1
|
Skovgaard AC, Nejad AM, Beck HC, Tan Q, Soerensen M. Epigenomics and transcriptomics association study of blood pressure and incident diagnosis of hypertension in twins. Hypertens Res 2025:10.1038/s41440-025-02164-5. [PMID: 39972178 DOI: 10.1038/s41440-025-02164-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/27/2025] [Accepted: 02/06/2025] [Indexed: 02/21/2025]
Abstract
Hypertension is the most frequent health-related condition worldwide and is a primary risk factor for renal and cardiovascular diseases. However, the underlying molecular mechanisms are still poorly understood. To uncover these mechanisms, multi-omics studies have significant potential, but such studies are challenged by genetic and environmental confounding - an issue that can be effectively reduced by studying intra-pair differences in twins. Here, we coupled data on hypertension diagnoses from the nationwide Danish Patient Registry to a study population of 740 twins for whom genome-wide DNA methylation and gene expression data were available together with measurements of systolic and diastolic blood pressure. We investigated five phenotypes: incident hypertension cases, systolic blood pressure, diastolic blood pressure, hypertension (140/90 mmHg), and hypertension (130/80 mmHg). Statistical analyses were performed using Cox (incident cases) or linear (remaining) regression analyses at both the individual-level and twin pair-level. Significant genes (p < 0.05) at both levels and in both types of biological data were investigated by bioinformatic analyses, including gene set enrichment analysis and interaction network analysis. Overall, most of the identified pathways related to the immune system, particularly inflammation, and biology of vascular smooth muscle cell. Of specific genes, lysine methyltransferase 2 A (KMT2A) was found to be central for incident hypertension, ataxia-telangiectasia mutated (ATM) for systolic blood pressure, and beta-actin (ACTB) for diastolic blood pressure. Noteworthy, lysine methyltransferase 2A (KMT2A) was also identified in the systolic and diastolic blood pressure analyses. Here, we present novel biomarkers for hypertension. This study design is surprisingly rare in the field of hypertension. We identified biological pathways related to vascular smooth muscle cells and the immune system, particular inflammation, to be associated with hypertension and blood pressure. Of specific genes, we identified KMT2A (lysine methyltransferase 2A) to be central for blood pressure and hypertension development. ACTB beta-actin, ATM ataxiatelangiectasia mutated, BP blood pressure, EWAS epigenome-wide association studies, KMT2A lysine methyltransferase 2A, LMER linear mixed effect regression, LR linear regression, TWAS transcriptome-wide association studies.
Collapse
Affiliation(s)
- Asmus Cosmos Skovgaard
- The Danish Twin Registry and the Research Unit for Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark.
| | - Afsaneh M Nejad
- The Danish Twin Registry and the Research Unit for Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Hans Christian Beck
- Centre for Clinical Proteomics, Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
| | - Qihua Tan
- The Danish Twin Registry and the Research Unit for Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Mette Soerensen
- The Danish Twin Registry and the Research Unit for Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| |
Collapse
|
2
|
Tan Q, Alo H, Nygaard M, Sørensen M, Saleh A, Mengel-From J, Christensen K. Age-Dependent DNA Methylation Variability on the X-Chromosome in Male and Female Twins. EPIGENOMES 2024; 8:43. [PMID: 39584966 PMCID: PMC11586961 DOI: 10.3390/epigenomes8040043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/21/2024] [Accepted: 11/01/2024] [Indexed: 11/26/2024] Open
Abstract
We aimed to explore the age-dependent epigenetic variability on the X-chromosome with consideration of X-chromosome inactivation by applying a sex-stratified regression analysis to DNA methylation array data on X-linked CpGs in aging identical twins. We found 13 X-linked CpGs showing age-related significant increase in variability in males (FDR < 0.05) but none in females. In females, we found a significantly higher proportion of CpGs showing increased variability with age among nominally significant (p < 0.05) CpGs under inactivation, but not among CpGs escaping inactivation. Survival analysis showed a slight trend of correlation by directional change in the variable CpGs with mortality in males. Compared with females, the male X-chromosome can be more vulnerable to epigenetic instability during aging.
Collapse
Affiliation(s)
- Qihua Tan
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark; (H.A.); (M.N.); (M.S.); (A.S.); (J.M.-F.); (K.C.)
- Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Hikmat Alo
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark; (H.A.); (M.N.); (M.S.); (A.S.); (J.M.-F.); (K.C.)
| | - Marianne Nygaard
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark; (H.A.); (M.N.); (M.S.); (A.S.); (J.M.-F.); (K.C.)
| | - Mette Sørensen
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark; (H.A.); (M.N.); (M.S.); (A.S.); (J.M.-F.); (K.C.)
| | - Alisa Saleh
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark; (H.A.); (M.N.); (M.S.); (A.S.); (J.M.-F.); (K.C.)
| | - Jonas Mengel-From
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark; (H.A.); (M.N.); (M.S.); (A.S.); (J.M.-F.); (K.C.)
| | - Kaare Christensen
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark; (H.A.); (M.N.); (M.S.); (A.S.); (J.M.-F.); (K.C.)
| |
Collapse
|
3
|
Clemmensen SB, Frederiksen H, Mengel-From J, Heikkinen A, Kaprio J, Hjelmborg JVB. Novel epigenetic biomarkers for hematopoietic cancer found in twins. Acta Oncol 2024; 63:710-717. [PMID: 39295308 PMCID: PMC11423697 DOI: 10.2340/1651-226x.2024.40700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/30/2024] [Indexed: 09/21/2024]
Abstract
BACKGROUND AND PURPOSE This article aims to identify epigenetic markers and detect early development of hematopoietic malignancies through an epigenome wide association study of DNA methylation data. MATERIALS AND METHODS This register-based study includes 1,085 Danish twins with 31 hematopoietic malignancies and methylation levels from 450,154 5'-C-phospate-G-3' (CpG) sites. Associations between methylation levels and incidence of hematopoietic malignancy is studied through time-to-event regression. The matched case-cotwin design, where one twin has a malignancy and the cotwin does not, is applied to enhance control for unmeasured shared confounding and false discoveries. Predictive performance is validated in the independent Older Finnish Twin Cohort. RESULTS AND INTERPRETATION We identified 67 epigenetic markers for hematopoietic malignancies of which 12 are linked to genes associated with hematologic malignancies. For some markers, we discovered a 2-3-fold relative risk difference for high versus low methylation. The identification of these 67 sites enabled the formation of a predictor demonstrating a cross-validated time-varying area under the curve (AUC) of 92% 3 years after individual blood sampling and persistent performance above 70% up to 6 years after blood sampling. This predictive performance was to a large extent recovered in the validation sample showing an overall Harrell's C of 73%. In conclusion, from a large population representative twin study on hematopoietic cancers, novel epigenetic markers were identified that may prove useful for early diagnosis.
Collapse
Affiliation(s)
- Signe B Clemmensen
- Department of Epidemiology, Biostatistics, and Biodemography, Institute of Public Health, University of Southern Denmark, Odense, Denmark; Danish Twin Registry, Institute of Public Health, University of Southern Denmark, Odense, Denmark.
| | - Henrik Frederiksen
- Department of Haematology, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jonas Mengel-From
- Department of Epidemiology, Biostatistics, and Biodemography, Institute of Public Health, University of Southern Denmark, Odense, Denmark; Danish Twin Registry, Institute of Public Health, University of Southern Denmark, Odense, Denmark; Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Aino Heikkinen
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Jacob vB Hjelmborg
- Department of Epidemiology, Biostatistics, and Biodemography, Institute of Public Health, University of Southern Denmark, Odense, Denmark; Danish Twin Registry, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
4
|
Skovgaard AC, Mohammadnejad A, Beck HC, Tan Q, Soerensen M. Multi-omics association study of DNA methylation and gene expression levels and diagnoses of cardiovascular diseases in Danish Twins. Clin Epigenetics 2024; 16:117. [PMID: 39187864 PMCID: PMC11348607 DOI: 10.1186/s13148-024-01727-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/11/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Cardiovascular diseases (CVDs) are major causes of mortality and morbidity worldwide; yet the understanding of their molecular basis is incomplete. Multi-omics studies have significant potential to uncover these mechanisms, but such studies are challenged by genetic and environmental confounding-a problem that can be effectively reduced by investigating intrapair differences in twins. Here, we linked data on all diagnoses of the circulatory system from the nationwide Danish Patient Registry (spanning 1977-2022) to a study population of 835 twins holding genome-wide DNA methylation and gene expression data. CVD diagnoses were divided into prevalent or incident cases (i.e., occurring before or after blood sample collection (2007-2011)). The diagnoses were classified into four groups: cerebrovascular diseases, coronary artery disease (CAD), arterial and other cardiovascular diseases (AOCDs), and diseases of the veins and lymphatic system. Statistical analyses were performed by linear (prevalent cases) or cox (incident cases) regression analyses at both the individual-level and twin pair-level. Significant genes (p < 0.05) in both types of biological data and at both levels were inspected by bioinformatic analyses, including gene set enrichment analysis and interaction network analysis. RESULTS In general, more genes were found for prevalent than for incident cases, and bioinformatic analyses primarily found pathways of the immune system, signal transduction and diseases for prevalent cases, and pathways of cell-cell communication, metabolisms of proteins and RNA, gene expression, and chromatin organization groups for incident cases. This potentially reflects biology related to response to CVD (prevalent cases) and mechanisms related to regulation and development of disease (incident cases). Of specific genes, Myosin 1E was found to be central for CAD, and DEAD-Box Helicase 5 for AOCD. These genes were observed in both the prevalent and the incident analyses, potentially reflecting that their DNA methylation and gene transcription levels change both because of disease (prevalent cases) and prior disease (incident cases). CONCLUSION We present novel biomarkers for CVD by performing multi-omics analysis in twins, hereby lowering the confounding due to shared genetics and early life environment-a study design that is surprisingly rare in the field of CVD, and where additional studies are highly needed.
Collapse
Affiliation(s)
- Asmus Cosmos Skovgaard
- The Danish Twin Registry and the Research Unit for Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.
| | - Afsaneh Mohammadnejad
- The Danish Twin Registry and the Research Unit for Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Hans Christian Beck
- Center for Individualized Medicine in Arterial Diseases, Department of Biochemistry, Odense University Hospital, J.B. Winsloews Vej 4, 5000, Odense C, Denmark
| | - Qihua Tan
- The Danish Twin Registry and the Research Unit for Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Mette Soerensen
- The Danish Twin Registry and the Research Unit for Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
- Department of Clinical Genetics, Odense University Hospital, J.B. Winsloews Vej 4, 5000, Odense C, Denmark
| |
Collapse
|
5
|
Shiau S, Zumpano F, Wang Z, Shah J, Tien PC, Ross RD, Sharma A, Yin MT. Epigenetic Aging and Musculoskeletal Outcomes in a Cohort of Women Living With HIV. J Infect Dis 2024; 229:1803-1811. [PMID: 38366369 PMCID: PMC11175700 DOI: 10.1093/infdis/jiae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/19/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND The relationship between accelerated epigenetic aging and musculoskeletal outcomes in women with HIV (WWH) has not been studied. METHODS We measured DNA methylation age using the Infinium MethylationEPIC BeadChip in a cohort from the Women's Interagency HIV Study (n = 190) with measures of bone mineral density (BMD) and physical function. We estimated 6 biomarkers of epigenetic aging-epigenetic age acceleration (EAA), extrinsic EAA, intrinsic EAA, GrimAge, PhenoAge, and DNA methylation-estimated telomere length-and evaluated associations of epigenetic aging measures with BMD and physical function. We also performed epigenome-wide association studies to examine associations of DNA methylation signatures with BMD and physical function. RESULTS This study included 118 WWH (mean age, 49.7 years; 69% Black) and 72 without HIV (mean age, 48.9 years; 69% Black). WWH had higher EAA (mean ± SD, 1.44 ± 5.36 vs -1.88 ± 5.07; P < .001) and lower DNA methylation-estimated telomere length (7.13 ± 0.31 vs 7.34 ± 0.23, P < .001) than women without HIV. There were no significant associations between accelerated epigenetic aging and BMD. Rather, measures of accelerated epigenetic aging were associated with lower physical function. CONCLUSIONS Accelerated epigenetic aging was observed in WWH as compared with women without HIV and was associated with lower physical function in both groups.
Collapse
Affiliation(s)
- Stephanie Shiau
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey
| | - Francesca Zumpano
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey
| | - Ziyi Wang
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey
| | - Jayesh Shah
- Department of Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| | - Phyllis C Tien
- Department of Medicine, Veterans Affairs Medical Center
- Department of Medicine, University of California San Francisco
| | - Ryan D Ross
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, Illinois
| | - Anjali Sharma
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Michael T Yin
- Department of Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
6
|
Luo J, Wang W, Li J, Duan H, Xu C, Tian X, Zhang D. Epigenome-wide association study identifies DNA methylation loci associated with handgrip strength in Chinese monozygotic twins. Front Cell Dev Biol 2024; 12:1378680. [PMID: 38633108 PMCID: PMC11021642 DOI: 10.3389/fcell.2024.1378680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/22/2024] [Indexed: 04/19/2024] Open
Abstract
Background: The decline in muscle strength and function with aging is well recognized, but remains poorly characterized at the molecular level. Here, we report the epigenetic relationship between genome-wide DNA methylation and handgrip strength (HGS) among Chinese monozygotic (MZ) twins. Methods: DNA methylation (DNAm) profiling was conducted in whole blood samples through Reduced Representation Bisulfite Sequencing method. Generalized estimating equation was applied to regress the DNAm of each CpG with HGS. The Genomic Regions Enrichment of Annotations Tool was used to perform enrichment analysis. Differentially methylated regions (DMRs) were detected using comb-p. Causal inference was performed using Inference about Causation through Examination of Familial Confounding method. Finally, we validated candidate CpGs in community residents. Results: We identified 25 CpGs reaching genome-wide significance level. These CpGs located in 9 genes, especially FBLN1, RXRA, and ABHD14B. Many enriched terms highlighted calcium channels, neuromuscular junctions, and skeletal muscle organ development. We identified 21 DMRs of HGS, with several DMRs within FBLN1, SLC30A8, CST3, and SOCS3. Causal inference indicated that the DNAm of 16 top CpGs within FBLN1, RXRA, ABHD14B, MFSD6, and TYW1B might influence HGS, while HGS influenced DNAm at two CpGs within FBLN1 and RXRA. In validation analysis, methylation levels of six CpGs mapped to FLBN1 and one CpG mapped to ABHD14B were negatively associated with HGS weakness in community population. Conclusion: Our study identified multiple DNAm variants potentially related to HGS, especially CpGs within FBLN1 and ABHD14B. These findings provide new clues to the epigenetic modification underlying muscle strength decline.
Collapse
Affiliation(s)
- Jia Luo
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, Qingdao, Shandong, China
| | - Weijing Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, Qingdao, Shandong, China
| | - Jingxian Li
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, Qingdao, Shandong, China
| | - Haiping Duan
- Qingdao Municipal Centre for Disease Control and Prevention, Qingdao, Shandong, China
- Qingdao Institute of Preventive Medicine, Qingdao, Shandong, China
| | - Chunsheng Xu
- Qingdao Municipal Centre for Disease Control and Prevention, Qingdao, Shandong, China
- Qingdao Institute of Preventive Medicine, Qingdao, Shandong, China
| | - Xiaocao Tian
- Qingdao Municipal Centre for Disease Control and Prevention, Qingdao, Shandong, China
- Qingdao Institute of Preventive Medicine, Qingdao, Shandong, China
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
7
|
McGreevy KM, Radak Z, Torma F, Jokai M, Lu AT, Belsky DW, Binder A, Marioni RE, Ferrucci L, Pośpiech E, Branicki W, Ossowski A, Sitek A, Spólnicka M, Raffield LM, Reiner AP, Cox S, Kobor M, Corcoran DL, Horvath S. DNAmFitAge: biological age indicator incorporating physical fitness. Aging (Albany NY) 2023; 15:3904-3938. [PMID: 36812475 PMCID: PMC10258016 DOI: 10.18632/aging.204538] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 01/23/2023] [Indexed: 02/24/2023]
Abstract
Physical fitness is a well-known correlate of health and the aging process and DNA methylation (DNAm) data can capture aging via epigenetic clocks. However, current epigenetic clocks did not yet use measures of mobility, strength, lung, or endurance fitness in their construction. We develop blood-based DNAm biomarkers for fitness parameters gait speed (walking speed), maximum handgrip strength, forced expiratory volume in one second (FEV1), and maximal oxygen uptake (VO2max) which have modest correlation with fitness parameters in five large-scale validation datasets (average r between 0.16-0.48). We then use these DNAm fitness parameter biomarkers with DNAmGrimAge, a DNAm mortality risk estimate, to construct DNAmFitAge, a new biological age indicator that incorporates physical fitness. DNAmFitAge is associated with low-intermediate physical activity levels across validation datasets (p = 6.4E-13), and younger/fitter DNAmFitAge corresponds to stronger DNAm fitness parameters in both males and females. DNAmFitAge is lower (p = 0.046) and DNAmVO2max is higher (p = 0.023) in male body builders compared to controls. Physically fit people have a younger DNAmFitAge and experience better age-related outcomes: lower mortality risk (p = 7.2E-51), coronary heart disease risk (p = 2.6E-8), and increased disease-free status (p = 1.1E-7). These new DNAm biomarkers provide researchers a new method to incorporate physical fitness into epigenetic clocks.
Collapse
Affiliation(s)
- Kristen M. McGreevy
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Zsolt Radak
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Ferenc Torma
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Matyas Jokai
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Ake T. Lu
- San Diego Institute of Science, Altos Labs, San Diego, CA 92121, USA
| | - Daniel W. Belsky
- Department of Epidemiology and Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY 10032, USA
| | - Alexandra Binder
- Department of Cancer Epidemiology, University of Hawaii, Honolulu, HI 96813, USA
| | - Riccardo E. Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Luigi Ferrucci
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Ewelina Pośpiech
- Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
- Department of Forensic Genetics, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Wojciech Branicki
- Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Andrzej Ossowski
- Department of Forensic Genetics, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Aneta Sitek
- Department of Anthropology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | | | - Laura M. Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alex P. Reiner
- Department of Epidemiology, University of Washington, Seattle, WA 98195, USA
| | - Simon Cox
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Michael Kobor
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - David L. Corcoran
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Steve Horvath
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA
- San Diego Institute of Science, Altos Labs, San Diego, CA 92121, USA
| |
Collapse
|
8
|
Fuggle NR, Laskou F, Harvey NC, Dennison EM. A review of epigenetics and its association with ageing of muscle and bone. Maturitas 2022; 165:12-17. [PMID: 35841774 DOI: 10.1016/j.maturitas.2022.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/21/2022] [Accepted: 06/30/2022] [Indexed: 10/31/2022]
Abstract
Ageing is defined as the 'increasing frailty of an organism with time that reduces the ability of that organism to deal with stress'. It has been suggested that epigenetics may underlie the observation that some individuals appear to age faster than others. Epigenetics is the study of changes which occur in an organism due to changes in expression of the genetic code rather than changes to the genetic code itself; that is, epigenetic mechanisms impact upon the function of DNA without changing the DNA sequence. It is important to recognise that epigenetic changes, in contrast to genetic changes, can vary according to different cell types and therefore can demonstrate significant tissue-specificity. There are different types of epigenetic mechanisms: histone modification, non-coding RNAs and DNA methylation. Epigenetic clocks have been developed using statistical techniques to identify the optimal combination of CpG sites (from methylation arrays) to correlate with chronological age. This review considers how epigenetic factors may affect rates of ageing of muscle and bone and provides an overview of current understanding in this area. We discuss studies using first-generation epigenetic clocks, as well as the second-generation iterations, which appear to show stronger associations with the ageing muscle phenotype. We also review epigenome-wide association studies that have been performed in various tissues examining relationships with osteoporosis and fracture. It is hoped that an understanding of this area will lead to interventions that might prevent or reduce rates of musculoskeletal ageing in later life.
Collapse
Affiliation(s)
- N R Fuggle
- MRC Lifecourse Epidemiology Centre, University of Southampton, SO16 6YD, United Kingdom of Great Britain and Northern Ireland
| | - F Laskou
- MRC Lifecourse Epidemiology Centre, University of Southampton, SO16 6YD, United Kingdom of Great Britain and Northern Ireland
| | - N C Harvey
- MRC Lifecourse Epidemiology Centre, University of Southampton, SO16 6YD, United Kingdom of Great Britain and Northern Ireland
| | - E M Dennison
- MRC Lifecourse Epidemiology Centre, University of Southampton, SO16 6YD, United Kingdom of Great Britain and Northern Ireland.
| |
Collapse
|
9
|
Clonal Hematopoiesis and Epigenetic Age Acceleration in Elderly Danish Twins. Hemasphere 2022; 6:e768. [PMID: 36046215 PMCID: PMC9423014 DOI: 10.1097/hs9.0000000000000768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/22/2022] [Indexed: 11/26/2022] Open
|
10
|
TTC22 promotes m6A-mediated WTAP expression and colon cancer metastasis in an RPL4 binding-dependent pattern. Oncogene 2022; 41:3925-3938. [PMID: 35798874 DOI: 10.1038/s41388-022-02402-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 02/08/2023]
Abstract
WTAP, an essential component of the RNA N-6-methyladenosine (m6A) modification complex, guides METLL3-METLL14 heteroduplexes to target RNAs in the nuclear speckles of mammalian cells. Here, we show that TTC22 is widely coexpressed with WTAP and FTO in many human tissues by mining Genotype-Tissue Expression (GTEx) datasets. Our results indicate that the direct interaction of TTC22 with 60S ribosomal protein L4 (RPL4) promotes the binding of WTAP mRNA to RPL4, enhances the stability and translation efficiency of WTAP mRNA, and consequently increases the level of WTAP protein. Also, WTAP mRNA itself is an m6A target and YTHDF1 is characterized as an essential m6A binding protein interacting with m6A-modified WTAP mRNA. TTC22 triggers a positive feedback loop between WTAP expression and WTAP mRNA m6A modification, leading to an increased m6A level in total RNA. The knockdown of RPL4, WTAP, or YTHDF1 expression diminishes the TTC22-induced increase in the m6A level of total RNA. Thus, TTC22 caused dramatic expression changes in genes related to metabolic pathways, ribosomal biogenesis, the RNA spliceosome, and microorganism infections. Importantly, TTC22 upregulates the expression of SNAI1 by increasing m6A level and thus promotes lung metastases of colon cancer cells in mice. In conclusion, our study showed that TTC22 upregulates WTAP and SNAI1 expression, which contributes to TTC22-induced colon cancer metastasis.
Collapse
|
11
|
Li Z, Guo W, Zeng T, Yin J, Feng K, Huang T, Cai YD. Detecting Brain Structure-Specific Methylation Signatures and Rules for Alzheimer's Disease. Front Neurosci 2022; 16:895181. [PMID: 35585924 PMCID: PMC9108872 DOI: 10.3389/fnins.2022.895181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/11/2022] [Indexed: 01/01/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive disease that leads to irreversible behavioral changes, erratic emotions, and loss of motor skills. These conditions make people with AD hard or almost impossible to take care of. Multiple internal and external pathological factors may affect or even trigger the initiation and progression of AD. DNA methylation is one of the most effective regulatory roles during AD pathogenesis, and pathological methylation alterations may be potentially different in the various brain structures of people with AD. Although multiple loci associated with AD initiation and progression have been identified, the spatial distribution patterns of AD-associated DNA methylation in the brain have not been clarified. According to the systematic methylation profiles on different structural brain regions, we applied multiple machine learning algorithms to investigate such profiles. First, the profile on each brain region was analyzed by the Boruta feature filtering method. Some important methylation features were extracted and further analyzed by the max-relevance and min-redundancy method, resulting in a feature list. Then, the incremental feature selection method, incorporating some classification algorithms, adopted such list to identify candidate AD-associated loci at methylation with structural specificity, establish a group of quantitative rules for revealing the effects of DNA methylation in various brain regions (i.e., four brain structures) on AD pathogenesis. Furthermore, some efficient classifiers based on essential methylation sites were proposed to identify AD samples. Results revealed that methylation alterations in different brain structures have different contributions to AD pathogenesis. This study further illustrates the complex pathological mechanisms of AD.
Collapse
Affiliation(s)
- ZhanDong Li
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Zeng
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jie Yin
- Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Human Genetics, Institute of Genetics, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - KaiYan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
12
|
Rasmusson AJ, Gallwitz M, Soltanabadi B, Ciuculete DM, Mengel-From J, Christensen K, Nygaard M, Soerensen M, Boström AE, Fredriksson R, Freyhult E, Mwinyi J, Czamara D, Binder EB, Schiöth HB, Cunningham JL. Toll-like receptor 4 methylation grade is linked to depressive symptom severity. Transl Psychiatry 2021; 11:371. [PMID: 34226490 PMCID: PMC8257733 DOI: 10.1038/s41398-021-01481-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 04/27/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023] Open
Abstract
This study explores potential associations between the methylation of promoter-associated CpG sites of the toll-like receptor (TLR)-family, plasma levels of pro-inflammatory proteins and depressive symptoms in young female psychiatric patients. Ratings of depressive symptoms and blood samples were obtained from 92 young women seeking psychiatric care. Methylation of 32 promoter-associated CpG sites in TLR1 to TLR10 was analysed using the Illumina Infinium Methylation EPIC BeadChip. Expression levels of 91 inflammatory proteins were determined by proximity extension assay. Statistical correlations between depressive state, TLR1-10 methylation and inflammatory proteins were investigated. Four additional cohorts were studied to evaluate the generalizability of the findings. In the discovery cohort, methylation grade of cg05429895 (TLR4) in blood was inversely correlated with depressive symptoms score in young adults. After correction for multiple testing, plasma levels of macrophage inflammatory protein 1β (MIP-1β/CCL4) were associated with both TLR4 methylation and depressive symptom severity. A similar inverse association between TLR4 methylation in blood and affective symptoms score was also found in a cohort of 148 both males and females (<40 years of age) from the Danish Twin Registry. These findings were not, however, replicated in three other external cohorts; which differed from the first two cohorts by a higher age and mixed ethnicities, thus limiting the generalizability of our findings. However, TLR4 methylation inversely correlated with TLR4 mRNA expression in the Danish Twin Study indicating a functional significance of methylation at this particular CpG. Higher depression scores in young Scandinavian adults was associated with decreased methylation of TLR4 in blood.
Collapse
Affiliation(s)
- Annica J Rasmusson
- Department of Neuroscience, Psychiatry, Uppsala University, Uppsala University Hospital, Entrance 10, Floor 3B, 751 85, Uppsala, Sweden
| | - Maike Gallwitz
- Department of Neuroscience, Psychiatry, Uppsala University, Uppsala University Hospital, Entrance 10, Floor 3B, 751 85, Uppsala, Sweden
| | - Bardia Soltanabadi
- Department of Neuroscience, Psychiatry, Uppsala University, Uppsala University Hospital, Entrance 10, Floor 3B, 751 85, Uppsala, Sweden
| | - Diana M Ciuculete
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24, Uppsala, Sweden
| | - Jonas Mengel-From
- The Danish Twin Registry, Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Kaare Christensen
- The Danish Twin Registry, Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Marianne Nygaard
- The Danish Twin Registry, Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Mette Soerensen
- The Danish Twin Registry, Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Adrian E Boström
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24, Uppsala, Sweden
| | - Robert Fredriksson
- Department of Pharmaceutical Biosciences, Molecular Neuropharmacology, Uppsala University, 75124, Uppsala, Sweden
| | - Eva Freyhult
- Department of Medical Sciences, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jessica Mwinyi
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24, Uppsala, Sweden
| | - Darina Czamara
- Department Translational Research in Psychiatry, Max-Planck-Institute of Psychiatry, Munich, Germany
| | - Elisabeth B Binder
- Department Translational Research in Psychiatry, Max-Planck-Institute of Psychiatry, Munich, Germany
| | - Helgi B Schiöth
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24, Uppsala, Sweden
- Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Janet L Cunningham
- Department of Neuroscience, Psychiatry, Uppsala University, Uppsala University Hospital, Entrance 10, Floor 3B, 751 85, Uppsala, Sweden.
| |
Collapse
|
13
|
Soerensen M, Hozakowska-Roszkowska DM, Nygaard M, Larsen MJ, Schwämmle V, Christensen K, Christiansen L, Tan Q. A Genome-Wide Integrative Association Study of DNA Methylation and Gene Expression Data and Later Life Cognitive Functioning in Monozygotic Twins. Front Neurosci 2020; 14:233. [PMID: 32327964 PMCID: PMC7160301 DOI: 10.3389/fnins.2020.00233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/02/2020] [Indexed: 12/02/2022] Open
Abstract
Monozygotic twins are genetically identical but rarely phenotypically identical. Epigenetic and transcriptional variation could influence this phenotypic discordance. Investigation of intra-pair differences in molecular markers and a given phenotype in monozygotic twins controls most of the genetic contribution, enabling studies of the molecular features of the phenotype. This study aimed to identify genes associated with cognition in later life using integrated enrichment analyses of the results of blood-derived intra-pair epigenome-wide and transcriptome-wide association analyses of cognition in 452 middle-aged and old-aged monozygotic twins (56–80 years). Integrated analyses were performed with an unsupervised approach using KeyPathwayMiner, and a supervised approach using the KEGG and Reactome databases. The supervised approach identified several enriched gene sets, including “neuroactive ligand receptor interaction” (p-value = 1.62∗10-2), “Neurotrophin signaling” (p-value = 2.52∗10-3), “Alzheimer’s disease” (p-value = 1.20∗10-2), and “long-term depression” (p-value = 1.62∗10-2). The unsupervised approach resulted in a 238 gene network, including the Alzheimer’s disease gene APP (Amyloid Beta Precursor Protein) as an exception node, and several novel candidate genes. The strength of the unsupervised method is that it can reveal previously uncharacterized sub-pathways and detect interplay between biological processes, which remain undetected by the current supervised methods. In conclusion, this study identified several previously reported cognition genes and pathways and, additionally, puts forward novel candidates for further verification and validation.
Collapse
Affiliation(s)
- Mette Soerensen
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark.,Center for Individualized Medicine in Arterial Diseases, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark.,Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Dominika Marzena Hozakowska-Roszkowska
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark.,Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Marianne Nygaard
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark.,Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Martin J Larsen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark.,Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Veit Schwämmle
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Kaare Christensen
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark.,Department of Clinical Genetics, Odense University Hospital, Odense, Denmark.,Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Lene Christiansen
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark.,Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Qihua Tan
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark.,Department of Clinical Genetics, Odense University Hospital, Odense, Denmark.,Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|