1
|
Okuizumi R, Harata R, Okamoto M, Sato S, Sugawara K, Aida Y, Nakamura A, Fujisawa A, Yamamoto Y, Kashiba M. Resveratrol is converted to the ring portion of coenzyme Q10 and raises intracellular coenzyme Q10 levels in HepG2 cell. J Clin Biochem Nutr 2024; 75:118-124. [PMID: 39345294 PMCID: PMC11425075 DOI: 10.3164/jcbn.24-70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 05/18/2024] [Indexed: 10/01/2024] Open
Abstract
Coenzyme Q10 is an essential lipid in the mitochondrial electron transport system and an important antioxidant. It declines with age and in various diseases, there is a need for a method to compensate for the decrease in coenzyme Q10. Resveratrol, a well-known anti-aging compound, has been shown to undergo metabolism to coenzyme Q10's benzene ring moiety in cells. However, administration of resveratrol did not alter or only slightly increased total intracellular coenzyme Q10 levels in many cell types. Synthesis of coenzyme Q10 requires not only the benzene ring moiety but also the side chain moiety. Biosynthesis of the side chain portion of coenzyme Q10 is mediated by the mevalonic acid pathway. Here, we explore the impact of resveratrol on coenzyme Q10 levels in HepG2 cells, which possess a robust mevalonic acid pathway. As a results, intracellular coenzyme Q10 levels were increased by resveratrol administration. Analysis using 13C6-resveratrol revealed that the benzene ring portion of resveratrol was converted to coenzyme Q10. Inhibition of the mevalonic acid pathway prevented the increase in coenzyme Q10 levels induced by resveratrol administration. These results indicate that resveratrol may be beneficial as a coenzyme Q10-enhancing reagent in cells with a well-developed mevalonic acid pathway.
Collapse
Affiliation(s)
- Rena Okuizumi
- School of Bionics, Tokyo University of Technology, 1404-1 Katakura-machi, Hachioji, Tokyo 192-0982, Japan
| | - Riku Harata
- School of Bionics, Tokyo University of Technology, 1404-1 Katakura-machi, Hachioji, Tokyo 192-0982, Japan
| | - Mizuho Okamoto
- School of Bionics, Tokyo University of Technology, 1404-1 Katakura-machi, Hachioji, Tokyo 192-0982, Japan
| | - Seiji Sato
- School of Bionics, Tokyo University of Technology, 1404-1 Katakura-machi, Hachioji, Tokyo 192-0982, Japan
| | - Kyosuke Sugawara
- School of Bionics, Tokyo University of Technology, 1404-1 Katakura-machi, Hachioji, Tokyo 192-0982, Japan
| | - Yukina Aida
- School of Bionics, Tokyo University of Technology, 1404-1 Katakura-machi, Hachioji, Tokyo 192-0982, Japan
| | - Akari Nakamura
- School of Bionics, Tokyo University of Technology, 1404-1 Katakura-machi, Hachioji, Tokyo 192-0982, Japan
| | - Akio Fujisawa
- School of Bionics, Tokyo University of Technology, 1404-1 Katakura-machi, Hachioji, Tokyo 192-0982, Japan
| | - Yorihiro Yamamoto
- School of Bionics, Tokyo University of Technology, 1404-1 Katakura-machi, Hachioji, Tokyo 192-0982, Japan
| | - Misato Kashiba
- School of Bionics, Tokyo University of Technology, 1404-1 Katakura-machi, Hachioji, Tokyo 192-0982, Japan
| |
Collapse
|
2
|
Salinero-Fort MA, San Andrés-Rebollo FJ, Cárdenas-Valladolid J, Mostaza J, Lahoz C, Rodriguez-Artalejo F, Gómez-Campelo P, Vich-Pérez P, Jiménez-García R, de-Miguel-Yanes JM, Maroto-Rodriguez J, Taulero-Escalera B, Campo VI. Effect of glucose variability on the mortality of adults aged 75 years and over during the first year of the COVID-19 pandemic. BMC Geriatr 2024; 24:533. [PMID: 38902647 PMCID: PMC11188234 DOI: 10.1186/s12877-024-05149-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 06/13/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND To our knowledge, only one study has examined the association between glucose variability (GV) and mortality in the elderly population with diabetes. GV was assessed by HbA1c, and a J-shaped curve was observed in the relationship between HbA1c thresholds and mortality. No study of GV was conducted during the COVID-19 pandemic and its lockdown. This study aims to evaluate whether GV is an independent predictor of all-cause mortality in patients aged 75 years or older with and without COVID-19 who were followed during the first year of the COVID-19 pandemic and its lockdown measures. METHODS This was a retrospective cohort study of 407,492 patients from the AGED-MADRID dataset aged 83.5 (SD 5.8) years; 63.2% were women, and 29.3% had diabetes. GV was measured by the coefficient of variation of fasting plasma glucose (CV-FPG) over 6 years of follow-up (2015-2020). The outcome measure was all-cause mortality in 2020. Four models of logistic regression were performed, from simple (age, sex) to fully adjusted, to assess the effect of CV-FPG on all-cause mortality. RESULTS During follow-up, 34,925 patients died (14,999 women and 19,926 men), with an all-cause mortality rate of 822.3 per 10,000 person-years (95% confidence interval (CI), 813.7 to 822.3) (739 per 10,000; 95% CI 728.7 to 739.0 in women and 967.1 per 10,000; 95% CI 951.7 to 967.2 in men). The highest quartile of CV-FPG was significantly more common in the deceased group (40.1% vs. 23.6%; p < 0.001). In the fully adjusted model including dementia (Alzheimer's disease) and basal FPG, the odds ratio for mortality ranged from 1.88 to 2.06 in patients with T2DM and from 2.30 to 2.61 in patients with normoglycaemia, according to different sensitivity analyses. CONCLUSIONS GV has clear implications for clinical practice, as its assessment as a risk prediction tool should be included in the routine follow-up of the elderly and in a comprehensive geriatric assessment. Electronic health records can incorporate tools that allow its calculation, and with this information, clinicians will have a broader view of the medium- and long-term prognosis of their patients.
Collapse
Affiliation(s)
- Miguel A Salinero-Fort
- Department of Health, Foundation for Biosanitary Research and Innovation in Primary Care, The Hospital La Paz Institute for Health Research (IdiPAZ), Alfonso X El Sabio University, Research Network On Chronicity, Primary Care and Health Promotion -RICAPPS-(RICORS), General Subdirectorate of Research and Documentation, Madrid, Spain.
- Subdirección General de Investigación Sanitaria, Consejería de Sanidad, Madrid, Spain.
| | - F Javier San Andrés-Rebollo
- Foundation for Biosanitary Research and Innovation in Primary Care, Las Calesas Health Center, Madrid, Spain
| | - Juan Cárdenas-Valladolid
- Foundation for Biosanitary Research and Innovation in Primary Care, Information Systems Department, Primary Health Care Management of Madrid, Alfonso X El Sabio University, The Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - José Mostaza
- Lipids and Vascular Risk Unit, Internal Medicine, University Hospital La Paz-Cantoblanco-Carlos III, The Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Carlos Lahoz
- Lipids and Vascular Risk Unit, Internal Medicine, University Hospital La Paz-Cantoblanco-Carlos III, The Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Fernando Rodriguez-Artalejo
- Department of Preventive Medicine and Public Health, Universidad Autónoma de Madrid-IdIPAZ, CIBERESP (CIBER of Epidemiology and Public Health), and IMDEA-Food Institute, CEI UAM+CSIC, Madrid, Spain
| | - Paloma Gómez-Campelo
- Foundation for Biomedical Research of La Paz University Hospital (FIBHULP), The Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Pilar Vich-Pérez
- Foundation for Biosanitary Research and Innovation in Primary Care, Los Alpes Health Center, Madrid, Spain
| | - Rodrigo Jiménez-García
- Department of Public Health & Maternal and Child Health, Faculty of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - José M de-Miguel-Yanes
- School of Medicine, Internal Medicine Department, Complutense University of Madrid, Gregorio Marañón General University Hospital, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Javier Maroto-Rodriguez
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, Calle del Arzobispo Morcillo 4, Madrid, 28029, Spain
| | | | - Víctor Iriarte Campo
- Foundation for Biosanitary Research and Innovation in Primary Care, Madrid, Spain
| |
Collapse
|
3
|
Lv H, Qian D, Xu S, Fan G, Qian Q, Cha D, Qian X, Zhou G, Lu B. Modulation of long noncoding RNAs by polyphenols as a novel potential therapeutic approach in lung cancer: A comprehensive review. Phytother Res 2024; 38:3240-3267. [PMID: 38739454 DOI: 10.1002/ptr.8202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/10/2024] [Accepted: 03/19/2024] [Indexed: 05/16/2024]
Abstract
Lung cancer stands as a formidable global health challenge, necessitating innovative therapeutic strategies. Polyphenols, bioactive compounds synthesized by plants, have garnered attention for their diverse health benefits, particularly in combating various cancers, including lung cancer. The advent of whole-genome and transcriptome sequencing technologies has illuminated the pivotal roles of long noncoding RNAs (lncRNAs), operating at epigenetic, transcriptional, and posttranscriptional levels, in cancer progression. This review comprehensively explores the impact of polyphenols on both oncogenic and tumor-suppressive lncRNAs in lung cancer, elucidating on their intricate regulatory mechanisms. The comprehensive examination extends to the potential synergies when combining polyphenols with conventional treatments like chemotherapy, radiation, and immunotherapy. Recognizing the heterogeneity of lung cancer subtypes, the review emphasizes the need for the integration of nanotechnology for optimized polyphenol delivery and personalized therapeutic approaches. In conclusion, we collect the latest research, offering a holistic overview of the evolving landscape of polyphenol-mediated modulation of lncRNAs in lung cancer therapy. The integration of polyphenols and lncRNAs into multidimensional treatment strategies holds promise for enhancing therapeutic efficacy and navigating the challenges associated with lung cancer treatment.
Collapse
Affiliation(s)
- Hong Lv
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Taicang, China
| | - Dawei Qian
- Department of Thoracic Surgery, Tongling Yi'an District People's Hospital, Tongling, China
| | - Shuhua Xu
- Department of Cardiothoracic Surgery, Dongtai Hospital of Traditional Chinese Medicine, Dongtai, China
| | - Guiqin Fan
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Taicang, China
| | - Qiuhong Qian
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Taicang, China
| | - Dongsheng Cha
- Department of Thoracic Surgery, Tongling Yi'an District People's Hospital, Tongling, China
| | - Xingjia Qian
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Taicang, China
| | - Guoping Zhou
- Department of Cardiothoracic Surgery, Dongtai Hospital of Traditional Chinese Medicine, Dongtai, China
| | - Bing Lu
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Taicang, China
| |
Collapse
|
4
|
Sun Y, Xu L, Li Y, Jia S, Wang G, Cen X, Xu Y, Cao Z, Wang J, Shen N, Hu L, Zhang J, Mao J, Xia H, Liu Z, Fu X. Mitophagy defect mediates the aging-associated hallmarks in Hutchinson-Gilford progeria syndrome. Aging Cell 2024; 23:e14143. [PMID: 38482753 PMCID: PMC11296130 DOI: 10.1111/acel.14143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/03/2024] [Accepted: 03/01/2024] [Indexed: 06/13/2024] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare and fatal disease manifested by premature aging and aging-related phenotypes, making it a disease model for aging. The cellular machinery mediating age-associated phenotypes in HGPS remains largely unknown, resulting in limited therapeutic targets for HGPS. In this study, we showed that mitophagy defects impaired mitochondrial function and contributed to cellular markers associated with aging in mesenchymal stem cells derived from HGPS patients (HGPS-MSCs). Mechanistically, we discovered that mitophagy affected the aging-associated phenotypes of HGPS-MSCs by inhibiting the STING-NF-ĸB pathway and the downstream transcription of senescence-associated secretory phenotypes (SASPs). Furthermore, by utilizing UMI-77, an effective mitophagy inducer, we showed that mitophagy induction alleviated aging-associated phenotypes in HGPS and naturally aged mice. Collectively, our results uncovered that mitophagy defects mediated the aging-associated markers in HGPS, highlighted the function of mitochondrial homeostasis in HGPS progression, and suggested mitophagy as an intervention target for HGPS and aging.
Collapse
Affiliation(s)
- Yingying Sun
- The First Affiliated HospitalZhejiang University School of Medicine, and Liangzhu Laboratory of Zhejiang UniversityHangzhouZhejiangChina
- Institute of HematologyZhejiang UniversityHangzhouZhejiangChina
| | - Le Xu
- The First Affiliated HospitalZhejiang University School of Medicine, and Liangzhu Laboratory of Zhejiang UniversityHangzhouZhejiangChina
| | - Yi Li
- The First Affiliated HospitalZhejiang University School of Medicine, and Liangzhu Laboratory of Zhejiang UniversityHangzhouZhejiangChina
- Institute of HematologyZhejiang UniversityHangzhouZhejiangChina
| | - Shunze Jia
- The First Affiliated HospitalZhejiang University School of Medicine, and Liangzhu Laboratory of Zhejiang UniversityHangzhouZhejiangChina
- Institute of HematologyZhejiang UniversityHangzhouZhejiangChina
| | - Gang Wang
- National Clinical Research Center of Kidney Diseases, Jinling HospitalNanjing University School of MedicineNanjingJiangsuChina
| | - Xufeng Cen
- The First Affiliated HospitalZhejiang University School of Medicine, and Liangzhu Laboratory of Zhejiang UniversityHangzhouZhejiangChina
| | - Yuyan Xu
- The First Affiliated HospitalZhejiang University School of Medicine, and Liangzhu Laboratory of Zhejiang UniversityHangzhouZhejiangChina
| | - Zhongkai Cao
- Department of Nephrology, The Children's Hospital, Zhejiang University School of MedicineNational Clinical Research Center for Child HealthHangzhouZhejiangChina
| | - Jingjing Wang
- Department of Nephrology, The Children's Hospital, Zhejiang University School of MedicineNational Clinical Research Center for Child HealthHangzhouZhejiangChina
| | - Ning Shen
- The First Affiliated HospitalZhejiang University School of Medicine, and Liangzhu Laboratory of Zhejiang UniversityHangzhouZhejiangChina
| | - Lidan Hu
- Department of Nephrology, The Children's Hospital, Zhejiang University School of MedicineNational Clinical Research Center for Child HealthHangzhouZhejiangChina
| | - Jin Zhang
- The First Affiliated HospitalZhejiang University School of Medicine, and Liangzhu Laboratory of Zhejiang UniversityHangzhouZhejiangChina
- Institute of HematologyZhejiang UniversityHangzhouZhejiangChina
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical SciencesZhejiang University School of MedicineHangzhouChina
| | - Jianhua Mao
- Department of Nephrology, The Children's Hospital, Zhejiang University School of MedicineNational Clinical Research Center for Child HealthHangzhouZhejiangChina
| | - Hongguang Xia
- The First Affiliated HospitalZhejiang University School of Medicine, and Liangzhu Laboratory of Zhejiang UniversityHangzhouZhejiangChina
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling HospitalNanjing University School of MedicineNanjingJiangsuChina
| | - Xudong Fu
- The First Affiliated HospitalZhejiang University School of Medicine, and Liangzhu Laboratory of Zhejiang UniversityHangzhouZhejiangChina
- Institute of HematologyZhejiang UniversityHangzhouZhejiangChina
- Department of Geriatrics, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
5
|
Tan DX. Mitochondrial dysfunction, a weakest link of network of aging, relation to innate intramitochondrial immunity of DNA recognition receptors. Mitochondrion 2024; 76:101886. [PMID: 38663836 DOI: 10.1016/j.mito.2024.101886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 04/30/2024]
Abstract
Aging probably is the most complexed process in biology. It is manifested by a variety of hallmarks. These hallmarks weave a network of aging; however, each hallmark is not uniformly strong for the network. It is the weakest link determining the strengthening of the network of aging, or the maximum lifespan of an organism. Therefore, only improvement of the weakest link has the chance to increase the maximum lifespan but not others. We hypothesize that mitochondrial dysfunction is the weakest link of the network of aging. It may origin from the innate intramitochondrial immunity related to the activities of pathogen DNA recognition receptors. These receptors recognize mtDNA as the PAMP or DAMP to initiate the immune or inflammatory reactions. Evidence has shown that several of these receptors including TLR9, cGAS and IFI16 can be translocated into mitochondria. The potentially intramitochondrial presented pathogen DNA recognition receptors have the capacity to attack the exposed second structures of the mtDNA during its transcriptional or especially the replicational processes, leading to the mtDNA mutation, deletion, heteroplasmy colonization, mitochondrial dysfunction, and alterations of other hallmarks, as well as aging. Pre-consumption of the intramitochondrial presented pathogen DNA recognition receptors by medical interventions including development of mitochondrial targeted small molecule which can neutralize these receptors may retard or even reverse the aging to significantly improve the maximum lifespan of the organisms.
Collapse
Affiliation(s)
- Dun-Xian Tan
- Department of Cell Systems and Anatomy, UT Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| |
Collapse
|
6
|
Geng Z, Guan S, Wang S, Yu Z, Liu T, Du S, Zhu C. Intercellular mitochondrial transfer in the brain, a new perspective for targeted treatment of central nervous system diseases. CNS Neurosci Ther 2023; 29:3121-3135. [PMID: 37424172 PMCID: PMC10580346 DOI: 10.1111/cns.14344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/08/2023] [Accepted: 06/24/2023] [Indexed: 07/11/2023] Open
Abstract
AIM Mitochondria is one of the important organelles involved in cell energy metabolism and regulation and also play a key regulatory role in abnormal cell processes such as cell stress, cell damage, and cell canceration. Recent studies have shown that mitochondria can be transferred between cells in different ways and participate in the occurrence and development of many central nervous system diseases. We aim to review the mechanism of mitochondrial transfer in the progress of central nervous system diseases and the possibility of targeted therapy. METHODS The PubMed databank, the China National Knowledge Infrastructure databank, and Wanfang Data were searched to identify the experiments of intracellular mitochondrial transferrin central nervous system. The focus is on the donors, receptors, transfer pathways, and targeted drugs of mitochondrial transfer. RESULTS In the central nervous system, neurons, glial cells, immune cells, and tumor cells can transfer mitochondria to each other. Meanwhile, there are many types of mitochondrial transfer, including tunneling nanotubes, extracellular vesicles, receptor cell endocytosis, gap junction channels, and intercellular contact. A variety of stress signals, such as the release of damaged mitochondria, mitochondrial DNA, or other mitochondrial products and the elevation of reactive oxygen species, can trigger the transfer of mitochondria from donor cells to recipient cells. Concurrently, a variety of molecular pathways and related inhibitors can affect mitochondrial intercellular transfer. CONCLUSION This study reviews the phenomenon of intercellular mitochondrial transfer in the central nervous system and summarizes the corresponding transfer pathways. Finally, we propose targeted pathways and treatment methods that may be used to regulate mitochondrial transfer for the treatment of related diseases.
Collapse
Affiliation(s)
- Ziang Geng
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
| | - Shu Guan
- Department of Surgical Oncology and Breast SurgeryThe First Hospital of China Medical UniversityShenyangChina
| | - Siqi Wang
- Department of Radiation OncologyThe First Hospital of China Medical UniversityShenyangChina
| | - Zhongxue Yu
- Department of Cardiovascular UltrasoundThe First Hospital of China Medical UniversityShenyangChina
| | - Tiancong Liu
- Department of OtolaryngologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Shaonan Du
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
| | - Chen Zhu
- Department of NeurosurgeryThe First Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
7
|
Song L, Zhang S. Anti-Aging Activity and Modes of Action of Compounds from Natural Food Sources. Biomolecules 2023; 13:1600. [PMID: 38002283 PMCID: PMC10669485 DOI: 10.3390/biom13111600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/21/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
Aging is a natural and inescapable phenomenon characterized by a progressive deterioration of physiological functions, leading to increased vulnerability to chronic diseases and death. With economic and medical development, the elderly population is gradually increasing, which poses a great burden to society, the economy and the medical field. Thus, healthy aging has now become a common aspiration among people over the world. Accumulating evidence indicates that substances that can mediate the deteriorated physiological processes are highly likely to have the potential to prolong lifespan and improve aging-associated diseases. Foods from natural sources are full of bioactive compounds, such as polysaccharides, polyphenols, carotenoids, sterols, terpenoids and vitamins. These bioactive compounds and their derivatives have been shown to be able to delay aging and/or improve aging-associated diseases, thereby prolonging lifespan, via regulation of various physiological processes. Here, we summarize the current understanding of the anti-aging activities of the compounds, polysaccharides, polyphenols, carotenoids, sterols, terpenoids and vitamins from natural food sources, and their modes of action in delaying aging and improving aging-associated diseases. This will certainly provide a reference for further research on the anti-aging effects of bioactive compounds from natural food sources.
Collapse
Affiliation(s)
- Lili Song
- Key Laboratory of Biomedical Materials of Zhangjiakou, College of Lab Medicine, Hebei North University, Zhangjiakou 075000, China;
| | - Shicui Zhang
- College of Life and Geographic Sciences, Kashi University, Kashi 844000, China
- Xinjiang Key Laboratory of Biological Resources and Ecology of Pamirs Plateau, Kashi 844000, China
- Department of Marine Biology, Institute of Evolution & Marine Biodiversity, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| |
Collapse
|
8
|
Maurmann RM, Schmitt BL, Mosalmanzadeh N, Pence BD. Mitochondrial dysfunction at the cornerstone of inflammatory exacerbation in aged macrophages. EXPLORATION OF IMMUNOLOGY 2023; 3:442-452. [PMID: 38831878 PMCID: PMC11147369 DOI: 10.37349/ei.2023.00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/18/2023] [Indexed: 06/05/2024]
Abstract
Immunosenescence encompasses multiple age-related adaptations that result in increased susceptibility to infections, chronic inflammatory disorders, and higher mortality risk. Macrophages are key innate cells implicated in inflammatory responses and tissue homeostasis, functions progressively compromised by aging. This process coincides with declining mitochondrial physiology, whose integrity is required to sustain and orchestrate immune responses. Indeed, multiple insults observed in aged macrophages have been implied as drivers of mitochondrial dysfunction, but how this translates into impaired immune function remains sparsely explored. This review provides a perspective on recent studies elucidating the underlying mechanisms linking dysregulated mitochondria homeostasis to immune function in aged macrophages. Genomic stress alongside defective mitochondrial turnover accounted for the progressive accumulation of damaged mitochondria in aged macrophages, thus resulting in a higher susceptibility to excessive mitochondrial DNA (mtDNA) leakage and reactive oxygen species (ROS) production. Increased levels of these mitochondrial products following infection were demonstrated to contribute to exacerbated inflammatory responses mediated by overstimulation of NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome and cyclic GMP-ATP synthase (cGAS)-stimulator of interferon genes (STING) pathways. While these mechanisms are not fully elucidated, the present evidence provides a promising area to be explored and a renewed perspective of potential therapeutic targets for immunological dysfunction.
Collapse
Affiliation(s)
| | | | - Negin Mosalmanzadeh
- College of Health Sciences, University of Memphis, Memphis, Tennessee, 38152, USA
| | - Brandt D. Pence
- College of Health Sciences, University of Memphis, Memphis, Tennessee, 38152, USA
| |
Collapse
|
9
|
Skulachev VP, Vyssokikh MY, Chernyak BV, Mulkidjanian AY, Skulachev MV, Shilovsky GA, Lyamzaev KG, Borisov VB, Severin FF, Sadovnichii VA. Six Functions of Respiration: Isn't It Time to Take Control over ROS Production in Mitochondria, and Aging Along with It? Int J Mol Sci 2023; 24:12540. [PMID: 37628720 PMCID: PMC10454651 DOI: 10.3390/ijms241612540] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Cellular respiration is associated with at least six distinct but intertwined biological functions. (1) biosynthesis of ATP from ADP and inorganic phosphate, (2) consumption of respiratory substrates, (3) support of membrane transport, (4) conversion of respiratory energy to heat, (5) removal of oxygen to prevent oxidative damage, and (6) generation of reactive oxygen species (ROS) as signaling molecules. Here we focus on function #6, which helps the organism control its mitochondria. The ROS bursts typically occur when the mitochondrial membrane potential (MMP) becomes too high, e.g., due to mitochondrial malfunction, leading to cardiolipin (CL) oxidation. Depending on the intensity of CL damage, specific programs for the elimination of damaged mitochondria (mitophagy), whole cells (apoptosis), or organisms (phenoptosis) can be activated. In particular, we consider those mechanisms that suppress ROS generation by enabling ATP synthesis at low MMP levels. We discuss evidence that the mild depolarization mechanism of direct ATP/ADP exchange across mammalian inner and outer mitochondrial membranes weakens with age. We review recent data showing that by protecting CL from oxidation, mitochondria-targeted antioxidants decrease lethality in response to many potentially deadly shock insults. Thus, targeting ROS- and CL-dependent pathways may prevent acute mortality and, hopefully, slow aging.
Collapse
Affiliation(s)
- Vladimir P. Skulachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.P.S.); (M.Y.V.); (B.V.C.); (M.V.S.); (G.A.S.); (K.G.L.); (F.F.S.)
| | - Mikhail Yu. Vyssokikh
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.P.S.); (M.Y.V.); (B.V.C.); (M.V.S.); (G.A.S.); (K.G.L.); (F.F.S.)
| | - Boris V. Chernyak
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.P.S.); (M.Y.V.); (B.V.C.); (M.V.S.); (G.A.S.); (K.G.L.); (F.F.S.)
| | | | - Maxim V. Skulachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.P.S.); (M.Y.V.); (B.V.C.); (M.V.S.); (G.A.S.); (K.G.L.); (F.F.S.)
- Institute of Mitoengineering, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Gregory A. Shilovsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.P.S.); (M.Y.V.); (B.V.C.); (M.V.S.); (G.A.S.); (K.G.L.); (F.F.S.)
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Kharkevich Institute for Information Transmission Problems of the Russian Academy of Sciences, 127051 Moscow, Russia
| | - Konstantin G. Lyamzaev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.P.S.); (M.Y.V.); (B.V.C.); (M.V.S.); (G.A.S.); (K.G.L.); (F.F.S.)
- The “Russian Clinical Research Center for Gerontology” of the Ministry of Healthcare of the Russian Federation, Pirogov Russian National Research Medical University, 129226 Moscow, Russia
| | - Vitaliy B. Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.P.S.); (M.Y.V.); (B.V.C.); (M.V.S.); (G.A.S.); (K.G.L.); (F.F.S.)
| | - Fedor F. Severin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.P.S.); (M.Y.V.); (B.V.C.); (M.V.S.); (G.A.S.); (K.G.L.); (F.F.S.)
| | - Victor A. Sadovnichii
- Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, 119991 Moscow, Russia;
| |
Collapse
|
10
|
López-Lluch G. Coenzyme Q-related compounds to maintain healthy mitochondria during aging. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 136:277-308. [PMID: 37437981 DOI: 10.1016/bs.apcsb.2023.02.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Mitochondrial dysfunction is one of the main factors that affects aging progression and many age-related diseases. Accumulation of dysfunctional mitochondria can be driven by unbalanced mito/autophagy or by decrease in mitochondrial biosynthesis and turnover. Coenzyme Q is an essential component of the mitochondrial electron transport chain and a key factor in the protection of membrane and mitochondrial DNA against oxidation. Coenzyme Q levels decay during aging and this can be considered an accelerating factor in mitochondrial dysfunction and aging progression. Supplementation with coenzyme Q is successful for some tissues and organs but not for others. For this reason, the role of coenzyme Q in systemic aging is a complex picture that needs different strategies depending on the organ considered the main objective to be addressed. In this chapter we focus on the different effects of coenzyme Q and related compounds and the probable strategies to induce endogenous synthesis to maintain healthy aging.
Collapse
Affiliation(s)
- Guillermo López-Lluch
- Centro Andaluz de Biología del Desarrollo, CABD-CSIC, CIBERER, Instituto de Salud Carlos III, Universidad Pablo de Olavide, Sevilla, Spain.
| |
Collapse
|
11
|
Gao SY, Liu YP, Wen R, Huang XM, Li P, Yang YH, Yang N, Zhang TN. Kcnma1 is involved in mitochondrial homeostasis in diabetes-related skeletal muscle atrophy. FASEB J 2023; 37:e22866. [PMID: 36929614 DOI: 10.1096/fj.202201397rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/10/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023]
Abstract
Uncontrolled diabetes causes a catabolic state with multi-organic complications, of which impairment on skeletal muscle contributes to the damaged mobility. Kcnma1 gene encodes the pore-forming α-subunit of Ca2+ - and voltage-gated K+ channels of large conductance (BK channels), and loss-of-function mutations in Kcnma1 are in regards to impaired myogenesis. Herein, we observed a time-course reduction of Kcnma1 expression in the tibialis anterior muscles of leptin receptor-deficient (db/db) diabetic mice. To investigate the role of Kcnma1 in diabetic muscle atrophy, muscle-specific knockdown of Kcnma1 was achieved by mice receiving intravenous injection of adeno-associated virus-9 (AAV9)-encoding shRNA against Kcnma1 under the muscle creatine kinase (MCK) promoter. Impairment on muscle mass and myogenesis were observed in m/m mice with AAV9-shKcnma1 intervention, while this impairment was more obvious in diabetic db/db mice. Simultaneously, damaged mitochondrial dynamics and biogenesis showed much severer in db/db mice with AAV9-shKcnma1 intervention. RNA sequencing revealed the large transcriptomic changes resulted by Kcnma1 knockdown, and changes in mitochondrial homeostasis-related genes were validated. Besides, the artificial alteration of Kcnma1 in mouse C2C12 myoblasts was achieved with an adenovirus vector. Consistent results were demonstrated by Kcnma1 knockdown in palmitate-treated cells, whereas opposite results were exhibited by Kcnma1 overexpression. Collectively, we document Kcnma1 as a potential keeper of mitochondrial homeostasis, and the loss of Kcnma1 is a critical event in priming skeletal muscle loss in diabetes.
Collapse
Affiliation(s)
- Shan-Yan Gao
- Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yong-Ping Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ri Wen
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xin-Mei Huang
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Ping Li
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Hang Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ni Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tie-Ning Zhang
- Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
12
|
Fernández-Portero C, Amián JG, Bella RDL, López-Lluch G, Alarcón D. Coenzyme Q10 Levels Associated With Cognitive Functioning and Executive Function in Older Adults. J Gerontol A Biol Sci Med Sci 2023; 78:1-8. [PMID: 35908233 DOI: 10.1093/gerona/glac152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Indexed: 01/31/2023] Open
Abstract
Brain deterioration with age is associated with inflammation and oxidative stress that result in structural and functional changes. Recent studies have indicated that coenzyme Q10 (CoQ10) is associated with neurological oxidative stress and cognitive impairment. Studies with older people have shown a relationship between neurodegenerative diseases and CoQ10 levels. However, no studies have analyzed the relationship between CoQ10 and cognitive functioning in older adults. The aim of this study was to analyze the association between CoQ10 and cognitive functioning in an older adult sample, controlling for other factors that may influence aging, such as the level of physical activity and nutritional status. The sample consisted of 64 older adults aged 65-99 years (76.67 ± 8.16 years), among whom 48 were women (75%). The participants were recruited among those who attended community centers to voluntarily participate in leisure activities. According to previous studies, physical activity and nutritional status are positively associated with cognitive functioning. However, the main finding of this study was that plasma CoQ10, controlling for other measures, was significantly associated with cognitive functioning and executive function. The current findings suggest that a decline in cognitive capacities may be related to reduced antioxidant defenses, as reflected by low CoQ10 levels in older adults.
Collapse
Affiliation(s)
- Cristina Fernández-Portero
- Department of Social Anthropology, Psychology and Public Health, Pablo de Olavide University, Seville, Spain
| | - Josué G Amián
- Department of Social Anthropology, Psychology and Public Health, Pablo de Olavide University, Seville, Spain
| | - Rocío de la Bella
- Department of Physiology, Anatomy and Cell Biology, Andalusian Centre of Developmental Biology, Universidad Pablo de Olavide, Seville, Spain
| | - Guillermo López-Lluch
- Department of Physiology, Anatomy and Cell Biology, Andalusian Centre of Developmental Biology, Universidad Pablo de Olavide, Seville, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER, U729), IICS-Madrid, Madrid, Spain.,Centro de investigación en Rendimiento Físico y Deportivo, Universidad Pablo de Olavide, Sevilla, Spain
| | - David Alarcón
- Department of Social Anthropology, Psychology and Public Health, Pablo de Olavide University, Seville, Spain
| |
Collapse
|
13
|
Mitochondrial function and nutrient sensing pathways in ageing: enhancing longevity through dietary interventions. Biogerontology 2022; 23:657-680. [PMID: 35842501 DOI: 10.1007/s10522-022-09978-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/30/2022] [Indexed: 12/13/2022]
Abstract
Ageing is accompanied by alterations in several biochemical processes, highly influenced by its environment. It is controlled by the interactions at various levels of biological hierarchy. To maintain homeostasis, a number of nutrient sensors respond to the nutritional status of the cell and control its energy metabolism. Mitochondrial physiology is influenced by the energy status of the cell. The alterations in mitochondrial physiology and the network of nutrient sensors result in mitochondrial damage leading to age related metabolic degeneration and diseases. Calorie restriction (CR) has proved to be as the most successful intervention to achieve the goal of longevity and healthspan. CR elicits a hormetic response and regulates metabolism by modulating these networks. In this review, the authors summarize the interdependent relationship between mitochondrial physiology and nutrient sensors during the ageing process and their role in regulating metabolism.
Collapse
|
14
|
De Vitis C, Capalbo C, Torsello A, Napoli C, Salvati V, Loffredo C, Blandino G, Piaggio G, Auciello FR, Pelliccia F, Salerno G, Simmaco M, Di Magno L, Canettieri G, Coluzzi F, Mancini R, Rocco M, Sciacchitano S. Opposite Effect of Thyroid Hormones on Oxidative Stress and on Mitochondrial Respiration in COVID-19 Patients. Antioxidants (Basel) 2022; 11:antiox11101998. [PMID: 36290721 PMCID: PMC9598114 DOI: 10.3390/antiox11101998] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 01/08/2023] Open
Abstract
Background: Thyroid hormones (TH)s are master regulators of mitochondrial activity and biogenesis. Nonthyroidal illness syndrome (NTIS) is generally considered an adaptative response to reduced energy that is secondary to critical illness, including COVID-19. COVID-19 has been associated with profound changes in the cell energy metabolism, especially in the cells of the immune system, with a central role played by the mitochondria, considered the power units of every cell. Infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) affects and alters mitochondrial functions, both to influence its intracellular survival and to evade host immunity. Aim of the study: This study was undertaken to analyze the oxidative balance and mitochondrial respiration in COVID-19 patients with and without NTIS to elucidate the role that thyroid hormones (TH)s play in this context. Methods: In our cohort of 54 COVID-19 patients, admitted to our University Hospital during the COVID-19 pandemic, we evaluated the generation of reactive oxygen species (ROS) by measuring the serum levels of derivatives of reactive oxygen metabolites (dROMs), and we analyzed the antioxidant capacity by measuring the serum biological antioxidant potential (BAP). We then analyzed the mitochondrial respiration in peripheral blood mononuclear cells (PBMC)s of 28 of our COVID-19 patients, using the seahorse instrument (Agilent). Results were correlated with the serum levels of THs and, in particular, of FT3. In addition, the role of T3 on bioelectrical impedance analysis (BIA) and mitochondrial respiration parameters was directly evaluated in two COVID-19 patients with NTIS, in which treatment with synthetic liothyronine (LT3) was given both in vivo and in vitro. Results: In our COVID-19 patients with NTIS, the dROMs values were significantly lower and the BAP values were significantly higher. Consequently, the oxidative stress index (OSi), measured as BAP/dROMs ratio was reduced compared to that observed in COVID-19 patients without NTIS, indicating a protective role exerted by NTIS on oxidative stress. In our COVID-19 patients, the mitochondrial respiration, measured in PBMCs, was reduced compared to healthy controls. Those with NTIS showed a reduced maximal respiratory capacity and a reduced proton leak, compared to those with normal FT3 serum values. Such lowered mitochondrial respiratory capacity makes the cells more vulnerable to bioenergetic exhaustion. In a pilot study involving two COVID-19 patients with NTIS, we could reinforce our previous observation regarding the role of T3 in the maintenance of adequate peripheral hydroelectrolytic balance. In addition, in these two patients, we demonstrated that by treating their PBMCs with LT3, both in vitro and in vivo, all mitochondrial respiration parameters significantly increased. Conclusions: Our results regarding the reduction in the serum levels of the reactive oxygen species (ROS) of COVID-19 patients with NTIS support the hypothesis that NTIS could represent an adaptative response to severe COVID-19. However, beside this beneficial effect, we demonstrate that, in the presence of an acute reduction of FT3 serum levels, the mitochondrial respiration is greatly impaired, with a consequent establishment of a hypoenergetic state of the immune cells that may hamper their capacity to react to massive viral infection.
Collapse
Affiliation(s)
- Claudia De Vitis
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy
| | - Carlo Capalbo
- Department of Medical Oncology, Sant’Andrea University Hospital, 00189 Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy
| | - Alessandra Torsello
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy
| | - Christian Napoli
- Department of Surgical and Medical Science and Translational Medicine, Sapienza University of Rome, 00181 Rome, Italy
| | - Valentina Salvati
- Scientific Direction, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Chiara Loffredo
- Unit of Anesthesia, Intensive Care and Pain Medicine, Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Giovanni Blandino
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Giulia Piaggio
- UOSD SAFU, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Roma, Italy
| | - Francesca Romana Auciello
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Flaminia Pelliccia
- Unit of Anesthesia, Intensive Care and Pain Medicine, Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Gerardo Salerno
- Department of Neuroscience, Mental Health, and Sensory Organs (NESMOS), Sapienza University of Rome, 00189 Rome, Italy
| | - Maurizio Simmaco
- Department of Neuroscience, Mental Health, and Sensory Organs (NESMOS), Sapienza University of Rome, 00189 Rome, Italy
| | - Laura Di Magno
- Department of Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy
| | - Gianluca Canettieri
- Department of Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy
- Pasteur Institute, Cenci-Bolognetti Foundation, 00161 Rome, Italy
| | - Flaminia Coluzzi
- Unit of Anesthesia, Intensive Care and Pain Medicine, Sant’Andrea University Hospital, 00189 Rome, Italy
- Department Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Polo Pontino, 04100 Latina, Italy
| | - Rita Mancini
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy
| | - Monica Rocco
- Department of Surgical and Medical Science and Translational Medicine, Sapienza University of Rome, 00181 Rome, Italy
- Unit of Anesthesia, Intensive Care and Pain Medicine, Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Salvatore Sciacchitano
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy
- Correspondence:
| |
Collapse
|
15
|
Wang Q, Li H, Zhang G, Chen X, Wang X. Itaconate prolongs the healthy lifespan by activating UPR mt in Caenorhabditis elegans. Eur J Pharmacol 2022; 923:174951. [PMID: 35405114 DOI: 10.1016/j.ejphar.2022.174951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/29/2022] [Accepted: 04/05/2022] [Indexed: 11/18/2022]
Abstract
Itaconate (ItA), a byproduct of the Krebs cycle, has recently emerged as an anti-inflammatory metabolite for inhibiting the overactive immune response. In addition to its immunomodulatory and antimicrobial effects, ItA may have other therapeutic avenues. Herein, the effect of ItA on aging was explored in order to better establish the therapeutic potential of this promising metabolite. ItA extended the lifespan and enhanced the stress resistance of Caenorhabditis elegans (C. elegans), even at the doses of 0.01 and 0.1 μM. Moreover, the lifespan extension effect of ItA was pronounced even for the aged worms (days 7 and 9 post adult stage). Furthermore, ItA was found to extend the healthy longevity of C. elegans in a mitochondria-dependent manner. ItA protected the mitochondrial integrity, increased ATP content, and decreased the reactive oxygen species (ROS) in C. elegans. Mechanistic investigations showed that ItA specifically activated the mitochondrial unfolded protein response (UPRmt) in worms and significantly increased the expression of activating transcription factor associated with stress-1 (ATFS-1) that senses mitochondrial stress and communicates with the nucleus during the UPRmt. ItA extended the lifespan of C. elegans in an ATFS-1-dependent manner. In summary, this study elucidates the molecular mechanism by which ItA extends the healthy lifespan and highlights the importance of mitochondrial integrity in the intervention of aging.
Collapse
Affiliation(s)
- Qingqing Wang
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, Jilin, 130012, China
| | - Hongyuan Li
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Gangwei Zhang
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, Jilin, 130012, China
| | - Xiaoguang Chen
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, Jilin, 130012, China; College of Humanities and information, Changchun University of Technology, Changchun, Jilin, 130122, China.
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China; Beijing National Laboratory for Molecular Sciences, Beijing, 100190, China.
| |
Collapse
|
16
|
Jiang Z, Cai X, Kong J, Zhang R, Ding Y. Maternally transmitted diabetes mellitus may be associated with mitochondrial ND5 T12338C and tRNA Ala T5587C variants. Ir J Med Sci 2022; 191:2625-2633. [PMID: 34993838 DOI: 10.1007/s11845-021-02911-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/25/2021] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Mutations/variants in mitochondrial genomes are found to be associated with type 2 diabetes mellitus (T2DM), but the pathophysiology of this disease remains largely unknown. AIM The aim of this study is to investigate the relationship between mitochondrial DNA (mtDNA) variants and T2DM. METHODOLOGY A maternally inherited T2DM pedigree is underwent clinical, genetic, and molecular assessment. Moreover, the complete mitochondrial genomes of the matrilineal relatives of this family are PCR amplified and sequenced. We also utilize the phylogenetic conservation analysis, haplogroup classification, and the pathogenicity scoring system to determine the T2DM-associated potential pathogenic mtDNA variants. RESULT Four of seven matrilineal relatives of this pedigree suffered from T2DM with variable ages of onset. Screening for the entire mtDNA genes of matrilineal members reveals co-existence of ND5 T12338C and tRNAAla T5587C variants, as well as 21 genetic polymorphisms which belong to East Asian haplogroup F2. Interestingly, the T12338C variant causes the alternation of first amino acid Met to Thr, shortened two amino acids of ND5 protein. Furthermore, T5587C variant is located at position 73 in the 3'end of mt-tRNAAla and may have structural and functional consequences. CONCLUSIONS The co-occurrence of ND5 T12338C and tRNAAla T5587C variants may impair the mitochondrial function, which are associated with the development of T2DM in this family.
Collapse
Affiliation(s)
- Zhaochang Jiang
- Department of Pathology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaobo Cai
- Department of Pathology, Taizhou Central Hospital, Taizhou University Hospital, Taizhou, China
| | - Jing Kong
- Department of Endocrinology and Metabolism, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Ruyi Zhang
- Department of Pathology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Ding
- Central Laboratory, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
17
|
Pallotti F, Bergamini C, Lamperti C, Fato R. The Roles of Coenzyme Q in Disease: Direct and Indirect Involvement in Cellular Functions. Int J Mol Sci 2021; 23:128. [PMID: 35008564 PMCID: PMC8745647 DOI: 10.3390/ijms23010128] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 12/16/2022] Open
Abstract
Coenzyme Q (CoQ) is a key component of the respiratory chain of all eukaryotic cells. Its function is closely related to mitochondrial respiration, where it acts as an electron transporter. However, the cellular functions of coenzyme Q are multiple: it is present in all cell membranes, limiting the toxic effect of free radicals, it is a component of LDL, it is involved in the aging process, and its deficiency is linked to several diseases. Recently, it has been proposed that coenzyme Q contributes to suppressing ferroptosis, a type of iron-dependent programmed cell death characterized by lipid peroxidation. In this review, we report the latest hypotheses and theories analyzing the multiple functions of coenzyme Q. The complete knowledge of the various cellular CoQ functions is essential to provide a rational basis for its possible therapeutic use, not only in diseases characterized by primary CoQ deficiency, but also in large number of diseases in which its secondary deficiency has been found.
Collapse
Affiliation(s)
- Francesco Pallotti
- Dipartimento di Medicina e Chirurgia, Università Degli Studi dell’Insubria, 21100 Varese, Italy
- SSD Laboratorio Analisi-SMEL Specializzato in Citogenetica e Genetica Medica, ASST Settelaghi-Ospedale di Circolo-Fondazione Macchi, 21100 Varese, Italy
| | - Christian Bergamini
- Dipartimento di Farmacia e Biotecnologie, FABIT, Università Degli Studi di Bologna, 40126 Bologna, Italy;
| | - Costanza Lamperti
- UO Genetica Medica e Neurogenetica Fondazione IRCCS Istituto Neurologico C. Besta, 20133 Milano, Italy;
| | - Romana Fato
- Dipartimento di Farmacia e Biotecnologie, FABIT, Università Degli Studi di Bologna, 40126 Bologna, Italy;
| |
Collapse
|
18
|
Yang L, Guo Q, Leng J, Wang K, Ding Y. Late onset of type 2 diabetes is associated with mitochondrial tRNA Trp A5514G and tRNA Ser(AGY) C12237T mutations. J Clin Lab Anal 2021; 36:e24102. [PMID: 34811812 PMCID: PMC8761459 DOI: 10.1002/jcla.24102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 12/16/2022] Open
Abstract
Background Mitochondrial dysfunctions caused by mitochondrial DNA (mtDNA) pathogenic mutations play putative roles in type 2 diabetes mellitus (T2DM) progression. But the underlying mechanism remains poorly understood. Methods A large Chinese family with maternally inherited diabetes and deafness (MIDD) underwent clinical, genetic, and molecular assessment. PCR and sequence analysis are carried out to detect mtDNA variants in affected family members, in addition, phylogenetic conservation analysis, haplogroup classification, and pathogenicity scoring system are performed. Moreover, the GJB2, GJB3, GJB6, and TRMU genes mutations are screened by PCR‐Sanger sequencing. Results Six of 18 matrilineal subjects manifested different clinical phenotypes of diabetes. The average age at onset of diabetic patients is 52 years. Screening for the entire mitochondrial genomes suggests the co‐existence of two possibly pathogenic mutations: tRNATrp A5514G and tRNASer(AGY) C12237T, which belongs to East Asia haplogroup G2a. By molecular level, m.A5514G mutation resides at acceptor stem of tRNATrp (position 3), which is critical for steady‐state level of tRNATrp. Conversely, m.C12237T mutation occurs in the variable region of tRNASer(AGY) (position 31), which creates a novel base‐pairing (11A‐31T). Thus, the mitochondrial dysfunctions caused by tRNATrp A5514G and tRNASer(AGY) C12237T mutations, may be associated with T2DM in this pedigree. But we do not find any functional mutations in those nuclear genes. Conclusion Our findings suggest that m.A5514G and m.C12337T mutations are associated with T2DM, screening for mt‐tRNA mutations is useful for molecular diagnosis and prevention of mitochondrial diabetes.
Collapse
Affiliation(s)
- Liuchun Yang
- Central Laboratory, the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qinxian Guo
- Central Laboratory, the Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianhang Leng
- Central Laboratory, the Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Keyi Wang
- Central Laboratory, the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China.,Central Laboratory, the Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Ding
- Central Laboratory, the Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
19
|
Coenzyme Q at the Hinge of Health and Metabolic Diseases. Antioxidants (Basel) 2021; 10:antiox10111785. [PMID: 34829656 PMCID: PMC8615162 DOI: 10.3390/antiox10111785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/28/2021] [Accepted: 11/04/2021] [Indexed: 12/13/2022] Open
Abstract
Coenzyme Q is a unique lipidic molecule highly conserved in evolution and essential to maintaining aerobic metabolism. It is endogenously synthesized in all cells by a very complex pathway involving a group of nuclear genes that share high homology among species. This pathway is tightly regulated at transcription and translation, but also by environment and energy requirements. Here, we review how coenzyme Q reacts within mitochondria to promote ATP synthesis and also integrates a plethora of metabolic pathways and regulates mitochondrial oxidative stress. Coenzyme Q is also located in all cellular membranes and plasma lipoproteins in which it exerts antioxidant function, and its reaction with different extramitochondrial oxidoreductases contributes to regulate the cellular redox homeostasis and cytosolic oxidative stress, providing a key factor in controlling various apoptosis mechanisms. Coenzyme Q levels can be decreased in humans by defects in the biosynthesis pathway or by mitochondrial or cytosolic dysfunctions, leading to a highly heterogeneous group of mitochondrial diseases included in the coenzyme Q deficiency syndrome. We also review the importance of coenzyme Q levels and its reactions involved in aging and age-associated metabolic disorders, and how the strategy of its supplementation has had benefits for combating these diseases and for physical performance in aging.
Collapse
|
20
|
Zhou DD, Luo M, Huang SY, Saimaiti A, Shang A, Gan RY, Li HB. Effects and Mechanisms of Resveratrol on Aging and Age-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9932218. [PMID: 34336123 PMCID: PMC8289612 DOI: 10.1155/2021/9932218] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/26/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022]
Abstract
The aging of population has become an issue of great concern because of its rapid increase. Aging is an important risk factor of many chronic diseases. Resveratrol could be found in many foods, such as grapes, red wine, peanuts, and blueberries. Many studies reported that resveratrol possessed various bioactivities, such as antioxidant, anti-inflammatory, cardiovascular protection, anticancer, antidiabetes mellitus, antiobesity, neuroprotection, and antiaging effects. The antiaging mechanisms of resveratrol were mainly ameliorating oxidative stress, relieving inflammatory reaction, improving mitochondrial function, and regulating apoptosis. Resveratrol could be an effective and safe compound for the prevention and treatment of aging and age-related diseases. In this review, we summarize the effects of resveratrol on aging, life extension, and several age-related diseases, with special attention paid to the mechanisms of antiaging action.
Collapse
Affiliation(s)
- Dan-Dan Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Min Luo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Si-Yu Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Adila Saimaiti
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ao Shang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
21
|
Navas P, Cascajo MV, Alcázar-Fabra M, Hernández-Camacho JD, Sánchez-Cuesta A, Rodríguez ABC, Ballesteros-Simarro M, Arroyo-Luque A, Rodríguez-Aguilera JC, Fernández-Ayala DJM, Brea-Calvo G, López-Lluch G, Santos-Ocaña C. Secondary CoQ 10 deficiency, bioenergetics unbalance in disease and aging. Biofactors 2021; 47:551-569. [PMID: 33878238 DOI: 10.1002/biof.1733] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/24/2021] [Indexed: 12/21/2022]
Abstract
Coenzyme Q10 (CoQ10 ) deficiency is a rare disease characterized by a decreased accumulation of CoQ10 in cell membranes. Considering that CoQ10 synthesis and most of its functions are carried out in mitochondria, CoQ10 deficiency cases are usually considered a mitochondrial disease. A relevant feature of CoQ10 deficiency is that it is the only mitochondrial disease with a successful therapy available, the CoQ10 supplementation. Defects in components of the synthesis machinery caused by mutations in COQ genes generate the primary deficiency of CoQ10 . Mutations in genes that are not directly related to the synthesis machinery cause secondary deficiency. Cases of CoQ10 deficiency without genetic origin are also considered a secondary deficiency. Both types of deficiency can lead to similar clinical manifestations, but the knowledge about primary deficiency is deeper than secondary. However, secondary deficiency cases may be underestimated since many of their clinical manifestations are shared with other pathologies. This review shows the current state of secondary CoQ10 deficiency, which could be even more relevant than primary deficiency for clinical activity. The analysis covers the fundamental features of CoQ10 deficiency, which are necessary to understand the biological and clinical differences between primary and secondary CoQ10 deficiencies. Further, a more in-depth analysis of CoQ10 secondary deficiency was undertaken to consider its origins, introduce a new way of classification, and include aging as a form of secondary deficiency.
Collapse
Affiliation(s)
- Plácido Navas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, Madrid, Spain
| | - María V Cascajo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, Madrid, Spain
| | - María Alcázar-Fabra
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, Madrid, Spain
| | - Juan D Hernández-Camacho
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Sánchez-Cuesta
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Belén Cortés Rodríguez
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, Madrid, Spain
- Laboratorio de Fisiopatología Celular y Bioenergética, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
| | - Manuel Ballesteros-Simarro
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Arroyo-Luque
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Carlos Rodríguez-Aguilera
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, Madrid, Spain
- Laboratorio de Fisiopatología Celular y Bioenergética, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
| | - Daniel J M Fernández-Ayala
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, Madrid, Spain
| | - Gloria Brea-Calvo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, Madrid, Spain
| | - Guillermo López-Lluch
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Santos-Ocaña
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
- CIBERER, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
22
|
You X, Huang X, Bi L, Li R, Zheng L, Xin C. Clinical and molecular features of two diabetes families carrying mitochondrial ND1 T3394C mutation. Ir J Med Sci 2021; 191:749-758. [PMID: 33840063 DOI: 10.1007/s11845-021-02620-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/04/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Mutations in mitochondrial DNA (mtDNA) are found to be associated with type 2 diabetes mellitus (T2DM). However, the molecular pathogenesis of these mutations in T2DM is still poorly understood. METHODS In this study, we report here the molecular features of two Han Chinese families with maternally transmitted T2DM. The matrilineal relatives are undergoing clinical, biochemical, genetic evaluations, and molecular analysis. Furthermore, the entire mitochondrial genomes of these matrilineal relatives are screened by PCR-Sanger sequencing. RESULTS The age at onset of T2DM of these participants varies from 28 to 71 years, with an average of 43 years. Molecular analysis of mitochondrial genomes identifies the existence of ND1 T3394C mutation in both families, together with sets of variants belonging to mitochondrial haplogroup Y2 and M9a. The m.T3394C mutation is localized at very conserved tyrosine at position 30 of ND1, may result the failure in ND1 mRNA metabolism, and lead to mitochondrial dysfunction. Moreover, sequence analysis of matrilineal relatives in Family 1 identifies the m.A14693G mutation which occurs in the TΨC-loop of tRNAGlu (position 54), and is critical to the structural formation and stabilization of this tRNA. Thus, m.A14693G mutation may cause the impairment in tRNA metabolism, thereby worsens the mitochondrial dysfunction caused by ND1 T3394C mutation. However, no functional mtDNA variants are identified in Family 2 which suggest that mitochondrial haplogroup may not play an important role in diabetes expression. CONCLUSIONS Our study indicates that mitochondrial ND1 T3394C mutation is involved in the pathogenesis of maternally inherited T2DM in these families.
Collapse
Affiliation(s)
- Xiaohong You
- Department of Obstetrics and Gynecology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Xueming Huang
- Department of Emergency, Luzhou Maternal and Child Health and Family Planning Service Center, Luzhou, 646000, China
| | - Luowen Bi
- Department of Obstetrics and Gynecology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Rui Li
- Department of Obstetrics and Gynecology, South Hospital of Fujian Provincial Hospital, Fuzhou, 350007, China
| | - Lin Zheng
- Department of Obstetrics and Gynecology, South Hospital of Fujian Provincial Hospital, Fuzhou, 350007, China
| | - Changzheng Xin
- Department of Obstetrics and Gynecology, South Hospital of Fujian Provincial Hospital, Fuzhou, 350007, China.
| |
Collapse
|
23
|
López-Lluch G. Coenzyme Q homeostasis in aging: Response to non-genetic interventions. Free Radic Biol Med 2021; 164:285-302. [PMID: 33454314 DOI: 10.1016/j.freeradbiomed.2021.01.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/30/2020] [Accepted: 01/11/2021] [Indexed: 12/28/2022]
Abstract
Coenzyme Q (CoQ) is a key component for many essential metabolic and antioxidant activities in cells in mitochondria and cell membranes. Mitochondrial dysfunction is one of the hallmarks of aging and age-related diseases. Deprivation of CoQ during aging can be the cause or the consequence of this mitochondrial dysfunction. In any case, it seems clear that aging-associated CoQ deprivation accelerates mitochondrial dysfunction in these diseases. Non-genetic prolongevity interventions, including CoQ dietary supplementation, can increase CoQ levels in mitochondria and cell membranes improving mitochondrial activity and delaying cell and tissue deterioration by oxidative damage. In this review, we discuss the importance of CoQ deprivation in aging and age-related diseases and the effect of prolongevity interventions on CoQ levels and synthesis and CoQ-dependent antioxidant activities.
Collapse
Affiliation(s)
- Guillermo López-Lluch
- Universidad Pablo de Olavide, Centro Andaluz de Biología Del Desarrollo, CABD-CSIC, CIBERER, Instituto de Salud Carlos III, Carretera de Utrera Km. 1, 41013, Sevilla, Spain.
| |
Collapse
|
24
|
Proshkina EN, Solovev IA, Shaposhnikov MV, Moskalev AA. Key Molecular Mechanisms of Aging, Biomarkers, and Potential Interventions. Mol Biol 2021. [DOI: 10.1134/s0026893320060096] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
25
|
Gargano A, Beins E, Zimmer A, Bilkei-Gorzo A. Lack of Cannabinoid Receptor Type-1 Leads to Enhanced Age-Related Neuronal Loss in the Locus Coeruleus. Int J Mol Sci 2020; 22:ijms22010005. [PMID: 33374940 PMCID: PMC7792602 DOI: 10.3390/ijms22010005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 02/05/2023] Open
Abstract
Our laboratory and others have previously shown that cannabinoid receptor type-1 (CB1r) activity is neuroprotective and a modulator of brain ageing; a genetic disruption of CB1r signaling accelerates brain ageing, whereas the pharmacological stimulation of CB1r activity had the opposite effect. In this study, we have investigated if the lack of CB1r affects noradrenergic neurons in the locus coeruleus (LC), which are vulnerable to age-related changes; their numbers are reduced in patients with neurodegenerative diseases and probably also in healthy aged individuals. Thus, we compared LC neuronal numbers between cannabinoid 1 receptor knockout (Cnr1−/−) mice and their wild-type littermates. Our results reveal that old Cnr1−/− mice have less noradrenergic neurons compared to their age-matched wild-type controls. This result was also confirmed by the analysis of the density of noradrenergic terminals which proved that Cnr1−/− mice had less compared to the wild-type controls. Additionally, we assessed pro-inflammatory glial activity in the LC. Although the density of microglia in Cnr1−/− mice was enhanced, they did not show enhanced inflammatory profile. We hypothesize that CB1r activity is necessary for the protection of noradrenergic neurons, but its anti-inflammatory effect probably only plays a minor role in it.
Collapse
Affiliation(s)
- Alessandra Gargano
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (A.G.); (E.B.); (A.Z.)
| | - Eva Beins
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (A.G.); (E.B.); (A.Z.)
- Institute of Human Genetics, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Andreas Zimmer
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (A.G.); (E.B.); (A.Z.)
| | - Andras Bilkei-Gorzo
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (A.G.); (E.B.); (A.Z.)
- Correspondence: ; Tel.: +49-0228-6885-317
| |
Collapse
|
26
|
Moreno Fernández-Ayala DJ, Navas P, López-Lluch G. Age-related mitochondrial dysfunction as a key factor in COVID-19 disease. Exp Gerontol 2020; 142:111147. [PMID: 33171276 PMCID: PMC7648491 DOI: 10.1016/j.exger.2020.111147] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023]
Abstract
SARS-CoV-2 causes a severe pneumonia (COVID-19) that affects essentially elderly people. In COVID-19, macrophage infiltration into the lung causes a rapid and intense cytokine storm leading finally to a multi-organ failure and death. Comorbidities such as metabolic syndrome, obesity, type 2 diabetes, lung and cardiovascular diseases, all of them age-associated diseases, increase the severity and lethality of COVID-19. Mitochondrial dysfunction is one of the hallmarks of aging and COVID-19 risk factors. Dysfunctional mitochondria is associated with defective immunological response to viral infections and chronic inflammation. This review discuss how mitochondrial dysfunction is associated with defective immune response in aging and different age-related diseases, and with many of the comorbidities associated with poor prognosis in the progression of COVID-19. We suggest here that chronic inflammation caused by mitochondrial dysfunction is responsible of the explosive release of inflammatory cytokines causing severe pneumonia, multi-organ failure and finally death in COVID-19 patients. Preventive treatments based on therapies improving mitochondrial turnover, dynamics and activity would be essential to protect against COVID-19 severity.
Collapse
Affiliation(s)
- Daniel J Moreno Fernández-Ayala
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, CIBERER, Instituto de Salud Carlos III, 41013 Sevilla, Spain
| | - Plácido Navas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, CIBERER, Instituto de Salud Carlos III, 41013 Sevilla, Spain
| | - Guillermo López-Lluch
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, CIBERER, Instituto de Salud Carlos III, 41013 Sevilla, Spain.
| |
Collapse
|
27
|
Gioran A, Chondrogianni N. Mitochondria (cross)talk with proteostatic mechanisms: Focusing on ageing and neurodegenerative diseases. Mech Ageing Dev 2020; 190:111324. [DOI: 10.1016/j.mad.2020.111324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/15/2022]
|
28
|
Meza-Torres C, Hernández-Camacho JD, Cortés-Rodríguez AB, Fang L, Bui Thanh T, Rodríguez-Bies E, Navas P, López-Lluch G. Resveratrol Regulates the Expression of Genes Involved in CoQ Synthesis in Liver in Mice Fed with High Fat Diet. Antioxidants (Basel) 2020; 9:antiox9050431. [PMID: 32429295 PMCID: PMC7278683 DOI: 10.3390/antiox9050431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/18/2022] Open
Abstract
Resveratrol (RSV) is a bioactive natural molecule that induces antioxidant activity and increases protection against oxidative damage. RSV could be used to mitigate damages associated to metabolic diseases and aging. Particularly, RSV regulates different aspects of mitochondrial metabolism. However, no information is available about the effects of RSV on Coenzyme Q (CoQ), a central component in the mitochondrial electron transport chain. Here, we report for the first time that RSV modulates COQ genes and parameters associated to metabolic syndrome in mice. Mice fed with high fat diet (HFD) presented a higher weight gain, triglycerides (TGs) and cholesterol levels while RSV reverted TGs to control level but not weight or cholesterol. HFD induced a decrease of COQs gene mRNA level, whereas RSV reversed this decrease in most of the COQs genes. However, RSV did not show effect on CoQ9, CoQ10 and total CoQ levels, neither in CoQ-dependent antioxidant enzymes. HFD influenced mitochondrial dynamics and mitophagy markers. RSV modulated the levels of PINK1 and PARKIN and their ratio, indicating modulation of mitophagy. In summary, we report that RSV influences some of the metabolic adaptations of HFD affecting mitochondrial physiology while also regulates COQs gene expression levels in a process that can be associated with mitochondrial dynamics and turnover.
Collapse
Affiliation(s)
- Catherine Meza-Torres
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and CIBERER, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (C.M.-T.); (J.D.H.-C.); (A.B.C.-R.); (T.B.T.); (E.R.-B.); (P.N.)
| | - Juan Diego Hernández-Camacho
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and CIBERER, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (C.M.-T.); (J.D.H.-C.); (A.B.C.-R.); (T.B.T.); (E.R.-B.); (P.N.)
| | - Ana Belén Cortés-Rodríguez
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and CIBERER, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (C.M.-T.); (J.D.H.-C.); (A.B.C.-R.); (T.B.T.); (E.R.-B.); (P.N.)
| | - Luis Fang
- Immunology and Molecular Biology Group, Universidad del Norte, Barranquilla 081007, Colombia;
| | - Tung Bui Thanh
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and CIBERER, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (C.M.-T.); (J.D.H.-C.); (A.B.C.-R.); (T.B.T.); (E.R.-B.); (P.N.)
- School of Medicine and Pharmacy, Vietnam National University, Hanoi 100000, Vietnam
| | - Elisabet Rodríguez-Bies
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and CIBERER, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (C.M.-T.); (J.D.H.-C.); (A.B.C.-R.); (T.B.T.); (E.R.-B.); (P.N.)
- Departamento de Deporte e Informática, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Plácido Navas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and CIBERER, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (C.M.-T.); (J.D.H.-C.); (A.B.C.-R.); (T.B.T.); (E.R.-B.); (P.N.)
| | - Guillermo López-Lluch
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and CIBERER, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (C.M.-T.); (J.D.H.-C.); (A.B.C.-R.); (T.B.T.); (E.R.-B.); (P.N.)
- Correspondence: ; Tel.: +34-954-9384
| |
Collapse
|
29
|
Gerisch B, Tharyan RG, Mak J, Denzel SI, Popkes-van Oepen T, Henn N, Antebi A. HLH-30/TFEB Is a Master Regulator of Reproductive Quiescence. Dev Cell 2020; 53:316-329.e5. [PMID: 32302543 DOI: 10.1016/j.devcel.2020.03.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 01/28/2020] [Accepted: 03/15/2020] [Indexed: 12/20/2022]
Abstract
All animals have evolved the ability to survive nutrient deprivation, and nutrient signaling pathways are conserved modulators of health and disease. In C. elegans, late-larval starvation provokes the adult reproductive diapause (ARD), a long-lived quiescent state that enables survival for months without food, yet underlying molecular mechanisms remain unknown. Here, we show that ARD is distinct from other forms of diapause, showing little requirement for canonical longevity pathways, autophagy, and fat metabolism. Instead it requires the HLH-30/TFEB transcription factor to promote the morphological and physiological remodeling involved in ARD entry, survival, and recovery, suggesting that HLH-30 is a master regulator of reproductive quiescence. HLH-30 transcriptome and genetic analyses reveal that Max-like HLH factors, AMP-kinase, mTOR, protein synthesis, and mitochondrial fusion are target processes that promote ARD longevity. ARD thus rewires metabolism to ensure long-term survival and may illuminate similar mechanisms acting in stem cell quiescence and long-term fasting.
Collapse
Affiliation(s)
- Birgit Gerisch
- Department of Molecular Genetics of Ageing, Max Planck Institute for Biology of Ageing, Cologne 50931, Germany
| | - Rebecca George Tharyan
- Department of Molecular Genetics of Ageing, Max Planck Institute for Biology of Ageing, Cologne 50931, Germany
| | - Jennifer Mak
- Department of Molecular Genetics of Ageing, Max Planck Institute for Biology of Ageing, Cologne 50931, Germany
| | - Sarah I Denzel
- Department of Molecular Genetics of Ageing, Max Planck Institute for Biology of Ageing, Cologne 50931, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, University of Cologne, Cologne 50931, Germany
| | - Till Popkes-van Oepen
- Department of Molecular Genetics of Ageing, Max Planck Institute for Biology of Ageing, Cologne 50931, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, University of Cologne, Cologne 50931, Germany
| | - Nadine Henn
- Department of Molecular Genetics of Ageing, Max Planck Institute for Biology of Ageing, Cologne 50931, Germany
| | - Adam Antebi
- Department of Molecular Genetics of Ageing, Max Planck Institute for Biology of Ageing, Cologne 50931, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, University of Cologne, Cologne 50931, Germany.
| |
Collapse
|
30
|
Casuso RA, Huertas JR. The emerging role of skeletal muscle mitochondrial dynamics in exercise and ageing. Ageing Res Rev 2020; 58:101025. [PMID: 32018055 DOI: 10.1016/j.arr.2020.101025] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 12/27/2022]
Abstract
Mitochondria are the hub for energy production within living cells. They can undergo morphological changes in response to nutrient availability and cellular stress. Here, we review how exercise chronically and acutely affects mitochondrial dynamics. Moreover, we discuss whether mitochondrial dysfunction observed in elderly subjects is due to the ageing process per se or due to the associated sedentary state. Finally, we study how endurance exercise can improve mitochondrial dynamics in older subjects, thereby improving their overall health and likely limiting muscle waste.
Collapse
Affiliation(s)
- Rafael A Casuso
- Institute of Nutrition and Food Technology, Biomedical Research Centre, Department of Physiology, Faculty of Sport Sciences, University of Granada, Avda del conocimiento s/n. 18016 Armilla, Granada, Spain.
| | - Jesús R Huertas
- Institute of Nutrition and Food Technology, Biomedical Research Centre, Department of Physiology, Faculty of Sport Sciences, University of Granada, Avda del conocimiento s/n. 18016 Armilla, Granada, Spain
| |
Collapse
|
31
|
Li N, Zhan X. Mitochondrial Dysfunction Pathway Networks and Mitochondrial Dynamics in the Pathogenesis of Pituitary Adenomas. Front Endocrinol (Lausanne) 2019; 10:690. [PMID: 31649621 PMCID: PMC6794370 DOI: 10.3389/fendo.2019.00690] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 09/23/2019] [Indexed: 12/17/2022] Open
Abstract
Mitochondrion is a multi-functional organelle, which is associated with various signaling pathway networks, including energy metabolism, oxidative stress, cell apoptosis, cell cycles, autophagy, and immunity process. Mitochondrial proteins have been discovered to modulate these signaling pathway networks, and multiple biological behaviors to adapt to various internal environments or signaling events of human pathogenesis. Accordingly, mitochondrial dysfunction that alters the bioenergetic and biosynthetic state might contribute to multiple diseases, including cell transformation and tumor. Multiomics studies have revealed that mitochondrial dysfunction, oxidative stress, and cell cycle dysregulation signaling pathways operate in human pituitary adenomas, which suggest mitochondria play critical roles in pituitary adenomas. Some drugs targeting mitochondria are found as a therapeutic strategy for pituitary adenomas, including melatonin, melatonin inhibitors, temozolomide, pyrimethamine, 18 beta-glycyrrhetinic acid, gossypol acetate, Yougui pill, T-2 toxin, grifolic acid, cyclosporine A, dopamine agonists, and paeoniflorin. This article reviews the latest experimental evidence and potential biological roles of mitochondrial dysfunction and mitochondrial dynamics in pituitary adenoma progression, potential molecular mechanisms between mitochondria and pituitary adenoma progression, and current status and perspectives of mitochondria-based biomarkers and targeted drugs for effective management of pituitary adenomas.
Collapse
Affiliation(s)
- Na Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Xianquan Zhan
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
32
|
Palmeira CM, Teodoro JS, Amorim JA, Steegborn C, Sinclair DA, Rolo AP. Mitohormesis and metabolic health: The interplay between ROS, cAMP and sirtuins. Free Radic Biol Med 2019; 141:483-491. [PMID: 31349039 PMCID: PMC6718302 DOI: 10.1016/j.freeradbiomed.2019.07.017] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/09/2019] [Accepted: 07/16/2019] [Indexed: 02/07/2023]
Abstract
The key role of mitochondria in oxidative metabolism and redox homeostasis explains the link between mitochondrial dysfunction and the development of metabolic disorders. Mitochondria's highly dynamic nature, based on alterations in biogenesis, mitophagy, fusion and fission, allows adjusting sequential redox reactions of the electron transport chain (ETC) and dissipation of the membrane potential by ATP synthase, to different environmental cues. With reactive oxygen species being an inevitable by-product of oxidative phosphorylation (OXPHOS), alterations on mitochondrial oxidative rate with a consequent excessive load of reactive oxygen species have been traditionally associated with pathological conditions. However, reactive oxygen species have also been suggested as promoters of mitohormesis, a process in which low, non-cytotoxic concentrations of reactive oxygen species promote mitochondrial homeostasis. Therefore, signaling systems involved in the regulation of mitochondrial homeostasis are attractive candidates for drug development for metabolic diseases triggered by mitochondrial dysfunction. Reversible phosphorylation downstream the cyclic AMP (cAMP) signaling cascade and deacetylation mediated by sirtuins are recognized as major mitochondrial regulators.
Collapse
Affiliation(s)
- Carlos Marques Palmeira
- Department of Life Sciences, University of Coimbra, Portugal; Center for Neurosciences and Cell Biology, University of Coimbra, Portugal
| | - João Soeiro Teodoro
- Department of Life Sciences, University of Coimbra, Portugal; Center for Neurosciences and Cell Biology, University of Coimbra, Portugal
| | - João Alves Amorim
- Center for Neurosciences and Cell Biology, University of Coimbra, Portugal; IIIUC - Institute of Interdisciplinary Research, University of Coimbra, Portugal; Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, USA
| | - Clemens Steegborn
- Department of Biochemistry, University of Bayreuth, 95440, Bayreuth, Germany
| | - David A Sinclair
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, USA; Laboratory for Ageing Research, Department of Pharmacology, School of Medical Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Anabela Pinto Rolo
- Department of Life Sciences, University of Coimbra, Portugal; Center for Neurosciences and Cell Biology, University of Coimbra, Portugal.
| |
Collapse
|
33
|
Deletion of OGG1 Results in a Differential Signature of Oxidized Purine Base Damage in mtDNA Regions. Int J Mol Sci 2019; 20:ijms20133302. [PMID: 31284385 PMCID: PMC6651574 DOI: 10.3390/ijms20133302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/28/2019] [Accepted: 07/02/2019] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial oxidative stress accumulates with aging and age-related diseases and induces alterations in mitochondrial DNA (mtDNA) content. Since mtDNA qualitative alterations are also associated with aging, repair of mtDNA damage is of great importance. The most relevant form of DNA repair in this context is base excision repair (BER), which removes oxidized bases such as 8-oxoguanine (8-oxoG) and thymine glycol through the action of the mitochondrial isoform of the specific 8-oxoG DNA glycosylase/apurinic or apyrimidinic (AP) lyase (OGG1) or the endonuclease III homolog (NTH1). Mouse strains lacking OGG1 (OGG1−/−) or NTH1 (NTH1−/−) were analyzed for mtDNA alterations. Interestingly, both knockout strains presented a significant increase in mtDNA content, suggestive of a compensatory mtDNA replication. The mtDNA “common deletion” was not detected in either knockout mouse strain, likely because of the young age of the mice. Formamidopyrimidine DNA glycosylase (Fpg)-sensitive sites accumulated in mtDNA from OGG1−/− but not from NTH1−/− mice. Interestingly, the D-loop region was most severely affected by the absence of OGG1, suggesting that this region may be a hotspot for oxidative damage. Thus, we speculate that mtDNA alterations may send a stress message to evoke cell changes through a retrograde mitochondrial–nucleus communication.
Collapse
|
34
|
Harries L, Goljanek-Whysall K. The biology of ageing and the omics revolution. Biogerontology 2018; 19:435-436. [PMID: 30288632 DOI: 10.1007/s10522-018-9776-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 09/25/2018] [Indexed: 10/28/2022]
|