1
|
A Vibrio-based microbial platform for accelerated lignocellulosic sugar conversion. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:58. [PMID: 35614459 PMCID: PMC9134653 DOI: 10.1186/s13068-022-02157-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/15/2022] [Indexed: 11/26/2022]
Abstract
Background Owing to increasing concerns about climate change and the depletion of fossil fuels, the development of efficient microbial processes for biochemical production from lignocellulosic biomass has been a key issue. Because process efficiency is greatly affected by the inherent metabolic activities of host microorganisms, it is essential to utilize a microorganism that can rapidly convert biomass-derived sugars. Here, we report a novel Vibrio-based microbial platform that can rapidly and simultaneously consume three major lignocellulosic sugars (i.e., glucose, xylose, and arabinose) faster than any previously reported microorganisms. Results The xylose isomerase pathway was constructed in Vibrio sp. dhg, which naturally displays high metabolic activities on glucose and arabinose but lacks xylose catabolism. Subsequent adaptive laboratory evolution significantly improved xylose catabolism of initial strain and led to unprecedently high growth and sugar uptake rate (0.67 h−1 and 2.15 g gdry cell weight−1 h−1, respectively). Furthermore, we achieved co-consumption of the three sugars by deletion of PtsG and introduction of GalP. We validated its superior performance and applicability by demonstrating efficient lactate production with high productivity (1.15 g/L/h) and titer (83 g/L). Conclusions In this study, we developed a Vibrio-based microbial platform with rapid and simultaneous utilization of the three major sugars from lignocellulosic biomass by applying an integrated approach of rational and evolutionary engineering. We believe that the developed strain can be broadly utilized to accelerate the production of diverse biochemicals from lignocellulosic biomass. Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02157-3.
Collapse
|
2
|
Han JH, Jung ST, Oh MK. Improved Yield of Recombinant Protein via Flagella Regulator Deletion in Escherichia coli. Front Microbiol 2021; 12:655072. [PMID: 33790884 PMCID: PMC8005581 DOI: 10.3389/fmicb.2021.655072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
Protein production requires a significant amount of intracellular energy. Eliminating the flagella has been proposed to help Escherichia coli improve protein production by reducing energy consumption. In this study, the gene encoding a subunit of FlhC, a master regulator of flagella assembly, was deleted to reduce the expression of flagella-related genes. FlhC knockout in the ptsG-deleted strain triggered significant growth retardation with increased ATP levels and a higher NADPH/NADP+ ratio. Metabolic flux analysis using a 13C-labeled carbon substrate showed increased fluxes toward the pentose phosphate and tricarboxylic acid cycle pathways in the flhC- and ptsG-deleted strains. Introduction of a high copy number plasmid or overexpression of the recombinant protein in this strain restored growth rate without increasing glucose consumption. These results suggest that the metabolic burden caused by flhC deletion was resolved by recombinant protein production. The recombinant enhanced green fluorescent protein yield per glucose consumption increased 1.81-fold in the flhC mutant strain. Thus, our study demonstrates that high-yield production of the recombinant protein was achieved with reduced flagella formation.
Collapse
Affiliation(s)
- Jae-Ho Han
- Department of Chemical and Biological Engineering, Korea University, Seoul, South Korea
| | - Sang Taek Jung
- BK21 Graduate Program, Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, South Korea
| | - Min-Kyu Oh
- Department of Chemical and Biological Engineering, Korea University, Seoul, South Korea
| |
Collapse
|
3
|
Li Y, Sun Z, Xu Y, Luan Y, Xu J, Liang Q, Qi Q, Wang Q. Enhancing the Glucose Flux of an Engineered EP-Bifido Pathway for High Poly(Hydroxybutyrate) Yield Production. Front Bioeng Biotechnol 2020; 8:517336. [PMID: 32984296 PMCID: PMC7481327 DOI: 10.3389/fbioe.2020.517336] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 08/12/2020] [Indexed: 11/25/2022] Open
Abstract
Background As the greenhouse effect becomes more serious and carbon dioxide emissions continue rise, the application prospects of carbon sequestration or carbon-saving pathways increase. Previously, we constructed an EP-bifido pathway in Escherichia coli by combining Embden-Meyerhof-Parnas pathway, pentose phosphate pathway and “bifid shunt” for high acetyl-CoA production. There is much room for improvement in the EP-bifido pathway, including in production of target compounds such as poly(hydroxybutyrate) (PHB). Result To optimize the EP-bifido pathway and obtain higher PHB yields, we knocked out the specific phosphoenolpyruvate phosphate transferase system (PTS) component II Cglc, encoded by ptsG. This severely inhibited the growth and sugar consumption of the bacterial cells. Subsequently, we used multiple automated genome engineering (MAGE) to optimize the ribosome binding site (RBS) sequences of galP (galactose: H (+) symporter) and glk (glucokinase gene bank: NC_017262.1), encoding galactose permease and glucokinase, respectively. Growth and glucose uptake were partially restored in the bacteria. Finally, we introduced the glf (UDP-galactopyranose) from Zymomonas mobilis mutase sugar transport vector into the host strain genome. Conclusion After optimizing RBS of galP, the resulting strain L-6 obtained a PHB yield of 71.9% (mol/mol) and a 76 wt% PHB content using glucose as the carbon source. Then when glf was integrated into the genome strain L-6, the resulting strain M-6 reached a 5.81 g/L PHB titer and 85.1 wt% PHB content.
Collapse
Affiliation(s)
- Ying Li
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Zhijie Sun
- Marine Biology Institute, Shantou University, Shantou, China
| | - Ya Xu
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yaqi Luan
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jiasheng Xu
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Quanfeng Liang
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Qingsheng Qi
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.,CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Qian Wang
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
4
|
Wu Y, Yan P, Li Y, Liu X, Wang Z, Chen T, Zhao X. Enhancing β-Carotene Production in Escherichia coli by Perturbing Central Carbon Metabolism and Improving the NADPH Supply. Front Bioeng Biotechnol 2020; 8:585. [PMID: 32582683 PMCID: PMC7296177 DOI: 10.3389/fbioe.2020.00585] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/13/2020] [Indexed: 01/12/2023] Open
Abstract
Beta (β)-carotene (C40H56; a provitamin) is a particularly important carotenoid for human health. Many studies have focused on engineering Escherichia coli as an efficient heterologous producer of β-carotene. Moreover, several strains with potential for use in the industrial production of this provitamin have already been constructed via different metabolic engineering strategies. In this study, we aimed to improve the β-carotene-producing capacity of our previously engineered E. coli strain ZF43ΔgdhA through further gene deletion and metabolic pathway manipulations. Deletion of the zwf gene increased the resultant strain's β-carotene production and content by 5.1 and 32.5%, respectively, relative to the values of strain ZF43ΔgdhA, but decreased the biomass by 26.2%. Deletion of the ptsHIcrr operon further increased the β-carotene production titer from 122.0 to 197.4 mg/L, but the provitamin content was decreased. Subsequently, comparative transcriptomic analysis was used to explore the dynamic transcriptional responses of the strains to the blockade of the pentose phosphate pathway and inactivation of the phosphotransferase system. Lastly, based on the analyses of comparative transcriptome and reduction cofactor, several strategies to increase the NADPH supply were evaluated for enhancement of the β-carotene content. The combination of yjgB gene deletion and nadK overexpression led to increased β-carotene production and content. The best strain, ECW4/p5C-nadK, produced 266.4 mg/L of β-carotene in flask culture and 2,579.1 mg/L in a 5-L bioreactor. The latter value is the highest reported from production via the methylerythritol phosphate pathway in E. coli. Although the strategies applied is routine in this study, the combinations reported were first implemented, are simple but efficient and will be helpful for the production of many other natural products, especially isoprenoids. Importantly, we demonstrated that the use of the methylerythritol phosphate pathway alone for efficient β-carotene biosynthesis could be achieved via appropriate modifications of the cell metabolic functions.
Collapse
Affiliation(s)
- Yuanqing Wu
- Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Panpan Yan
- Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yang Li
- Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- College of Life Science, Shihezi University, Shihezi, China
| | - Xuewei Liu
- Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Zhiwen Wang
- Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Tao Chen
- Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Xueming Zhao
- Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
5
|
Impact of CO 2/HCO 3 - Availability on Anaplerotic Flux in Pyruvate Dehydrogenase Complex-Deficient Corynebacterium glutamicum Strains. J Bacteriol 2019; 201:JB.00387-19. [PMID: 31358612 DOI: 10.1128/jb.00387-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/19/2019] [Indexed: 11/20/2022] Open
Abstract
The pyruvate dehydrogenase complex (PDHC) catalyzes the oxidative decarboxylation of pyruvate, yielding acetyl coenzyme A (acetyl-CoA) and CO2 The PDHC-deficient Corynebacterium glutamicum ΔaceE strain therefore lacks an important decarboxylation step in its central metabolism. Additional inactivation of pyc, encoding pyruvate carboxylase, resulted in a >15-h lag phase in the presence of glucose, while no growth defect was observed on gluconeogenetic substrates, such as acetate. Growth was successfully restored by deletion of ptsG, encoding the glucose-specific permease of the phosphotransferase system (PTS), thereby linking the observed phenotype to the increased sensitivity of the ΔaceE Δpyc strain to glucose catabolism. In this work, the ΔaceE Δpyc strain was used to systematically study the impact of perturbations of the intracellular CO2/HCO3 - pool on growth and anaplerotic flux. Remarkably, all measures leading to enhanced CO2/HCO3 - levels, such as external addition of HCO3 -, increasing the pH, or rerouting metabolic flux via the pentose phosphate pathway, at least partially eliminated the lag phase of the ΔaceE Δpyc strain on glucose medium. In accordance with these results, inactivation of the urease enzyme, lowering the intracellular CO2/HCO3 - pool, led to an even longer lag phase, accompanied by the excretion of l-valine and l-alanine. Transcriptome analysis, as well as an adaptive laboratory evolution experiment with the ΔaceE Δpyc strain, revealed the reduction of glucose uptake as a key adaptive measure to enhance growth on glucose-acetate mixtures. Taken together, our results highlight the significant impact of the intracellular CO2/HCO3 - pool on metabolic flux distribution, which becomes especially evident in engineered strains exhibiting low endogenous CO2 production rates, as exemplified by PDHC-deficient strains.IMPORTANCE CO2 is a ubiquitous product of cellular metabolism and an essential substrate for carboxylation reactions. The pyruvate dehydrogenase complex (PDHC) catalyzes a central metabolic reaction contributing to the intracellular CO2/HCO3 - pool in many organisms. In this study, we used a PDHC-deficient strain of Corynebacterium glutamicum, which additionally lacked pyruvate carboxylase (ΔaceE Δpyc). This strain featured a >15-h lag phase during growth on glucose-acetate mixtures. We used this strain to systematically assess the impact of alterations in the intracellular CO2/HCO3 - pool on growth in glucose-acetate medium. Remarkably, all measures enhancing CO2/HCO3 - levels successfully restored growth. These results emphasize the strong impact of the intracellular CO2/HCO3 - pool on metabolic flux, especially in strains exhibiting low endogenous CO2 production rates.
Collapse
|
6
|
Khunnonkwao P, Jantama K, Kanchanatawee S, Galier S, Roux-de Balmann H. A two steps membrane process for the recovery of succinic acid from fermentation broth. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.06.056] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Kyselova L, Kreitmayer D, Kremling A, Bettenbrock K. Type and capacity of glucose transport influences succinate yield in two-stage cultivations. Microb Cell Fact 2018; 17:132. [PMID: 30153840 PMCID: PMC6112142 DOI: 10.1186/s12934-018-0980-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/22/2018] [Indexed: 12/03/2022] Open
Abstract
Background Glucose is the main carbon source of E. coli and a typical substrate in production processes. The main glucose uptake system is the glucose specific phosphotransferase system (Glc-PTS). The PTS couples glucose uptake with its phosphorylation. This is achieved by the concomitant conversion of phosphoenolpyruvate (PEP) to pyruvate. The Glc-PTS is hence unfavorable for the production of succinate as this product is derived from PEP. Results We studied, in a systematic manner, the effect of knocking out the Glc-PTS and of replacing it with the glucose facilitator (Glf) of Zymomonas mobilis on succinate yield and productivity. For this study a set of strains derived from MG1655, carrying deletions of ackA-pta, adhE and ldhA that prevent the synthesis of competing fermentation products, were constructed and tested in two-stage cultivations. The data show that inactivation of the Glc-PTS achieved a considerable increase in succinate yield and productivity. On the other hand, aerobic growth of this strain on glucose was strongly decreased. Expression of the alternative glucose transporter, Glf, in this strain enhanced aerobic growth but productivity and yield under anaerobic conditions were slightly decreased. This decrease in succinate yield was accompanied by pyruvate production. Yield could be increased in both Glc-PTS mutants by overexpressing phosphoenolpyruvate carboxykinase (Pck). Productivity on the other hand, was decreased in the strain without alternative glucose transporter but strongly increased in the strain expressing Glf. The experiments were complemented by flux balance analysis in order to check the observed yields against the maximal theoretical yields. Furthermore, the phosphorylation state of EIIAGlc was determined. The data indicate that the ratio of PEP to pyruvate is correlating with pyruvate excretion. This ratio is affected by the PTS reaction as well as by further reactions at the PEP/pyruvate node. Conclusions The results show that for optimization of succinate yield and productivity it is not sufficient to knock out or introduce single reactions. Rather, balancing of the fluxes of central metabolism most important at the PEP/pyruvate node is important. Electronic supplementary material The online version of this article (10.1186/s12934-018-0980-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- L Kyselova
- Team Experimental Systems Biology, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr.1, 39106, Magdeburg, Germany
| | - D Kreitmayer
- Systembiotechnologie, Technische Universität München, Bolzmannstr. 15, 85748, Garching, Germany
| | - A Kremling
- Systembiotechnologie, Technische Universität München, Bolzmannstr. 15, 85748, Garching, Germany
| | - K Bettenbrock
- Team Experimental Systems Biology, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr.1, 39106, Magdeburg, Germany.
| |
Collapse
|
8
|
Rational design and analysis of an Escherichia coli strain for high-efficiency tryptophan production. ACTA ACUST UNITED AC 2018; 45:357-367. [DOI: 10.1007/s10295-018-2020-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 02/04/2018] [Indexed: 01/24/2023]
Abstract
Abstract
l-tryptophan (l-trp) is a precursor of various bioactive components and has great pharmaceutical interest. However, due to the requirement of several precursors and complex regulation of the pathways involved, the development of an efficient l-trp production strain is challenging. In this study, Escherichia coli (E. coli) strain KW001 was designed to overexpress the l-trp operator sequences (trpEDCBA) and 3-deoxy-D-arabinoheptulosonate-7-phosphate synthase (aroGfbr). To further improve the production of l-trp, pyruvate kinase (pykF) and the phosphotransferase system HPr (ptsH) were deleted after inactivation of repression (trpR) and attenuation (attenuator) to produce strain KW006. To overcome the relatively slow growth and to increase the transport rate of glucose, strain KW018 was generated by combinatorial regulation of glucokinase (galP) and galactose permease (glk) expression. To reduce the production of acetic acid, strain KW023 was created by repressive regulation of phosphate acetyltransferase (pta) expression. In conclusion, strain KW023 efficiently produced 39.7 g/L of l-trp with a conversion rate of 16.7% and a productivity of 1.6 g/L/h in a 5 L fed-batch fermentation system.
Collapse
|
9
|
Liu L, Chen S, Wu J. Phosphoenolpyruvate:glucose phosphotransferase system modification increases the conversion rate during L-tryptophan production in Escherichia coli. J Ind Microbiol Biotechnol 2017; 44:1385-1395. [PMID: 28726163 DOI: 10.1007/s10295-017-1959-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/09/2017] [Indexed: 11/27/2022]
Abstract
Escherichia coli FB-04(pta1), a recombinant L-tryptophan production strain, was constructed in our laboratory. However, the conversion rate (L-tryptophan yield per glucose) of this strain is somewhat low. In this study, additional genes have been deleted in an effort to increase the conversion rate of E. coli FB-04(pta1). Initially, the pykF gene, which encodes pyruvate kinase I (PYKI), was inactivated to increase the accumulation of phosphoenolpyruvate, a key L-tryptophan precursor. The resulting strain, E. coli FB-04(pta1)ΔpykF, showed a slightly higher L-tryptophan yield and a higher conversion rate in fermentation processes. To further improve the conversion rate, the phosphoenolpyruvate:glucose phosphotransferase system (PTS) was disrupted by deleting the ptsH gene, which encodes the phosphocarrier protein (HPr). The levels of biomass, L-tryptophan yield, and conversion rate of this strain, E. coli FB-04(pta1)ΔpykF/ptsH, were especially low during fed-batch fermentation process, even though it achieved a significant increase in conversion rate during shake-flask fermentation. To resolve this issue, four HPr mutations (N12S, N12A, S46A, and S46N) were introduced into the genomic background of E. coli FB-04(pta1)ΔpykF/ptsH, respectively. Among them, the strain harboring the N12S mutation (E. coli FB-04(pta1)ΔpykF-ptsHN12S) showed a prominently increased conversion rate of 0.178 g g-1 during fed-batch fermentation; an increase of 38.0% compared with parent strain E. coli FB-04(pta1). Thus, mutation of the genomic of ptsH gene provided an alternative method to weaken the PTS and improve the efficiency of carbon source utilization.
Collapse
Affiliation(s)
- Lina Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Sheng Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China. .,School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
| |
Collapse
|
10
|
Xiao M, Zhu X, Xu H, Tang J, Liu R, Bi C, Fan F, Zhang X. A novel point mutation in RpoB improves osmotolerance and succinic acid production in Escherichia coli. BMC Biotechnol 2017; 17:10. [PMID: 28193207 PMCID: PMC5307762 DOI: 10.1186/s12896-017-0337-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 02/10/2017] [Indexed: 11/29/2022] Open
Abstract
Background Escherichia coli suffer from osmotic stress during succinic acid (SA) production, which reduces the performance of this microbial factory. Results Here, we report that a point mutation leading to a single amino acid change (D654Y) within the β-subunit of DNA-dependent RNA polymerase (RpoB) significantly improved the osmotolerance of E. coli. Importation of the D654Y mutation of RpoB into the parental strain, Suc-T110, increased cell growth and SA production by more than 40% compared to that of the control under high glucose osmolality. The transcriptome profile, determined by RNA-sequencing, showed two distinct stress responses elicited by the mutated RpoB that counterbalanced the osmotic stress. Under non-stressed conditions, genes involved in the synthesis and transport of compatible solutes such as glycine-betaine, glutamate or proline were upregulated even without osmotic stimulation, suggesting a “pre-defense” mechanism maybe formed in the rpoB mutant. Under osmotic stressed conditions, genes encoding diverse sugar transporters, which should be down-regulated in the presence of high osmotic pressure, were derepressed in the rpoB mutant. Additional genetic experiments showed that enhancing the expression of the mal regulon, especially for genes that encode the glycoporin LamB and maltose transporter, contributed to the osmotolerance phenotype. Conclusions The D654Y single amino acid substitution in RpoB rendered E. coli cells resistant to osmotic stress, probably due to improved cell growth and viability via enhanced sugar uptake under stressed conditions, and activated a potential “pre-defense” mechanism under non-stressed conditions. The findings of this work will be useful for bacterial host improvement to enhance its resistance to osmotic stress and facilitate bio-based organic acids production. Electronic supplementary material The online version of this article (doi:10.1186/s12896-017-0337-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mengyong Xiao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Park, Tianjin, 300308, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xinna Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Park, Tianjin, 300308, China
| | - Hongtao Xu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Park, Tianjin, 300308, China
| | - Jinlei Tang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Park, Tianjin, 300308, China
| | - Ru Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Park, Tianjin, 300308, China
| | - Changhao Bi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Park, Tianjin, 300308, China
| | - Feiyu Fan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China. .,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Park, Tianjin, 300308, China.
| | - Xueli Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China. .,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Park, Tianjin, 300308, China.
| |
Collapse
|
11
|
Zhao Y, Wang CS, Li FF, Liu ZN, Zhao GR. Targeted optimization of central carbon metabolism for engineering succinate production in Escherichia coli. BMC Biotechnol 2016; 16:52. [PMID: 27342774 PMCID: PMC4919853 DOI: 10.1186/s12896-016-0284-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/15/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Succinate is a kind of industrially important C4 platform chemical for synthesis of high value added products. Due to the economical and environmental advantages, considerable efforts on metabolic engineering and synthetic biology have been invested for bio-based production of succinate. Precursor phosphoenolpyruvate (PEP) is consumed for transport and phosphorylation of glucose, and large amounts of byproducts are produced, which are the crucial obstacles preventing the improvement of succinate production. In this study, instead of deleting genes involved in the formation of lactate, acetate and formate, we optimized the central carbon metabolism by targeting at metabolic node PEP to improve succinate production and decrease accumulation of byproducts in engineered E. coli. RESULTS By deleting ptsG, ppc, pykA, maeA and maeB, we constructed the initial succinate-producing strain to achieve succinate yield of 0.22 mol/mol glucose, which was 2.1-fold higher than that of the parent strain. Then, by targeting at both reductive TCA arm and PEP carboxylation, we deleted sdh and co-overexpressed pck and ecaA, which led to a significant improvement in succinate yield of 1.13 mol/mol glucose. After fine-tuning of pykF expression by anti-pykF sRNA, yields of lactate and acetate were decreased by 43.48 and 38.09 %, respectively. The anaerobic stoichiometric model on metabolic network showed that the carbon fraction to succinate of engineered strains was significantly increased at the expense of decreased fluxes to lactate and acetate. In batch fermentation, the optimized strain BKS15 produced succinate with specific productivity of 5.89 mmol gDCW(-1) h(-1). CONCLUSIONS This report successfully optimizes succinate production by targeting at PEP of the central carbon metabolism. Co-overexpressing pck-ecaA, deleting sdh and finely tuning pykF expression are efficient strategies for improving succinate production and minimizing accumulation of lactate and acetate in metabolically engineered E. coli.
Collapse
Affiliation(s)
- Ying Zhao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin, 300072, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Chang-Song Wang
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin, 300072, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China.,Present address: PPG Coating (Tianjin) Co., Ltd. Tianjin Economic Technological Development Area (TEDA), 192 Huanghai Road, Tianjin, 300457, China
| | - Fei-Fei Li
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin, 300072, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Zhen-Ning Liu
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin, 300072, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Guang-Rong Zhao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China. .,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin, 300072, China. .,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China.
| |
Collapse
|
12
|
Unden G, Strecker A, Kleefeld A, Kim OB. C4-Dicarboxylate Utilization in Aerobic and Anaerobic Growth. EcoSal Plus 2016; 7. [PMID: 27415771 DOI: 10.1128/ecosalplus.esp-0021-2015] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Indexed: 06/06/2023]
Abstract
C4-dicarboxylates and the C4-dicarboxylic amino acid l-aspartate support aerobic and anaerobic growth of Escherichia coli and related bacteria. In aerobic growth, succinate, fumarate, D- and L-malate, L-aspartate, and L-tartrate are metabolized by the citric acid cycle and associated reactions. Because of the interruption of the citric acid cycle under anaerobic conditions, anaerobic metabolism of C4-dicarboxylates depends on fumarate reduction to succinate (fumarate respiration). In some related bacteria (e.g., Klebsiella), utilization of C4-dicarboxylates, such as tartrate, is independent of fumarate respiration and uses a Na+-dependent membrane-bound oxaloacetate decarboxylase. Uptake of the C4-dicarboxylates into the bacteria (and anaerobic export of succinate) is achieved under aerobic and anaerobic conditions by different sets of secondary transporters. Expression of the genes for C4-dicarboxylate metabolism is induced in the presence of external C4-dicarboxylates by the membrane-bound DcuS-DcuR two-component system. Noncommon C4-dicarboxylates like l-tartrate or D-malate are perceived by cytoplasmic one-component sensors/transcriptional regulators. This article describes the pathways of aerobic and anaerobic C4-dicarboxylate metabolism and their regulation. The citric acid cycle, fumarate respiration, and fumarate reductase are covered in other articles and discussed here only in the context of C4-dicarboxylate metabolism. Recent aspects of C4-dicarboxylate metabolism like transport, sensing, and regulation will be treated in more detail. This article is an updated version of an article published in 2004 in EcoSal Plus. The update includes new literature, but, in particular, the sections on the metabolism of noncommon C4-dicarboxylates and their regulation, on the DcuS-DcuR regulatory system, and on succinate production by engineered E. coli are largely revised or new.
Collapse
Affiliation(s)
- Gottfried Unden
- Institute for Microbiology und Wine Research, Johannes Gutenberg-University, 55099 Mainz, Germany
| | - Alexander Strecker
- Institute for Microbiology und Wine Research, Johannes Gutenberg-University, 55099 Mainz, Germany
| | - Alexandra Kleefeld
- Institute for Microbiology und Wine Research, Johannes Gutenberg-University, 55099 Mainz, Germany
| | - Ok Bin Kim
- Department of Life Sciences, Ewha Womans University, 120-750 Seoul, Korea
| |
Collapse
|
13
|
Mienda BS, Shamsir MS, Illias RM. Model-guided metabolic gene knockout of gnd for enhanced succinate production in Escherichia coli from glucose and glycerol substrates. Comput Biol Chem 2016; 61:130-7. [PMID: 26878126 DOI: 10.1016/j.compbiolchem.2016.01.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 11/29/2015] [Accepted: 01/26/2016] [Indexed: 01/02/2023]
Abstract
The metabolic role of 6-phosphogluconate dehydrogenase (gnd) under anaerobic conditions with respect to succinate production in Escherichia coli remained largely unspecified. Herein we report what are to our knowledge the first metabolic gene knockout of gnd to have increased succinic acid production using both glucose and glycerol substrates in E. coli. Guided by a genome scale metabolic model, we engineered the E. coli host metabolism to enhance anaerobic production of succinic acid by deleting the gnd gene, considering its location in the boundary of oxidative and non-oxidative pentose phosphate pathway. This strategy induced either the activation of malic enzyme, causing up-regulation of phosphoenolpyruvate carboxylase (ppc) and down regulation of phosphoenolpyruvate carboxykinase (ppck) and/or prevents the decarboxylation of 6 phosphogluconate to increase the pool of glyceraldehyde-3-phosphate (GAP) that is required for the formation of phosphoenolpyruvate (PEP). This approach produced a mutant strain BMS2 with succinic acid production titers of 0.35 g l(-1) and 1.40 g l(-1) from glucose and glycerol substrates respectively. This work further clearly elucidates and informs other studies that the gnd gene, is a novel deletion target for increasing succinate production in E. coli under anaerobic condition using glucose and glycerol carbon sources. The knowledge gained in this study would help in E. coli and other microbial strains development for increasing succinate production and/or other industrial chemicals.
Collapse
Affiliation(s)
- Bashir Sajo Mienda
- Bioinformatics Research Group (BIRG), Department of Biosciences and Health Sciences, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 Skudai Johor Bahru, Malaysia.
| | - Mohd Shahir Shamsir
- Bioinformatics Research Group (BIRG), Department of Biosciences and Health Sciences, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 Skudai Johor Bahru, Malaysia
| | - Rosli Md Illias
- Department of Bioprocess Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru, Malaysia
| |
Collapse
|
14
|
Mienda BS, Shamsir MS, Md. Illias R. Model-assisted formate dehydrogenase-O (fdoH) gene knockout for enhanced succinate production in Escherichia coli from glucose and glycerol carbon sources. J Biomol Struct Dyn 2016; 34:2305-16. [DOI: 10.1080/07391102.2015.1113387] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Bashir Sajo Mienda
- Bioinformatics Research Group (BIRG), Faculty of Biosciences and Medical Engineering, Department of Biosciences and Health Sciences, Universiti Teknologi Malaysia, Skudai Johor Bahru 81310, Malaysia
| | - Mohd Shahir Shamsir
- Bioinformatics Research Group (BIRG), Faculty of Biosciences and Medical Engineering, Department of Biosciences and Health Sciences, Universiti Teknologi Malaysia, Skudai Johor Bahru 81310, Malaysia
| | - Rosli Md. Illias
- Faculty of Chemical Engineering, Department of Bioprocess Engineering, Universiti Teknologi Malaysia, Skudai, Johor Bahru 81310, Malaysia
| |
Collapse
|
15
|
Mienda BS, Shamsir MS, Md. Illias R. Model-aided atpE gene knockout strategy in Escherichia coli for enhanced succinic acid production from glycerol. J Biomol Struct Dyn 2015; 34:1705-16. [DOI: 10.1080/07391102.2015.1090341] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Bashir Sajo Mienda
- Bioinformatics Research Group (BIRG), Faculty of Biosciences and Medical Engineering, Department of Biosciences and Health Sciences, Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru, Malaysia
| | - Mohd Shahir Shamsir
- Bioinformatics Research Group (BIRG), Faculty of Biosciences and Medical Engineering, Department of Biosciences and Health Sciences, Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru, Malaysia
| | - Rosli Md. Illias
- Faculty of Chemical Engineering, Department of Bioprocess Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru, Malaysia
| |
Collapse
|
16
|
Mienda BS, Shamsir MS. In silicodeletion ofPtsGgene inEscherichia coligenome-scale model predicts increased succinate production from glycerol. J Biomol Struct Dyn 2015; 33:2380-9. [DOI: 10.1080/07391102.2015.1036461] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Rational engineering of multiple module pathways for the production of l-phenylalanine in Corynebacterium glutamicum. ACTA ACUST UNITED AC 2015; 42:787-97. [DOI: 10.1007/s10295-015-1593-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 01/28/2015] [Indexed: 12/25/2022]
Abstract
Abstract
Microbial production of l-phenylalanine (l-Phe) from renewable sources has attracted much attention recently. In the present study, Corynebacterium glutamicum 13032 was rationally engineered to produce l-Phe from inexpensive glucose. First, all the l-Phe biosynthesis pathway genes were investigated and the results demonstrated that in addition to AroF and PheA, the native PpsA, TktA, AroE and AroA, and the heterologous AroL and TyrB were also the key enzymes for L-Phe biosynthesis. Through combinational expression of these key enzymes, the l-Phe production was increased to 6.33 ± 0.13 g l−1 which was about 1.48-fold of that of the parent strain C. glutamicum (pXM-pheAfbr-aroFfbr) (fbr, feedback-inhibition resistance). Furthermore, the production of l-Phe was improved to 9.14 ± 0.21 g l−1 by modifying the glucose and l-Phe transport systems and blocking the acetate and lactate biosynthesis pathways. Eventually, the titer of l-Phe was enhanced to 15.76 ± 0.23 g l−1 with a fed-batch fermentation strategy. To the best of our knowledge, this was the highest value reported in rationally engineered C. glutamicum 13032 strains. The results obtained will also contribute to rational engineering of C. glutamicum for production of other valuable aromatic compounds.
Collapse
|
18
|
Sajo Mienda B, Shahir Shamsir M. Model-driven in Silico glpC Gene Knockout Predicts Increased Succinate Production from Glycerol in Escherichia Coli. AIMS BIOENGINEERING 2015. [DOI: 10.3934/bioeng.2015.2.40] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
19
|
Activating C4-dicarboxylate transporters DcuB and DcuC for improving succinate production. Appl Microbiol Biotechnol 2013; 98:2197-205. [DOI: 10.1007/s00253-013-5387-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 11/05/2013] [Accepted: 11/05/2013] [Indexed: 01/13/2023]
|
20
|
Yuzbashev TV, Vybornaya TV, Larina AS, Gvilava IT, Voyushina NE, Mokrova SS, Yuzbasheva EY, Manukhov IV, Sineoky SP, Debabov VG. Directed modification of Escherichia coli metabolism for the design of threonine-producing strains. APPL BIOCHEM MICRO+ 2013. [DOI: 10.1134/s0003683813090056] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Revealing in vivo glucose utilization of Gluconobacter oxydans 621H Δmgdh strain by mutagenesis. Microbiol Res 2013; 169:469-75. [PMID: 24035043 DOI: 10.1016/j.micres.2013.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/05/2013] [Accepted: 08/10/2013] [Indexed: 11/22/2022]
Abstract
Gluconobacter oxydans, belonging to acetic acid bacteria, is widely used in industrial biotechnology. In our previous study, one of the main glucose metabolic pathways in G. oxydans 621H was blocked by the disruption of the mgdh gene, which is responsible for glucose oxidation to gluconate on cell membrane. The resulting 621H Δmgdh mutant strain showed an enhanced growth and biomass yield on glucose. In order to further understand the intracellular utilization of glucose by 621H Δmgdh, the functions of four fundamental genes, namely glucokinase-encoding glk1 gene, soluble glucose dehydrogenase-encoding sgdh gene, galactose-proton symporter-encoding galp1 and galp2 genes, were investigated. The obtained metabolic characteristics of 621H Δmgdh Δglk1 and 621H Δmgdh Δsgdh double-gene knockout mutants showed that, in vivo, glucose is preferentially phosphorylated to glucose-6-phosphate by glucokinase rather than being oxidized to gluconate by soluble glucose dehydrogenase. In addition, although the galactose-proton symporter-encoding genes were proved to be glucose transporter genes in other organisms, both galp genes (galp 1 and galp2) in G. oxydans were not found to be involved in glucose uptake system, implying that other unknown transporters might be responsible for transporting glucose into the cells.
Collapse
|
22
|
Morzhakova AA, Skorokhodova AY, Gulevich AY, Debabov VG. Recombinant Escherichia coli strains deficient in mixed acid fermentation pathways and capable of rapid aerobic growth on glucose with a reduced crabtree effect. APPL BIOCHEM MICRO+ 2013. [DOI: 10.1134/s0003683813020105] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Zomorrodi AR, Suthers PF, Ranganathan S, Maranas CD. Mathematical optimization applications in metabolic networks. Metab Eng 2012; 14:672-86. [PMID: 23026121 DOI: 10.1016/j.ymben.2012.09.005] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 08/31/2012] [Accepted: 09/14/2012] [Indexed: 11/30/2022]
Abstract
Genome-scale metabolic models are increasingly becoming available for a variety of microorganisms. This has spurred the development of a wide array of computational tools, and in particular, mathematical optimization approaches, to assist in fundamental metabolic network analyses and redesign efforts. This review highlights a number of optimization-based frameworks developed towards addressing challenges in the analysis and engineering of metabolic networks. In particular, three major types of studies are covered here including exploring model predictions, correction and improvement of models of metabolism, and redesign of metabolic networks for the targeted overproduction of a desired compound. Overall, the methods reviewed in this paper highlight the diversity of queries, breadth of questions and complexity of redesigns that are amenable to mathematical optimization strategies.
Collapse
Affiliation(s)
- Ali R Zomorrodi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | | | | | | |
Collapse
|
24
|
Recruiting alternative glucose utilization pathways for improving succinate production. Appl Microbiol Biotechnol 2012; 97:2513-20. [PMID: 22895848 DOI: 10.1007/s00253-012-4344-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 07/28/2012] [Accepted: 07/30/2012] [Indexed: 01/14/2023]
Abstract
The phosphoenolpyruvate (PEP): carbohydrate phosphotransferase system (PTS) of Escherichia coli was usually inactivated to increase PEP supply for succinate production. However, cell growth and glucose utilization rate decreased significantly with PTS inactivation. In this work, two glucose transport proteins and two glucokinases (Glk) from E. coli and Zymomonas mobilis were recruited in PTS(-) strains, and their impacts on glucose utilization and succinate production were compared. All PTS(-) strains recruiting Z. mobilis glucose facilitator Glf had higher glucose utilization rates than PTS(-) strains using E. coli galactose permease (GalP), which was suggested to be caused by higher glucose transport velocity and lower energetic cost of Glf. The highest rate obtained by combinatorial modulation of glf and glk E. coli (2.13 g/L•h) was 81 % higher than the wild-type E. coli and 30 % higher than the highest rate obtained by combinatorial modulation of galP and glk E. coli . On the other hand, although glucokinase activities increased after replacing E. coli Glk with isoenzyme of Z. mobilis, glucose utilization rate decreased to 0.58 g/L•h, which was assumed due to tight regulation of Z. mobilis Glk by energy status of the cells. For succinate production, using GalP led to a 20 % increase in succinate productivity, while recruiting Glf led to a 41 % increase. These efficient alternative glucose utilization pathways obtained in this work can also be used for production of many other PEP-derived chemicals, such as malate, fumarate, and aromatic compounds.
Collapse
|
25
|
Chi WJ, Chang YK, Hong SK. Agar degradation by microorganisms and agar-degrading enzymes. Appl Microbiol Biotechnol 2012; 94:917-30. [PMID: 22526785 DOI: 10.1007/s00253-012-4023-2] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/12/2012] [Accepted: 03/13/2012] [Indexed: 11/30/2022]
Abstract
Agar is a mixture of heterogeneous galactans, mainly composed of 3,6-anhydro-L-galactoses (or L-galactose-6-sulfates) D-galactoses and L-galactoses (routinely in the forms of 3,6-anhydro-L-galactoses or L-galactose-6-sulfates) alternately linked by β-(1,4) and α-(1,3) linkages. It is a major component of the cell walls of red algae and has been used in a variety of laboratory and industrial applications, owing to its jellifying properties. Many microorganisms that can hydrolyze and metabolize agar as a carbon and energy source have been identified in seawater and marine sediments. Agarolytic microorganisms commonly produce agarases, which catalyze the hydrolysis of agar. Numerous agarases have been identified in microorganisms of various genera. They are classified according to their cleavage pattern into three types-α-agarase, β-agarase, and β-porphyranase. Although, in a broad sense, many other agarases are involved in complete hydrolysis of agar, most of those identified are β-agarases. In this article we review agarolytic microorganisms and their agar-hydrolyzing systems, covering β-agarases as well as α-agarases, α-neoagarobiose hydrolases, and β-porphyranases, with emphasis on the recent discoveries. We also present an overview of the biochemical and structural characteristics of the various types of agarases. Further, we summarize and compare the agar-hydrolyzing systems of two specific microorganisms: Gram-negative Saccharophagus degradans 2-40 and Gram-positive Streptomyces coelicolor A3(2). We conclude with a brief discussion of the importance of agarases and their possible future application in producing oligosaccharides with various nutraceutical activities and in sustainably generating stock chemicals for biorefinement and bioenergy.
Collapse
Affiliation(s)
- Won-Jae Chi
- Division of Bioscience and Bioinformatics, Myongji University, Yongin, Gyeonggi-do, Korea
| | | | | |
Collapse
|
26
|
Chan S, Kanchanatawee S, Jantama K. Production of succinic acid from sucrose and sugarcane molasses by metabolically engineered Escherichia coli. BIORESOURCE TECHNOLOGY 2012; 103:329-336. [PMID: 22023966 DOI: 10.1016/j.biortech.2011.09.096] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 09/22/2011] [Accepted: 09/23/2011] [Indexed: 05/31/2023]
Abstract
Sucrose-utilizing genes (cscKB and cscA) from Escherichia coli KO11 were cloned and expressed in a metabolically engineered E. coli KJ122 to enhance succinate production from sucrose. KJ122 harboring a recombinant plasmid, pKJSUC, was screened for the efficient sucrose utilization by growth-based selection and adaptation. KJ122-pKJSUC-24T efficiently utilized sucrose in a low-cost medium to produce high succinate concentration with less accumulation of by-products. Succinate concentrations of 51 g/L (productivity equal to 1.05 g/L/h) were produced from sucrose in anaerobic bottles, and concentrations of 47 g/L were produced in 10L bioreactor within 48 h. Antibiotics had no effect on the succinate production by KJ122-pKJSUC-24T. In addition, succinate concentrations of 62 g/L were produced from sugarcane molasses in anaerobic bottles, and concentrations of 56 g/L in 10 L bioreactor within 72 h. These results demonstrated that KJ122-pKJSUC-24T would be a potential strain for bio-based succinate production from sucrose and sugarcane molasses.
Collapse
Affiliation(s)
- Sitha Chan
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Ave., Suranaree, Muang, Nakhon Ratchasima 30000, Thailand
| | | | | |
Collapse
|
27
|
Combinatorial modulation of galP and glk gene expression for improved alternative glucose utilization. Appl Microbiol Biotechnol 2011; 93:2455-62. [DOI: 10.1007/s00253-011-3752-y] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Revised: 11/06/2011] [Accepted: 11/21/2011] [Indexed: 12/21/2022]
|
28
|
Pei L, Schmidt M, Wei W. Synthetic biology: an emerging research field in China. Biotechnol Adv 2011; 29:804-14. [PMID: 21729747 PMCID: PMC3197886 DOI: 10.1016/j.biotechadv.2011.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 05/20/2011] [Accepted: 06/11/2011] [Indexed: 12/27/2022]
Abstract
Synthetic biology is considered as an emerging research field that will bring new opportunities to biotechnology. There is an expectation that synthetic biology will not only enhance knowledge in basic science, but will also have great potential for practical applications. Synthetic biology is still in an early developmental stage in China. We provide here a review of current Chinese research activities in synthetic biology and its different subfields, such as research on genetic circuits, minimal genomes, chemical synthetic biology, protocells and DNA synthesis, using literature reviews and personal communications with Chinese researchers. To meet the increasing demand for a sustainable development, research on genetic circuits to harness biomass is the most pursed research within Chinese researchers. The environmental concerns are driven force of research on the genetic circuits for bioremediation. The research on minimal genomes is carried on identifying the smallest number of genomes needed for engineering minimal cell factories and research on chemical synthetic biology is focused on artificial proteins and expanded genetic code. The research on protocells is more in combination with the research on molecular-scale motors. The research on DNA synthesis and its commercialisation are also reviewed. As for the perspective on potential future Chinese R&D activities, it will be discussed based on the research capacity and governmental policy.
Collapse
Affiliation(s)
- Lei Pei
- Organisation for International Dialogue and Conflict Management, Vienna, Austria.
| | | | | |
Collapse
|
29
|
Yun EJ, Shin MH, Yoon JJ, Kim YJ, Choi IG, Kim KH. Production of 3,6-anhydro-l-galactose from agarose by agarolytic enzymes of Saccharophagus degradans 2-40. Process Biochem 2011. [DOI: 10.1016/j.procbio.2010.07.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Ji XJ, Nie ZK, Huang H, Ren LJ, Peng C, Ouyang PK. Elimination of carbon catabolite repression in Klebsiella oxytoca for efficient 2,3-butanediol production from glucose-xylose mixtures. Appl Microbiol Biotechnol 2010; 89:1119-25. [PMID: 20957355 DOI: 10.1007/s00253-010-2940-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 10/03/2010] [Accepted: 10/07/2010] [Indexed: 10/18/2022]
Abstract
Microbial preference for glucose implies incomplete and/or slow utilization of lignocellulose hydrolysates, which is caused by the regulatory mechanism named carbon catabolite repression (CCR). In this study, a 2,3-butanediol (2,3-BD) producing Klebsiella oxytoca strain was engineered to eliminate glucose repression of xylose utilization. The crp(in) gene, encoding the mutant cyclic adenosine monophosphate (cAMP) receptor protein CRP(in), which does not require cAMP for functioning, was characterized and overexpressed in K. oxytoca. The engineered recombinant could utilize a mixture of glucose and xylose simultaneously, without CCR. The profiles of sugar consumption and 2,3-BD production by the engineered recombinant, in glucose and xylose mixtures, were examined and showed that glucose and xylose could be consumed simultaneously to produce 2,3-BD. This study offers a metabolic engineering strategy to achieve highly efficient utilization of sugar mixtures derived from the lignocellulosic biomass for the production of bio-based chemicals using enteric bacteria.
Collapse
Affiliation(s)
- Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| | | | | | | | | | | |
Collapse
|
31
|
Martínez I, Bennett GN, San KY. Metabolic impact of the level of aeration during cell growth on anaerobic succinate production by an engineered Escherichia coli strain. Metab Eng 2010; 12:499-509. [PMID: 20883813 DOI: 10.1016/j.ymben.2010.09.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2010] [Revised: 09/07/2010] [Accepted: 09/21/2010] [Indexed: 11/16/2022]
Abstract
The metabolic impact of two different aeration conditions during the growth phase on anaerobic succinate production by the high succinate producer Escherichia coli SBS550MG (pHL413) was investigated. Gene expression profiles, metabolites concentrations and metabolic fluxes were analyzed. Different oxygen levels are known to induce or repress transcription, synthesis of different enzymes, or both, affecting cell metabolism and thus product yield and productivity. The succinate yield was 1.55 and 1.25 mol succinate/mol glucose, and the productivity was 1.3 and 0.9 g L(-1)h(-1)) for the low aeration experiment and high aeration experiment, respectively. Changes in the level of aeration during the cells growth phase significantly modified gene expression profiles and metabolic fluxes in this system. Pyruvate was accumulated during the anaerobic phase in the high aeration experiment, which could be explained by a lower pflAB expression during the transition time and a lower flux towards acetyl-CoA during the anaerobic phase compared to the low aeration case. The higher PflAB flux and the higher expression of genes related to the glyoxylate shunt (aceA, aceB, acnA, acnB) during the transition time, anaerobic phase, or both, improved succinate yield in the low aeration case, allowing the system to attain the maximum theoretical succinate yield for E. coli SBS550MG (pHL413).
Collapse
Affiliation(s)
- Irene Martínez
- Department of Bioengineering, Rice University, Houston, TX, USA
| | | | | |
Collapse
|
32
|
Beauprez JJ, De Mey M, Soetaert WK. Microbial succinic acid production: Natural versus metabolic engineered producers. Process Biochem 2010. [DOI: 10.1016/j.procbio.2010.03.035] [Citation(s) in RCA: 211] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
33
|
Metabolic evolution of energy-conserving pathways for succinate production in Escherichia coli. Proc Natl Acad Sci U S A 2009; 106:20180-5. [PMID: 19918073 DOI: 10.1073/pnas.0905396106] [Citation(s) in RCA: 186] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During metabolic evolution to improve succinate production in Escherichia coli strains, significant changes in cellular metabolism were acquired that increased energy efficiency in two respects. The energy-conserving phosphoenolpyruvate (PEP) carboxykinase (pck), which normally functions in the reverse direction (gluconeogenesis; glucose repressed) during the oxidative metabolism of organic acids, evolved to become the major carboxylation pathway for succinate production. Both PCK enzyme activity and gene expression levels increased significantly in two stages because of several mutations during the metabolic evolution process. High-level expression of this enzyme-dominated CO(2) fixation and increased ATP yield (1 ATP per oxaloacetate). In addition, the native PEP-dependent phosphotransferase system for glucose uptake was inactivated by a mutation in ptsI. This glucose transport function was replaced by increased expression of the GalP permease (galP) and glucokinase (glk). Results of deleting individual transport genes confirmed that GalP served as the dominant glucose transporter in evolved strains. Using this alternative transport system would increase the pool of PEP available for redox balance. This change would also increase energy efficiency by eliminating the need to produce additional PEP from pyruvate, a reaction that requires two ATP equivalents. Together, these changes converted the wild-type E. coli fermentation pathway for succinate into a functional equivalent of the native pathway that nature evolved in succinate-producing rumen bacteria.
Collapse
|
34
|
Genome-scale reconstruction and in silico analysis of the Clostridium acetobutylicum ATCC 824 metabolic network. Appl Microbiol Biotechnol 2008; 80:849-62. [DOI: 10.1007/s00253-008-1654-4] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 08/02/2008] [Accepted: 08/04/2008] [Indexed: 12/16/2022]
|