1
|
Kalds P, Zhou S, Huang S, Gao Y, Wang X, Chen Y. When Less Is More: Targeting the Myostatin Gene in Livestock for Augmenting Meat Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4216-4227. [PMID: 36862946 DOI: 10.1021/acs.jafc.2c08583] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
How to increase meat production is one of the main questions in animal breeding. Selection for improved body weight has been made and, due to recent genomic advances, naturally occurring variants that are responsible for controlling economically relevant phenotypes have been revealed. The myostatin (MSTN) gene, a superstar gene in animal breeding, was discovered as a negative controller of muscle mass. In some livestock species, natural mutations in the MSTN gene could generate the agriculturally desirable double-muscling phenotype. However, some other livestock species or breeds lack these desirable variants. Genetic modification, particularly gene editing, offers an unprecedented opportunity to induce or mimic naturally occurring mutations in livestock genomes. To date, various MSTN-edited livestock species have been generated using different gene modification tools. These MSTN gene-edited models have higher growth rates and increased muscle mass, suggesting the high potential of utilizing MSTN gene editing in animal breeding. Additionally, post-editing investigations in most livestock species support the favorable influence of targeting the MSTN gene on meat quantity and quality. In this Review, we provide a collective discussion on targeting the MSTN gene in livestock to further encourage its utilization opportunities. It is expected that, shortly, MSTN gene-edited livestock will be commercialized, and MSTN-edited meat will be on the tables of ordinary customers.
Collapse
Affiliation(s)
- Peter Kalds
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Department of Animal and Poultry Production, Faculty of Environmental Agricultural Sciences, Arish University, El-Arish 45511, Egypt
| | - Shiwei Zhou
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Shuhong Huang
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yawei Gao
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiaolong Wang
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling 712100, China
| | - Yulin Chen
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
2
|
A Novel Nanobody Directed against Ovine Myostatin to Enhance Muscle Growth in Mouse. Animals (Basel) 2020; 10:ani10081398. [PMID: 32796682 PMCID: PMC7460164 DOI: 10.3390/ani10081398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Myostatin (MSTN) is a negative regulator of myogenesis, and various strategies have been used to improve livestock production by inhibiting MSTN. In this study, we developed a single-variable domain of the heavy chain antibody-recombinant MSTN nanobody (RMN) against MSTN. The selected RMN was expressed, purified, and assessed for its cytotoxicity, affinity, specificity, and the ability to inhibit MSTN. The results demonstrated that RMN could specifically detect and bind MSTN, further inhibit myostatin activity, as well as enhance muscle growth in mice. Abstract Myostatin (MSTN) is a member of the transforming growth factor beta superfamily and is a negative regulator of myogenesis. It has been shown to function by controlling the proliferation of myoblasts. MSTN inhibition is considered as a promising treatment for promoting animal growth in livestock. Nanobodies, a special antibody discovered in camel, have arisen as an alternative to conventional antibodies and have shown great potential when used as tools in different biotechnology fields, such as diagnostics and therapy. In this study, we examined the effect of MSTN inhibition by RMN on the muscle growth of mice. The results showed that RMN could specifically detect and bind MSTN, as well as inhibit MSTN activity. A significant increase in skeletal muscle mass was observed after intramuscular injection of RMN into mice. Enhanced muscle growth occurred because of myofiber hypertrophy. These results offer a promising approach to enhance muscle growth that warrants further investigation in domestic animals.
Collapse
|
3
|
Kalds P, Zhou S, Cai B, Liu J, Wang Y, Petersen B, Sonstegard T, Wang X, Chen Y. Sheep and Goat Genome Engineering: From Random Transgenesis to the CRISPR Era. Front Genet 2019; 10:750. [PMID: 31552084 PMCID: PMC6735269 DOI: 10.3389/fgene.2019.00750] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/17/2019] [Indexed: 12/16/2022] Open
Abstract
Sheep and goats are valuable livestock species that have been raised for their production of meat, milk, fiber, and other by-products. Due to their suitable size, short gestation period, and abundant secretion of milk, sheep and goats have become important model animals in agricultural, pharmaceutical, and biomedical research. Genome engineering has been widely applied to sheep and goat research. Pronuclear injection and somatic cell nuclear transfer represent the two primary procedures for the generation of genetically modified sheep and goats. Further assisted tools have emerged to enhance the efficiency of genetic modification and to simplify the generation of genetically modified founders. These tools include sperm-mediated gene transfer, viral vectors, RNA interference, recombinases, transposons, and endonucleases. Of these tools, the four classes of site-specific endonucleases (meganucleases, ZFNs, TALENs, and CRISPRs) have attracted wide attention due to their DNA double-strand break-inducing role, which enable desired DNA modifications based on the stimulation of native cellular DNA repair mechanisms. Currently, CRISPR systems dominate the field of genome editing. Gene-edited sheep and goats, generated using these tools, provide valuable models for investigations on gene functions, improving animal breeding, producing pharmaceuticals in milk, improving animal disease resistance, recapitulating human diseases, and providing hosts for the growth of human organs. In addition, more promising derivative tools of CRISPR systems have emerged such as base editors which enable the induction of single-base alterations without any requirements for homology-directed repair or DNA donor. These precise editors are helpful for revealing desirable phenotypes and correcting genetic diseases controlled by single bases. This review highlights the advances of genome engineering in sheep and goats over the past four decades with particular emphasis on the application of CRISPR/Cas9 systems.
Collapse
Affiliation(s)
- Peter Kalds
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
- Department of Animal and Poultry Production, Faculty of Environmental Agricultural Sciences, Arish University, El-Arish, Egypt
| | - Shiwei Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Bei Cai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jiao Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Ying Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Bjoern Petersen
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
| | | | - Xiaolong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yulin Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
4
|
Kang JD, Kim S, Zhu HY, Jin L, Guo Q, Li XC, Zhang YC, Xing XX, Xuan MF, Zhang GL, Luo QR, Kim YS, Cui CD, Li WX, Cui ZY, Kim JS, Yin XJ. Generation of cloned adult muscular pigs with myostatin gene mutation by genetic engineering. RSC Adv 2017. [DOI: 10.1039/c6ra28579a] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Skeletal muscle is the most economically valuable tissue in meat-producing animals and enhancing muscle growth in these species may enhance the efficiency of meat production.
Collapse
|
5
|
Narayanavari SA, Chilkunda SS, Ivics Z, Izsvák Z. Sleeping Beauty transposition: from biology to applications. Crit Rev Biochem Mol Biol 2016; 52:18-44. [PMID: 27696897 DOI: 10.1080/10409238.2016.1237935] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Sleeping Beauty (SB) is the first synthetic DNA transposon that was shown to be active in a wide variety of species. Here, we review studies from the last two decades addressing both basic biology and applications of this transposon. We discuss how host-transposon interaction modulates transposition at different steps of the transposition reaction. We also discuss how the transposon was translated for gene delivery and gene discovery purposes. We critically review the system in clinical, pre-clinical and non-clinical settings as a non-viral gene delivery tool in comparison with viral technologies. We also discuss emerging SB-based hybrid vectors aimed at combining the attractive safety features of the transposon with effective viral delivery. The success of the SB-based technology can be fundamentally attributed to being able to insert fairly randomly into genomic regions that allow stable long-term expression of the delivered transgene cassette. SB has emerged as an efficient and economical toolkit for safe and efficient gene delivery for medical applications.
Collapse
Affiliation(s)
- Suneel A Narayanavari
- a Mobile DNA , Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin , Germany
| | - Shreevathsa S Chilkunda
- a Mobile DNA , Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin , Germany
| | - Zoltán Ivics
- b Division of Medical Biotechnology , Paul Ehrlich Institute , Langen , Germany
| | - Zsuzsanna Izsvák
- a Mobile DNA , Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin , Germany
| |
Collapse
|
6
|
Hati Boruah JL, Ranjan R, Gogoi H, Pandey SK, Kumar D, Phukan AJ, Bori J, Sarkhel BC. Effect of Co-transfection of Anti-myostatin shRNA Constructs in Caprine Fetal Fibroblast Cells. Anim Biotechnol 2016; 27:44-51. [PMID: 26690650 DOI: 10.1080/10495398.2015.1074915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Knockdown of myostatin gene (MSTN), transforming growth factor-β superfamily, and a negative regulator of the skeletal muscle growth, by RNA interference (RNAi), has been reported to increase muscle mass in mammals. The current study was aimed to cotransfect two anti-MSTN short hairpin RNA (shRNA) constructs in caprine fetal fibroblast cells for transient silencing of MSTN gene. In the present investigation, approximately 89% MSTN silencing was achieved in transiently transfected caprine fetal fibroblast cells by cotransfection of two best out of four anti-MSTN shRNA constructs. Simultaneously, we also monitored the induction of IFN responsive genes (IFN), pro-apoptotic gene (caspase3) and anti-apoptotic gene (MCL-1) due to cotransfection of different anti-MSTN shRNA constructs. We observed induction of 0.66-19.12, 1.04-4.14, 0.50-3.43, and 0.42-1.98 for folds IFN-β, OAS1, caspase3, and MCL-1 genes, respectively (p < 0.05). This RNAi based cotransfection method could provide an alternative strategy of gene knockout and develop stable caprine fetal fibroblast cells. Furthermore, these stable cells can be used as a cell donor for the development of transgenic cloned embryos by somatic cell nuclear transfer (SCNT) technique.
Collapse
Affiliation(s)
- Jyoti Lakshmi Hati Boruah
- a Animal Biotechnology Center , Nanaji Deshmukh Veterinary Science University , Jabalpur , Madhya Pradesh , India
| | - Rakesh Ranjan
- a Animal Biotechnology Center , Nanaji Deshmukh Veterinary Science University , Jabalpur , Madhya Pradesh , India
| | - Hamen Gogoi
- a Animal Biotechnology Center , Nanaji Deshmukh Veterinary Science University , Jabalpur , Madhya Pradesh , India
| | - Saurabh Kumar Pandey
- a Animal Biotechnology Center , Nanaji Deshmukh Veterinary Science University , Jabalpur , Madhya Pradesh , India
| | - Dharmendra Kumar
- a Animal Biotechnology Center , Nanaji Deshmukh Veterinary Science University , Jabalpur , Madhya Pradesh , India
| | - Amlan Jyoti Phukan
- a Animal Biotechnology Center , Nanaji Deshmukh Veterinary Science University , Jabalpur , Madhya Pradesh , India
| | - Joygeswar Bori
- a Animal Biotechnology Center , Nanaji Deshmukh Veterinary Science University , Jabalpur , Madhya Pradesh , India
| | - Bikash Chandra Sarkhel
- a Animal Biotechnology Center , Nanaji Deshmukh Veterinary Science University , Jabalpur , Madhya Pradesh , India
| |
Collapse
|
7
|
Ni W, You S, Cao Y, Li C, Wei J, Wang D, Qiao J, Zhao X, Hu S, Quan R. Aberrant expression of miR-127, miR-21 and miR-16 in placentas of deceased cloned sheep. Res Vet Sci 2016; 105:200-4. [PMID: 27033933 DOI: 10.1016/j.rvsc.2016.02.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 01/22/2016] [Accepted: 02/21/2016] [Indexed: 01/01/2023]
Abstract
Placental deficiencies are associated with developmental abnormalities of animal produced by somatic cell nuclear transfer (SCNT). It is reported that aberrant expression of microRNAs (miRNAs) in the common placenta is associated with fetal growth restriction and placental deficiencies. However, an understanding of the expression and function of miRNAs in the placentas of cloned animal is lacking. In this study, we characterized the expression of five growth-associated miRNAs (miR-127, miR-16, miR-21, miR-93 and miR-182) in placentas of deceased transgenic cloned sheep (deceased group, n=7), live transgenic cloned sheep (live group, n=5) and conventionally produced sheep (control group, n=10). Expression levels of miR-127 (P<0.01), miR-21 (P<0.01) and miR-16 (P<0.05) were significantly up-regulated in the placentas of deceased group compared to that of control group. In contrast, the expression of these miRNAs was largely normal in the placentas of live group, except for the expression of miR-21. Furthermore, we confirmed that retrotransposon-like gene (Rtl1), a key gene in placental development, was down-regulated by miR-127 as a target in placenta cells. Our results suggested that the abnormal expression of miR-127, miR-21 and miR-16 in placentas of deceased sheep, through dysregulation of target genes, may result in developmental deficiencies of transgenic cloned sheep.
Collapse
Affiliation(s)
- Wei Ni
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Shuang You
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Yang Cao
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Cunyuan Li
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Junchuang Wei
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Dawei Wang
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Jun Qiao
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Xinxia Zhao
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Shengwei Hu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China.
| | - Renzhe Quan
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China.
| |
Collapse
|
8
|
Alessio AP, Fili AE, Garrels W, Forcato DO, Olmos Nicotra MF, Liaudat AC, Bevacqua RJ, Savy V, Hiriart MI, Talluri TR, Owens JB, Ivics Z, Salamone DF, Moisyadi S, Kues WA, Bosch P. Establishment of cell-based transposon-mediated transgenesis in cattle. Theriogenology 2015; 85:1297-311.e2. [PMID: 26838464 DOI: 10.1016/j.theriogenology.2015.12.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/10/2015] [Accepted: 12/18/2015] [Indexed: 12/15/2022]
Abstract
Transposon-mediated transgenesis is a well-established tool for genome modification in small animal models. However, translation of this active transgenic method to large animals warrants further investigations. Here, the piggyBac (PB) and sleeping beauty (SB) transposon systems were assessed for stable gene transfer into the cattle genome. Bovine fibroblasts were transfected either with a helper-independent PB system or a binary SB system. Both transposons were highly active in bovine cells increasing the efficiency of DNA integration up to 88 times over basal nonfacilitated integrations in a colony formation assay. SB transposase catalyzed multiplex transgene integrations in fibroblast cells transfected with the helper vector and two donor vectors carrying different transgenes (fluorophore and neomycin resistance). Stably transfected fibroblasts were used for SCNT and on in vitro embryo culture, morphologically normal blastocysts that expressed the fluorophore were obtained with both transposon systems. The data indicate that transposition is a feasible approach for genetic engineering in the cattle genome.
Collapse
Affiliation(s)
- Ana P Alessio
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fco-Qcas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, República Argentina
| | - Alejandro E Fili
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fco-Qcas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, República Argentina
| | - Wiebke Garrels
- Department of Biotechnology, Friedrich-Loeffler-Institut, Institut für Nutztiergenetik, Neustadt, Germany
| | - Diego O Forcato
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fco-Qcas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, República Argentina
| | - María F Olmos Nicotra
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fco-Qcas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, República Argentina
| | - Ana C Liaudat
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fco-Qcas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, República Argentina
| | - Romina J Bevacqua
- Laboratorio de Biotecnología Animal, Departamento de Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, República Argentina
| | - Virginia Savy
- Laboratorio de Biotecnología Animal, Departamento de Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, República Argentina
| | - María I Hiriart
- Laboratorio de Biotecnología Animal, Departamento de Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, República Argentina
| | - Thirumala R Talluri
- Department of Biotechnology, Friedrich-Loeffler-Institut, Institut für Nutztiergenetik, Neustadt, Germany
| | - Jesse B Owens
- Department of Anatomy, Biochemistry and Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, Langen, Germany
| | - Daniel F Salamone
- Laboratorio de Biotecnología Animal, Departamento de Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, República Argentina
| | - Stefan Moisyadi
- Department of Anatomy, Biochemistry and Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Wilfried A Kues
- Department of Biotechnology, Friedrich-Loeffler-Institut, Institut für Nutztiergenetik, Neustadt, Germany
| | - Pablo Bosch
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fco-Qcas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, República Argentina.
| |
Collapse
|
9
|
Patel AK, Shah RK, Patel UA, Tripathi AK, Joshi CG. Goat activin receptor type IIB knockdown by muscle specific promoter driven artificial microRNAs. J Biotechnol 2014; 187:87-97. [PMID: 25107506 DOI: 10.1016/j.jbiotec.2014.07.450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 07/20/2014] [Accepted: 07/25/2014] [Indexed: 01/30/2023]
Abstract
Activin receptor type IIB (ACVR2B) is a transmembrane receptor which mediates signaling of TGF beta superfamily ligands known to function in regulation of muscle mass, embryonic development and reproduction. ACVR2B antagonism has shown to enhance the muscle growth in several disease and transgenic models. Here, we show ACVR2B knockdown by RNA interference using muscle creatine kinase (MCK) promoter driven artificial microRNAs (amiRNAs). Among the various promoter elements tested, the ∼1.26 kb MCK promoter region showed maximum transcriptional activity in goat myoblasts cells. We observed up to 20% silencing in non-myogenic 293T cells and up to 32% silencing in myogenic goat myoblasts by MCK directed amiRNAs by transient transfection. Goat myoblasts stably integrated with MCK directed amiRNAs showed merely 8% silencing in proliferating myoblasts which was increased to 34% upon induction of differentiation at transcript level whereas up to 57% silencing at protein level. Knockdown of ACVR2B by 5'-UTR derived amiRNAs resulted in decreased SMAD2/3 signaling, increased expression of myogenic regulatory factors (MRFs) and enhanced proliferation and differentiation of myoblasts. Unexpectedly, knockdown of ACVR2B by 3'-UTR derived amiRNAs resulted in increased SMAD2/3 signaling, reduced expression of MRFs and suppression of myogenesis. Our study offers muscle specific knockdown of ACVR2B as a potential strategy to enhance muscle mass in the farm animal species.
Collapse
Affiliation(s)
- Amrutlal K Patel
- Department of Animal Biotechnology, College of Veterinary Science and Animal Husbandry, Anand Agricultural University, Anand 388001, India
| | - Ravi K Shah
- Department of Animal Biotechnology, College of Veterinary Science and Animal Husbandry, Anand Agricultural University, Anand 388001, India
| | - Utsav A Patel
- Department of Animal Biotechnology, College of Veterinary Science and Animal Husbandry, Anand Agricultural University, Anand 388001, India
| | - Ajai K Tripathi
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Chaitanya G Joshi
- Department of Animal Biotechnology, College of Veterinary Science and Animal Husbandry, Anand Agricultural University, Anand 388001, India.
| |
Collapse
|
10
|
Zhong B, Zhang Y, Yan Y, Wang Z, Ying S, Huang M, Wang F. MicroRNA-mediated myostatin silencing in caprine fetal fibroblasts. PLoS One 2014; 9:e107071. [PMID: 25244645 PMCID: PMC4171098 DOI: 10.1371/journal.pone.0107071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 08/12/2014] [Indexed: 12/13/2022] Open
Abstract
Myostatin functions as a negative regulator of skeletal muscle growth by suppressing proliferation and differentiation of myoblasts. Dysfunction of the myostatin gene, either due to natural mutation or genetic manipulations such as knockout or knockdown, has been reported to increase muscle mass in mammalian species. RNA interference (RNAi) mediated by microRNAs (miRNAs) is a promising method for gene knockdown studies. In the present study, transient and stable silencing of the myostatin gene in caprine fetal fibroblasts (CFF) was evaluated using the two most effective constructs selected from four different miRNA expression constructs screened in 293FT cells. Using these two miRNA constructs, we achieved up to 84% silencing of myostatin mRNA in transiently transfected CFF cells and up to 31% silencing in stably transfected CFF cells. Moreover, off-target effects due to induction of interferon (IFN) response genes, such as interferon beta (IFN-β) and 2′-5′-oligoadenylate synthetase 2 (OAS2), were markedly fewer in stably transfected CFF cells than in transiently transfected cells. Stable expression of anti-myostatin miRNA with minimal induction of interferon shows great promise for increasing muscle mass in transgenic goats.
Collapse
Affiliation(s)
- Bushuai Zhong
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, PR China
- Jiangsu Engineering Technology Research Center of Meat Sheep & Goat Industry, Nanjing Agricultural University, Nanjing, PR China
| | - Yanli Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, PR China
- Jiangsu Engineering Technology Research Center of Meat Sheep & Goat Industry, Nanjing Agricultural University, Nanjing, PR China
| | - Yibo Yan
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, PR China
| | - Ziyu Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, PR China
| | - Shijia Ying
- Jiangsu Engineering Technology Research Center of Meat Sheep & Goat Industry, Nanjing Agricultural University, Nanjing, PR China
| | - Mingrui Huang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, PR China
- * E-mail: (MH); (FW)
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, PR China
- Jiangsu Engineering Technology Research Center of Meat Sheep & Goat Industry, Nanjing Agricultural University, Nanjing, PR China
- * E-mail: (MH); (FW)
| |
Collapse
|
11
|
Patel AK, Tripathi AK, Patel UA, Shah RK, Joshi CG. Myostatin knockdown and its effect on myogenic gene expression program in stably transfected goat myoblasts. In Vitro Cell Dev Biol Anim 2014; 50:587-96. [PMID: 24682647 DOI: 10.1007/s11626-014-9743-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 02/24/2014] [Indexed: 12/12/2022]
Abstract
Myostatin, a negative regulator of skeletal muscle mass, is a proven candidate to modulate skeletal muscle mass through targeted gene knockdown approach. Here, we report myostatin (MSTN) knockdown in goat myoblasts stably expressing small hairpin RNA (shRNAs) against MSTN gene through lentivirus vector-mediated integration. We observed 72% (p = 0.003) and 54% (p = 0.022) downregulation of MSTN expression with sh2 shRNA compared to empty vector control and untransduced myoblasts, respectively. The knockdown of MSTN expression was accompanied with concomitant downregulation of myogenic regulatory factor MYOD (77%, p = 0.001), MYOG (94%, p = 0.000), and MYF5 (36%, p = 0.000), cell cycle regulator p21 (62%, p = 0.000), MSTN receptor ACVR2B (23%, p = 0.061), MSTN antagonist follistatin (81%, p = 0.000), and downstream signaling mediators SMAD2 (20%, p = 0.060) and SMAD3 (49%, p = 0.006). However, the expression of MYF6 was upregulated by 14% compared to control lentivirus-transduced myoblasts (p = 0.354) and 79% compared to untransduced myoblasts (p = 0.018) in sh2 shRNA-transduced goat myoblasts cells. Although, MSTN knockdown led to sustained cell proliferation of myoblasts, the myoblasts fusion was suppressed in both MSTN knocked down and control lentivirus-transduced myoblasts. The expression of interferon response gene OAS1 was significantly upregulated in control lentivirus (10.86-fold; p = 0.000)- and sh2 (1.71-fold; p = 0.002)-integrated myoblasts compared to untransduced myoblasts. Our study demonstrates stable knockdown of MSTN in goat myoblasts cells and its potential for use in generation of transgenic goat by somatic cell nuclear transfer.
Collapse
Affiliation(s)
- Amrutlal K Patel
- Department of Animal Biotechnology, College of Veterinary Science and Animal Husbandry, Anand Agricultural University, Anand, 388 001, Gujarat, India
| | | | | | | | | |
Collapse
|
12
|
Lu J, Wei C, Zhang X, Xu L, Zhang S, Liu J, Cao J, Zhao F, Zhang L, Li B, Du L. The effect of myostatin silencing by lentiviral-mediated RNA interference on goat fetal fibroblasts. Mol Biol Rep 2013; 40:4101-8. [DOI: 10.1007/s11033-013-2494-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 12/18/2012] [Indexed: 10/26/2022]
|
13
|
Hu S, Ni W, Sai W, Zi H, Qiao J, Wang P, Sheng J, Chen C. Knockdown of myostatin expression by RNAi enhances muscle growth in transgenic sheep. PLoS One 2013; 8:e58521. [PMID: 23526994 PMCID: PMC3603981 DOI: 10.1371/journal.pone.0058521] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 02/07/2013] [Indexed: 11/18/2022] Open
Abstract
Myostatin (MSTN) has been shown to be a negative regulator of skeletal muscle development and growth. MSTN dysfunction therefore offers a strategy for promoting animal growth performance in livestock production. In this study, we investigated the possibility of using RNAi-based technology to generate transgenic sheep with a double-muscle phenotype. A shRNA expression cassette targeting sheep MSTN was used to generate stable shRNA-expressing fibroblast clones. Transgenic sheep were further produced by somatic cell nuclear transfer (SCNT) technology. Five lambs developed to term and three live lambs were obtained. Integration of shRNA expression cassette in three live lambs was confirmed by PCR. RNase protection assay showed that the shRNAs targeting MSTN were expressed in muscle tissues of three transgenic sheep. MSTN expression was significantly inhibited in muscle tissues of transgenic sheep when compared with control sheep. Moreover, transgenic sheep showed a tendency to faster increase in body weight than control sheep. Histological analysis showed that myofiber diameter of transgenic sheep M17 were bigger than that of control sheep. Our findings demonstrate a promising approach to promoting muscle growth in livestock production.
Collapse
Affiliation(s)
- Shengwei Hu
- College of Animal Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory of Agrobiotechnology, Shihezi University, Shihezi, China
| | - Wei Ni
- College of Animal Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory of Agrobiotechnology, Shihezi University, Shihezi, China
| | - Wujiafu Sai
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Ha Zi
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Jun Qiao
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Pengyang Wang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Jinliang Sheng
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Chuangfu Chen
- College of Animal Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory of Agrobiotechnology, Shihezi University, Shihezi, China
- * E-mail:
| |
Collapse
|
14
|
ΦC31 integrase mediates efficient site-specific integration in sheep fibroblasts. Biosci Biotechnol Biochem 2012; 76:2093-5. [PMID: 23132571 DOI: 10.1271/bbb.120439] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ΦC31 integrase, a site-specific recombinase, can effectively mediate the integration of foreign genes bearing an attB sequence into pseudo attP sites of genomes in human, mouse, and Drosophila cells. In this study, we measured ΦC31 integrase-mediated homologous recombination between attB and pseudo attP sites in sheep cells. The integration efficiency of the EGFP expression cassette with the attB sequence increased at least 2-fold in sheep fibroblasts. Three pseudo-attP sites were identified in the sheep genome, located in the intergenic regions on chromosomes 4, 13, and 7 respectively. Moreover, the transgene that was integrated at the three pseudo attP sites exhibited high levels of expression. Our study indicates that the ΦC31 integrase system provides an efficient integration tool for genetic engineering of the sheep genome.
Collapse
|