Our results point to senescent A-T cells as a potential therapeutic target in this disease.
Collapse
Affiliation(s)
- Piotr Sunderland
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| | - Justyna Augustyniak
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Jacek Lenart
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Leonora Bużańska
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Luigi Carlessi
- Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Domenico Delia
- Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy; IFOM, FIRC Institute of Molecular Oncology, Milano, Italy
| | - Ewa Sikora
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
22
|
Sousa A, Dinis-Oliveira RJ. Pharmacokinetic and pharmacodynamic of the cognitive enhancer modafinil: Relevant clinical and forensic aspects. Subst Abus 2020; 41:155-173. [PMID: 31951804 DOI: 10.1080/08897077.2019.1700584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Modafinil is a nonamphetamine nootropic drug with an increasingly therapeutic interest due to its different sites of action and behavioral effects in comparison to cocaine or amphetamine. A review of modafinil (and of its prodrug adrafinil and its R-enantiomer armodafinil) chemical, pharmacokinetic, pharmacodynamic, toxicological, clinical and forensic aspects was performed, aiming to better understand possible health problems associated to its unconscious and unruled use. Modafinil is a racemate metabolized mainly in the liver into its inactive acid and sulfone metabolites, which undergo primarily renal excretion. Although not fully clarified, major effects seem to be associated to inhibition of dopamine reuptake and modulation of several other neurochemical pathways, namely noradrenergic, serotoninergic, orexinergic, histaminergic, glutamatergic and GABAergic. Due its wake-promoting effects, modafinil is used for the treatment of daily sleepiness associated to narcolepsy, obstructive sleep apnea and shift work sleep disorder. Its psychotropic and cognitive effects are also attractive in several other pathologies and conditions that affect sleep structure, induce fatigue and lethargy, and impair cognitive abilities. Additionally, in health subjects, including students, modafinil is being used off-label to overcome sleepiness, increase concentration and improve cognitive potential. The most common adverse effects associated to modafinil intake are headache, insomnia, anxiety, diarrhea, dry mouth and raise in blood pressure and heart rate. Infrequently, severe dermatologic effects in children, including maculopapular and morbilliform rash, erythema multiforme and Stevens-Johnson Syndrome have been reported. Intoxication and dependence associated to modafinil are uncommon. Further research on effects and health implications of modafinil and its analogs is steel needed to create evidence-based policies.
Collapse
Affiliation(s)
- Ana Sousa
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Ricardo Jorge Dinis-Oliveira
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, Porto, Portugal.,IINFACTS - Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal.,UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
23
|
Reference Gene Validation via RT-qPCR for Human iPSC-Derived Neural Stem Cells and Neural Progenitors. Mol Neurobiol 2019; 56:6820-6832. [PMID: 30927132 PMCID: PMC6728297 DOI: 10.1007/s12035-019-1538-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/22/2019] [Indexed: 12/16/2022]
Abstract
Correct selection of the reference gene(s) is the most important step in gene expression analysis. The aims of this study were to identify and evaluate the panel of possible reference genes in neural stem cells (NSC), early neural progenitors (eNP) and neural progenitors (NP) obtained from human-induced pluripotent stem cells (hiPSC). The stability of expression of genes commonly used as the reference in cells during neural differentiation is variable and does not meet the criteria for reference genes. In the present work, we evaluated the stability of expression of 16 candidate reference genes using the four most popular algorithms: the ΔCt method, BestKeeper, geNorm and NormFinder. All data were analysed using the online tool RefFinder to obtain a comprehensive ranking. Our results indicate that NormFinder is the best tool for reference gene selection in early stages of hiPSC neural differentiation. None of the 16 tested genes is suitable as reference gene for all three stages of development. We recommend using different genes (panel of genes) to normalise RT–qPCR data for each of the neural differentiation stages.
Collapse
|
24
|
Tuchalska-Czuroń J, Lenart J, Augustyniak J, Durlik M. Is mitochondrial DNA copy number a good prognostic marker in resectable pancreatic cancer? Pancreatology 2019; 19:73-79. [PMID: 30528645 DOI: 10.1016/j.pan.2018.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/28/2018] [Accepted: 11/21/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND The aim of this prospective study was to investigate mitochondrial DNA (mtDNA) copy number in a group of resectable pancreatic cancer (PC) tumor tissues and adjacent normal pancreatic tissues, and to explore the correlation between the mtDNA content in tissues and the clinicopathological parameters and the overall survival. METHODS Relative mtDNA copy number was measured by the quantitative PCR-based assay. The tumors specimens (n = 43) originated from the patients with pathologically confirmed pancreatic ductal adenocarcinoma who did not receive any neoadjuvant systemic therapy. The adjacent normal pancreatic tissue samples (n = 31) were obtained from surgical margins. RESULTS mtDNA copy number was significantly lower in PC tissue (P < 0.001) compared to adjacent normal pancreatic tissue. Jonckheere-Terpstra trend testing indicated a statistically significant decrease in median mtDNA copy number across the differentiation (adjacent normal pancreatic tissue, low-grade, intermediate-grade, high-grade cancer), P < 0.001. However, the survival analyses failed to show a significant difference in survival between patients with high and low mtDNA copy number. CONCLUSIONS To the best of our knowledge, we provided the first evidence that mitochondrial DNA copy number was significantly lower in pancreatic cancer tissue (P < 0.001) compared to adjacent normal pancreatic tissue. Also, we demonstrated that mitochondrial copy number was not a significant marker for predicting prognosis in resectable pancreatic cancer.
Collapse
Affiliation(s)
- Julia Tuchalska-Czuroń
- Department of Surgical Research and Transplantology, Medical Research Centre Polish Academy of Sciences, Warsaw, Poland; Diagnostic Radiology Department, Central Clinical Hospital of the MSWiA in Warsaw, Poland.
| | - Jacek Lenart
- Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Justyna Augustyniak
- Stem Cell Bioengineering Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Marek Durlik
- Department of Surgical Research and Transplantology, Medical Research Centre Polish Academy of Sciences, Warsaw, Poland; Clinical Department of Gastroenterological Surgery and Transplantation, Central Clinical Hospital of the MSWiA in Warsaw, Poland
| |
Collapse
|
25
|
Hagerman RJ, Protic D, Rajaratnam A, Salcedo-Arellano MJ, Aydin EY, Schneider A. Fragile X-Associated Neuropsychiatric Disorders (FXAND). Front Psychiatry 2018; 9:564. [PMID: 30483160 PMCID: PMC6243096 DOI: 10.3389/fpsyt.2018.00564] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/18/2018] [Indexed: 12/12/2022] Open
Abstract
Fragile X syndrome (FXS) is caused by the full mutation (>200 CGG repeats) in the Fragile X Mental Retardation 1 (FMR1) gene. It is the most common inherited cause of intellectual disability (ID) and autism. This review focuses on neuropsychiatric disorders frequently experienced by premutation carriers with 55 to 200 CGG repeats and the pathophysiology involves elevated FMR1 mRNA levels, which is different from the absence or deficiency of fragile X mental retardation protein (FMRP) seen in FXS. Neuropsychiatric disorders are the most common problems associated with the premutation, and they affect approximately 50% of individuals with 55 to 200 CGG repeats in the FMR1 gene. Neuropsychiatric disorders in children with the premutation include anxiety, ADHD, social deficits, or autism spectrum disorders (ASD). In adults with the premutation, anxiety and depression are the most common problems, although obsessive compulsive disorder, ADHD, and substance abuse are also common. These problems are often exacerbated by chronic fatigue, chronic pain, fibromyalgia, autoimmune disorders and sleep problems, which are also associated with the premutation. Here we review the clinical studies, neuropathology and molecular underpinnings of RNA toxicity associated with the premutation. We also propose the name Fragile X-associated Neuropsychiatric Disorders (FXAND) in an effort to promote research and the use of fragile X DNA testing to enhance recognition and treatment for these disorders.
Collapse
Affiliation(s)
- Randi J. Hagerman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, Sacramento, CA, United States
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Dragana Protic
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, Sacramento, CA, United States
- Department of Pharmacology, Clinical Pharmacology and Toxicology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Akash Rajaratnam
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, Sacramento, CA, United States
- Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Maria J. Salcedo-Arellano
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, Sacramento, CA, United States
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Elber Yuksel Aydin
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, Sacramento, CA, United States
- Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Andrea Schneider
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, Sacramento, CA, United States
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, United States
| |
Collapse
|
26
|
Augustyniak J, Lenart J, Gaj P, Kolanowska M, Jazdzewski K, Stepien PP, Buzanska L. Bezafibrate Upregulates Mitochondrial Biogenesis and Influence Neural Differentiation of Human-Induced Pluripotent Stem Cells. Mol Neurobiol 2018; 56:4346-4363. [PMID: 30315479 PMCID: PMC6505510 DOI: 10.1007/s12035-018-1368-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 09/27/2018] [Indexed: 01/12/2023]
Abstract
Bezafibrate (BZ) regulates mitochondrial biogenesis by activation of PPAR’s receptors and enhancing the level of PGC-1α coactivator. In this report, we investigated the effect of BZ on the expression of genes (1) that are linked to different pathways involved in mitochondrial biogenesis, e.g., regulated by PPAR’s receptors or PGC-1α coactivator, and (2) involved in neuronal or astroglial fate, during neural differentiation of hiPSC. The tested cell populations included hiPSC-derived neural stem cells (NSC), early neural progenitors (eNP), and neural progenitors (NP). RNA-seq analysis showed the expression of PPARA, PPARD receptors and excluded PPARG in all tested populations. The expression of PPARGC1A encoding PGC-1α was dependent on the stage of differentiation: NSC, eNP, and NP differed significantly as compared to hiPSC. In addition, BZ-evoked upregulation of PPARGC1A, GFAP, S100B, and DCX genes coexist with downregulation of MAP2 gene only at the eNP stage of differentiation. In the second task, we investigated the cell sensitivity and mitochondrial biogenesis upon BZ treatment. BZ influenced the cell viability, ROS level, mitochondrial membrane potential, and total cell number in concentration- and stage of differentiation-dependent manner. Induction of mitochondrial biogenesis evoked by BZ determined by the changes in the level of SDHA and COX-1 protein, and mtDNA copy number, as well as the expression of NRF1, PPARGC1A, and TFAM genes, was detected only at NP stage for all tested markers. Thus, developmental stage-specific sensitivity to BZ of neurally differentiating hiPSC can be linked to mitochondrial biogenesis, while fate commitment decisions to PGC-1α (encoded by PPARGC1A) pathway.
Collapse
Affiliation(s)
- Justyna Augustyniak
- Stem Cell Bioengineering Unit, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Jacek Lenart
- Department of Neurochemistry, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Paweł Gaj
- Laboratory of Human Cancer Genetics, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | | | - Krystian Jazdzewski
- Laboratory of Human Cancer Genetics, Centre of New Technologies, University of Warsaw, Warsaw, Poland.,Genomic Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Pawel Stepien
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland.,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.,Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Leonora Buzanska
- Stem Cell Bioengineering Unit, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
27
|
Sikora E, Rattan SIS. The Future of Ageing: not more of the same. Biogerontology 2017; 18:429-432. [PMID: 28681276 PMCID: PMC5514210 DOI: 10.1007/s10522-017-9720-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 06/26/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Ewa Sikora
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Suresh I. S. Rattan
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
28
|
Catarino CB, Klopstock T. Use of Idebenone for the Treatment of Leber’s Hereditary Optic Neuropathy. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2017. [DOI: 10.1177/2326409817731112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Claudia B. Catarino
- Department of Neurology, Friedrich-Baur-Institute, University Hospital of the Ludwig-Maximilians-Universität München, Munich, Germany
- German Network for Mitochondrial Disorders (mitoNET), Munich, Germany
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, University Hospital of the Ludwig-Maximilians-Universität München, Munich, Germany
- German Network for Mitochondrial Disorders (mitoNET), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| |
Collapse
|