1
|
Zhi R, Cheng N, Li G, Deng Y. Biosensor-based high-throughput screening enabled efficient adipic acid production. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12669-z. [PMID: 37421473 DOI: 10.1007/s00253-023-12669-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/10/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023]
Abstract
Adipic acid is an industrially important chemical, but the current approach to synthesize it can be of serious pollution to the environment. Rencently, bio-based production of adipic acid has significantly advanced with the development of metabolic engineering and synthetic biology. However, genetic heterogeneity-caused decrease of product titer has largely limited the industrialization of chemicals like adipic acid. Therefore, in the attempt to overcome this challenge, we constitutively expressed the reverse adipate degradation pathway, designed and optimized an adipic acid biosensor, and established a high-throughput screening platform to screen for high-performance strains based on the optimized biosensor. Using this platform, we successfully screened a strain with an adipic acid titer of 188.08 mg·L-1. Coupling the screening platform with fermentation optimization, the titer of adipic acid reached 531.88 mg·L-1 under shake flask fermentation, which achieved an 18.78-fold improvement comparing to the initial strain. Scale-up fermentation in a 5-L fermenter utilizing the screened high-performance strain was eventually conducted, in which the adipic acid titer reached 3.62 g·L-1. Overall, strategies developed in this study proved to be a potentially efficient method in reducing the genetic heterogeneity and was expected to provide guidance in helping to build a more efficient industrial screening process. KEY POINTS: • Developed a fine-tuned adipic acid biosensor. • Established a high-throughput screening platform to screen high-performance strains. • The titer of adipic acid reached 3.62 g·L-1 in a 5-L fermenter.
Collapse
Affiliation(s)
- Rui Zhi
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, Jiangsu, China
- School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Nan Cheng
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, Jiangsu, China
- School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Guohui Li
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, Jiangsu, China.
- School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| | - Yu Deng
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, Jiangsu, China.
- School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
2
|
Menacho-Melgar R, Hennigan JN, Lynch MD. Optimization of phosphate-limited autoinduction broth for two-stage heterologous protein expression in Escherichia coli. Biotechniques 2021; 71:566-572. [PMID: 34431325 DOI: 10.2144/btn-2021-0055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Autoinducible, two-stage protein expression leveraging phosphate-inducible promoters has been recently shown to enable not only high protein titers but also consistent performance across scales from screening systems (microtiter plates) to instrumented bioreactors. However, to date, small-scale production using microtiter plates and shake flasks relies on a complex autoinduction broth (AB) that requires making numerous media components, not all amenable to autoclaving. In this report, the authors develop a simpler media formulation (AB-2) with just a few autoclavable components. AB-2 is robust to small changes in its composition and performs equally, if not better, than AB across different scales. AB-2 will facilitate the adoption of phosphate-limited two-stage protein expression protocols.
Collapse
Affiliation(s)
| | | | - Michael D Lynch
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
3
|
Liu M, Guo L, Fu Y, Huo M, Qi Q, Zhao G. Bacterial protein acetylation and its role in cellular physiology and metabolic regulation. Biotechnol Adv 2021; 53:107842. [PMID: 34624455 DOI: 10.1016/j.biotechadv.2021.107842] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/22/2021] [Accepted: 10/03/2021] [Indexed: 12/28/2022]
Abstract
Protein acetylation is an evolutionarily conserved posttranslational modification. It affects enzyme activity, metabolic flux distribution, and other critical physiological and biochemical processes by altering protein size and charge. Protein acetylation may thus be a promising tool for metabolic regulation to improve target production and conversion efficiency in fermentation. Here we review the role of protein acetylation in bacterial physiology and metabolism and describe applications of protein acetylation in fermentation engineering and strategies for regulating acetylation status. Although protein acetylation has become a hot topic, the regulatory mechanisms have not been fully characterized. We propose future research directions in protein acetylation.
Collapse
Affiliation(s)
- Min Liu
- State Key Laboratory of Microbial Technology, Shandong University, 266237 Qingdao, China; CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Likun Guo
- State Key Laboratory of Microbial Technology, Shandong University, 266237 Qingdao, China
| | - Yingxin Fu
- State Key Laboratory of Microbial Technology, Shandong University, 266237 Qingdao, China
| | - Meitong Huo
- State Key Laboratory of Microbial Technology, Shandong University, 266237 Qingdao, China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, 266237 Qingdao, China
| | - Guang Zhao
- State Key Laboratory of Microbial Technology, Shandong University, 266237 Qingdao, China; CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
| |
Collapse
|
4
|
The impact of technical failures on recombinant production of soluble proteins in Escherichia coli: a case study on process and protein robustness. Bioprocess Biosyst Eng 2021; 44:1049-1061. [PMID: 33491129 PMCID: PMC8144139 DOI: 10.1007/s00449-021-02514-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 11/26/2020] [Indexed: 11/09/2022]
Abstract
Technical failures lead to deviations in process parameters that can exceed studied process boundaries. The impact on cell and target protein is often unknown. However, investigations on common technical failures might yield interesting insights into process and protein robustness. Recently, we published a study on the impact of technical failures on an inclusion body process that showed high robustness due to the inherent stability of IBs. In this follow-up study, we investigated the influence of technical failures during production of two soluble, cytosolic proteins in E. coli BL21(DE3). Cell physiology, productivity and protein quality were analyzed, after technical failures in aeration, substrate supply, temperature and pH control had been triggered. In most cases, cell physiology and productivity recovered during a subsequent regeneration phase. However, our results highlight that some technical failures lead to persistent deviations and affect the quality of purified protein.
Collapse
|
5
|
Liao Y, Ni Z, Wu J, Li Z, Ge Y, Chen X, Yao J. Effect of acetate metabolism modulation on 2'-fucosyllactose production in engineered Escherichia coli. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1885996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Yingxue Liao
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, PR China
- Scinece Island Branch, Graduate School of USTC, Hefei, PR China
| | - Zhijian Ni
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, PR China
- Scinece Island Branch, Graduate School of USTC, Hefei, PR China
| | - Jinyong Wu
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, PR China
- Huainan New Energy Research Center, Institute of Plasma Physics, Chinese Academy of Sciences, Huainan, Anhui, PR China
| | - Zhongkui Li
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, PR China
- Scinece Island Branch, Graduate School of USTC, Hefei, PR China
| | - Yuanfei Ge
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, PR China
- Scinece Island Branch, Graduate School of USTC, Hefei, PR China
| | - Xiangsong Chen
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, PR China
- Huainan New Energy Research Center, Institute of Plasma Physics, Chinese Academy of Sciences, Huainan, Anhui, PR China
| | - Jianming Yao
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, PR China
- Scinece Island Branch, Graduate School of USTC, Hefei, PR China
| |
Collapse
|
6
|
Menacho-Melgar R, Ye Z, Moreb EA, Yang T, Efromson JP, Decker JS, Wang R, Lynch MD. Scalable, two-stage, autoinduction of recombinant protein expression in E. coli utilizing phosphate depletion. Biotechnol Bioeng 2020; 117:2715-2727. [PMID: 32441815 PMCID: PMC9589519 DOI: 10.1002/bit.27440] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 12/24/2022]
Abstract
We report the scalable production of recombinant proteins in Escherichia coli, reliant on tightly controlled autoinduction, triggered by phosphate depletion in the stationary phase. The method, reliant on engineered strains and plasmids, enables improved protein expression across scales. Expression levels using this approach have reached as high as 55% of the total cellular protein. The initial use of the method in instrumented fed-batch fermentations enables cell densities of ∼30 gCDW/L and protein titers up to 8.1 ± 0.7 g/L (∼270 mg/gCDW). The process has also been adapted to an optimized autoinduction media, enabling routine batch production at culture volumes of 20 μl (384-well plates), 100 μl (96-well plates), 20 ml, and 100 ml. In batch cultures, cell densities routinely reach ∼5-7 gCDW/L, offering protein titers above 2 g/L. The methodology has been validated with a set of diverse heterologous proteins and is of general use for the facile optimization of routine protein expression from high throughput screens to fed-batch fermentation.
Collapse
Affiliation(s)
| | - Zhixia Ye
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Eirik A Moreb
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Tian Yang
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - John P Efromson
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - John S Decker
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Ruixin Wang
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Michael D Lynch
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| |
Collapse
|
7
|
Heins AL, Reyelt J, Schmidt M, Kranz H, Weuster-Botz D. Development and characterization of Escherichia coli triple reporter strains for investigation of population heterogeneity in bioprocesses. Microb Cell Fact 2020; 19:14. [PMID: 31992282 PMCID: PMC6988206 DOI: 10.1186/s12934-020-1283-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 01/12/2020] [Indexed: 12/17/2022] Open
Abstract
Background Today there is an increasing demand for high yielding robust and cost efficient biotechnological production processes. Although cells in these processes originate from isogenic cultures, heterogeneity induced by intrinsic and extrinsic influences is omnipresent. To increase understanding of this mechanistically poorly understood phenomenon, advanced tools that provide insights into single cell physiology are needed. Results Two Escherichia coli triple reporter strains have been designed based on the industrially relevant production host E. coli BL21(DE3) and a modified version thereof, E. coli T7E2. The strains carry three different fluorescence proteins chromosomally integrated. Single cell growth is followed with EmeraldGFP (EmGFP)-expression together with the ribosomal promoter rrnB. General stress response of single cells is monitored by expression of sigma factor rpoS with mStrawberry, whereas expression of the nar-operon together with TagRFP657 gives information about oxygen limitation of single cells. First, the strains were characterized in batch operated stirred-tank bioreactors in comparison to wildtype E. coli BL21(DE3). Afterwards, applicability of the triple reporter strains for investigation of population heterogeneity in bioprocesses was demonstrated in continuous processes in stirred-tank bioreactors at different growth rates and in response to glucose and oxygen perturbation simulating gradients on industrial scale. Population and single cell level physiology was monitored evaluating general physiology and flow cytometry analysis of fluorescence distributions of the triple reporter strains. Although both triple reporter strains reflected physiological changes that were expected based on the expression characteristics of the marker proteins, the triple reporter strain based on E. coli T7E2 showed higher sensitivity in response to environmental changes. For both strains, noise in gene expression was observed during transition from phases of non-growth to growth. Apparently, under some process conditions, e.g. the stationary phase in batch cultures, the fluorescence response of EmGFP and mStrawberry is preserved, whereas TagRFP657 showed a distinct response. Conclusions Single cell growth, general stress response and oxygen limitation of single cells could be followed using the two triple reporter strains developed in this study. They represent valuable tools to study population heterogeneity in bioprocesses significantly increasing the level of information compared to the use of single reporter strains.
Collapse
Affiliation(s)
- Anna-Lena Heins
- Technical University of Munich, Institute of Biochemical Engineering, Boltzmannstr. 15, 85748, Garching, Germany.
| | - Jan Reyelt
- Gene Bridges GmbH, Im Neuenheimer Feld 584, 69120, Heidelberg, Germany
| | - Marlen Schmidt
- Gene Bridges GmbH, Im Neuenheimer Feld 584, 69120, Heidelberg, Germany
| | - Harald Kranz
- Gene Bridges GmbH, Im Neuenheimer Feld 584, 69120, Heidelberg, Germany
| | - Dirk Weuster-Botz
- Technical University of Munich, Institute of Biochemical Engineering, Boltzmannstr. 15, 85748, Garching, Germany
| |
Collapse
|
8
|
Lozano Terol G, Gallego-Jara J, Sola Martínez RA, Cánovas Díaz M, de Diego Puente T. Engineering protein production by rationally choosing a carbon and nitrogen source using E. coli BL21 acetate metabolism knockout strains. Microb Cell Fact 2019; 18:151. [PMID: 31484572 PMCID: PMC6724240 DOI: 10.1186/s12934-019-1202-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/29/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Escherichia coli (E. coli) is a bacteria that is widely employed in many industries for the production of high interest bio-products such as recombinant proteins. Nevertheless, the use of E. coli for recombinant protein production may entail some disadvantages such as acetate overflow. Acetate is accumulated under some culture conditions, involves a decrease in biomass and recombinant protein production, and its metabolism is related to protein lysine acetylation. Thereby, the carbon and nitrogen sources employed are relevant factors in cell host metabolism, and the study of the central metabolism of E. coli and its regulation is essential for optimizing the production of biomass and recombinant proteins. In this study, our aim was to find the most favourable conditions for carrying out recombinant protein production in E. coli BL21 using two different approaches, namely, manipulation of the culture media composition and the deletion of genes involved in acetate metabolism and Nε-lysine acetylation. RESULTS We evaluated protein overexpression in E. coli BL21 wt and five mutant strains involved in acetate metabolism (Δacs, ΔackA and Δpta) and lysine acetylation (ΔpatZ and ΔcobB) grown in minimal medium M9 (inorganic ammonium nitrogen source) and in complex TB7 medium (peptide-based nitrogen source) supplemented with glucose (PTS carbon source) or glycerol (non-PTS carbon source). We observed a dependence of recombinant protein production on acetate metabolism and the carbon and nitrogen source employed. The use of complex medium supplemented with glycerol as a carbon source entails an increase in protein production and an efficient use of resources, since is a sub-product of biodiesel synthesis. Furthermore, the deletion of the ackA gene results in a fivefold increase in protein production with respect to the wt strain and a reduction in acetate accumulation. CONCLUSION The results showed that the use of diverse carbon and nitrogen sources and acetate metabolism knockout strains can redirect E. coli carbon fluxes to different pathways and affect the final yield of the recombinant protein bioprocess. Thereby, we obtained a fivefold increase in protein production and an efficient use of the resources employing the most suitable strain and culture conditions.
Collapse
Affiliation(s)
- Gema Lozano Terol
- Department of Biochemistry and Molecular Biology (B) and Immunology, Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence ''Campus Mare Nostrum'', P.O. Box 4021, 30100, Murcia, Spain
| | - Julia Gallego-Jara
- Department of Biochemistry and Molecular Biology (B) and Immunology, Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence ''Campus Mare Nostrum'', P.O. Box 4021, 30100, Murcia, Spain.
| | - Rosa Alba Sola Martínez
- Department of Biochemistry and Molecular Biology (B) and Immunology, Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence ''Campus Mare Nostrum'', P.O. Box 4021, 30100, Murcia, Spain
| | - Manuel Cánovas Díaz
- Department of Biochemistry and Molecular Biology (B) and Immunology, Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence ''Campus Mare Nostrum'', P.O. Box 4021, 30100, Murcia, Spain
| | - Teresa de Diego Puente
- Department of Biochemistry and Molecular Biology (B) and Immunology, Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence ''Campus Mare Nostrum'', P.O. Box 4021, 30100, Murcia, Spain.
| |
Collapse
|
9
|
Wang Y, Xian M, Feng X, Liu M, Zhao G. Biosynthesis of ethylene glycol from d-xylose in recombinant Escherichia coli. Bioengineered 2019; 9:233-241. [PMID: 29865993 PMCID: PMC6984763 DOI: 10.1080/21655979.2018.1478489] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Ethylene glycol (EG) is an important chemical used as antifreeze and a raw material in polyester synthesis. The EG biosynthetic pathway from D-xylose with D-xylonate as key intermediate has some advantages, but showed low EG production. Here, we reconstructed and optimized this pathway in Escherichia coli. In view of the greater intracellular prevalence of NADH, an aldehyde reductase FucO using NADH was employed to convert glycoaldehyde into EG, in replacement of NADPH-dependent reductase YqhD. To suppress the accumulation of by-products acetate and glycolate, two genes arcA and aldA were knocked out. The resultant strain Q2843 produced 72 g/L EG under fed-batch fermentation conditions, with the yield of 0.40 g/g D-xylose and EG productivity of 1.38 g/L/h. The use of NADH-dependent enzyme FucO and by-product elimination significantly improved the performance of EG producing strain, which represented the highest titer, yield and productivity of EG reported so far.
Collapse
Affiliation(s)
- Yuhui Wang
- a CAS Key Laboratory of Biobased Materials , Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao , China.,b School of Life Science , Shandong University , Jinan , China
| | - Mo Xian
- a CAS Key Laboratory of Biobased Materials , Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao , China
| | - Xinjun Feng
- a CAS Key Laboratory of Biobased Materials , Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao , China.,c Shandong Provincial Key Laboratory of Synthetic Biology , Qingdao , China
| | - Min Liu
- a CAS Key Laboratory of Biobased Materials , Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao , China.,c Shandong Provincial Key Laboratory of Synthetic Biology , Qingdao , China
| | - Guang Zhao
- a CAS Key Laboratory of Biobased Materials , Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao , China.,c Shandong Provincial Key Laboratory of Synthetic Biology , Qingdao , China
| |
Collapse
|
10
|
Correia DM, Sargo CR, Silva AJ, Santos ST, Giordano RC, Ferreira EC, Zangirolami TC, Ribeiro MPA, Rocha I. Mapping Salmonella typhimurium pathways using 13C metabolic flux analysis. Metab Eng 2019; 52:303-314. [PMID: 30529284 DOI: 10.1016/j.ymben.2018.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 11/26/2018] [Accepted: 11/28/2018] [Indexed: 12/20/2022]
Abstract
In the last years, Salmonella has been extensively studied not only due to its importance as a pathogen, but also as a host to produce pharmaceutical compounds. However, the full exploitation of Salmonella as a platform for bioproduct delivery has been hampered by the lack of information about its metabolism. Genome-scale metabolic models can be valuable tools to delineate metabolic engineering strategies as long as they closely represent the actual metabolism of the target organism. In the present study, a 13C-MFA approach was applied to map the fluxes at the central carbon pathways of S. typhimurium LT2 growing at glucose-limited chemostat cultures. The experiments were carried out in a 2L bioreactor, using defined medium enriched with 20% 13C-labeled glucose. Metabolic flux distributions in central carbon pathways of S. typhimurium LT2 were estimated using OpenFLUX2 based on the labeling pattern of biomass protein hydrolysates together with biomass composition. The results suggested that pentose phosphate is used to catabolize glucose, with minor fluxes through glycolysis. In silico simulations, using Optflux and pFBA as simulation method, allowed to study the performance of the genome-scale metabolic model. In general, the accuracy of in silico simulations was improved by the superimposition of estimated intracellular fluxes to the existing genome-scale metabolic model, showing a better fitting to the experimental extracellular fluxes, whereas the intracellular fluxes of pentose phosphate and anaplerotic reactions were poorly described.
Collapse
Affiliation(s)
- Daniela M Correia
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luís, Km 235, São Carlos, SP 13565-905, Brazil
| | - Cintia R Sargo
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luís, Km 235, São Carlos, SP 13565-905, Brazil
| | - Adilson J Silva
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luís, Km 235, São Carlos, SP 13565-905, Brazil
| | - Sophia T Santos
- CEB-Centre of Biological Engineering, University of Minho, Campus De Gualtar, Braga 4710-057, Portugal
| | - Roberto C Giordano
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luís, Km 235, São Carlos, SP 13565-905, Brazil
| | - Eugénio C Ferreira
- CEB-Centre of Biological Engineering, University of Minho, Campus De Gualtar, Braga 4710-057, Portugal
| | - Teresa C Zangirolami
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luís, Km 235, São Carlos, SP 13565-905, Brazil
| | - Marcelo P A Ribeiro
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luís, Km 235, São Carlos, SP 13565-905, Brazil
| | - Isabel Rocha
- CEB-Centre of Biological Engineering, University of Minho, Campus De Gualtar, Braga 4710-057, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-NOVA), Oeiras, Portugal.
| |
Collapse
|
11
|
Calcines-Cruz C, Olvera A, Castro-Acosta RM, Zavala G, Alagón A, Trujillo-Roldán MA, Valdez-Cruz NA. Recombinant-phospholipase A2 production and architecture of inclusion bodies are affected by pH in Escherichia coli. Int J Biol Macromol 2018; 108:826-836. [DOI: 10.1016/j.ijbiomac.2017.10.178] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 10/30/2017] [Accepted: 10/30/2017] [Indexed: 12/20/2022]
|
12
|
Noh MH, Lim HG, Woo SH, Song J, Jung GY. Production of itaconic acid from acetate by engineering acid-tolerant Escherichia coli
W. Biotechnol Bioeng 2017; 115:729-738. [DOI: 10.1002/bit.26508] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/10/2017] [Accepted: 11/30/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Myung Hyun Noh
- Department of Chemical Engineering; Pohang University of Science and Technology; Nam-Gu Pohang Gyeongbuk Korea
| | - Hyun Gyu Lim
- Department of Chemical Engineering; Pohang University of Science and Technology; Nam-Gu Pohang Gyeongbuk Korea
| | - Sung Hwa Woo
- Department of Chemical Engineering; Pohang University of Science and Technology; Nam-Gu Pohang Gyeongbuk Korea
| | - Jinyi Song
- Department of Chemical Engineering; Pohang University of Science and Technology; Nam-Gu Pohang Gyeongbuk Korea
| | - Gyoo Yeol Jung
- Department of Chemical Engineering; Pohang University of Science and Technology; Nam-Gu Pohang Gyeongbuk Korea
- School of Interdisciplinary Bioscience and Bioengineering; Pohang University of Science and Technology; Nam-Gu Pohang Gyeongbuk Korea
| |
Collapse
|
13
|
Long CP, Gonzalez JE, Feist AM, Palsson BO, Antoniewicz MR. Fast growth phenotype of E. coli K-12 from adaptive laboratory evolution does not require intracellular flux rewiring. Metab Eng 2017; 44:100-107. [PMID: 28951266 DOI: 10.1016/j.ymben.2017.09.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/12/2017] [Accepted: 09/19/2017] [Indexed: 11/30/2022]
Abstract
Adaptive laboratory evolution (ALE) is a widely-used method for improving the fitness of microorganisms in selected environmental conditions. It has been applied previously to Escherichia coli K-12 MG1655 during aerobic exponential growth on glucose minimal media, a frequently used model organism and growth condition, to probe the limits of E. coli growth rate and gain insights into fast growth phenotypes. Previous studies have described up to 1.6-fold increases in growth rate following ALE, and have identified key causal genetic mutations and changes in transcriptional patterns. Here, we report for the first time intracellular metabolic fluxes for six such adaptively evolved strains, as determined by high-resolution 13C-metabolic flux analysis. Interestingly, we found that intracellular metabolic pathway usage changed very little following adaptive evolution. Instead, at the level of central carbon metabolism the faster growth was facilitated by proportional increases in glucose uptake and all intracellular rates. Of the six evolved strains studied here, only one strain showed a small degree of flux rewiring, and this was also the strain with unique genetic mutations. A comparison of fluxes with two other wild-type (unevolved) E. coli strains, BW25113 and BL21, showed that inter-strain differences are greater than differences between the parental and evolved strains. Principal component analysis highlighted that nearly all flux differences (95%) between the nine strains were captured by only two principal components. The distance between measured and flux balance analysis predicted fluxes was also investigated. It suggested a relatively wide range of similar stoichiometric optima, which opens new questions about the path-dependency of adaptive evolution.
Collapse
Affiliation(s)
- Christopher P Long
- Department of Chemical and Biomolecular Engineering, Metabolic Engineering and Systems Biology Laboratory, University of Delaware, Newark, DE 19716, USA
| | - Jacqueline E Gonzalez
- Department of Chemical and Biomolecular Engineering, Metabolic Engineering and Systems Biology Laboratory, University of Delaware, Newark, DE 19716, USA
| | - Adam M Feist
- Department of Bioengineering, University of California, San Diego, CA 92093, USA; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, CA 92093, USA; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Maciek R Antoniewicz
- Department of Chemical and Biomolecular Engineering, Metabolic Engineering and Systems Biology Laboratory, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
14
|
Valdez-Cruz NA, Reynoso-Cereceda GI, Pérez-Rodriguez S, Restrepo-Pineda S, González-Santana J, Olvera A, Zavala G, Alagón A, Trujillo-Roldán MA. Production of a recombinant phospholipase A2 in Escherichia coli using resonant acoustic mixing that improves oxygen transfer in shake flasks. Microb Cell Fact 2017; 16:129. [PMID: 28743267 PMCID: PMC5526256 DOI: 10.1186/s12934-017-0746-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/20/2017] [Indexed: 01/02/2023] Open
Abstract
Background Shake flasks are widely used during the development of bioprocesses for recombinant proteins. Cultures of recombinant Escherichia coli with orbital mixing (OM) have an oxygen limitation negatively affecting biomass growth and recombinant-protein production. With the aim to improve mixing and aeration in shake flask cultures, we analyzed cultures subjected to OM and the novel resonant acoustic mixing (RAM) by applying acoustic energy to E. coli BL21-Gold (DE3): a producer of recombinant phospholipase A2 (rPLA2) from Micrurus laticollaris snake venom. Results Comparing OM with RAM (200 rpm vs. 7.5g) at the same initial volumetric oxygen transfer coefficient (kLa ≈ 80 h−1) ~69% less biomass was obtained with OM compared with RAM. We analyzed two more conditions increasing agitation until maximal speed (12.5 and 20g), and ~1.6- and ~1.4-fold greater biomass was obtained as compared with cultures at 7.5g. Moreover, the specific growth rate was statistically similar in all cultures carried out in RAM, but ~1.5-fold higher than that in cultures carried out under OM. Almost half of the glucose was consumed in OM, whereas between 80 and 100% of the glucose was consumed in RAM cultures, doubling biomass per glucose yields. Differential organic acid production was observed, but acetate production was prevented at the maximal RAM (20g). The amount of rPLA2 in both, OM and RAM cultures, represented 38 ± 5% of the insoluble protein. A smaller proportion of α-helices and β-sheet of purified inclusion bodies (IBs) were appreciated by ATR-FTIR from cultures carried out under OM, than those from RAM. At maximal agitation by RAM, internal E. coli localization patterns of protein aggregation changed, as well as, IBs proteolytic degradation, in conjunction with the formation of small external vesicles, although these changes did not significantly affect the cell survival response. Conclusions In moderate-cell-density recombinant E. coli BL21-Gold (DE3) cultures, the agitation increases in RAM (up to the maximum) was not enough to avoid the classical oxygen limitation that happens in OM shake flasks. However, RAM presents a decrease of oxygen limitation, resulting in a favorable effect on biomass growth and volumetric rPLA2 production. While under OM a higher recombinant protein yield was obtained. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0746-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Norma A Valdez-Cruz
- Programa de Investigación de Producción de Biomoléculas, Unidad de Bioprocesos, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, CP 04510, Mexico City, Mexico.
| | - Greta I Reynoso-Cereceda
- Programa de Investigación de Producción de Biomoléculas, Unidad de Bioprocesos, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, CP 04510, Mexico City, Mexico
| | - Saumel Pérez-Rodriguez
- Programa de Investigación de Producción de Biomoléculas, Unidad de Bioprocesos, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, CP 04510, Mexico City, Mexico
| | - Sara Restrepo-Pineda
- Programa de Investigación de Producción de Biomoléculas, Unidad de Bioprocesos, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, CP 04510, Mexico City, Mexico
| | - Jesus González-Santana
- Programa de Investigación de Producción de Biomoléculas, Unidad de Bioprocesos, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, CP 04510, Mexico City, Mexico
| | - Alejandro Olvera
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor, Mexico
| | - Guadalupe Zavala
- Unidad de Microscopía, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor, Mexico
| | - Alejandro Alagón
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor, Mexico
| | - Mauricio A Trujillo-Roldán
- Programa de Investigación de Producción de Biomoléculas, Unidad de Bioprocesos, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, CP 04510, Mexico City, Mexico
| |
Collapse
|
15
|
Liu M, Ding Y, Chen H, Zhao Z, Liu H, Xian M, Zhao G. Improving the production of acetyl-CoA-derived chemicals in Escherichia coli BL21(DE3) through iclR and arcA deletion. BMC Microbiol 2017; 17:10. [PMID: 28061812 PMCID: PMC5219675 DOI: 10.1186/s12866-016-0913-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/13/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Acetyl-CoA-derived chemicals are suitable for multiple applications in many industries. The bio-production of these chemicals has become imperative owing to the economic and environmental problems. However, acetate overflow is the major drawback for acetyl-CoA-derived chemicals production. Approaches for overcoming acetate overflow may be beneficial for the production of acetyl-CoA-derived chemicals. RESULTS In this study, a transcriptional regulator iclR was knocked out in E.coli BL21(DE3) to overcome acetate overflow and improve the chemicals production. Two important acetyl-CoA-derived chemicals, phloroglucinol (PG) and 3-hydroxypropionate (3HP) were used to evaluate it. It is revealed that knockout of iclR significantly increased expressions of aceBAK operon. The cell yields and glucose utilization efficiencies were higher than those of control strains. The acetate concentrations were decreased by more than 50% and the productions of PG and 3HP were increased more than twice in iclR mutants. The effects of iclR knockout on cell physiology, cell metabolism and production of acetyl-CoA-derived chemicals were similar to those of arcA knockout in our previous study. However, the arcA-iclR double mutants couldn't gain higher productions of PG and 3HP. The mechanisms are unclear and needed to be resolved in future. CONCLUSIONS Knockout of iclR significantly increased gene expression of aceBAK operon and concomitantly activated glyoxylate pathway. This genetic modification may be a good way to overcome acetate overflow, and improve the production of a wide range of acetyl-CoA-derived chemicals.
Collapse
Affiliation(s)
- Min Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Yamei Ding
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Hailin Chen
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhe Zhao
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huizhou Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Mo Xian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
| | - Guang Zhao
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China. .,Randian Technology Company Limited, Tianjin, 300457, China.
| |
Collapse
|
16
|
Bernal V, Castaño-Cerezo S, Cánovas M. Acetate metabolism regulation in Escherichia coli: carbon overflow, pathogenicity, and beyond. Appl Microbiol Biotechnol 2016; 100:8985-9001. [DOI: 10.1007/s00253-016-7832-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 08/22/2016] [Accepted: 08/24/2016] [Indexed: 12/11/2022]
|
17
|
Liu M, Yao L, Xian M, Ding Y, Liu H, Zhao G. Deletion of arcA increased the production of acetyl-CoA-derived chemicals in recombinant Escherichia coli. Biotechnol Lett 2015; 38:97-101. [PMID: 26362674 DOI: 10.1007/s10529-015-1953-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/01/2015] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Acetyl-CoA is used to produce many valuable metabolites in Escherichia coli. However, acetate overflow is a major shortcoming. Knockout of the global regulator gene, arcA, may solve this problem. RESULTS The arcA gene of E. coli BL21(DE3) was knocked out, and the production of phloroglucinol (PG) and 3-hydroxypropionate (3HP), both derived from acetyl-CoA, were used to evaluate its effect. The arcA mutants had higher cell yields and higher glucose utilization efficiencies than the corresponding control strains, and the productions of PG and 3HP were 0.92 g/l and 0.27 g/l, respectively; more than twice that of the control strains. Furthermore, arcA knockout also showed significant repression on formation of acetate, the major byproduct in fermentation. Acetate concentrations were decreased 69.4 % and 87 % by arcA knockout during the production of PG and 3HP, respectively. CONCLUSIONS The arcA gene knockout is a solution to acetate overflow and may improve production of a wide range of acetyl-CoA-derived metabolites.
Collapse
Affiliation(s)
- Min Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lan Yao
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mo Xian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Yamei Ding
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Huizhou Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
| | - Gao Zhao
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
| |
Collapse
|
18
|
Castaño-Cerezo S, Bernal V, Röhrig T, Termeer S, Cánovas M. Regulation of acetate metabolism in Escherichia coli BL21 by protein Nε-lysine acetylation. Appl Microbiol Biotechnol 2014; 99:3533-45. [DOI: 10.1007/s00253-014-6280-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/16/2014] [Accepted: 11/29/2014] [Indexed: 11/29/2022]
|
19
|
Long CP, Antoniewicz MR. Metabolic flux analysis of Escherichia coli knockouts: lessons from the Keio collection and future outlook. Curr Opin Biotechnol 2014; 28:127-33. [PMID: 24686285 DOI: 10.1016/j.copbio.2014.02.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 02/07/2014] [Accepted: 02/10/2014] [Indexed: 12/11/2022]
Abstract
Cellular metabolic and regulatory systems are of fundamental interest to biologists and engineers. Incomplete understanding of these complex systems remains an obstacle to progress in biotechnology and metabolic engineering. An established method for obtaining new information on network structure, regulation and dynamics is to study the cellular system following a perturbation such as a genetic knockout. The Keio collection of all viable Escherichia coli single-gene knockouts is facilitating a systematic investigation of the regulation and metabolism of E. coli. Of all omics measurements available, the metabolic flux profile (the fluxome) provides the most direct and relevant representation of the cellular phenotype. Recent advances in (13)C-metabolic flux analysis are now permitting highly precise and accurate flux measurements for investigating cellular systems and guiding metabolic engineering efforts.
Collapse
Affiliation(s)
- Christopher P Long
- Department of Chemical and Biomolecular Engineering, Metabolic Engineering and Systems Biology Laboratory, University of Delaware, Newark, DE 19716, USA
| | - Maciek R Antoniewicz
- Department of Chemical and Biomolecular Engineering, Metabolic Engineering and Systems Biology Laboratory, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
20
|
Acetyl-phosphate is a critical determinant of lysine acetylation in E. coli. Mol Cell 2013; 51:265-72. [PMID: 23830618 DOI: 10.1016/j.molcel.2013.06.003] [Citation(s) in RCA: 341] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 04/05/2013] [Accepted: 05/31/2013] [Indexed: 12/22/2022]
Abstract
Lysine acetylation is a frequently occurring posttranslational modification in bacteria; however, little is known about its origin and regulation. Using the model bacterium Escherichia coli (E. coli), we found that most acetylation occurred at a low level and accumulated in growth-arrested cells in a manner that depended on the formation of acetyl-phosphate (AcP) through glycolysis. Mutant cells unable to produce AcP had significantly reduced acetylation levels, while mutant cells unable to convert AcP to acetate had significantly elevated acetylation levels. We showed that AcP can chemically acetylate lysine residues in vitro and that AcP levels are correlated with acetylation levels in vivo, suggesting that AcP may acetylate proteins nonenzymatically in cells. These results uncover a critical role for AcP in bacterial acetylation and indicate that most acetylation in E. coli occurs at a low level and is dynamically affected by metabolism and cell proliferation in a global, uniform manner.
Collapse
|
21
|
Nausch H, Huckauf J, Koslowski R, Meyer U, Broer I, Mikschofsky H. Recombinant production of human interleukin 6 in Escherichia coli. PLoS One 2013; 8:e54933. [PMID: 23372793 PMCID: PMC3553018 DOI: 10.1371/journal.pone.0054933] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 12/18/2012] [Indexed: 02/02/2023] Open
Abstract
In this study, we compared basic expression approaches for the efficient expression of bioactive recombinant human interleukin-6 (IL6), as an example for a difficult-to-express protein. We tested these approaches in a laboratory scale in order to pioneer the commercial production of this protein in Escherichia coli (E. coli). Among the various strategies, which were tested under Research and Development (R&D) conditions, aggregation-prone IL6 was solubilized most effectively by co-expressing cytoplasmic chaperones. Expression of a Glutathion-S-Transferase (GST) fusion protein was not efficient to increase IL6 solubility. Alteration of the cultivation temperature significantly increased the solubility in both cases, whereas reduced concentrations of IPTG to induce expression of the T7lac-promotor only had a positive effect on chaperone-assisted expression. The biological activity was comparable to that of commercial IL6. Targeting the expressed protein to an oxidizing environment was not effective in the generation of soluble IL6. Taken together, the presence of chaperones and a lowered cultivation temperature seem effective to isolate large quantities of soluble IL6. This approach led to in vivo soluble, functional protein fractions and reduces purification and refolding requirements caused by downstream purification procedures. The final yield of soluble recombinant protein averaged approximately 2.6 mg IL6/liter of cell culture. These findings might be beneficial for the development of the large-scale production of IL6 under the conditions of current good manufacturing practice (cGMP).
Collapse
Affiliation(s)
- Henrik Nausch
- Department of Agrobiotechnology, Agricultural and Environmental Faculty, University of Rostock, Rostock, Germany
| | - Jana Huckauf
- Department of Agrobiotechnology, Agricultural and Environmental Faculty, University of Rostock, Rostock, Germany
| | | | | | - Inge Broer
- Department of Agrobiotechnology, Agricultural and Environmental Faculty, University of Rostock, Rostock, Germany
- * E-mail:
| | - Heike Mikschofsky
- Department of Agrobiotechnology, Agricultural and Environmental Faculty, University of Rostock, Rostock, Germany
| |
Collapse
|
22
|
Ruiz JA, de Almeida A, Godoy MS, Mezzina MP, Bidart GN, Méndez BS, Pettinari MJ, Nikel PI. Escherichia coli redox mutants as microbial cell factories for the synthesis of reduced biochemicals. Comput Struct Biotechnol J 2013; 3:e201210019. [PMID: 24688679 PMCID: PMC3962086 DOI: 10.5936/csbj.201210019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 12/09/2012] [Accepted: 12/13/2012] [Indexed: 11/23/2022] Open
Abstract
Bioprocesses conducted under conditions with restricted O2 supply are increasingly exploited for the synthesis of reduced biochemicals using different biocatalysts. The model facultative aerobe Escherichia coli, the microbial cell factory par excellence, has elaborate sensing and signal transduction mechanisms that respond to the availability of electron acceptors and alternative carbon sources in the surrounding environment. In particular, the ArcBA and CreBC two-component signal transduction systems are largely responsible for the metabolic regulation of redox control in response to O2 availability and carbon source utilization, respectively. Significant advances in the understanding of the biochemical, genetic, and physiological duties of these regulatory systems have been achieved in recent years. This situation allowed to rationally-design novel engineering approaches that ensure optimal carbon and energy flows within central metabolism, as well as to manipulate redox homeostasis, in order to optimize the production of industrially-relevant metabolites. In particular, metabolic flux analysis provided new clues to understand the metabolic regulation mediated by the ArcBA and CreBC systems. Genetic manipulation of these regulators proved useful for designing microbial cells factories tailored for the synthesis of reduced biochemicals with added value, such as poly(3-hydroxybutyrate), under conditions with restricted O2 supply. This network-wide strategy is in contrast with traditional metabolic engineering approaches, that entail direct modification of the pathway(s) at stake, and opens new avenues for the targeted modulation of central catabolic pathways at the transcriptional level.
Collapse
Affiliation(s)
- Jimena A Ruiz
- Departamento de Química Biológica (IQUIBICEN-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina ; Instituto de Biociencias Agrícolas y Ambientales (INBA-CONICET), Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandra de Almeida
- Departamento de Química Biológica (IQUIBICEN-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Manuel S Godoy
- Departamento de Química Biológica (IQUIBICEN-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariela P Mezzina
- Departamento de Química Biológica (IQUIBICEN-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gonzalo N Bidart
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo A. Ugalde" (IIB-CONICET), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - Beatriz S Méndez
- Departamento de Química Biológica (IQUIBICEN-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M Julia Pettinari
- Departamento de Química Biológica (IQUIBICEN-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pablo I Nikel
- Departamento de Química Biológica (IQUIBICEN-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina ; Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo A. Ugalde" (IIB-CONICET), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| |
Collapse
|
23
|
Waegeman H, De Lausnay S, Beauprez J, Maertens J, De Mey M, Soetaert W. Increasing recombinant protein production in Escherichia coli K12 through metabolic engineering. N Biotechnol 2013; 30:255-61. [DOI: 10.1016/j.nbt.2011.11.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 10/26/2011] [Accepted: 11/07/2011] [Indexed: 10/15/2022]
|
24
|
Bähr C, Leuchtle B, Lehmann C, Becker J, Jeude M, Peinemann F, Arbter R, Büchs J. Dialysis shake flask for effective screening in fed-batch mode. Biochem Eng J 2012. [DOI: 10.1016/j.bej.2012.08.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|