1
|
Golubev D, Platonova E, Zemskaya N, Shevchenko O, Shaposhnikov M, Nekrasova P, Patov S, Ibragimova U, Valuisky N, Borisov A, Zhukova X, Sorokina S, Litvinov R, Moskalev A. Berberis vulgaris L. extract supplementation exerts regulatory effects on the lifespan and healthspan of Drosophila through its antioxidant activity depending on the sex. Biogerontology 2024; 25:507-528. [PMID: 38150086 DOI: 10.1007/s10522-023-10083-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/13/2023] [Indexed: 12/28/2023]
Abstract
Worldwide the aging population continues to increase, so the concept of healthy longevity medicine has become increasingly significant in modern society. Berberis vulgaris L. fruits serve as a functional food supplement with a high concentration of bioactive compounds, which offer numerous health-promoting benefits. The goal of this study was to investigate the geroprotective effect of Berberis vulgaris L. extract. Here we show that extract of Berberis vulgaris L. can, depending on concentrate, increases lifespan up to 6%, promote healthspan (stress resistance up to 35%, locomotor activity up to 25%, integrity of the intestinal barrier up to 12%, metabolic rate up to 5%) of Drosophila melanogaster (in vitro) and exhibits antioxidant (using red blood cell tests) and antiglycation activity (using glycation of bovine serum albumin) (in vitro). In addition to this, the extract does not exhibit cytotoxic properties in vitro, unlike the well-known polyphenolic compound quercetin. qRT-PCR has revealed the involvement of metabolic, heat shock response and lipid metabolism genes in the observed effects.
Collapse
Affiliation(s)
- Denis Golubev
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the RAS, Syktyvkar, Russian Federation, 167982
- Pitirim Sorokin Syktyvkar State University, Syktyvkar, Russian Federation, 167001
| | - Elena Platonova
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the RAS, Syktyvkar, Russian Federation, 167982
| | - Nadezhda Zemskaya
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the RAS, Syktyvkar, Russian Federation, 167982
| | - Oksana Shevchenko
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the RAS, Syktyvkar, Russian Federation, 167982
| | - Mikhail Shaposhnikov
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the RAS, Syktyvkar, Russian Federation, 167982
| | - Polina Nekrasova
- Institute of Chemistry of Komi Scientific Centre of the Ural Branch of the RAS, Syktyvkar, Russian Federation, 167982
| | - Sergey Patov
- Institute of Chemistry of Komi Scientific Centre of the Ural Branch of the RAS, Syktyvkar, Russian Federation, 167982
| | - Umida Ibragimova
- Volgograd State Medical University, Volgograd, Russian Federation, 400131
| | - Nikita Valuisky
- Volgograd State Medical University, Volgograd, Russian Federation, 400131
| | - Alexander Borisov
- Volgograd State Medical University, Volgograd, Russian Federation, 400131
| | - Xenia Zhukova
- Volgograd State Medical University, Volgograd, Russian Federation, 400131
| | - Svetlana Sorokina
- Volgograd State Medical University, Volgograd, Russian Federation, 400131
| | - Roman Litvinov
- Volgograd State Medical University, Volgograd, Russian Federation, 400131
| | - Alexey Moskalev
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the RAS, Syktyvkar, Russian Federation, 167982.
| |
Collapse
|
2
|
Zang Z, Li L, Yang M, Zhang H, Naeem A, Wu Z, Zheng Q, Song Y, Tao L, Wan Z, Zhang Y, Leng J, Liao Z, Guan Y. Study on the ameliorative effect of honeysuckle on DSS-induced ulcerative colitis in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117776. [PMID: 38307354 DOI: 10.1016/j.jep.2024.117776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 02/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Honeysuckle, first documented in the Miscellaneous Records of Famous Physicians, is known for its ability to expel toxin and cool blood to stop diarrhea. Modern pharmacological research has shown that honeysuckle has anti-inflammatory, antibacterial, antioxidant, and immune-regulating effects and is widely used in clinical practice. However, the effect of honeysuckle on ulcerative colitis (UC) is still not fully understood, which presents challenges for quality control, research and development. AIM OF THE STUDY This study aimed to determine the anti-inflammatory properties and mechanism of action of aqueous extracts of honeysuckle in the treatment of ulcerative colitis. MATERIALS AND METHODS The dextran sodium sulfate (DSS) induced-ulcerative colitis mouse model was established, and the mice were divided into five groups: the control group, the model group, and the low, medium, and high dose honeysuckle treatment groups. RESULTS All dose groups of honeysuckle were found to significantly reduce IL-6 and TNF-α levels and regulate DSS-induced mRNA levels of CLDN4, COX-2, IL-6, INOS, MUC-2, occludin and NLRP3. The high-dose group displayed the most effective inhibition, and a differentially expressed mRNA detection indicated abnormal mRNA expression. The 16sRNA sequencing revealed that the honeysuckle was able to significantly upregulate the abundance of beneficial bacteria and downregulate the abundance of harmful bacteria. The study of short-chain fatty acids revealed that the levels of acetic, propionic, isobutyric, valeric and isovaleric acids were significantly increased after administering honeysuckle at medium and high doses. CONCLUSION Honeysuckle reduces the production of pro-inflammatory cytokines, increases the content of short-chain fatty acids and restores the intestinal ecological balance, resulting in better therapeutic effects.
Collapse
Affiliation(s)
- Zhengzhong Zang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, 330004, Nanchang, China
| | - Liqin Li
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, 330004, Nanchang, China
| | - Ming Yang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, 330004, Nanchang, China
| | - Hua Zhang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, 330004, Nanchang, China
| | - Abid Naeem
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, 330004, Nanchang, China
| | - Zhenfeng Wu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, 330004, Nanchang, China
| | - Qin Zheng
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, 330004, Nanchang, China
| | - Yonggui Song
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, 330004, Nanchang, China
| | - Ling Tao
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, 330004, Nanchang, China
| | - Zhiyan Wan
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, 330004, Nanchang, China
| | - Yuwei Zhang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, 330004, Nanchang, China
| | - Jinglv Leng
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, 330004, Nanchang, China
| | - Zhenggen Liao
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, 330004, Nanchang, China.
| | - Yongmei Guan
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, 330004, Nanchang, China.
| |
Collapse
|
3
|
Yang Y, Cao Y, Zhang J, Fan L, Huang Y, Tan TC, Ho LH. Artemisia argyi extract exerts antioxidant properties and extends the lifespan of Drosophila melanogaster. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3926-3935. [PMID: 38252625 DOI: 10.1002/jsfa.13273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/18/2023] [Accepted: 01/01/2024] [Indexed: 01/24/2024]
Abstract
BACKGROUND Chinese mugwort (Artemisia argyi) possesses extensive pharmacological activities associated with anti-tumour, antioxidative and anti-inflammatory effects. The present study aimed to investigate the antioxidant and anti-ageing effects of A. argyi extract (AAE) on the fruit fly (Drosophila melanogaster) ageing model by detecting antioxidant enzyme activities and the mRNA level of antioxidant genes. RESULTS AAE could significantly lengthen the mean lifespan, 50% survival days, and maximum lifespan of D. melanogaster, especially when the amount of AAE added reached 6.68 mg mL-1, the mean lifespan of both female and male flies increased by 23.74% and 22.30%, respectively, indicating the effective life extension effect of AAE. At the same time, AAE could improve the climbing ability and tolerance to hydrogen peroxide in D. melanogaster. In addition, the addition of AAE effectively increased the activities of copper-zinc-containing superoxide dismutase, manganese-containing superoxide dismutase and catalase in D. melanogaster and reduced the contents of malondialdehyde. Moreover, when reared with diets containing AAE, the expression of antioxidant-related genes SOD1, SOD2 and CAT was up-regulated in D. melanogaster and down-regulated for MTH genes. CONCLUSION The study indicates that AAE effectively enhances the antioxidant capacity of D. melanogaster and has potential applications as an antioxidant and anti-ageing agent in the nutraceutical industry. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuhua Yang
- College of Tea and Food Science, Wuyi University, Wuyishan, China
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| | - Yuping Cao
- College of Tea and Food Science, Wuyi University, Wuyishan, China
| | - Jianming Zhang
- College of Tea and Food Science, Wuyi University, Wuyishan, China
| | - Li Fan
- College of Tea and Food Science, Wuyi University, Wuyishan, China
| | - Yan Huang
- College of Tea and Food Science, Wuyi University, Wuyishan, China
| | - Thuan-Chew Tan
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
- Renewable Biomass Transformation Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| | - Lee-Hoon Ho
- Department of Food Industry, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut, Malaysia
| |
Collapse
|
4
|
Li W, Zhang L, He P, Li H, Pan X, Zhang W, Xiao M, He F. Traditional uses, botany, phytochemistry, and pharmacology of Lonicerae japonicae flos and Lonicerae flos: A systematic comparative review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117278. [PMID: 37972908 DOI: 10.1016/j.jep.2023.117278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/19/2023] [Accepted: 10/03/2023] [Indexed: 11/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lonicerae japonicae flos (LJF) and Lonicerae flos (LF) belong to different genera of Caprifoliaceae with analogous appearances and functions. Historically, they have been used as herbal medicines to treat various diseases with confirmed wind-heat evacuation, heat-clearing, and detoxification effects. However, the Chinese Pharmacopoeia (2005 Edition) lists LJF and LF under different categories. AIM OF THE STUDY Few studies have systematically compared the similarities and dissimilarities of LJF and LF concerning their research achievements. This systematic review and comparison of the traditional use, identification, and phytochemical and pharmacological properties of LJF and LF provides valuable insights for their further application and clinical safety. MATERIALS AND METHODS Related document information was collected from databases that included Web of Science, X-MOL, Science Direct, PubMed, and the China National Knowledge Infrastructure. RESULTS The chemical constituents and pharmacological effects of LJF and LF were similar. A total of 337 and 242 chemical constituents were isolated and identified in LJF and LF, respectively. These included volatile oils, cyclic ether terpenes, flavonoids, phenolic acids, triterpenoids, and their saponins. Additionally, LJF plants contain more iridoids and flavonoids than LF plants. The latter have a variety of triterpenoid saponins and significantly higher chlorogenic acid content than LJF plants. Pharmacological studies have shown that LJF and LF have various anti-inflammatory, antiviral, antibacterial, anti-endotoxic, antioxidant, anti-tumor, anti-platelet, myocardial protective, and hepatoprotective effects. CONCLUSIONS This review was undertaken to explore whether LJF and LF should be listed separately in the Chinese Pharmacopoeia in terms of their disease prevention and treatment strategies. Although LJF and LF showed promising effects, their action mechanisms remains unclear. Specifically, their impact on gut microbiota, gastrointestinal tract, and blood parameters requires further investigation. These studies will provide the foundation for scientific utilization and clinical/non-clinical applications of LJF and LF, and the maximum benefits from their mutual use.
Collapse
Affiliation(s)
- Wenjiao Li
- Department of Pharmaceutics, Pharmacy College, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China; Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine, Changsha, Hunan 410208, PR China.
| | - Liangqi Zhang
- Department of Pharmaceutics, Pharmacy College, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China; Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine, Changsha, Hunan 410208, PR China.
| | - Peng He
- Department of Pharmaceutics, Pharmacy College, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China; Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine, Changsha, Hunan 410208, PR China.
| | - Haiying Li
- Department of Pharmaceutics, Pharmacy College, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China; Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine, Changsha, Hunan 410208, PR China.
| | - Xue Pan
- Department of Pharmaceutics, Pharmacy College, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China; Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine, Changsha, Hunan 410208, PR China.
| | - Weilong Zhang
- Department of Pharmaceutics, Pharmacy College, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China; Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine, Changsha, Hunan 410208, PR China.
| | - Meifeng Xiao
- Department of Pharmaceutics, Pharmacy College, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China; Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine, Changsha, Hunan 410208, PR China; Supramolecular Mechanism and Mathematic-Physics Characterization for Chinese Materia Medicine, Changsha, Hunan 410208, PR China.
| | - Fuyuan He
- Department of Pharmaceutics, Pharmacy College, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China; Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine, Changsha, Hunan 410208, PR China; Supramolecular Mechanism and Mathematic-Physics Characterization for Chinese Materia Medicine, Changsha, Hunan 410208, PR China.
| |
Collapse
|
5
|
Mikhailova DV, Shevchenko OG, Golubev DA, Platonova EY, Zemskaya NV, Shoeva OY, Gordeeva EI, Patov SA, Shaposhnikov MV, Khlestkina EK, Moskalev A. Antioxidant Properties and Geroprotective Potential of Wheat Bran Extracts with Increased Content of Anthocyanins. Antioxidants (Basel) 2023; 12:2010. [PMID: 38001863 PMCID: PMC10669849 DOI: 10.3390/antiox12112010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
In recent years, there has been a focus on breeding wheat with high anthocyanin levels in order to improve food quality and human health. The objective of this study was to examine the antioxidant and geroprotective properties of wheat bran extracts using both in vitro and in vivo research methods. Two wheat lines were used: one with uncolored pericarp (anthocyanin-free) and another with colored pericarp (anthocyanin-containing). These lines differed in a specific region of chromosome 2A containing the Pp3/TaMyc1 gene, which regulates anthocyanin production. High-performance liquid chromatography-mass spectrometry revealed the presence of cyanidin glucoside and cyanidin arabinoside in the anthocyanin-containing wheat bran extract (+AWBE), while no anthocyanins were found in the anthocyanin-free wheat bran extract (-AWBE). The +AWBE showed higher radical scavenging activity (DPPH and ABTS assays) and membrane protective activity (AAPH oxidative hemolysis model) compared to the -AWBE. Both extracts extended the lifespan of female Drosophila, indicating geroprotective properties. This study demonstrates that wheat bran extracts with high anthocyanin levels have antioxidant and geroprotective effects. However, other secondary metabolites in wheat bran can also contribute to its antioxidant and geroprotective potential.
Collapse
Affiliation(s)
- Daria V. Mikhailova
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the RAS, 167982 Syktyvkar, Russia
| | - Oksana G. Shevchenko
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the RAS, 167982 Syktyvkar, Russia
| | - Denis A. Golubev
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the RAS, 167982 Syktyvkar, Russia
| | - Elena Y. Platonova
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the RAS, 167982 Syktyvkar, Russia
| | - Nadezhda V. Zemskaya
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the RAS, 167982 Syktyvkar, Russia
- Federal Research Center N. I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 190031 St. Petersburg, Russia
| | - Olesya Yu. Shoeva
- Institute of Cytology and Genetics of the Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 630090 Novosibirsk, Russia
| | - Elena I. Gordeeva
- Institute of Cytology and Genetics of the Siberian Branch of Russian Academy of Sciences (ICG SB RAS), 630090 Novosibirsk, Russia
| | - Sergey A. Patov
- Institute of Chemistry of Komi Scientific Centre of the Ural Branch of the RAS, 167000 Syktyvkar, Russia
| | - Mikhail V. Shaposhnikov
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the RAS, 167982 Syktyvkar, Russia
- Federal Research Center N. I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 190031 St. Petersburg, Russia
| | - Elena K. Khlestkina
- Federal Research Center N. I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 190031 St. Petersburg, Russia
| | - Alexey Moskalev
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the RAS, 167982 Syktyvkar, Russia
| |
Collapse
|
6
|
Song L, Zhang S. Anti-Aging Activity and Modes of Action of Compounds from Natural Food Sources. Biomolecules 2023; 13:1600. [PMID: 38002283 PMCID: PMC10669485 DOI: 10.3390/biom13111600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/21/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
Aging is a natural and inescapable phenomenon characterized by a progressive deterioration of physiological functions, leading to increased vulnerability to chronic diseases and death. With economic and medical development, the elderly population is gradually increasing, which poses a great burden to society, the economy and the medical field. Thus, healthy aging has now become a common aspiration among people over the world. Accumulating evidence indicates that substances that can mediate the deteriorated physiological processes are highly likely to have the potential to prolong lifespan and improve aging-associated diseases. Foods from natural sources are full of bioactive compounds, such as polysaccharides, polyphenols, carotenoids, sterols, terpenoids and vitamins. These bioactive compounds and their derivatives have been shown to be able to delay aging and/or improve aging-associated diseases, thereby prolonging lifespan, via regulation of various physiological processes. Here, we summarize the current understanding of the anti-aging activities of the compounds, polysaccharides, polyphenols, carotenoids, sterols, terpenoids and vitamins from natural food sources, and their modes of action in delaying aging and improving aging-associated diseases. This will certainly provide a reference for further research on the anti-aging effects of bioactive compounds from natural food sources.
Collapse
Affiliation(s)
- Lili Song
- Key Laboratory of Biomedical Materials of Zhangjiakou, College of Lab Medicine, Hebei North University, Zhangjiakou 075000, China;
| | - Shicui Zhang
- College of Life and Geographic Sciences, Kashi University, Kashi 844000, China
- Xinjiang Key Laboratory of Biological Resources and Ecology of Pamirs Plateau, Kashi 844000, China
- Department of Marine Biology, Institute of Evolution & Marine Biodiversity, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| |
Collapse
|
7
|
Cao YX, Ji P, Wu FL, Dong JQ, Li CC, Ma T, Yang HC, Wei YM, Hua YL. Lonicerae Japonicae Caulis: a review of its research progress of active metabolites and pharmacological effects. Front Pharmacol 2023; 14:1277283. [PMID: 37954842 PMCID: PMC10635453 DOI: 10.3389/fphar.2023.1277283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/10/2023] [Indexed: 11/14/2023] Open
Abstract
Lonicerae Japonicae Caulis is the aboveground stem part of the Lonicera Japonica Thunb, which belongs to the medicine food homology species in China. It has the effects of clearing away heat, toxic material, dredging wind and unblocking collaterals. Modern research shows that it contains various active metabolites and a wide range of pharmacological effects, which is of great research and clinical application value. It mainly contains organic acids, volatile oils, flavonoids, triterpenes, triterpene saponins and other active metabolites. Its pharmacological effects mainly include anti-inflammatory, antibacterial, antitumor, antioxidant, and repairing bone and soft tissue. Based on the literature reports in recent years, the active metabolites, pharmacological effects and mechanisms of Lonicerae Japonicae Caulis were sorted out and summarized. It lays a foundation for explaining the efficacy material basis and application value of Lonicerae Japonicae Caulis. It aims to provide a reference for the in-depth research, development and utilization of Lonicerae Japonicae Caulis.
Collapse
Affiliation(s)
| | - Peng Ji
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | | | | | | | | | | | - Yan-Ming Wei
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | | |
Collapse
|
8
|
Wang P, Wang X, Li Y, He R, Gao J, Chen C, Dai H, Cao Z, Lan L, Sun G, Sun W. Thorough evaluation of the Chinese medicine preparations and intermediates using high performance liquid chromatography fingerprints and ultraviolet quantum fingerprints along with antioxidant activity: Shuanghuanglian oral solution as an example. J Chromatogr A 2023; 1705:464196. [PMID: 37423077 DOI: 10.1016/j.chroma.2023.464196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
The growing global popularity of traditional Chinese medicine (TCM) has generated a growing interest in the quality control of TCM products. Shuanghuanglian Oral Liquid (SHL) is a commonly used TCM formula for treating respiratory tract infections. In this study, we present a thorough evaluation method for the quality of SHL and its intermediates. We assessed the quality through multi-wavelength fusion high-performance liquid chromatogram (HPLC) fingerprints of 40 batches of SHL samples and 15 batches of intermediates. Meanwhile, we introduced a new method called multi-markers assay by monolinear method (MAML) to quantify ten components in SHL, and revealed quality transmitting of ten components from intermediates to formulations. This information allowed us to establish a quality control system for intermediates, ensuring their quality consistency. Furthermore, we proposed UV quantum fingerprinting as an orthogonal complement to the quality evaluation by HPLC fingerprint. The relationship between fingerprinting and antioxidant capacity was also established. Overall, this study presented a novel and integrated approach for the quality evaluation of TCM products, providing valuable information for ensuring the safety and efficacy of TCM products for consumers.
Collapse
Affiliation(s)
- Pengyue Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xinyi Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Yifang Li
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
| | - Rongrong He
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jin Gao
- Guangdong Province Engineering Research Center for Aerosol Inhalation Preparation, Zhuhai 519000, China
| | - Chengyu Chen
- Jiaheng Pharmaceutical Technology Co., Ltd., Zhuhai 519000, China
| | - Huiqing Dai
- Jiaheng Pharmaceutical Technology Co., Ltd., Zhuhai 519000, China
| | - Zhiming Cao
- Henan Fusen Pharmaceutical Co., Ltd., Nanyang 473000, China
| | - Lili Lan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| | - Guoxiang Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| | - Wanyang Sun
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China.
| |
Collapse
|
9
|
Negreanu-Pirjol BS, Oprea OC, Negreanu-Pirjol T, Roncea FN, Prelipcean AM, Craciunescu O, Iosageanu A, Artem V, Ranca A, Motelica L, Lepadatu AC, Cosma M, Popoviciu DR. Health Benefits of Antioxidant Bioactive Compounds in the Fruits and Leaves of Lonicera caerulea L. and Aronia melanocarpa (Michx.) Elliot. Antioxidants (Basel) 2023; 12:antiox12040951. [PMID: 37107325 PMCID: PMC10136089 DOI: 10.3390/antiox12040951] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Lonicera caerulaea L. and Aronia melanocarpa (Michx.) Elliot fruits are frequently used for their health benefits as they are rich in bioactive compounds. They are recognized as a source of natural and valuable phytonutrients, which makes them a superfood. L. caerulea presents antioxidant activity three to five times higher than other berries which are more commonly consumed, such as blackberries or strawberries. In addition, their ascorbic acid level is the highest among fruits. The species A. melanocarpa is considered one of the richest known sources of antioxidants, surpassing currants, cranberries, blueberries, elderberries, and gooseberries, and contains one of the highest amounts of sorbitol. The non-edible leaves of genus Aronia became more extensively analyzed as a byproduct or waste material due to their high polyphenol, flavonoid, and phenolic acid content, along with a small amount of anthocyanins, which are used as ingredients in nutraceuticals, herbal teas, bio-cosmetics, cosmeceuticals, food and by the pharmaceutical industry. These plants are a rich source of vitamins, tocopherols, folic acid, and carotenoids. However, they remain outside of mainstream fruit consumption, being well known only to a small audience. This review aims to shed light on L. caerulaea and A. melanocarpa and their bioactive compounds as healthy superfoods with antioxidant, anti-inflammatory, antitumor, antimicrobial, and anti-diabetic effects, and hepato-, cardio-, and neuro-protective potential. In this view, we hope to promote their cultivation and processing, increase their commercial availability, and also highlight the ability of these species to be used as potential nutraceutical sources, helpful for human health.
Collapse
Affiliation(s)
- Bogdan-Stefan Negreanu-Pirjol
- Faculty of Pharmacy, Ovidius University of Constanta, Capitan Aviator Al. Serbanescu Street no. 6, Campus, Corp C, 900470 Constanta, Romania
| | - Ovidiu Cristian Oprea
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu no. 1-7, 011061 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei no. 313, 060042 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei no. 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Ticuta Negreanu-Pirjol
- Faculty of Pharmacy, Ovidius University of Constanta, Capitan Aviator Al. Serbanescu Street no. 6, Campus, Corp C, 900470 Constanta, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Florentina Nicoleta Roncea
- Faculty of Pharmacy, Ovidius University of Constanta, Capitan Aviator Al. Serbanescu Street no. 6, Campus, Corp C, 900470 Constanta, Romania
| | - Ana-Maria Prelipcean
- National Institute of R&D for Biological Sciences, Splaiul Independentei no. 296, 060031 Bucharest, Romania
| | - Oana Craciunescu
- National Institute of R&D for Biological Sciences, Splaiul Independentei no. 296, 060031 Bucharest, Romania
| | - Andreea Iosageanu
- National Institute of R&D for Biological Sciences, Splaiul Independentei no. 296, 060031 Bucharest, Romania
| | - Victoria Artem
- Research-Development Station for Viticulture and Winemaking of Murfatlar, Calea Bucuresti no. 2, Constanta County, 905100 Murfatlar, Romania
| | - Aurora Ranca
- Research-Development Station for Viticulture and Winemaking of Murfatlar, Calea Bucuresti no. 2, Constanta County, 905100 Murfatlar, Romania
| | - Ludmila Motelica
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei no. 313, 060042 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei no. 313, 060042 Bucharest, Romania
| | - Anca-Cristina Lepadatu
- Faculty of Natural Sciences and Agricultural Sciences, Ovidius University of Constanta, University Alley no.1, Campus, Corp B, 900470 Constanta, Romania
| | - Madalina Cosma
- Research-Development Station for Viticulture and Winemaking of Murfatlar, Calea Bucuresti no. 2, Constanta County, 905100 Murfatlar, Romania
| | - Dan Razvan Popoviciu
- Faculty of Natural Sciences and Agricultural Sciences, Ovidius University of Constanta, University Alley no.1, Campus, Corp B, 900470 Constanta, Romania
| |
Collapse
|
10
|
Optimization of Glycerol Extraction of Chlorogenic Acid from Honeysuckle by Response Surface Methodology. Processes (Basel) 2022. [DOI: 10.3390/pr11010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Using honeysuckle as raw material, chlorogenic acid (CGA) was extracted with different alcohols. Based on the single-factor experiment design, the relationship between each parameter and the response value was explored by Box–Behnken method to optimize the process conditions. Best extraction results were obtained under the conditions of solid-to-liquid ratio of 1:20, the ultrasonic time of 40 min, the ultrasonic vibrator power of 240 w, and the CGA extraction rate of 2.98%. The experimental data show that the extraction rate of CGA is related to the length of the alcohol carbon chain and the number of hydroxyl groups in the extractant. The results from this work can provide technical basis for the safe and efficient production of CGA from honeysuckle.
Collapse
|
11
|
Wang B, Tang X, Mao B, Zhang Q, Tian F, Zhao J, Cui S, Chen W. Anti-aging effects and mechanisms of anthocyanins and their intestinal microflora metabolites. Crit Rev Food Sci Nutr 2022; 64:2358-2374. [PMID: 36128763 DOI: 10.1080/10408398.2022.2123444] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Aging, a natural and inevitable physiological process, is the primary risk factor for all age-related diseases; it severely threatens the health of individuals and places a heavy burden on the public health-care system. Thus, strategies to extend the lifespan and prevent and treat age-related diseases have been gaining increasing scientific interest. Anthocyanins (ACNs) are a subclass of flavonoids widely distributed in fruits and vegetables. Growing evidence suggests that ACNs delay aging and relieve age-related diseases. However, owing to the low bioavailability of ACNs, their gut metabolites have been proposed to play a critical role in mediating health benefits. In this review, we introduce the biological fate of ACNs after consumption and highlight ACNs metabolites (phenolic acids) from intestinal microorganisms. Additionally, ACNs and gut metabolites exhibit outstanding anti-aging ability in Caenorhabditis elegans, Drosophila melanogaster, and mouse models, probably associated with increasing antioxidation, anti-inflammation, protein homeostasis, antiglycation, mitochondrial function, and inhibition of insulin/IGF-1 signaling (IIS). ACNs and gut metabolites have great application prospects as functional foods and drugs to delay aging and manage age-related diseases. Further investigation should focus on the interaction between ACNs and gut microbiota, including clarifying the complex metabolic pathway and maximizing the health effects of ACNs.
Collapse
Affiliation(s)
- Bulei Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|