1
|
Li C, Li M, Gao W, Zhang T, Liu Z, Miao M. Biosynthesis of Sialyllacto- N-tetraose c in Engineered Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39508523 DOI: 10.1021/acs.jafc.4c08711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Human milk oligosaccharides (HMOs) have attracted considerable interest for their vital role in supporting infant health. Among these, sialyllacto-N-tetraose c (LST c), a pentasaccharide with the structure Neu5Ac(α2,6)Gal(β1,4)GlcNAc(β1,3)Gal(β1,4)Glc, stands out due to its critical importance in the development and application of complex HMOs. In this study, we employed multivariate modular metabolic engineering (MMME) to screen for efficient sialyltransferases and balance metabolic fluxes, successfully constructing strains capable of LST c biosynthesis. Additionally, by blocking competing pathway genes, enhancing the supply of UDP-GlcNAc and UDP-Gal precursors, and establishing a CTP cofactor regeneration system, we developed a high-yielding Escherichia coli strain, W15. This strain achieved an LST c titer of 220.9 mg/L in shake flask cultures. In a 3-L fed-batch fermentation, the LST c concentration reached 922.2 mg/L, with a productivity of 10.25 mg/L/h and a specific yield of 38.70 mg/g DCW. This research provides an effective strategy for producing LST c in microbial cell factories.
Collapse
Affiliation(s)
- Chenchen Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Mengli Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Gao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhu Liu
- Zhejiang Institute for Food and Drug Control, Hangzhou, Zhejiang 310052, China
| | - Ming Miao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
2
|
Huang K, Bashian EE, Zong G, Nycholat CM, McBride R, Gomozkova M, Wang S, Huang C, Chapla DG, Schmidt EN, Macauley M, Moremen KW, Paulson JC, Wang LX. Chemoenzymatic Synthesis of Sulfated N-Glycans Recognized by Siglecs and Other Glycan-Binding Proteins. JACS AU 2024; 4:2966-2978. [PMID: 39211606 PMCID: PMC11350573 DOI: 10.1021/jacsau.4c00307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024]
Abstract
Sulfated N-glycans are present in many glycoproteins, which are implicated in playing important roles in biological recognition processes. Here, we report the systematic chemoenzymatic synthesis of a library of sulfated and sialylated biantennary N-glycans and assess their binding to Siglecs and glycan-specific antibodies that recognize them as glycan ligands. The combined use of three human sulfotransferases, GlcNAc-6-O-sulfotransferase (CHST2), Gal-3-O-sulfotransferase (Gal3ST1), and keratan sulfate Gal-6-O-sulfotransferase (CHST1), resulted in asymmetric and symmetric branch-selective sulfation of the GlcNAc and/or Gal moieties of N-glycans. The extension of the sugar chain using α-2,3- and α-2,6-sialyltransferases afforded the sulfated and sialylated N-glycans. These synthetic glycans with different patterns of sulfation and sialylation were evaluated for binding to selected Siglecs and sulfoglycan-specific antibodies using glycan microarrays. The results confirm previously documented glycan-recognizing properties and further reveal novel specificities for these glycan-binding proteins, demonstrating the utility of the library for assessing the specificity of glycan-binding proteins recognizing sulfated and sialylated glycans.
Collapse
Affiliation(s)
- Kun Huang
- Department
of Chemistry and Biochemistry, University
of Maryland, 8051 Regents Drive, College Park, Maryland 20742, United States
| | - Eleanor E. Bashian
- Department
of Molecular Medicine, and Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Guanghui Zong
- Department
of Chemistry and Biochemistry, University
of Maryland, 8051 Regents Drive, College Park, Maryland 20742, United States
| | - Corwin M. Nycholat
- Department
of Molecular Medicine, and Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Ryan McBride
- Department
of Molecular Medicine, and Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Margaryta Gomozkova
- Department
of Chemistry and Biochemistry, University
of Maryland, 8051 Regents Drive, College Park, Maryland 20742, United States
| | - Shengyang Wang
- Department
of Molecular Medicine, and Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Chin Huang
- Complex
Carbohydrate Research Center, University
of Georgia, Athens, Georgia 30602, United States
- Department
of Biochemistry and Molecular Biology, University
of Georgia, Athens, Georgia 30602, United States
| | - Digantkumar G. Chapla
- Complex
Carbohydrate Research Center, University
of Georgia, Athens, Georgia 30602, United States
| | - Edward N. Schmidt
- Department
of Chemistry and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton T6G 2G2, Canada
| | - Matthew Macauley
- Department
of Chemistry and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton T6G 2G2, Canada
| | - Kelley W. Moremen
- Complex
Carbohydrate Research Center, University
of Georgia, Athens, Georgia 30602, United States
- Department
of Biochemistry and Molecular Biology, University
of Georgia, Athens, Georgia 30602, United States
| | - James C. Paulson
- Department
of Molecular Medicine, and Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Lai-Xi Wang
- Department
of Chemistry and Biochemistry, University
of Maryland, 8051 Regents Drive, College Park, Maryland 20742, United States
| |
Collapse
|
3
|
Pressley SR, McGill AS, Luu B, Atsumi S. Recent Advances in the Microbial Production of Human Milk Oligosaccharides. Curr Opin Food Sci 2024; 57:101154. [PMID: 39399461 PMCID: PMC11469638 DOI: 10.1016/j.cofs.2024.101154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Human milk oligosaccharides (HMOs) are naturally occurring, non-digestible sugars found in human milk. They have recently become a popular target for industrial synthesis due to their positive effects on the developing gut microbiome and immune system of infants. Microbial synthesis has shown great promise in driving down the cost of these sugars and making them more available for consumers and researchers. The application of common metabolic engineering techniques such as gene knockouts, gene overexpression, and expression of exogenous genes has enabled the rational design of whole-cell biocatalysts which can produce increasingly complex HMOs. Herein, we discuss how these strategies have been applied to produce a variety of sugars from sialylated to complex fucosylated HMOs. With increased availability of HMOs, more research can be done to understand their beneficial effects.
Collapse
Affiliation(s)
- Shannon R. Pressley
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA
| | - Alex S. McGill
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, Davis, CA, 95616, USA
| | - Bryant Luu
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, Davis, CA, 95616, USA
| | - Shota Atsumi
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, Davis, CA, 95616, USA
| |
Collapse
|
4
|
Wu Y, Sun Y, Pei C, Peng X, Liu X, Qian EW, Du Y, Li JJ. Automated chemoenzymatic modular synthesis of human milk oligosaccharides on a digital microfluidic platform. RSC Adv 2024; 14:17397-17405. [PMID: 38813121 PMCID: PMC11134329 DOI: 10.1039/d4ra01395f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024] Open
Abstract
Glycans, along with proteins, nucleic acids, and lipids, constitute the four fundamental classes of biomacromolecules found in living organisms. Generally, glycans are attached to proteins or lipids to form glycoconjugates that perform critical roles in various biological processes. Automatic synthesis of glycans is essential for investigation into structure-function relationships of glycans. In this study, we presented a method that integrated magnetic bead-based manipulation and modular chemoenzymatic synthesis of human milk oligosaccharides (HMOs), on a DMF (Digital Microfluidics) platform. On the DMF platform, enzymatic modular reactions were conducted in solution, and purification of products or intermediates was achieved by using DEAE magnetic beads, circumventing the intricate steps required for traditional solid-phase synthesis. With this approach, we have successfully synthesized eleven HMOs with highest yields of up to >90% on the DMF platform. This study would not only lay the foundation for OPME synthesis of glycans on the DMF platform, but also set the stage for developing automated enzymatic glycan synthesizers based on the DMF platform.
Collapse
Affiliation(s)
- Yiran Wu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Engineering, University of Chinese Academy of Sciences Beijing 100049 China
| | - Yunze Sun
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Engineering, University of Chinese Academy of Sciences Beijing 100049 China
| | - Caixia Pei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology Nakacho 2-24-16, Koganei Tokyo 184-8588 Japan
| | - Xinlv Peng
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Engineering, University of Chinese Academy of Sciences Beijing 100049 China
| | - Xianming Liu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Eika W Qian
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology Nakacho 2-24-16, Koganei Tokyo 184-8588 Japan
| | - Yuguang Du
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
| | - Jian-Jun Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
5
|
Chen X. Enabling Chemoenzymatic Strategies and Enzymes for Synthesizing Sialyl Glycans and Sialyl Glycoconjugates. Acc Chem Res 2024; 57:234-246. [PMID: 38127793 PMCID: PMC10795189 DOI: 10.1021/acs.accounts.3c00614] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Sialic acids are fascinating negatively charged nine-carbon monosaccharides. Sialic acid-containing glycans and glycoconjugates are structurally diverse, functionally important, and synthetically challenging molecules. We have developed highly efficient chemoenzymatic strategies that combine the power of chemical synthesis and enzyme catalysis to make sialic acids, sialyl glycans, sialyl glycoconjugates, and their derivatives more accessible, enabling the efforts to explore their functions and applications. The Account starts with a brief description of the structural diversity and the functional importance of naturally occurring sialic acids and sialosides. The development of one-pot multienzyme (OPME) chemoenzymatic sialylation strategies is then introduced, highlighting its advantages in synthesizing structurally diverse sialosides with a sialyltransferase donor substrate engineering tactic. With the strategy, systematic access to sialosides containing different sialic acid forms with modifications at C3/4/5/7/8/9, various internal glycans, and diverse sialyl linkages is now possible. Also briefly described is the combination of the OPME sialylation strategy with bacterial sialidases for synthesizing sialidase inhibitors. With the goal of simplifying the product purification process for enzymatic glycosylation reactions, glycosphingolipids that contain a naturally existing hydrophobic tag are attractive targets for chemoenzymatic total synthesis. A user-friendly highly efficient chemoenzymatic strategy is developed which involves three main processes, including chemical synthesis of lactosyl sphingosine as a water-soluble hydrophobic tag-containing intermediate, OPME enzymatic extension of its glycan component with a single C18-cartridge purification of the product, followed by a facile chemical acylation reaction. The strategy allows the introduction of different sialic acid forms and diverse fatty acyl chains into the products. Gram-scale synthesis has been demonstrated. OPME sialylation has also been demonstrated for the chemoenzymatic synthesis of sialyl glycopeptides and in vitro enzymatic N-glycan processing for the formation of glycoproteins with disialylated biantennary complex-type N-glycans. For synthesizing human milk oligosaccharides (HMOs) which are glycans with a free reducing end, acceptor substrate engineering and process engineering strategies are developed, which involve the design of a hydrophobic tag that can be easily installed into the acceptor substrate to allow facile purification of the product from enzymatic reactions and can be conveniently removed in the final step to produce target molecules. The process engineering involves heat-inactivation of enzymes in the intermediate steps in multistep OPME reactions for the production of long-chain sialoside targets in a single reaction pot and with a single C18-cartridge purification process. In addition, a chemoenzymatic synthon strategy has been developed. It involves the design of a derivative of the sialyltransferase donor substrate precursor, which is tolerated by enzymes in OPME reactions, introduced to enzymatic products, and then chemically converted to the desired target structures in the final step. The chemoenzymatic synthon approach has been used together with the acceptor substrate engineering method in the synthesis of complex bacterial glycans containing sialic acids, legionaminic acids, and derivatives. The biocatalysts characterized and their engineered mutants developed by the Chen group are described, with highlights on synthetically useful enzymes. We anticipate further development of chemoenzymatic strategies and biocatalysts to enable exploration of the sialic acid space.
Collapse
Affiliation(s)
- Xi Chen
- Department of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
6
|
Zhao M, Zhu Y, Wang H, Xu W, Zhang W, Mu W. An Overview of Sugar Nucleotide-Dependent Glycosyltransferases for Human Milk Oligosaccharide Synthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12390-12402. [PMID: 37552889 DOI: 10.1021/acs.jafc.3c02895] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Human milk oligosaccharides (HMOs) have received increasing attention because of their special effects on infant health and commercial value as the new generation of core components in infant formula. Currently, large-scale production of HMOs is generally based on microbial synthesis using metabolically engineered cell factories. Introduction of the specific glycosyltransferases is essential for the construction of HMO-producing engineered strains in which the HMO-producing glycosyltransferases are generally sugar nucleotide-dependent. Four types of glycosyltransferases have been used for typical glycosylation reactions to synthesize HMOs. Soluble expression, substrate specificity, and regioselectivity are common concerns of these glycosyltransferases in practical applications. Screening of specific glycosyltransferases is an important research topic to solve these problems. Molecular modification has also been performed to enhance the catalytic activity of various HMO-producing glycosyltransferases and to improve the substrate specificity and regioselectivity. In this article, various sugar nucleotide-dependent glycosyltransferases for HMO synthesis were overviewed, common concerns of these glycosyltransferases were described, and the future perspectives of glycosyltransferase-related studies were provided.
Collapse
Affiliation(s)
- Mingli Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hao Wang
- Bloomage Biotechnology Corp., Ltd., Jinan, Shandong 250010, People's Republic of China
| | - Wei Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
7
|
Jaiswal M, Zhou M, Guo J, Tran TT, Kundu S, Jaufer AM, Fanucci GE, Guo Z. Different Biophysical Properties of Cell Surface α2,3- and α2,6-Sialoglycans Revealed by Electron Paramagnetic Resonance Spectroscopic Studies. J Phys Chem B 2023; 127:1749-1757. [PMID: 36808907 PMCID: PMC10116567 DOI: 10.1021/acs.jpcb.2c09048] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Sialoglycans on HeLa cells were labeled with a nitroxide spin radical through enzymatic glycoengineering (EGE)-mediated installation of azide-modified sialic acid (Neu5Ac9N3) and then click reaction-based attachment of a nitroxide spin radical. α2,6-Sialyltransferase (ST) Pd2,6ST and α2,3-ST CSTII were used for EGE to install α2,6- and α2,3-linked Neu5Ac9N3, respectively. The spin-labeled cells were analyzed by X-band continuous wave (CW) electron paramagnetic resonance (EPR) spectroscopy to gain insights into the dynamics and organizations of cell surface α2,6- and α2,3-sialoglycans. Simulations of the EPR spectra revealed average fast- and intermediate-motion components for the spin radicals in both sialoglycans. However, α2,6- and α2,3-sialoglycans in HeLa cells possess different distributions of the two components, e.g., a higher average population of the intermediate-motion component for α2,6-sialoglycans (78%) than that for α2,3-sialoglycans (53%). Thus, the average mobility of spin radicals in α2,3-sialoglycans was higher than that in α2,6-sialoglycans. Given the fact that a spin-labeled sialic acid residue attached to the 6-O-position of galactose/N-acetyl-galactosamine would experience less steric hindrance and show more flexibility than that attached to the 3-O-position, these results may reflect the differences in local crowding/packing that restrict the spin-label and sialic acid motion for α2,6-linked sialoglycans. The studies further suggest that Pd2,6ST and CSTII may have different preferences for glycan substrates in the complex environment of the extracellular matrix. The discoveries of this work are biologically important as they are useful for interpreting the different functions of α2,6- and α2,3-sialoglycans and indicate the possibility of using Pd2,6ST and CSTII to target different glycoconjugates on cells.
Collapse
Affiliation(s)
- Mohit Jaiswal
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, Florida 32611, United States
| | - Mingwei Zhou
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, Florida 32611, United States
| | - Jiatong Guo
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, Florida 32611, United States
| | - Trang T Tran
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, Florida 32611, United States
| | - Sayan Kundu
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, Florida 32611, United States
| | - Afnan M Jaufer
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, Florida 32611, United States
| | - Gail E Fanucci
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, Florida 32611, United States
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, Florida 32611, United States
| |
Collapse
|
8
|
Zhu Y, Zhang J, Zhang W, Mu W. Recent progress on health effects and biosynthesis of two key sialylated human milk oligosaccharides, 3'-sialyllactose and 6'-sialyllactose. Biotechnol Adv 2023; 62:108058. [PMID: 36372185 DOI: 10.1016/j.biotechadv.2022.108058] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 10/25/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
Human milk oligosaccharides (HMOs), the third major solid component in breast milk, are recognized as the first prebiotics for health benefits in infants. Sialylated HMOs are an important type of HMOs, accounting for approximately 13% of total HMOs. 3'-Sialyllactose (3'-SL) and 6'-sialyllactose (6'-SL) are two simplest sialylated HMOs. Both SLs display promising prebiotic effects, especially in promoting the proliferation of bifidobacteria and shaping the gut microbiota. SLs exhibit several health effects, including antiadhesive antimicrobial ability, antiviral activity, prevention of necrotizing enterocolitis, immunomodulatory activity, regulation of intestinal epithelial cell response, promotion of brain development, and cognition improvement. Both SLs have been approved as "Generally Recognized as Safe" by the American Food and Drug Administration and are commercially added to infant formula. The biosynthesis of SLs using enzymatic or microbial approaches has been widely studied. The enzymatic synthesis of SLs can be realized by two types of enzymes, sialidases with trans-sialidase activity and sialyltransferases. Microbial synthesis can be achieved by the multiple recombinant bacteria in one-pot reaction, which express the enzymes involved in SL synthesis pathways separately or in combination, or by metabolically engineered strains in a fermentation process. In this article, the physiological properties of 3'-SL and 6'-SL are summarized in detail and the biosynthesis of these SLs via enzymatic and microbial synthesis is comprehensively reviewed.
Collapse
Affiliation(s)
- Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jiameng Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
9
|
Chemo-enzymatic synthesis of the ALG1-CDG biomarker and evaluation of its immunogenicity. Bioorg Med Chem Lett 2020; 30:127614. [PMID: 33080352 DOI: 10.1016/j.bmcl.2020.127614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/01/2020] [Accepted: 10/13/2020] [Indexed: 11/21/2022]
Abstract
Congenital disorders of glycosylation (CDG) are a growing group diseases that result from defects in genes involved in glycan biosynthesis pathways. One tetrasaccharide, i.e., Neu5Ac-α2, 6-Gal-β1, 4-GlcNAc-β1, 4-GlcNAc, was recently reported as the biomarker of ALG1-CDG, the disease caused by ALG1 deficiency. To develop a novel diagnostic method for ALG1-CDG, chemo-enzymatic synthesis of the tetrasaccharide biomarker linked to phytanyl phosphate and the biomarker's immune stimulation were investigated in this study. The immunization study using liposomes bearing phytanyl-linked tetrasaccharide revealed that they stimulated a moderate immune response. The induced antibody showed strong binding specificity for the ALG1-CDG biomarker, indicating its potential in medical applications.
Collapse
|
10
|
Bacterial sialyltransferases and their use in biocatalytic cascades for sialo-oligosaccharide production. Biotechnol Adv 2020; 44:107613. [DOI: 10.1016/j.biotechadv.2020.107613] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 12/17/2022]
|
11
|
Microbial production of sialic acid and sialylated human milk oligosaccharides: Advances and perspectives. Biotechnol Adv 2019; 37:787-800. [DOI: 10.1016/j.biotechadv.2019.04.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 04/13/2019] [Accepted: 04/23/2019] [Indexed: 12/21/2022]
|
12
|
Pett C, Nasir W, Sihlbom C, Olsson BM, Caixeta V, Schorlemer M, Zahedi RP, Larson G, Nilsson J, Westerlind U. Effective Assignment of α2,3/α2,6-Sialic Acid Isomers by LC-MS/MS-Based Glycoproteomics. Angew Chem Int Ed Engl 2018; 57:9320-9324. [PMID: 29742324 DOI: 10.1002/anie.201803540] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/08/2018] [Indexed: 11/07/2022]
Abstract
Distinct structural changes of the α2,3/α2,6-sialic acid glycosidic linkages on glycoproteins are of importance in cancer biology, inflammatory diseases, and virus tropism. Current glycoproteomic methodologies are, however, not amenable toward high-throughput characterization of sialic acid isomers. To enable such assignments, a mass spectrometry method utilizing synthetic model glycopeptides for the analysis of oxonium ion intensity ratios was developed. This method was successfully applied in large-scale glycoproteomics, thus allowing the site-specific structural characterization of sialic acid isomers.
Collapse
Affiliation(s)
- Christian Pett
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227, Dortmund, Germany.,Department of Chemistry, Umeå University, 90187, Umeå, Sweden
| | - Waqas Nasir
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.,Thermo Fischer Scientific, Bremen, Germany
| | - Carina Sihlbom
- Proteomics Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Britt-Marie Olsson
- Proteomics Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Vanessa Caixeta
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227, Dortmund, Germany
| | - Manuel Schorlemer
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227, Dortmund, Germany.,Department of Chemistry, Umeå University, 90187, Umeå, Sweden
| | - René P Zahedi
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227, Dortmund, Germany.,Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Göran Larson
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Jonas Nilsson
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Ulrika Westerlind
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227, Dortmund, Germany.,Department of Chemistry, Umeå University, 90187, Umeå, Sweden
| |
Collapse
|
13
|
Pett C, Nasir W, Sihlbom C, Olsson BM, Caixeta V, Schorlemer M, Zahedi RP, Larson G, Nilsson J, Westerlind U. Effective Assignment of α2,3/α2,6-Sialic Acid Isomers by LC-MS/MS-Based Glycoproteomics. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Christian Pett
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V.; 44227 Dortmund Germany
- Department of Chemistry; Umeå University; 90187 Umeå Sweden
| | - Waqas Nasir
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine; University of Gothenburg; Gothenburg Sweden
- Thermo Fischer Scientific; Bremen Germany
| | - Carina Sihlbom
- Proteomics Core Facility, Sahlgrenska Academy; University of Gothenburg; Gothenburg Sweden
| | - Britt-Marie Olsson
- Proteomics Core Facility, Sahlgrenska Academy; University of Gothenburg; Gothenburg Sweden
| | - Vanessa Caixeta
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V.; 44227 Dortmund Germany
| | - Manuel Schorlemer
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V.; 44227 Dortmund Germany
- Department of Chemistry; Umeå University; 90187 Umeå Sweden
| | - René P. Zahedi
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V.; 44227 Dortmund Germany
- Segal Cancer Proteomics Centre, Lady Davis Institute; Jewish General Hospital; McGill University; Montreal Quebec Canada
| | - Göran Larson
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine; University of Gothenburg; Gothenburg Sweden
| | - Jonas Nilsson
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine; University of Gothenburg; Gothenburg Sweden
| | - Ulrika Westerlind
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V.; 44227 Dortmund Germany
- Department of Chemistry; Umeå University; 90187 Umeå Sweden
| |
Collapse
|
14
|
Li W, Xiao A, Li Y, Yu H, Chen X. Chemoenzymatic synthesis of Neu5Ac9NAc-containing α2-3- and α2-6-linked sialosides and their use for sialidase substrate specificity studies. Carbohydr Res 2017; 451:51-58. [PMID: 28961426 DOI: 10.1016/j.carres.2017.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/09/2017] [Accepted: 09/09/2017] [Indexed: 12/22/2022]
Abstract
O-Acetylation of sialic acid (Sia) modulates its recognition by sialic acid-binding proteins and plays an important role in biological and pathological processes. 9-O-Acetylation is the most common modification of sialic acid in human. However, study of O-acetylated sialoglycans is hampered due to the instability of O-acetyl group towards pH changes and sensitivity to esterases. Our previous studies demonstrated a chemical biology method to this problem by replacing the oxygen atom in the C9 ester group of sialic acid by a nitrogen to form an amide. Here, we synthesized a library of sixteen new 9-acetamido-9-deoxy-N-acetylneuraminic acid (Neu5Ac9NAc)-containing α2-3- and α2-6-linked sialosides with various underlying glycans using efficient one-pot three-enzyme (OP3E) sialylation systems. Neu5Ac9NAc-containing compounds with a para-nitrophenol aglycon have been used together with their 9-O-acetyl analogs in microtiter plate-based high-throughput substrate specificity studies of nine different sialidases including those from humans and bacteria. In general, similar to 9-O-acetylation, 9-N-acetyl modification of sialic acid in the substrates lowers sialic acid-cleavage activity of most sialidases. In most cases, Neu5Ac9NAc is a good analog of 9-O-acetyl sialic acid. However, exceptions do exist. For example, 9-N- and 9-O-acetyl modifications have different effects on the sialosides cleave efficiencies of a commercially available C. perfringens sialidase as well as recombinant Streptococcus pneumoniae sialidase SpNanC and Bifidobacterium infantis sialidase BiNanH2. The mechanism for the difference awaits further investigation.
Collapse
Affiliation(s)
- Wanqing Li
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - An Xiao
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Yanhong Li
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Hai Yu
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Xi Chen
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
15
|
McArthur JB, Yu H, Zeng J, Chen X. Converting Pasteurella multocidaα2-3-sialyltransferase 1 (PmST1) to a regioselective α2-6-sialyltransferase by saturation mutagenesis and regioselective screening. Org Biomol Chem 2017; 15:1700-1709. [PMID: 28134951 DOI: 10.1039/c6ob02702d] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A microtiter plate-based screening assay capable of determining the activity and regioselectivity of sialyltransferases was developed. This assay was used to screen two single-site saturation libraries of Pasteurella multocidaα2-3-sialyltransferase 1 (PmST1) for α2-6-sialyltransferase activity and total sialyltransferase activity. PmST1 double mutant P34H/M144L was found to be the most effective α2-6-sialyltransferase and displayed 50% reduced donor hydrolysis and 50-fold reduced sialidase activity compared to the wild-type PmST1. It retained the donor substrate promiscuity of the wild-type enzyme and was used in an efficient one-pot multienzyme (OPME) system to selectively catalyze the sialylation of the terminal galactose residue in a multigalactose-containing tetrasaccharide lacto-N-neotetraoside.
Collapse
Affiliation(s)
- John B McArthur
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA.
| | | | | | | |
Collapse
|
16
|
Yu H, Chen X. One-pot multienzyme (OPME) systems for chemoenzymatic synthesis of carbohydrates. Org Biomol Chem 2016; 14:2809-18. [PMID: 26881499 PMCID: PMC4795158 DOI: 10.1039/c6ob00058d] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Glycosyltransferase-catalyzed enzymatic and chemoenzymatic syntheses are powerful approaches for the production of oligosaccharides, polysaccharides, glycoconjugates, and their derivatives. Enzymes involved in the biosynthesis of sugar nucleotide donors can be combined with glycosyltransferases in one pot for efficient production of the target glycans from simple monosaccharides and acceptors. The identification of enzymes involved in the salvage pathway of sugar nucleotide generation has greatly facilitated the development of simplified and efficient one-pot multienzyme (OPME) systems for synthesizing major glycan epitopes in mammalian glycomes. The applications of OPME methods are steadily gaining popularity mainly due to the increasing availability of wild-type and engineered enzymes. Substrate promiscuity of these enzymes and their mutants allows OPME synthesis of carbohydrates with naturally occurring post-glycosylational modifications (PGMs) and their non-natural derivatives using modified monosaccharides as precursors. The OPME systems can be applied in sequence for synthesizing complex carbohydrates. The sequence of the sequential OPME processes, the glycosyltransferase used, and the substrate specificities of the glycosyltransferases define the structures of the products. The OPME and sequential OPME strategies can be extended to diverse glycans in other glycomes when suitable enzymes with substrate promiscuity become available. This Perspective summarizes the work of the authors and collaborators on the development of glycosyltransferase-based OPME systems for carbohydrate synthesis. Future directions are also discussed.
Collapse
Affiliation(s)
- Hai Yu
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA.
| | - Xi Chen
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
17
|
Kang JY, Lim SJ, Kwon O, Lee SG, Kim HH, Oh DB. Enhanced Bacterial α(2,6)-Sialyltransferase Reaction through an Inhibition of Its Inherent Sialidase Activity by Dephosphorylation of Cytidine-5'-Monophosphate. PLoS One 2015; 10:e0133739. [PMID: 26231036 PMCID: PMC4521712 DOI: 10.1371/journal.pone.0133739] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 06/21/2015] [Indexed: 12/03/2022] Open
Abstract
Bacterial α(2,6)-sialyltransferases (STs) from Photobacterium damsela, Photobacterium sp. JT-ISH-224, and P. leiognathi JT-SHIZ-145 were recombinantly expressed in Escherichia coli and their ST activities were compared directly using a galactosylated bi-antennary N-glycan as an acceptor substrate. In all ST reactions, there was an increase of sialylated glycans at shorter reaction times and later a decrease in prolonged reactions, which is related with the inherent sialidase activities of bacterial STs. These sialidase activities are greatly increased by free cytidine monophosphate (CMP) generated from a donor substrate CMP-N-acetylneuraminic acid (CMP-Neu5Ac) during the ST reactions. The decrease of sialylated glycans in prolonged ST reaction was prevented through an inhibition of sialidase activity by simple treatment of alkaline phosphatase (AP), which dephosphorylates CMP to cytidine. Through supplemental additions of AP and CMP-Neu5Ac to the reaction using the recombinant α(2,6)-ST from P. leiognathi JT-SHIZ-145 (P145-ST), the content of bi-sialylated N-glycan increased up to ~98% without any decrease in prolonged reactions. This optimized P145-ST reaction was applied successfully for α(2,6)-sialylation of asialofetuin, and this resulted in a large increase in the populations of multi-sialylated N-glycans compared with the reaction without addition of AP and CMP-Neu5Ac. These results suggest that the optimized reaction using the recombinant P145-ST readily expressed from E. coli has a promise for economic glycan synthesis and glyco-conjugate remodeling.
Collapse
Affiliation(s)
- Ji-Yeon Kang
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Korea
| | - Se-Jong Lim
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Korea
- Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon, Korea
| | - Ohsuk Kwon
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Korea
- Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon, Korea
| | - Seung-Goo Lee
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Korea
- Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon, Korea
| | - Ha Hyung Kim
- College of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Doo-Byoung Oh
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Korea
- Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon, Korea
- * E-mail:
| |
Collapse
|
18
|
Czabany T, Schmölzer K, Luley-Goedl C, Ribitsch D, Nidetzky B. All-in-one assay for β-d-galactoside sialyltransferases: Quantification of productive turnover, error hydrolysis, and site selectivity. Anal Biochem 2015; 483:47-53. [PMID: 25957124 DOI: 10.1016/j.ab.2015.04.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/24/2015] [Accepted: 04/28/2015] [Indexed: 10/23/2022]
Abstract
Sialyltransferases are important enzymes of glycobiology and the related biotechnologies. The development of sialyltransferases calls for access to quick, inexpensive, and robust analytical tools. We have established an assay for simultaneous characterization of sialyltransferase activity, error hydrolysis, and site selectivity. The described assay does not require expensive substrates, is very sensitive (limit of detection=0.3 μU), and is easy to perform. It is based on sialylation of nitrophenyl galactosides; the products thereof are separated and quantified by ion pair reversed phase high-performance liquid chromatography with ultraviolet detection.
Collapse
Affiliation(s)
- Tibor Czabany
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, 8010 Graz, Austria
| | | | | | - Doris Ribitsch
- Austrian Centre of Industrial Biotechnology, 8010 Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, 8010 Graz, Austria; Austrian Centre of Industrial Biotechnology, 8010 Graz, Austria.
| |
Collapse
|
19
|
Watson DC, Wakarchuk WW, Leclerc S, Schur MJ, Schoenhofen IC, Young NM, Gilbert M. Sialyltransferases with enhanced legionaminic acid transferase activity for the preparation of analogs of sialoglycoconjugates. Glycobiology 2015; 25:767-73. [DOI: 10.1093/glycob/cwv017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 03/10/2015] [Indexed: 11/15/2022] Open
|
20
|
Abstract
The important roles played by human milk oligosaccharides (HMOS), the third major component of human milk, in the health of breast-fed infants have been increasingly recognized, as the structures of more than 100 different HMOS have now been elucidated. Despite the recognition of the various functions of HMOS as prebiotics, antiadhesive antimicrobials, and immunomodulators, the roles and the applications of individual HMOS species are less clear. This is mainly due to the limited accessibility to large amounts of individual HMOS in their pure forms. Current advances in the development of enzymatic, chemoenzymatic, whole-cell, and living-cell systems allow for the production of a growing number of HMOS in increasing amounts. This effort will greatly facilitate the elucidation of the important roles of HMOS and allow exploration into the applications of HMOS both as individual compounds and as mixtures of defined structures with desired functions. The structures, functions, and enzyme-catalyzed synthesis of HMOS are briefly surveyed to provide a general picture about the current progress on these aspects. Future efforts should be devoted to elucidating the structures of more complex HMOS, synthesizing more complex HMOS including those with branched structures, and developing HMOS-based or HMOS-inspired prebiotics, additives, and therapeutics.
Collapse
Affiliation(s)
- Xi Chen
- Department of Chemistry, University of California, Davis, California, USA
| |
Collapse
|
21
|
Ding L, Zhao C, Qu J, Li Y, Sugiarto G, Yu H, Wang J, Chen X. A Photobacterium sp. α2-6-sialyltransferase (Psp2,6ST) mutant with an increased expression level and improved activities in sialylating Tn antigens. Carbohydr Res 2014; 408:127-33. [PMID: 25593075 DOI: 10.1016/j.carres.2014.12.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 12/15/2014] [Accepted: 12/16/2014] [Indexed: 01/11/2023]
Abstract
In order to improve the catalytic efficiency of recombinant Photobacterium sp. JT-ISH-224 α2-6-sialyltransferase Psp2,6ST(15-501)-His6 in sialylating α-GalNAc-containing acceptors for the synthesis of tumor-associated carbohydrate antigens sialyl Tn (STn), protein crystal structure-based mutagenesis studies were carried out. Among several mutants obtained by altering the residues close to the acceptor substrate binding pocket, mutant A366G was shown to improve the sialyltransferase activity of Psp2,6ST(15-501)-His6 toward α-GalNAc-containing acceptors by 21-115% without significantly affecting its sialylation activity to β-galactosides. Furthermore, the expression level was improved from 18-40 mg L(-1) for the wild-type enzyme to 72-110 mg L(-1) for the A366G mutant. In situ generation of CMP-sialic acid in a one-pot two-enzyme system was shown effective in overcoming the high donor hydrolysis of the enzyme. Mutant A366G performed better than the wild-type Psp2,6ST(15-501)-His6 for synthesizing Neu5Acα2-6GalNAcαOSer/Thr STn antigens.
Collapse
Affiliation(s)
- Li Ding
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA; College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chao Zhao
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA; Department of Nutrition and Food Safety, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jingyao Qu
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Yanhong Li
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Go Sugiarto
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Hai Yu
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Junru Wang
- College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xi Chen
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
22
|
Huynh N, Li Y, Yu H, Huang S, Lau K, Chen X, Fisher AJ. Crystal structures of sialyltransferase from Photobacterium damselae. FEBS Lett 2014; 588:4720-9. [PMID: 25451227 DOI: 10.1016/j.febslet.2014.11.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/07/2014] [Accepted: 11/07/2014] [Indexed: 12/29/2022]
Abstract
Sialyltransferase structures fall into either GT-A or GT-B glycosyltransferase fold. Some sialyltransferases from the Photobacterium genus have been shown to contain an additional N-terminal immunoglobulin (Ig)-like domain. Photobacterium damselae α2-6-sialyltransferase has been used efficiently in enzymatic and chemoenzymatic synthesis of α2-6-linked sialosides. Here we report three crystal structures of this enzyme. Two structures with and without a donor substrate analog CMP-3F(a)Neu5Ac contain an immunoglobulin (Ig)-like domain and adopt the GT-B sialyltransferase fold. The binary structure reveals a non-productive pre-Michaelis complex, which are caused by crystal lattice contacts that prevent the large conformational changes. The third structure lacks the Ig-domain. Comparison of the three structures reveals small inherent flexibility between the two Rossmann-like domains of the GT-B fold.
Collapse
Affiliation(s)
- Nhung Huynh
- Cell Biology Graduate Program, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Yanhong Li
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Hai Yu
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Shengshu Huang
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Kam Lau
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Xi Chen
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA.
| | - Andrew J Fisher
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA; Department of Molecular and Cellular Biology, University of California, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
23
|
Preidl JJ, Gnanapragassam VS, Lisurek M, Saupe J, Horstkorte R, Rademann J. Fluoreszente Mimetika von CMP-Neu5Ac sind hochaffine, zellgängige Polarisationssonden eukaryotischer und bakterieller Sialyltransferasen und inhibieren die zelluläre Sialylierung. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201400394] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Preidl JJ, Gnanapragassam VS, Lisurek M, Saupe J, Horstkorte R, Rademann J. Fluorescent mimetics of CMP-Neu5Ac are highly potent, cell-permeable polarization probes of eukaryotic and bacterial sialyltransferases and inhibit cellular sialylation. Angew Chem Int Ed Engl 2014; 53:5700-5. [PMID: 24737687 DOI: 10.1002/anie.201400394] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Indexed: 12/23/2022]
Abstract
Oligosaccharides of the glycolipids and glycoproteins at the outer membranes of human cells carry terminal neuraminic acids, which are responsible for recognition events and adhesion of cells, bacteria, and virus particles. The synthesis of neuraminic acid containing glycosides is accomplished by intracellular sialyl transferases. Therefore, the chemical manipulation of cellular sialylation could be very important to interfere with cancer development, inflammations, and infections. The development and applications of the first nanomolar fluorescent inhibitors of sialyl transferases are described herein. The obtained carbohydrate-nucleotide mimetics were found to bind all four commercially available and tested eukaryotic and bacterial sialyl transferases in a fluorescence polarization assay. Moreover, it was observed that the anionic mimetics intruded rapidly and efficiently into cells in vesicles and translocated to cellular organelles surrounding the nucleus of CHO cells. The new compounds inhibit cellular sialylation in two cell lines and open new perspectives for investigations of cellular sialylation.
Collapse
Affiliation(s)
- Johannes J Preidl
- Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Strasse 2+4, 14195 Berlin (Germany) http://www.bcp.fu-berlin.de/ag-rademann; Department of Medicinal Chemistry, Leibniz Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125 Berlin (Germany)
| | | | | | | | | | | |
Collapse
|
25
|
Hwang J, Yu H, Malekan H, Sugiarto G, Li Y, Qu J, Nguyen V, Wu D, Chen X. Highly efficient one-pot multienzyme (OPME) synthesis of glycans with fluorous-tag assisted purification. Chem Commun (Camb) 2014; 50:3159-62. [PMID: 24473465 DOI: 10.1039/c4cc00070f] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Oligo(ethylene glycol)-linked light fluorous tags have been found to be optimal for conjugating to glycans for both high-yield enzymatic glycosylation reactions using one-pot multienzyme (OPME) systems and quick product purification using fluorous solid-phase extraction (FSPE) cartridges. The combination of OPME glycosylation systems and the FSPE cartridge purification scheme provides a highly effective strategy for facile synthesis and purification of glycans.
Collapse
Affiliation(s)
- Joel Hwang
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Huynh N, Aye A, Li Y, Yu H, Cao H, Tiwari VK, Shin DW, Chen X, Fisher AJ. Structural basis for substrate specificity and mechanism of N-acetyl-D-neuraminic acid lyase from Pasteurella multocida. Biochemistry 2013; 52:8570-9. [PMID: 24152047 DOI: 10.1021/bi4011754] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
N-Acetylneuraminate lyases (NALs) or sialic acid aldolases catalyze the reversible aldol cleavage of N-acetylneuraminic acid (Neu5Ac, the most common form of sialic acid) to form pyruvate and N-acetyl-d-mannosamine. Although equilibrium favors sialic acid cleavage, these enzymes can be used for high-yield chemoenzymatic synthesis of structurally diverse sialic acids in the presence of excess pyruvate. Engineering these enzymes to synthesize structurally modified natural sialic acids and their non-natural derivatives holds promise in creating novel therapeutic agents. Atomic-resolution structures of these enzymes will greatly assist in guiding mutagenic and modeling studies to engineer enzymes with altered substrate specificity. We report here the crystal structures of wild-type Pasteurella multocida N-acetylneuraminate lyase and its K164A mutant. Like other bacterial lyases, it assembles into a homotetramer with each monomer folding into a classic (β/α)₈ TIM barrel. Two wild-type structures were determined, in the absence of substrates, and trapped in a Schiff base intermediate between Lys164 and pyruvate, respectively. Three structures of the K164A variant were determined: one in the absence of substrates and two binary complexes with N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc). Both sialic acids bind to the active site in the open-chain ketone form of the monosaccharide. The structures reveal that every hydroxyl group of the linear sugars makes hydrogen bond interactions with the enzyme, and the residues that determine specificity were identified. Additionally, the structures provide some clues for explaining the natural discrimination of sialic acid substrates between the P. multocida and Escherichia coli NALs.
Collapse
Affiliation(s)
- Nhung Huynh
- Department of Chemistry, ‡Department of Molecular and Cellular Biology, and §Cell Biology Graduate Program, University of California , One Shields Avenue, Davis, California 95616, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Choi YH, Kim JH, Park JH, Lee N, Kim DH, Jang KS, Park ILH, Kim BG. Protein engineering of α2,3/2,6-sialyltransferase to improve the yield and productivity of in vitro sialyllactose synthesis. Glycobiology 2013; 24:159-69. [DOI: 10.1093/glycob/cwt092] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
28
|
Schmölzer K, Ribitsch D, Czabany T, Luley-Goedl C, Kokot D, Lyskowski A, Zitzenbacher S, Schwab H, Nidetzky B. Characterization of a multifunctional α2,3-sialyltransferase from Pasteurella dagmatis. Glycobiology 2013; 23:1293-304. [DOI: 10.1093/glycob/cwt066] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
29
|
Reyes Martínez JE, Šardzík R, Voglmeir J, Flitsch SL. Enzymatic synthesis of colorimetric substrates to determine α-2,3- and α-2,6-specific neuraminidase activity. RSC Adv 2013. [DOI: 10.1039/c3ra44791j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
30
|
Sialic acid metabolism and sialyltransferases: natural functions and applications. Appl Microbiol Biotechnol 2012; 94:887-905. [PMID: 22526796 DOI: 10.1007/s00253-012-4040-1] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 03/16/2012] [Accepted: 03/16/2012] [Indexed: 12/17/2022]
Abstract
Sialic acids are a family of negatively charged monosaccharides which are commonly presented as the terminal residues in glycans of the glycoconjugates on eukaryotic cell surface or as components of capsular polysaccharides or lipooligosaccharides of some pathogenic bacteria. Due to their important biological and pathological functions, the biosynthesis, activation, transfer, breaking down, and recycle of sialic acids are attracting increasing attention. The understanding of the sialic acid metabolism in eukaryotes and bacteria leads to the development of metabolic engineering approaches for elucidating the important functions of sialic acid in mammalian systems and for large-scale production of sialosides using engineered bacterial cells. As the key enzymes in biosynthesis of sialylated structures, sialyltransferases have been continuously identified from various sources and characterized. Protein crystal structures of seven sialyltransferases have been reported. Wild-type sialyltransferases and their mutants have been applied with or without other sialoside biosynthetic enzymes for producing complex sialic acid-containing oligosaccharides and glycoconjugates. This mini-review focuses on current understanding and applications of sialic acid metabolism and sialyltransferases.
Collapse
|
31
|
Abstract
Sialic acids, also known as neuraminic acids, are a family of negatively charged α-keto acids with a nine-carbon backbone. These unique sugars have been found at the termini of many glycan chains of vertebrate cell surface, which play pivotal roles in mediating or modulating a variety of physiological and pathological processes. This brief review covers general approaches for synthesizing sialic acid containing structures. Recently developed synthetic methods along with structural diversities and biological functions of sialic acid are discussed.
Collapse
Affiliation(s)
- Hongzhi Cao
- National Glycoengineering Research Center, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Xi Chen
- Department of Chemistry, University of California-Davis, One Shields Avenue, CA 95616, USA
| |
Collapse
|
32
|
Ding L, Yu H, Lau K, Li Y, Muthana S, Wang J, Chen X. Efficient chemoenzymatic synthesis of sialyl Tn-antigens and derivatives. Chem Commun (Camb) 2011; 47:8691-3. [PMID: 21725542 DOI: 10.1039/c1cc12732b] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An N-terminal and C-terminal truncated recombinant α2-6-sialyltransferase cloned from Photobacterium sp. JH-ISH-224, Psp2,6ST(15-501)-His(6), was shown to be an efficient catalyst for one-pot three-enzyme synthesis of sialyl Tn (STn) antigens and derivatives containing natural and non-natural sialic acid forms.
Collapse
Affiliation(s)
- Li Ding
- College of Science, Northwest A&F University, Yangling, Shaanxi, China
| | | | | | | | | | | | | |
Collapse
|
33
|
Yu H, Cao H, Tiwari VK, Li Y, Chen X. Chemoenzymatic synthesis of C8-modified sialic acids and related α2-3- and α2-6-linked sialosides. Bioorg Med Chem Lett 2011; 21:5037-40. [PMID: 21592790 DOI: 10.1016/j.bmcl.2011.04.083] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 04/17/2011] [Accepted: 04/19/2011] [Indexed: 10/18/2022]
Abstract
Naturally occurring 8-O-methylated sialic acids, including 8-O-methyl-N-acetylneuraminic acid and 8-O-methyl-N-glycolylneuraminic acid, along with 8-O-methyl-2-keto-3-deoxy-d-glycero-d-galacto-nonulosonic acid (Kdn8Me) and 8-deoxy-Kdn were synthesized from corresponding 5-O-modified six-carbon monosaccharides and pyruvate using a sialic acid aldolase cloned from Pasteurella multocida strain P-1059 (PmNanA). In addition, α2-3- and α2-6-linked sialyltrisaccharides containing Neu5Ac8Me and Kdn8Deoxy were also synthesized using a one-pot multienzyme approach. The strategy reported here provides an efficient approach to produce glycans containing various C8-modified sialic acids for biological evaluations.
Collapse
Affiliation(s)
- Hai Yu
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, United States
| | | | | | | | | |
Collapse
|
34
|
Abstract
Sialic acids are a subset of nonulosonic acids, which are nine-carbon alpha-keto aldonic acids. Natural existing sialic acid-containing structures are presented in different sialic acid forms, various sialyl linkages, and on diverse underlying glycans. They play important roles in biological, pathological, and immunological processes. Sialobiology has been a challenging and yet attractive research area. Recent advances in chemical and chemoenzymatic synthesis, as well as large-scale E. coli cell-based production, have provided a large library of sialoside standards and derivatives in amounts sufficient for structure-activity relationship studies. Sialoglycan microarrays provide an efficient platform for quick identification of preferred ligands for sialic acid-binding proteins. Future research on sialic acid will continue to be at the interface of chemistry and biology. Research efforts not only will lead to a better understanding of the biological and pathological importance of sialic acids and their diversity but also could lead to the development of therapeutics.
Collapse
Affiliation(s)
- Xi Chen
- Department of Chemistry, University of California, Davis, California 95616, USA.
| | | |
Collapse
|
35
|
Ogata M, Murata T, Park EY, Usui T. Chemoenzymatic Synthesis of Glycan-arranged Polymeric Inhibitors against Influenza Virus Infection. J Appl Glycosci (1999) 2010. [DOI: 10.5458/jag.57.137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
36
|
Cheng J, Huang S, Yu H, Li Y, Lau K, Chen X. Trans-sialidase activity of Photobacterium damsela alpha2,6-sialyltransferase and its application in the synthesis of sialosides. Glycobiology 2009; 20:260-8. [PMID: 19880425 DOI: 10.1093/glycob/cwp172] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Trans-sialidases catalyze the transfer of a sialic acid from one sialoside to an acceptor to form a new sialoside. alpha2,3-Trans-sialidase activity was initially discovered in the parasitic protozoan Trypanosoma cruzi, and more recently was found in a multifunctional Pasteurella multocida sialyltransferase PmST1. alpha2,8-Trans-sialidase activity was also described for a multifunctional Campylobacter jejuni sialyltransferase CstII. We report here the discovery of the alpha2,6-trans-sialidase activity of a previously reported recombinant truncated bacterial alpha2,6-sialyltransferase from Photobacterium damsela (Delta15Pd2,6ST). This is the first time that the alpha2,6-trans-sialidase activity has ever been identified. Kinetic studies indicate that Delta15Pd2,6ST-catalyzed trans-sialidase reaction follows a ping-pong bi-bi reaction mechanism. Cytidine 5'-monophosphate, the product of sialyltransferase reactions, is not required by the trans-sialidase activity of the enzyme but enhances the trans-sialidase activity modestly as a non-essential activator. Using chemically synthesized Neu5AcalphapNP and LacbetaMU, alpha2,6-linked sialoside Neu5Acalpha2,6LacbetaMU has been obtained in one-step in high yield using the trans-sialidase activity of Delta15Pd2,6ST. In addition to the alpha2,6-trans-sialidase activity, Delta15Pd2,6ST also has alpha2,6-sialidase activity. The multifunctionality is thus a common feature of many bacterial sialyltransferases.
Collapse
Affiliation(s)
- Jiansong Cheng
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | | | | | | | | | | |
Collapse
|
37
|
Ogata M, Nakajima M, Kato T, Obara T, Yagi H, Kato K, Usui T, Park EY. Synthesis of sialoglycopolypeptide for potentially blocking influenza virus infection using a rat alpha2,6-sialyltransferase expressed in BmNPV bacmid-injected silkworm larvae. BMC Biotechnol 2009; 9:54. [PMID: 19500344 PMCID: PMC3224744 DOI: 10.1186/1472-6750-9-54] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 06/05/2009] [Indexed: 11/10/2022] Open
Abstract
Background Sialic acid is a deoxy uronic acid with a skeleton of nine carbons which is mostly found on cell surface in animals. This sialic acid on cell surface performs various biological functions by acting as a receptor for microorganisms, viruses, toxins, and hormones; by masking receptors; and by regulating the immune system. In order to synthesize an artificial sialoglycoprotein, we developed a large-scale production of rat α2,6-sialyltransferase (ST6Gal1). The ST6Gal1 was expressed in fifth instar silkworm larval hemolymph using recombinant both cysteine protease- and chitinase-deficient Bombyx mori nucleopolyhedrovirus (BmNPV-CP--Chi-) bacmid. The expressed ST6Gal1 was purified, characterized and used for sialylation of asialoglycopolypeptide. We tested the inhibitory effect of the synthesized α2,6-sialoglycopolypeptide on hemagglutination by Sambucus nigra (SNA) lectin. Results FLAG-tagged recombinant ST6Gal1 was expressed efficiently and purified by precipitation with ammonium sulphate followed by affinity chromatography on an anti-FLAG M2 column, generating 2.2 mg purified fusion protein from only 11 silkworm larvae, with a recovery yield of 64%. The purified ST6Gal1 was characterized and its N-glycan patterns were found to be approximately paucimannosidic type by HPLC mapping method. Fluorescently-labelled N-acetyllactosamine (LacNAc) glycoside containing dansyl group was synthesized chemo-enzymatically as high-sensitivity acceptor substrate for ST6Gal1. The acceptor substrate specificity of the enzyme was similar to that of rat liver ST6Gal1. The fluorescent glycoside is useful as a substrate for a highly sensitive picomole assay of ST6Gal1. Asialoglycopolypeptide was regioselectively and quantitatively sialylated by catalytic reaction at the terminal Gal residue to obtain α2,6-sialoglycopolypeptide using ST6Gal1. The α2,6-sialoglycopolypeptide selectively inhibited hemagglutination induced by Sambucus nigra (SNA) lectin, showing about 780-fold higher affinity than the control fetuin. Asialoglycopolypeptide and γ-polyglutamic acid did not affect SNA lectin-mediated hemagglutination. Conclusion The recombinant ST6Gal1 from a silkworm expression system is useful for the sialylation of asialoglycopeptide. The sialylated glycoprotein is a valuable tool for investigating the molecular mechanisms of biological and physiological events, such as cell-cell recognition and viral entry during infection.
Collapse
Affiliation(s)
- Makoto Ogata
- Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University, Shizuoka, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Chokhawala HA, Huang S, Lau K, Yu H, Cheng J, Thon V, Hurtado-Ziola N, Guerrero JA, Varki A, Chen X. Combinatorial chemoenzymatic synthesis and high-throughput screening of sialosides. ACS Chem Biol 2008; 3:567-76. [PMID: 18729452 DOI: 10.1021/cb800127n] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although the vital roles of structures containing sialic acid in biomolecular recognition are well documented, limited information is available on how sialic acid structural modifications, sialyl linkages, and the underlying glycan structures affect the binding or the activity of sialic acid-recognizing proteins and related downstream biological processes. A novel combinatorial chemoenzymatic method has been developed for the highly efficient synthesis of biotinylated sialosides containing different sialic acid structures and different underlying glycans in 96-well plates from biotinylated sialyltransferase acceptors and sialic acid precursors. By transferring the reaction mixtures to NeutrAvidin-coated plates and assaying for the yields of enzymatic reactions using lectins recognizing sialyltransferase acceptors but not the sialylated products, the biotinylated sialoside products can be directly used, without purification, for high-throughput screening to quickly identify the ligand specificity of sialic acid-binding proteins. For a proof-of-principle experiment, 72 biotinylated alpha2,6-linked sialosides were synthesized in 96-well plates from 4 biotinylated sialyltransferase acceptors and 18 sialic acid precursors using a one-pot three-enzyme system. High-throughput screening assays performed in NeutrAvidin-coated microtiter plates show that whereas Sambucus nigra Lectin binds to alpha2,6-linked sialosides with high promiscuity, human Siglec-2 (CD22) is highly selective for a number of sialic acid structures and the underlying glycans in its sialoside ligands.
Collapse
Affiliation(s)
- Harshal A. Chokhawala
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, California 95616
| | - Shengshu Huang
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, California 95616
| | - Kam Lau
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, California 95616
| | - Hai Yu
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, California 95616
| | - Jiansong Cheng
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, California 95616
| | - Vireak Thon
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, California 95616
| | - Nancy Hurtado-Ziola
- Departments of Medicine and Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California-San Diego, La Jolla, California 92093-0687
| | - Juan A. Guerrero
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, California 95616
| | - Ajit Varki
- Departments of Medicine and Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California-San Diego, La Jolla, California 92093-0687
| | - Xi Chen
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, California 95616
| |
Collapse
|
39
|
Pasteurella multocida sialic acid aldolase: a promising biocatalyst. Appl Microbiol Biotechnol 2008; 79:963-70. [PMID: 18521592 DOI: 10.1007/s00253-008-1506-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 04/06/2008] [Accepted: 04/14/2008] [Indexed: 10/22/2022]
Abstract
Sialic acid aldolases or N-acetylneuraminate lyases (NanAs) catalyze the reversible aldol cleavage of N-acetylneuraminic acid (Neu5Ac) to form pyruvate and N-acetyl-D: -mannosamine (ManNAc). A capillary electrophoresis assay was developed to directly characterize the activities of NanAs in both Neu5Ac cleavage and Neu5Ac synthesis directions. The assay was used to obtain the pH profile and the kinetic data of a NanA cloned from Pasteurella multocida P-1059 (PmNanA) and a previously reported recombinant Escherichia coli K12 NanA (EcNanA). Both enzymes are active in a broad pH range of 6.0-9.0 in both reaction directions and have similar kinetic parameters. Substrates specificity studies showed that 5-O-methyl-ManNAc, a ManNAc derivative, can be used efficiently as a substrate by PmNanA, but not efficiently by EcNanA, for the synthesis of 8-O-methyl Neu5Ac. In addition, PmNanA (250 mg l(-1) culture) has a higher expression level (2.5-fold) than EcNanA (94 mg l(-1) culture). The higher expression level and a broader substrate tolerance make PmNanA a better catalyst than EcNanA for the chemoenzymatic synthesis of sialic acids and their derivatives.
Collapse
|
40
|
Cheng J, Yu H, Lau K, Huang S, Chokhawala HA, Li Y, Tiwari VK, Chen X. Multifunctionality of Campylobacter jejuni sialyltransferase CstII: characterization of GD3/GT3 oligosaccharide synthase, GD3 oligosaccharide sialidase, and trans-sialidase activities. Glycobiology 2008; 18:686-97. [PMID: 18509108 DOI: 10.1093/glycob/cwn047] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
CstII from bacterium Campylobacter jejuni strain OH4384 has been previously characterized as a bifunctional sialyltransferase having both alpha2,3-sialyltransferase (GM3 oligosaccharide synthase) and alpha2,8-sialyltransferase (GD3 oligosaccharide synthase) activities which catalyze the transfer of N-acetylneuraminic acid (Neu5Ac) from cytidine 5'-monophosphate (CMP)-Neu5Ac to C-3' of the galactose in lactose and to C-8 of the Neu5Ac in 3'-sialyllactose, respectively (Gilbert M, Karwaski MF, Bernatchez S, Young NM, Taboada E, Michniewicz J, Cunningham AM, Wakarchuk WW. 2002. The genetic bases for the variation in the lipo-oligosaccharide of the mucosal pathogen, Campylobacter jejuni. Biosynthesis of sialylated ganglioside mimics in the core oligosaccharide. J Biol Chem. 277:327-337). We report here the characterization of a truncated CstII mutant (CstIIDelta32(I53S)) cloned from a synthetic gene whose codons are optimized for an Escherichia coli expression system. In addition to the alpha2,3- and alpha2,8-sialyltransferase activities reported before for the synthesis of GM3- and GD3-type oligosaccharides, respectively, the CstIIDelta32(I53S) has alpha2,8-sialyltransferase (GT3 oligosaccharide synthase) activity for the synthesis of GT3 oligosaccharide. It also has alpha2,8-sialidase (GD3 oligosaccharide sialidase) activity that catalyzes the specific cleavage of the alpha2,8-sialyl linkage of GD3-type oligosaccharides and alpha2,8-trans-sialidase (GD3 oligosaccharide trans-sialidase) activity that catalyzes the transfer of a sialic acid from a GD3 oligosaccharide to a different GM3 oligosaccharide (3'-sialyllactoside). The donor substrate specificity study of the CstIIDelta32(I53S) GD3 oligosaccharide synthase activity indicates that the enzyme is flexible in using different CMP-activated sialic acids and their analogs for the synthesis of GD3 oligosaccharides containing natural and nonnatural modifications at the terminal sialic acid.
Collapse
Affiliation(s)
- Jiansong Cheng
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
| | | | | | | | | | | | | | | |
Collapse
|