1
|
Calero-Castro FJ, Perez-Puyana VM, Laga I, Padillo Ruiz J, Romero A, de la Portilla de Juan F. Mechanical Stimulation and Aligned Poly(ε-caprolactone)-Gelatin Electrospun Scaffolds Promote Skeletal Muscle Regeneration. ACS APPLIED BIO MATERIALS 2024; 7:6430-6440. [PMID: 39365939 PMCID: PMC11497210 DOI: 10.1021/acsabm.4c00559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024]
Abstract
The current treatments to restore skeletal muscle defects present several injuries. The creation of scaffolds and implant that allow the regeneration of this tissue is a solution that is reaching the researchers' interest. To achieve this, electrospinning is a useful technique to manufacture scaffolds with nanofibers with different orientation. In this work, polycaprolactone and gelatin solutions were tested to fabricate electrospun scaffolds with two degrees of alignment between their fibers: random and aligned. These scaffolds can be seeded with myoblast C2C12 and then stimulated with a mechanical bioreactor that mimics the physiological conditions of the tissue. Cell viability as well as cytoskeletal morphology and functionality was measured. Myotubes in aligned scaffolds (9.84 ± 1.15 μm) were thinner than in random scaffolds (11.55 ± 3.39 μm; P = 0.001). Mechanical stimulation increased the width of myotubes (12.92 ± 3.29 μm; P < 0.001), nuclear fusion (95.73 ± 1.05%; P = 0.004), and actin density (80.13 ± 13.52%; P = 0.017) in aligned scaffolds regarding the control. Moreover, both scaffolds showed high myotube contractility, which was increased in mechanically stimulated aligned scaffolds. These scaffolds were also electrostimulated at different frequencies and they showed promising results. In general, mechanically stimulated aligned scaffolds allow the regeneration of skeletal muscle, increasing viability, fiber thickness, alignment, nuclear fusion, nuclear differentiation, and functionality.
Collapse
Affiliation(s)
- Francisco José Calero-Castro
- Department
of General and Digestive Surgery, “Virgen
del Rocío” University Hospital/IBiS/CSIC/University
of Seville, 41013 Seville, Spain
- Oncology
Surgery, Cell Therapy, and Organ Transplantation Group. Institute
of Biomedicine of Seville (IBiS), “Virgen
del Rocío” University Hospital, IBiS, CSIC/University
of Seville, 41013 Sevilla, Spain
| | | | - Imán Laga
- Department
of General and Digestive Surgery, “Virgen
del Rocío” University Hospital/IBiS/CSIC/University
of Seville, 41013 Seville, Spain
- Oncology
Surgery, Cell Therapy, and Organ Transplantation Group. Institute
of Biomedicine of Seville (IBiS), “Virgen
del Rocío” University Hospital, IBiS, CSIC/University
of Seville, 41013 Sevilla, Spain
| | - Javier Padillo Ruiz
- Department
of General and Digestive Surgery, “Virgen
del Rocío” University Hospital/IBiS/CSIC/University
of Seville, 41013 Seville, Spain
- Oncology
Surgery, Cell Therapy, and Organ Transplantation Group. Institute
of Biomedicine of Seville (IBiS), “Virgen
del Rocío” University Hospital, IBiS, CSIC/University
of Seville, 41013 Sevilla, Spain
| | - Alberto Romero
- Departamento
de Ingeniería Química, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Fernando de la Portilla de Juan
- Department
of General and Digestive Surgery, “Virgen
del Rocío” University Hospital/IBiS/CSIC/University
of Seville, 41013 Seville, Spain
- Oncology
Surgery, Cell Therapy, and Organ Transplantation Group. Institute
of Biomedicine of Seville (IBiS), “Virgen
del Rocío” University Hospital, IBiS, CSIC/University
of Seville, 41013 Sevilla, Spain
| |
Collapse
|
2
|
Hu W, Chen Y, Tsao C, Chen S, Tzeng C. Development of a multifunctional bioreactor to evaluate the promotion effects of cyclic stretching and electrical stimulation on muscle differentiation. Bioeng Transl Med 2024; 9:e10633. [PMID: 38435819 PMCID: PMC10905532 DOI: 10.1002/btm2.10633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 03/05/2024] Open
Abstract
A multifunctional bioreactor was fabricated in this study to investigate the facilitation efficiency of electrical and mechanical stimulations on myogenic differentiation. This bioreactor consisted of a highly stretchable conductive membrane prepared by depositing polypyrrole (PPy) on a flexible polydimethylsiloxane (PDMS) film. The tensile deformation of the PPy/PDMS membrane can be tuned by adjusting the channel depth. In addition, PPy/PDMS maintained its electrical conductivity under continuous cyclic stretching in the strain range of 6.5%-13% for 24 h. This device can be used to individually or simultaneously perform cyclic stretching and electrical stimulation. The results of single stimulation showed that either cyclic stretching or electrical stimulation upregulated myogenic gene expression and promoted myotube formation, where electrical stimulation improved better than cyclic stretching. However, only cyclic stretching can align C2C12 cells perpendicular to the stretching direction, and electrical stimulation did not affect cell morphology. Myosin heavy chain (MHC) immunostaining demonstrated that oriented cells under cyclic stretching resulted in parallel myotubes. The combination of these two stimuli exhibited synergetic effects on both myogenic gene regulation and myotube formation, and the incorporated electrical field did not affect the orientation effect of the cyclic stretching. These results suggested that these two treatments likely influenced cells through different pathways. Overall, the simultaneous application of cyclic stretching and electrical stimulation preserved both stimuli's advantages, so myo-differentiation can be highly improved to obtain abundant parallel myotubes, suggesting that our developed multifunctional bioreactor should benefit muscle tissue engineering applications.
Collapse
Affiliation(s)
- Wei‐Wen Hu
- Department of Chemical and Materials EngineeringNational Central UniversityTaoyuanTaiwan
| | - Yen‐Chi Chen
- Department of Chemical and Materials EngineeringNational Central UniversityTaoyuanTaiwan
| | - Chia‐Wen Tsao
- Department of Mechanical EngineeringNational Central UniversityTaoyuanTaiwan
| | - Shen‐Liang Chen
- Department of Life SciencesNational Central UniversityTaoyuanTaiwan
| | - Chung‐Yuh Tzeng
- Department of OrthopedicsTaichung Veterans General HospitalTaichungTaiwan
- Department of RehabilitationJen‐Teh Junior College of Medicine, Nursing and ManagementMiaoliTaiwan
- Department of Medicinal Botanicals and Foods on Health ApplicationsDa‐Yeh UniversityChanghuaTaiwan
- Institute of Biomedical SciencesNational Chung Hsing UniversityTaichungTaiwan
| |
Collapse
|
3
|
Kasahara K, Muramatsu J, Kurashina Y, Miura S, Miyata S, Onoe H. Spatiotemporal single-cell tracking analysis in 3D tissues to reveal heterogeneous cellular response to mechanical stimuli. SCIENCE ADVANCES 2023; 9:eadf9917. [PMID: 37831766 PMCID: PMC10575577 DOI: 10.1126/sciadv.adf9917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 09/08/2023] [Indexed: 10/15/2023]
Abstract
Mechanical stimuli have been recognized as important for tissue maturation, homeostasis and constructing engineered three-dimensional (3D) tissues. However, we know little about the cellular mechanical response in tissues that could be considerably heterogeneous and spatiotemporally dynamic due to the complex structure of tissues. Here, we report a spatiotemporal single-cell tracking analysis of in vitro 3D tissues under mechanical stretch, to reveal the heterogeneous cellular behavior by using a developed stretch and optical live imaging system. The system could affect the cellular orientation and directly measure the distance of cells in in vitro 3D myoblast tissues (3DMTs) at the single-cell level. Moreover, we observed the spatiotemporal heterogeneous cellular locomotion and shape changes under mechanical stretch in 3DMTs. This single-cell tracking analysis can become a principal method to investigate the heterogeneous cellular response in tissues and provide insights that conventional analyses have not yet offered.
Collapse
Affiliation(s)
- Keitaro Kasahara
- School of Integrated Design Engineering, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Jumpei Muramatsu
- School of Integrated Design Engineering, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Yuta Kurashina
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
- Division of Advanced Mechanical Systems Engineering, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan
| | - Shigenori Miura
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shogo Miyata
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Hiroaki Onoe
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
4
|
Murach KA, Liu Z, Jude B, Figueiredo VC, Wen Y, Khadgi S, Lim S, Morena da Silva F, Greene NP, Lanner JT, McCarthy JJ, Vechetti IJ, von Walden F. Multi-transcriptome analysis following an acute skeletal muscle growth stimulus yields tools for discerning global and MYC regulatory networks. J Biol Chem 2022; 298:102515. [PMID: 36150502 PMCID: PMC9583450 DOI: 10.1016/j.jbc.2022.102515] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 02/01/2023] Open
Abstract
Myc is a powerful transcription factor implicated in epigenetic reprogramming, cellular plasticity, and rapid growth as well as tumorigenesis. Cancer in skeletal muscle is extremely rare despite marked and sustained Myc induction during loading-induced hypertrophy. Here, we investigated global, actively transcribed, stable, and myonucleus-specific transcriptomes following an acute hypertrophic stimulus in mouse plantaris. With these datasets, we define global and Myc-specific dynamics at the onset of mechanical overload-induced muscle fiber growth. Data collation across analyses reveals an under-appreciated role for the muscle fiber in extracellular matrix remodeling during adaptation, along with the contribution of mRNA stability to epigenetic-related transcript levels in muscle. We also identify Runx1 and Ankrd1 (Marp1) as abundant myonucleus-enriched loading-induced genes. We observed that a strong induction of cell cycle regulators including Myc occurs with mechanical overload in myonuclei. Additionally, in vivo Myc-controlled gene expression in the plantaris was defined using a genetic muscle fiber-specific doxycycline-inducible Myc-overexpression model. We determined Myc is implicated in numerous aspects of gene expression during early-phase muscle fiber growth. Specifically, brief induction of Myc protein in muscle represses Reverbα, Reverbβ, and Myh2 while increasing Rpl3, recapitulating gene expression in myonuclei during acute overload. Experimental, comparative, and in silico analyses place Myc at the center of a stable and actively transcribed, loading-responsive, muscle fiber-localized regulatory hub. Collectively, our experiments are a roadmap for understanding global and Myc-mediated transcriptional networks that regulate rapid remodeling in postmitotic cells. We provide open webtools for exploring the five RNA-seq datasets as a resource to the field.
Collapse
Affiliation(s)
- Kevin A. Murach
- Department of Health, Human Performance, and Recreation, Exercise Science Research Center, University of Arkansas, Fayetteville, Arkansas, USA,Cell and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, Arkansas, USA,For correspondence: Kevin A. Murach; Ivan J. Vechetti; Ferdinand von Walden
| | - Zhengye Liu
- Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Baptiste Jude
- Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden,Department of Women’s and Children’s Health, Karolinska Institute, Solna, Sweden
| | - Vandre C. Figueiredo
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA,Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Yuan Wen
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA,Department of Physical Therapy, University of Kentucky, Lexington, Kentucky, USA
| | - Sabin Khadgi
- Department of Health, Human Performance, and Recreation, Exercise Science Research Center, University of Arkansas, Fayetteville, Arkansas, USA
| | - Seongkyun Lim
- Department of Health, Human Performance, and Recreation, Exercise Science Research Center, University of Arkansas, Fayetteville, Arkansas, USA,Cachexia Research Laboratory, University of Arkansas, Fayetteville, Arkansas, USA
| | - Francielly Morena da Silva
- Department of Health, Human Performance, and Recreation, Exercise Science Research Center, University of Arkansas, Fayetteville, Arkansas, USA,Cachexia Research Laboratory, University of Arkansas, Fayetteville, Arkansas, USA
| | - Nicholas P. Greene
- Department of Health, Human Performance, and Recreation, Exercise Science Research Center, University of Arkansas, Fayetteville, Arkansas, USA,Cell and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, Arkansas, USA,Cachexia Research Laboratory, University of Arkansas, Fayetteville, Arkansas, USA
| | - Johanna T. Lanner
- Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - John J. McCarthy
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA,Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Ivan J. Vechetti
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Nebraska, USA,For correspondence: Kevin A. Murach; Ivan J. Vechetti; Ferdinand von Walden
| | - Ferdinand von Walden
- Department of Women’s and Children’s Health, Karolinska Institute, Solna, Sweden,For correspondence: Kevin A. Murach; Ivan J. Vechetti; Ferdinand von Walden
| |
Collapse
|
5
|
Sugimoto T, Imai S, Yoshikawa M, Fujisato T, Hashimoto T, Nakamura T. Mechanical unloading in 3D-engineered muscle leads to muscle atrophy by suppressing protein synthesis. J Appl Physiol (1985) 2022; 132:1091-1103. [PMID: 35297688 DOI: 10.1152/japplphysiol.00323.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Three dimensional (3D)-engineered muscle is an useful approach to a more comprehensive understanding of molecular mechanisms underlying unloading-induced muscle atrophy. We investigated the effects of mechanical unloading on molecular muscle protein synthesis (MPS)- and muscle protein breakdown (MPB)-related signaling pathways involved in muscle atrophy in 3D-engineered muscle, and to better understand in vitro model of muscle disuse. The 3D-engineered muscle consisting of C2C12 myoblasts and type-1 collagen gel was allowed to differentiate for 2 weeks and divided into three groups: 0 days of stretched-on control (CON), 2 and/or 7 days of stretched-on (ON), in which both ends of the muscle were fixed with artificial tendons, and the stretched-off group (OFF), in which one side of the artificial tendon was detached. Muscle weight (-38.1 to -48.4%), length (-67.0 to -73.5%), twitch contractile force (-70.5 to -75.0%) and myosin heavy chain expression (-32.5 to -50.5%) in the OFF group were significantly decreased on days 2 and 7 compared with the ON group (P < 0.05, respectively), despite that ON group was stable over time. Although determinative molecular signaling could not be identified, the MPS rate reflected by puromysin labeled protein was significantly decreased following mechanical unloading (P < 0.05, -38.5 to -51.1%). Meanwhile, MPB, particularly the ubiquitin-proteasome pathway, was not impacted. Hence, mechanical unloading of 3D-engineered muscle in vitro leads to muscle atrophy by suppressing MPS, cell differentiation, and cell growth rather than the promotion of MPB.
Collapse
Affiliation(s)
- Takeshi Sugimoto
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Shoma Imai
- Division of Human Sciences, Faculty of Engineering, Osaka Institute of Technology, Ohmiya, Osaka, Japan
| | - Maki Yoshikawa
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Toshia Fujisato
- Biomedical Engineering Graduate School of Engineering, Osaka Institute of Technology, Ohmiya, Osaka, Japan
| | - Takeshi Hashimoto
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Tomohiro Nakamura
- Division of Human Sciences, Faculty of Engineering, Osaka Institute of Technology, Ohmiya, Osaka, Japan
| |
Collapse
|
6
|
Smith AST, Luttrell SM, Dupont JB, Gray K, Lih D, Fleming JW, Cunningham NJ, Jepson S, Hesson J, Mathieu J, Maves L, Berry BJ, Fisher EC, Sniadecki NJ, Geisse NA, Mack DL. High-throughput, real-time monitoring of engineered skeletal muscle function using magnetic sensing. J Tissue Eng 2022; 13:20417314221122127. [PMID: 36082311 PMCID: PMC9445471 DOI: 10.1177/20417314221122127] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/03/2022] [Indexed: 12/03/2022] Open
Abstract
Engineered muscle tissues represent powerful tools for examining tissue level contractile properties of skeletal muscle. However, limitations in the throughput associated with standard analysis methods limit their utility for longitudinal study, high throughput drug screens, and disease modeling. Here we present a method for integrating 3D engineered skeletal muscles with a magnetic sensing system to facilitate non-invasive, longitudinal analysis of developing contraction kinetics. Using this platform, we show that engineered skeletal muscle tissues derived from both induced pluripotent stem cell and primary sources undergo improvements in contractile output over time in culture. We demonstrate how magnetic sensing of contractility can be employed for simultaneous assessment of multiple tissues subjected to different doses of known skeletal muscle inotropes as well as the stratification of healthy versus diseased functional profiles in normal and dystrophic muscle cells. Based on these data, this combined culture system and magnet-based contractility platform greatly broadens the potential for 3D engineered skeletal muscle tissues to impact the translation of novel therapies from the lab to the clinic.
Collapse
Affiliation(s)
- Alec ST Smith
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | | | - Jean-Baptiste Dupont
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Nantes Université, INSERM, TARGET, Nantes, France
| | - Kevin Gray
- Curi Bio Inc., 3000 Western Avenue, Seattle, WA, USA
| | - Daniel Lih
- Curi Bio Inc., 3000 Western Avenue, Seattle, WA, USA
| | | | | | - Sofia Jepson
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Jennifer Hesson
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Julie Mathieu
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Lisa Maves
- Seattle Children’s Research Institute, Seattle, WA, USA
| | | | | | - Nathan J Sniadecki
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | | | - David L Mack
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
7
|
Turner DC, Gorski PP, Seaborne RA, Viggars M, Murphy M, Jarvis JC, Martin NR, Stewart CE, Sharples AP. Mechanical loading of bioengineered skeletal muscle in vitro recapitulates gene expression signatures of resistance exercise in vivo. J Cell Physiol 2021; 236:6534-6547. [PMID: 33586196 PMCID: PMC8653897 DOI: 10.1002/jcp.30328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/17/2021] [Accepted: 02/03/2021] [Indexed: 11/10/2022]
Abstract
Understanding the role of mechanical loading and exercise in skeletal muscle (SkM) is paramount for delineating the molecular mechanisms that govern changes in muscle mass. However, it is unknown whether loading of bioengineered SkM in vitro adequately recapitulates the molecular responses observed after resistance exercise (RE) in vivo. To address this, the transcriptional and epigenetic (DNA methylation) responses were compared after mechanical loading in bioengineered SkM in vitro and after RE in vivo. Specifically, genes known to be upregulated/hypomethylated after RE in humans were analyzed. Ninety-three percent of these genes demonstrated similar changes in gene expression post-loading in the bioengineered muscle when compared to acute RE in humans. Furthermore, similar differences in gene expression were observed between loaded bioengineered SkM and after programmed RT in rat SkM tissue. Hypomethylation occurred for only one of the genes analysed (GRIK2) post-loading in bioengineered SkM. To further validate these findings, DNA methylation and mRNA expression of known hypomethylated and upregulated genes post-acute RE in humans were also analyzed at 0.5, 3, and 24 h post-loading in bioengineered muscle. The largest changes in gene expression occurred at 3 h, whereby 82% and 91% of genes responded similarly when compared to human and rodent SkM respectively. DNA methylation of only a small proportion of genes analyzed (TRAF1, MSN, and CTTN) significantly increased post-loading in bioengineered SkM alone. Overall, mechanical loading of bioengineered SkM in vitro recapitulates the gene expression profile of human and rodent SkM after RE in vivo. Although some genes demonstrated differential DNA methylation post-loading in bioengineered SkM, such changes across the majority of genes analyzed did not closely mimic the epigenetic response to acute-RE in humans.
Collapse
Affiliation(s)
- Daniel C. Turner
- Institute for Science and Technology in Medicine (ISTM), School of Pharmacy and BioengineeringKeele UniversityStaffordshireUK
- Stem Cells, Ageing and Molecular Physiology Unit (SCAMP), Exercise Metabolism and Adaptation Research Group (EMARG), Research Institute for Sport and Exercise Sciences (RISES)Liverpool John Moores UniversityLiverpoolUK
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical BiosciencesKing's College LondonLondonUK
| | - Piotr P. Gorski
- Institute for Science and Technology in Medicine (ISTM), School of Pharmacy and BioengineeringKeele UniversityStaffordshireUK
- Institute for Physical PerformanceNorwegian School of Sport Sciences (NiH)OsloNorway
| | - Robert A. Seaborne
- Stem Cells, Ageing and Molecular Physiology Unit (SCAMP), Exercise Metabolism and Adaptation Research Group (EMARG), Research Institute for Sport and Exercise Sciences (RISES)Liverpool John Moores UniversityLiverpoolUK
- Center for Genomics and Child Health, Blizard Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Mark Viggars
- Stem Cells, Ageing and Molecular Physiology Unit (SCAMP), Exercise Metabolism and Adaptation Research Group (EMARG), Research Institute for Sport and Exercise Sciences (RISES)Liverpool John Moores UniversityLiverpoolUK
| | - Mark Murphy
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityLiverpoolUK
| | - Jonathan C. Jarvis
- Stem Cells, Ageing and Molecular Physiology Unit (SCAMP), Exercise Metabolism and Adaptation Research Group (EMARG), Research Institute for Sport and Exercise Sciences (RISES)Liverpool John Moores UniversityLiverpoolUK
| | - Neil R.W. Martin
- School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughUK
| | - Claire E. Stewart
- Stem Cells, Ageing and Molecular Physiology Unit (SCAMP), Exercise Metabolism and Adaptation Research Group (EMARG), Research Institute for Sport and Exercise Sciences (RISES)Liverpool John Moores UniversityLiverpoolUK
| | - Adam P. Sharples
- Institute for Physical PerformanceNorwegian School of Sport Sciences (NiH)OsloNorway
| |
Collapse
|
8
|
Ren D, Song J, Liu R, Zeng X, Yan X, Zhang Q, Yuan X. Molecular and Biomechanical Adaptations to Mechanical Stretch in Cultured Myotubes. Front Physiol 2021; 12:689492. [PMID: 34408658 PMCID: PMC8365838 DOI: 10.3389/fphys.2021.689492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/29/2021] [Indexed: 11/24/2022] Open
Abstract
Myotubes are mature muscle cells that form the basic structural element of skeletal muscle. When stretching skeletal muscles, myotubes are subjected to passive tension as well. This lead to alterations in myotube cytophysiology, which could be related with muscular biomechanics. During the past decades, much progresses have been made in exploring biomechanical properties of myotubes in vitro. In this review, we integrated the studies focusing on cultured myotubes being mechanically stretched, and classified these studies into several categories: amino acid and glucose uptake, protein turnover, myotube hypertrophy and atrophy, maturation, alignment, secretion of cytokines, cytoskeleton adaption, myotube damage, ion channel activation, and oxidative stress in myotubes. These biomechanical adaptions do not occur independently, but interconnect with each other as part of the systematic mechanoresponse of myotubes. The purpose of this review is to broaden our comprehensions of stretch-induced muscular alterations in cellular and molecular scales, and to point out future challenges and directions in investigating myotube biomechanical manifestations.
Collapse
Affiliation(s)
- Dapeng Ren
- Department of Stomatology Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, China.,College of Dentistry, Qingdao University, Qingdao, China
| | - Jing Song
- Department of Stomatology Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ran Liu
- Department of Stomatology Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xuemin Zeng
- Department of Stomatology Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, China.,College of Dentistry, Qingdao University, Qingdao, China
| | - Xiao Yan
- Department of Stomatology Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qiang Zhang
- Department of Stomatology Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiao Yuan
- Department of Stomatology Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
9
|
Berardi E, Madaro L, Lozanoska-Ochser B, Adamo S, Thorrez L, Bouche M, Coletti D. A Pound of Flesh: What Cachexia Is and What It Is Not. Diagnostics (Basel) 2021; 11:diagnostics11010116. [PMID: 33445790 PMCID: PMC7828214 DOI: 10.3390/diagnostics11010116] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 12/18/2022] Open
Abstract
Body weight loss, mostly due to the wasting of skeletal muscle and adipose tissue, is the hallmark of the so-called cachexia syndrome. Cachexia is associated with several acute and chronic disease states such as cancer, chronic obstructive pulmonary disease (COPD), heart and kidney failure, and acquired and autoimmune diseases and also pharmacological treatments such as chemotherapy. The clinical relevance of cachexia and its impact on patients’ quality of life has been neglected for decades. Only recently did the international community agree upon a definition of the term cachexia, and we are still awaiting the standardization of markers and tests for the diagnosis and staging of cancer-related cachexia. In this review, we discuss cachexia, considering the evolving use of the term for diagnostic purposes and the implications it has for clinical biomarkers, to provide a comprehensive overview of its biology and clinical management. Advances and tools developed so far for the in vitro testing of cachexia and drug screening will be described. We will also evaluate the nomenclature of different forms of muscle wasting and degeneration and discuss features that distinguish cachexia from other forms of muscle wasting in the context of different conditions.
Collapse
Affiliation(s)
- Emanuele Berardi
- Department of Development and Regeneration, KU Leuven Campus Kulak, 8500 Kortrijk, Belgium; (E.B.); (L.T.)
- Faculty of Rehabilitation Sciences, REVAL, Hasselt University (UHasselt), 3590 Diepenbeek, Belgium
| | - Luca Madaro
- DAHFMO Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy; (L.M.); (B.L.-O.); (S.A.); (D.C.)
| | - Biliana Lozanoska-Ochser
- DAHFMO Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy; (L.M.); (B.L.-O.); (S.A.); (D.C.)
| | - Sergio Adamo
- DAHFMO Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy; (L.M.); (B.L.-O.); (S.A.); (D.C.)
| | - Lieven Thorrez
- Department of Development and Regeneration, KU Leuven Campus Kulak, 8500 Kortrijk, Belgium; (E.B.); (L.T.)
| | - Marina Bouche
- DAHFMO Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy; (L.M.); (B.L.-O.); (S.A.); (D.C.)
- Correspondence: ; Tel.: +39-(6)-4976-6755/6573
| | - Dario Coletti
- DAHFMO Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy; (L.M.); (B.L.-O.); (S.A.); (D.C.)
- Biological Adaptation and Ageing, CNRS UMR 8256, Inserm U1164, Institut de Biologie Paris-Seine, Sorbonne Université, 75006 Paris, France
| |
Collapse
|
10
|
Mechanical loading of tissue engineered skeletal muscle prevents dexamethasone induced myotube atrophy. J Muscle Res Cell Motil 2020; 42:149-159. [PMID: 32955689 PMCID: PMC8332579 DOI: 10.1007/s10974-020-09589-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/04/2020] [Indexed: 12/21/2022]
Abstract
Skeletal muscle atrophy as a consequence of acute and chronic illness, immobilisation, muscular dystrophies and aging, leads to severe muscle weakness, inactivity and increased mortality. Mechanical loading is thought to be the primary driver for skeletal muscle hypertrophy, however the extent to which mechanical loading can offset muscle catabolism has not been thoroughly explored. In vitro 3D-models of skeletal muscle provide a controllable, high throughput environment and mitigating many of the ethical and methodological constraints present during in vivo experimentation. This work aimed to determine if mechanical loading would offset dexamethasone (DEX) induced skeletal muscle atrophy, in muscle engineered using the C2C12 murine cell line. Mechanical loading successfully offset myotube atrophy and functional degeneration associated with DEX regardless of whether the loading occurred before or after 24 h of DEX treatment. Furthermore, mechanical load prevented increases in MuRF-1 and MAFbx mRNA expression, critical regulators of muscle atrophy. Overall, we demonstrate the application of tissue engineered muscle to study skeletal muscle health and disease, offering great potential for future use to better understand treatment modalities for skeletal muscle atrophy.
Collapse
|
11
|
Murach KA, Vechetti IJ, Van Pelt DW, Crow SE, Dungan CM, Figueiredo VC, Kosmac K, Fu X, Richards CI, Fry CS, McCarthy JJ, Peterson CA. Fusion-Independent Satellite Cell Communication to Muscle Fibers During Load-Induced Hypertrophy. FUNCTION 2020; 1:zqaa009. [PMID: 32864621 PMCID: PMC7448100 DOI: 10.1093/function/zqaa009] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 01/06/2023] Open
Abstract
The "canonical" function of Pax7+ muscle stem cells (satellite cells) during hypertrophic growth of adult muscle fibers is myonuclear donation via fusion to support increased transcriptional output. In recent years, however, emerging evidence suggests that satellite cells play an important secretory role in promoting load-mediated growth. Utilizing genetically modified mouse models of delayed satellite cell fusion and in vivo extracellular vesicle (EV) tracking, we provide evidence for satellite cell communication to muscle fibers during hypertrophy. Myogenic progenitor cell-EV-mediated communication to myotubes in vitro influences extracellular matrix (ECM)-related gene expression, which is congruent with in vivo overload experiments involving satellite cell depletion, as well as in silico analyses. Satellite cell-derived EVs can transfer a Cre-induced, cytoplasmic-localized fluorescent reporter to muscle cells as well as microRNAs that regulate ECM genes such as matrix metalloproteinase 9 (Mmp9), which may facilitate growth. Delayed satellite cell fusion did not limit long-term load-induced muscle hypertrophy indicating that early fusion-independent communication from satellite cells to muscle fibers is an underappreciated aspect of satellite cell biology. We cannot exclude the possibility that satellite cell-mediated myonuclear accretion is necessary to maintain prolonged growth, specifically in the later phases of adaptation, but these data collectively highlight how EV delivery from satellite cells can directly contribute to mechanical load-induced muscle fiber hypertrophy, independent of cell fusion to the fiber.
Collapse
Affiliation(s)
- Kevin A Murach
- The Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Ivan J Vechetti
- The Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Douglas W Van Pelt
- The Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Samuel E Crow
- The Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Cory M Dungan
- The Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Vandre C Figueiredo
- The Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Kate Kosmac
- The Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Xu Fu
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Christopher I Richards
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Christopher S Fry
- The Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - John J McCarthy
- The Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Charlotte A Peterson
- The Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY 40536, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
12
|
Fusto A, Moyle LA, Gilbert PM, Pegoraro E. Cored in the act: the use of models to understand core myopathies. Dis Model Mech 2019; 12:dmm041368. [PMID: 31874912 PMCID: PMC6955215 DOI: 10.1242/dmm.041368] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The core myopathies are a group of congenital myopathies with variable clinical expression - ranging from early-onset skeletal-muscle weakness to later-onset disease of variable severity - that are identified by characteristic 'core-like' lesions in myofibers and the presence of hypothonia and slowly or rather non-progressive muscle weakness. The genetic causes are diverse; central core disease is most often caused by mutations in ryanodine receptor 1 (RYR1), whereas multi-minicore disease is linked to pathogenic variants of several genes, including selenoprotein N (SELENON), RYR1 and titin (TTN). Understanding the mechanisms that drive core development and muscle weakness remains challenging due to the diversity of the excitation-contraction coupling (ECC) proteins involved and the differential effects of mutations across proteins. Because of this, the use of representative models expressing a mature ECC apparatus is crucial. Animal models have facilitated the identification of disease progression mechanisms for some mutations and have provided evidence to help explain genotype-phenotype correlations. However, many unanswered questions remain about the common and divergent pathological mechanisms that drive disease progression, and these mechanisms need to be understood in order to identify therapeutic targets. Several new transgenic animals have been described recently, expanding the spectrum of core myopathy models, including mice with patient-specific mutations. Furthermore, recent developments in 3D tissue engineering are expected to enable the study of core myopathy disease progression and the effects of potential therapeutic interventions in the context of human cells. In this Review, we summarize the current landscape of core myopathy models, and assess the hurdles and opportunities of future modeling strategies.
Collapse
Affiliation(s)
- Aurora Fusto
- Department of Neuroscience, University of Padua, Padua 35128, Italy
| | - Louise A Moyle
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1, Canada
- Institute of Biomaterials and Biochemical Engineering, University of Toronto, Toronto, ON M5S3G9, Canada
| | - Penney M Gilbert
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1, Canada
- Institute of Biomaterials and Biochemical Engineering, University of Toronto, Toronto, ON M5S3G9, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S3G5, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Elena Pegoraro
- Department of Neuroscience, University of Padua, Padua 35128, Italy
| |
Collapse
|
13
|
Rimington RP, Capel AJ, Chaplin KF, Fleming JW, Bandulasena HCH, Bibb RJ, Christie SDR, Lewis MP. Differentiation of Bioengineered Skeletal Muscle within a 3D Printed Perfusion Bioreactor Reduces Atrophic and Inflammatory Gene Expression. ACS Biomater Sci Eng 2019; 5:5525-5538. [PMID: 33464072 DOI: 10.1021/acsbiomaterials.9b00975] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bioengineered skeletal muscle tissues benefit from dynamic culture environments which facilitate the appropriate provision of nutrients and removal of cellular waste products. Biologically compatible perfusion systems hold the potential to enhance the physiological biomimicry of in vitro tissues via dynamic culture, in addition to providing technological advances in analytical testing and live cellular imaging for analysis of cellular development. To meet such diverse requirements, perfusion systems require the capacity and adaptability to incorporate multiple cell laden constructs of both monolayer and bioengineered tissues. This work reports perfusion systems produced using additive manufacturing technology for the in situ phenotypic development of myogenic precursor cells in monolayer and bioengineered tissue. Biocompatibility of systems 3D printed using stereolithography (SL), laser sintering (LS), and PolyJet outlined preferential morphological development within both SL and LS devices. When exposed to intermittent perfusion in the monolayer, delayed yet physiologically representative cellular proliferation, MyoD and myogenin transcription of C2C12 cells was evident. Long-term (8 days) intermittent perfusion of monolayer cultures outlined viable morphological and genetic in situ differentiation for the live cellular imaging of myogenic development. Continuous perfusion cultures (13 days) of bioengineered skeletal muscle tissues outlined in situ myogenic differentiation, forming mature multinucleated myotubes. Here, reductions in IL-1β and TNF-α inflammatory cytokines, myostatin, and MuRF-1 atrophic mRNA expression were observed. Comparable myosin heavy chain (MyHC) isoform transcription profiles were evident between conditions; however, total mRNA expression was reduced in perfusion conditions. Decreased transcription of MuRF1 and subsequent reduced ubiquitination of the MyHC protein allude to a decreased requirement for transcription of MyHC isoform transcripts. Together, these data appear to indicate that 3D printed perfusion systems elicit enhanced stability of the culture environment, resulting in a reduced basal requirement for MyHC gene expression within bioengineered skeletal muscle tissue.
Collapse
|
14
|
Wragg NM, Mosqueira D, Blokpeol-Ferreras L, Capel A, Player DJ, Martin NRW, Liu Y, Lewis MP. Development of a 3D Tissue-Engineered Skeletal Muscle and Bone Co-culture System. Biotechnol J 2019; 15:e1900106. [PMID: 31468704 DOI: 10.1002/biot.201900106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/05/2019] [Indexed: 12/26/2022]
Abstract
In vitro 3D tissue-engineered (TE) structures have been shown to better represent in vivo tissue morphology and biochemical pathways than monolayer culture, and are less ethically questionable than animal models. However, to create systems with even greater relevance, multiple integrated tissue systems should be recreated in vitro. In the present study, the effects and conditions most suitable for the co-culture of TE skeletal muscle and bone are investigated. High-glucose Dulbecco's modified Eagle medium (HG-DMEM) supplemented with 20% fetal bovine serum followed by HG-DMEM with 2% horse serum is found to enable proliferation of both C2C12 muscle precursor cells and TE85 human osteosarcoma cells, fusion of C2C12s into myotubes, as well as an upregulation of RUNX2/CBFa1 in TE85s. Myotube formation is also evident within indirect contact monolayer cultures. Finally, in 3D co-cultures, TE85 collagen/hydroxyapatite constructs have significantly greater expression of RUNX2/CBFa1 and osteocalcin/BGLAP in the presence of collagen-based C2C12 skeletal muscle constructs; however, fusion within these constructs appears reduced. This work demonstrates the first report of the simultaneous co-culture and differentiation of 3D TE skeletal muscle and bone, and represents a significant step toward a full in vitro 3D musculoskeletal junction model.
Collapse
Affiliation(s)
- Nicholas M Wragg
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.,Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, UK
| | - Diogo Mosqueira
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Lia Blokpeol-Ferreras
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Andrew Capel
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Darren J Player
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.,Institute of Orthopaedics and Musculoskeletal Sciences, RNOH University College London, Stanmore, UK
| | - Neil R W Martin
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Yang Liu
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, UK
| | - Mark P Lewis
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| |
Collapse
|
15
|
Wragg NM, Player DJ, Martin NRW, Liu Y, Lewis MP. Development of tissue‐engineered skeletal muscle manufacturing variables. Biotechnol Bioeng 2019; 116:2364-2376. [DOI: 10.1002/bit.27074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/03/2019] [Accepted: 05/21/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Nicholas M. Wragg
- School of Sport, Exercise, and Health SciencesLoughborough UniversityLoughborough UK
- Wolfson School of Mechanical, Electrical, and Manufacturing EngineeringLoughborough UniversityLoughborough UK
- Centre for Biological EngineeringLoughborough UniversityLoughborough UK
| | - Darren J. Player
- School of Sport, Exercise, and Health SciencesLoughborough UniversityLoughborough UK
- Centre for Sport, Exercise, and OsteoarthritisArthritis Research UK UK
- Division of Surgery and Interventional ScienceUniversity College LondonLondon UK
| | - Neil R. W. Martin
- School of Sport, Exercise, and Health SciencesLoughborough UniversityLoughborough UK
| | - Yang Liu
- Wolfson School of Mechanical, Electrical, and Manufacturing EngineeringLoughborough UniversityLoughborough UK
- Centre for Biological EngineeringLoughborough UniversityLoughborough UK
| | - Mark P. Lewis
- School of Sport, Exercise, and Health SciencesLoughborough UniversityLoughborough UK
- Centre for Sport, Exercise, and OsteoarthritisArthritis Research UK UK
- National Centre for Sport and Exercise MedicineLoughborough UK
| |
Collapse
|
16
|
Aguilar-Agon KW, Capel AJ, Martin NRW, Player DJ, Lewis MP. Mechanical loading stimulates hypertrophy in tissue-engineered skeletal muscle: Molecular and phenotypic responses. J Cell Physiol 2019; 234:23547-23558. [PMID: 31180593 PMCID: PMC6771594 DOI: 10.1002/jcp.28923] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 12/17/2022]
Abstract
Mechanical loading of skeletal muscle results in molecular and phenotypic adaptations typified by enhanced muscle size. Studies on humans are limited by the need for repeated sampling, and studies on animals have methodological and ethical limitations. In this investigation, three‐dimensional skeletal muscle was tissue‐engineered utilizing the murine cell line C2C12, which bears resemblance to native tissue and benefits from the advantages of conventional in vitro experiments. The work aimed to determine if mechanical loading induced an anabolic hypertrophic response, akin to that described in vivo after mechanical loading in the form of resistance exercise. Specifically, we temporally investigated candidate gene expression and Akt‐mechanistic target of rapamycin 1 signalling along with myotube growth and tissue function. Mechanical loading (construct length increase of 15%) significantly increased insulin‐like growth factor‐1 and MMP‐2 messenger RNA expression 21 hr after overload, and the levels of the atrophic gene MAFbx were significantly downregulated 45 hr after mechanical overload. In addition, p70S6 kinase and 4EBP‐1 phosphorylation were upregulated immediately after mechanical overload. Maximal contractile force was augmented 45 hr after load with a 265% increase in force, alongside significant hypertrophy of the myotubes within the engineered muscle. Overall, mechanical loading of tissue‐engineered skeletal muscle induced hypertrophy and improved force production.
Collapse
Affiliation(s)
- Kathryn W Aguilar-Agon
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Andrew J Capel
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Neil R W Martin
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Darren J Player
- Division of Surgery, University College London, London, United Kingdom
| | - Mark P Lewis
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| |
Collapse
|
17
|
Capel AJ, Rimington RP, Fleming JW, Player DJ, Baker LA, Turner MC, Jones JM, Martin NRW, Ferguson RA, Mudera VC, Lewis MP. Scalable 3D Printed Molds for Human Tissue Engineered Skeletal Muscle. Front Bioeng Biotechnol 2019; 7:20. [PMID: 30838203 PMCID: PMC6383409 DOI: 10.3389/fbioe.2019.00020] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 01/28/2019] [Indexed: 12/04/2022] Open
Abstract
Tissue engineered skeletal muscle allows investigation of the cellular and molecular mechanisms that regulate skeletal muscle pathology. The fabricated model must resemble characteristics of in vivo tissue and incorporate cost-effective and high content primary human tissue. Current models are limited by low throughput due to the complexities associated with recruiting tissue donors, donor specific variations, as well as cellular senescence associated with passaging. This research presents a method using fused deposition modeling (FDM) and laser sintering (LS) 3D printing to generate reproducible and scalable tissue engineered primary human muscle, possessing aligned mature myotubes reminiscent of in vivo tissue. Many existing models are bespoke causing variability when translated between laboratories. To this end, a scalable model has been developed (25–500 μL construct volumes) allowing fabrication of mature primary human skeletal muscle. This research provides a strategy to overcome limited biopsy cell numbers, enabling high throughput screening of functional human tissue.
Collapse
Affiliation(s)
- Andrew J Capel
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Rowan P Rimington
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Jacob W Fleming
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Darren J Player
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom.,Institute of Orthopaedics and Musculoskeletal Sciences, RNOH, University College London, London, United Kingdom
| | - Luke A Baker
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Mark C Turner
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom.,University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| | - Julia M Jones
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom.,Institute of Orthopaedics and Musculoskeletal Sciences, RNOH, University College London, London, United Kingdom
| | - Neil R W Martin
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Richard A Ferguson
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Vivek C Mudera
- Institute of Orthopaedics and Musculoskeletal Sciences, RNOH, University College London, London, United Kingdom
| | - Mark P Lewis
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| |
Collapse
|
18
|
Turner DC, Kasper AM, Seaborne RA, Brown AD, Close GL, Murphy M, Stewart CE, Martin NRW, Sharples AP. Exercising Bioengineered Skeletal Muscle In Vitro: Biopsy to Bioreactor. Methods Mol Biol 2019; 1889:55-79. [PMID: 30367409 DOI: 10.1007/978-1-4939-8897-6_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The bioengineering of skeletal muscle tissue in-vitro has enabled researchers to more closely mimic the in-vivo skeletal muscle niche. The three-dimensional (3-D) structure of the tissue engineered systems employed to date enable the generation of highly aligned and differentiated myofibers within a representative biological matrix. The use of electrical stimulation to model concentric contraction, via innervation of the myofibers, and the use of mechanical loading to model passive lengthening or stretch has begun to provide a manipulable environment to investigate the cellular and molecular responses following exercise mimicking stimuli in-vitro. Currently available bioreactor systems allow either electrical stimulation or mechanical loading to be utilized at any given time. In the present manuscript, we describe in detail the methodological procedures to create 3-D bioengineered skeletal muscle using both cell lines and/or primary human muscle derived cells from a tissue biopsy, through to modeling exercising stimuli using a bioreactor that can provide both electrical stimulation and mechanical loading simultaneously within the same in-vitro system.
Collapse
Affiliation(s)
- Daniel C Turner
- Institute for Science and Technology in Medicine (ISTM), Keele University School of Medicine, Keele University, Staffordshire, UK
| | - Andreas M Kasper
- Exercise Metabolism and Adaptation Research Group (EMARG), Research Institute for Sport and Exercise Sciences (RISES), Liverpool John Moores University, Liverpool, UK
| | - Robert A Seaborne
- Institute for Science and Technology in Medicine (ISTM), Keele University School of Medicine, Keele University, Staffordshire, UK
- Exercise Metabolism and Adaptation Research Group (EMARG), Research Institute for Sport and Exercise Sciences (RISES), Liverpool John Moores University, Liverpool, UK
| | - Alexander D Brown
- Exercise Metabolism and Adaptation Research Group (EMARG), Research Institute for Sport and Exercise Sciences (RISES), Liverpool John Moores University, Liverpool, UK
| | - Graeme L Close
- Exercise Metabolism and Adaptation Research Group (EMARG), Research Institute for Sport and Exercise Sciences (RISES), Liverpool John Moores University, Liverpool, UK
| | - Mark Murphy
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Claire E Stewart
- Exercise Metabolism and Adaptation Research Group (EMARG), Research Institute for Sport and Exercise Sciences (RISES), Liverpool John Moores University, Liverpool, UK
| | - Neil R W Martin
- Musculoskeletal Biology Research Group, School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough, UK
| | - Adam P Sharples
- Institute for Science and Technology in Medicine (ISTM), Keele University School of Medicine, Keele University, Staffordshire, UK.
- Exercise Metabolism and Adaptation Research Group (EMARG), Research Institute for Sport and Exercise Sciences (RISES), Liverpool John Moores University, Liverpool, UK.
| |
Collapse
|
19
|
Fleuriet J, McLoon LK. Visualizing Neuronal Adaptation Over Time After Treatment of Strabismus. Invest Ophthalmol Vis Sci 2018; 59:5022-5024. [PMID: 30326069 PMCID: PMC6188464 DOI: 10.1167/iovs.18-25651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Jérome Fleuriet
- Washington National Primate Research Center, University of Washington, Seattle, Washington, United States
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Linda K. McLoon
- Department of Ophthalmology and Visual Neurosciences, Minneapolis, Minnesota, United States;
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
20
|
Clemmons DR. Role of IGF-binding proteins in regulating IGF responses to changes in metabolism. J Mol Endocrinol 2018; 61:T139-T169. [PMID: 29563157 DOI: 10.1530/jme-18-0016] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 03/21/2018] [Indexed: 12/22/2022]
Abstract
The IGF-binding protein family contains six members that share significant structural homology. Their principal function is to regulate the actions of IGF1 and IGF2. These proteins are present in plasma and extracellular fluids and regulate access of both IGF1 and II to the type I IGF receptor. Additionally, they have functions that are independent of their ability to bind IGFs. Each protein is regulated independently of IGF1 and IGF2, and this provides an important mechanism by which other hormones and physiologic variables can regulate IGF actions indirectly. Several members of the family are sensitive to changes in intermediary metabolism. Specifically the presence of obesity/insulin resistance can significantly alter the expression of these proteins. Similarly changes in nutrition or catabolism can alter their synthesis and degradation. Multiple hormones such as glucocorticoids, androgens, estrogen and insulin regulate IGFBP synthesis and bioavailability. In addition to their ability to regulate IGF access to receptors these proteins can bind to distinct cell surface proteins or proteins in extracellular matrix and several cellular functions are influenced by these interactions. IGFBPs can be transported intracellularly and interact with nuclear proteins to alter cellular physiology. In pathophysiologic states, there is significant dysregulation between the changes in IGFBP synthesis and bioavailability and changes in IGF1 and IGF2. These discordant changes can lead to marked alterations in IGF action. Although binding protein physiology and pathophysiology are complex, experimental results have provided an important avenue for understanding how IGF actions are regulated in a variety of physiologic and pathophysiologic conditions.
Collapse
Affiliation(s)
- David R Clemmons
- Department of MedicineUNC School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
21
|
Jones JM, Player DJ, Martin NRW, Capel AJ, Lewis MP, Mudera V. An Assessment of Myotube Morphology, Matrix Deformation, and Myogenic mRNA Expression in Custom-Built and Commercially Available Engineered Muscle Chamber Configurations. Front Physiol 2018; 9:483. [PMID: 29867538 PMCID: PMC5951956 DOI: 10.3389/fphys.2018.00483] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/16/2018] [Indexed: 12/28/2022] Open
Abstract
There are several three-dimensional (3D) skeletal muscle (SkM) tissue engineered models reported in the literature. 3D SkM tissue engineering (TE) aims to recapitulate the structure and function of native (in vivo) tissue, within an in vitro environment. This requires the differentiation of myoblasts into aligned multinucleated myotubes surrounded by a biologically representative extracellular matrix (ECM). In the present work, a new commercially available 3D SkM TE culture chamber manufactured from polyether ether ketone (PEEK) that facilitates suitable development of these myotubes is presented. To assess the outcomes of the myotubes within these constructs, morphological, gene expression, and ECM remodeling parameters were compared against a previously published custom-built model. No significant differences were observed in the morphological and gene expression measures between the newly introduced and the established construct configuration, suggesting biological reproducibility irrespective of manufacturing process. However, TE SkM fabricated using the commercially available PEEK chambers displayed reduced variability in both construct attachment and matrix deformation, likely due to increased reproducibility within the manufacturing process. The mechanical differences between systems may also have contributed to such differences, however, investigation of these variables was beyond the scope of the investigation. Though more expensive than the custom-built models, these PEEK chambers are also suitable for multiple use after autoclaving. As such this would support its use over the previously published handmade culture chamber system, particularly when seeking to develop higher-throughput systems or when experimental cost is not a factor.
Collapse
Affiliation(s)
- Julia M Jones
- Division of Surgery and Interventional Science, Institute of Orthopaedics and Musculoskeletal Science, University College London, London, United Kingdom.,School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Darren J Player
- Division of Surgery and Interventional Science, Institute of Orthopaedics and Musculoskeletal Science, University College London, London, United Kingdom.,School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Neil R W Martin
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Andrew J Capel
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Mark P Lewis
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Vivek Mudera
- Division of Surgery and Interventional Science, Institute of Orthopaedics and Musculoskeletal Science, University College London, London, United Kingdom
| |
Collapse
|
22
|
Gattazzo F, De Maria C, Rimessi A, Donà S, Braghetta P, Pinton P, Vozzi G, Bonaldo P. Gelatin-genipin-based biomaterials for skeletal muscle tissue engineering. J Biomed Mater Res B Appl Biomater 2018; 106:2763-2777. [PMID: 29412500 DOI: 10.1002/jbm.b.34057] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/14/2017] [Accepted: 11/18/2017] [Indexed: 01/03/2023]
Abstract
Skeletal muscle engineering aims at tissue reconstruction to replace muscle loss following traumatic injury or in congenital muscle defects. Skeletal muscle can be engineered by using biodegradable and biocompatible scaffolds that favor myogenic cell adhesion and subsequent tissue organization. In this study, we characterized scaffolds made of gelatin cross-linked with genipin, a natural derived cross-linking agent with low cytotoxicity and high biocompatibility, for tissue engineering of skeletal muscle. We generated gelatin-genipin hydrogels with a stiffness of 13 kPa to reproduce the mechanical properties characteristic of skeletal muscle and we show that their surface can be topographically patterned through soft lithography to drive myogenic cells differentiation and unidirectional orientation. Furthermore, we demonstrate that these biomaterials can be successfully implanted in vivo under dorsal mouse skin, showing good biocompatibility and slow biodegradation rate. Moreover, the grafting of this biomaterial in partially ablated tibialis anterior muscle does not impair muscle regeneration, supporting future applications of gelatin-genipin biomaterials in the field of skeletal muscle tissue repair. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2763-2777, 2018.
Collapse
Affiliation(s)
- Francesca Gattazzo
- Department of Molecular Medicine, University of Padova, Padova, 35131, Italy.,Research Center "E. Piaggio," University of Pisa, Pisa, 56122, Italy
| | - Carmelo De Maria
- Research Center "E. Piaggio," University of Pisa, Pisa, 56122, Italy
| | - Alessandro Rimessi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, 44121, Italy
| | - Silvia Donà
- Department of Molecular Medicine, University of Padova, Padova, 35131, Italy
| | - Paola Braghetta
- Department of Molecular Medicine, University of Padova, Padova, 35131, Italy
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, 44121, Italy
| | - Giovanni Vozzi
- Research Center "E. Piaggio," University of Pisa, Pisa, 56122, Italy
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, Padova, 35131, Italy.,CRIBI Biotechnology Center, University of Padova, Padova, 35131, Italy
| |
Collapse
|
23
|
Kasper AM, Turner DC, Martin NRW, Sharples AP. Mimicking exercise in three-dimensional bioengineered skeletal muscle to investigate cellular and molecular mechanisms of physiological adaptation. J Cell Physiol 2017; 233:1985-1998. [DOI: 10.1002/jcp.25840] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 02/02/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Andreas M. Kasper
- Stem Cells, Ageing, and Molecular Physiology (SCAMP) Unit, Exercise Metabolism and Adaptation Research group, Research Institute for Sport and Exercise Sciences (RISES), School of Sport and Exercise Sciences; Liverpool John Moores University; Liverpool UK
| | - Daniel C. Turner
- Stem Cells, Ageing, and Molecular Physiology (SCAMP) Unit, Exercise Metabolism and Adaptation Research group, Research Institute for Sport and Exercise Sciences (RISES), School of Sport and Exercise Sciences; Liverpool John Moores University; Liverpool UK
| | - Neil R. W. Martin
- Musculoskeletal Biology Research Group, School of Sport, Exercise, and Health Sciences; Loughborough University; Loughborough UK
| | - Adam P. Sharples
- Stem Cells, Ageing, and Molecular Physiology (SCAMP) Unit, Exercise Metabolism and Adaptation Research group, Research Institute for Sport and Exercise Sciences (RISES), School of Sport and Exercise Sciences; Liverpool John Moores University; Liverpool UK
| |
Collapse
|
24
|
Smith AS, Passey SL, Martin NR, Player DJ, Mudera V, Greensmith L, Lewis MP. Creating Interactions between Tissue-Engineered Skeletal Muscle and the Peripheral Nervous System. Cells Tissues Organs 2016; 202:143-158. [PMID: 27825148 PMCID: PMC5175300 DOI: 10.1159/000443634] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2015] [Indexed: 12/22/2022] Open
Abstract
Effective models of mammalian tissues must allow and encourage physiologically (mimetic) correct interactions between co-cultured cell types in order to produce culture microenvironments as similar as possible to those that would normally occur in vivo. In the case of skeletal muscle, the development of such a culture model, integrating multiple relevant cell types within a biomimetic scaffold, would be of significant benefit for investigations into the development, functional performance, and pathophysiology of skeletal muscle tissue. Although some work has been published regarding the behaviour of in vitro muscle models co-cultured with organotypic slices of CNS tissue or with stem cell-derived neurospheres, little investigation has so far been made regarding the potential to maintain isolated motor neurons within a 3D biomimetic skeletal muscle culture platform. Here, we review the current state of the art for engineering neuromuscular contacts in vitro and provide original data detailing the development of a 3D collagen-based model for the co-culture of primary muscle cells and motor neurons. The devised culture system promotes increased myoblast differentiation, forming arrays of parallel, aligned myotubes on which areas of nerve-muscle contact can be detected by immunostaining for pre- and post-synaptic proteins. Quantitative RT-PCR results indicate that motor neuron presence has a positive effect on myotube maturation, suggesting neural incorporation influences muscle development and maturation in vitro. The importance of this work is discussed in relation to other published neuromuscular co-culture platforms along with possible future directions for the field.
Collapse
Affiliation(s)
- Alec S.T. Smith
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, UK
- Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, National Centre for Sport and Exercise Medicine (NCSEM) England, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- Department of Bioengineering, University of Washington, Seattle, Wash., USA
| | - Samantha L. Passey
- Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, National Centre for Sport and Exercise Medicine (NCSEM) England, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, Vic., Australia
| | - Neil R.W. Martin
- Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, National Centre for Sport and Exercise Medicine (NCSEM) England, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Darren J. Player
- Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, National Centre for Sport and Exercise Medicine (NCSEM) England, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Vivek Mudera
- Division of Surgery and Interventional Science, UCL Institute of Orthopaedics and Musculoskeletal Science, London, UK
| | - Linda Greensmith
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, UK
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, UK
| | - Mark P. Lewis
- Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, National Centre for Sport and Exercise Medicine (NCSEM) England, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- *Prof. Mark P. Lewis, School of Sport, Exercise and Health Sciences, Loughborough University, Ashby Road, Loughborough LE11 3TU (UK), E-Mail
| |
Collapse
|
25
|
Smith AST, Davis J, Lee G, Mack DL, Kim DH. Muscular dystrophy in a dish: engineered human skeletal muscle mimetics for disease modeling and drug discovery. Drug Discov Today 2016; 21:1387-1398. [PMID: 27109386 DOI: 10.1016/j.drudis.2016.04.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/24/2016] [Accepted: 04/15/2016] [Indexed: 01/16/2023]
Abstract
Engineered in vitro models using human cells, particularly patient-derived induced pluripotent stem cells (iPSCs), offer a potential solution to issues associated with the use of animals for studying disease pathology and drug efficacy. Given the prevalence of muscle diseases in human populations, an engineered tissue model of human skeletal muscle could provide a biologically accurate platform to study basic muscle physiology, disease progression, and drug efficacy and/or toxicity. Such platforms could be used as phenotypic drug screens to identify compounds capable of alleviating or reversing congenital myopathies, such as Duchene muscular dystrophy (DMD). Here, we review current skeletal muscle modeling technologies with a specific focus on efforts to generate biomimetic systems for investigating the pathophysiology of dystrophic muscle.
Collapse
Affiliation(s)
- Alec S T Smith
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Jennifer Davis
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Department of Pathology, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA
| | - Gabsang Lee
- Institute for Cell Engineering, Department of Neurology, The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David L Mack
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, USA
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
26
|
Passey SL, Bozinovski S, Vlahos R, Anderson GP, Hansen MJ. Serum Amyloid A Induces Toll-Like Receptor 2-Dependent Inflammatory Cytokine Expression and Atrophy in C2C12 Skeletal Muscle Myotubes. PLoS One 2016; 11:e0146882. [PMID: 26784349 PMCID: PMC4718684 DOI: 10.1371/journal.pone.0146882] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 12/24/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Skeletal muscle wasting is an important comorbidity of Chronic Obstructive Pulmonary Disease (COPD) and is strongly correlated with morbidity and mortality. Patients who experience frequent acute exacerbations of COPD (AECOPD) have more severe muscle wasting and reduced recovery of muscle mass and function after each exacerbation. Serum levels of the pro-inflammatory acute phase protein Serum Amyloid A (SAA) can rise more than 1000-fold in AECOPD and are predictively correlated with exacerbation severity. The direct effects of SAA on skeletal muscle are poorly understood. Here we have examined SAA effects on pro-inflammatory cachectic cytokine expression (IL-6 and TNFα) and atrophy in C2C12 myotubes. RESULTS SAA increased IL-6 (31-fold) and TNFα (6.5-fold) mRNA levels compared to control untreated cells after 3h of SAA treatment, and increased secreted IL-6 protein at 24h. OxPAPC, a dual TLR2 and TLR4 inhibitor, reduced the response to SAA by approximately 84% compared to SAA alone, and the TLR2 neutralising antibody T2.5 abolished SAA-induced expression of IL-6, indicating that SAA signalling in C2C12 myotubes is primarily via TLR2. SAA also reduced myotube width by 10-13% and induced a 2.5-fold increase in the expression of the muscle atrophy gene Atrogin-1, suggesting direct effects of SAA on muscle wasting. Blocking of TLR2 inhibited the SAA-induced decrease in myotube width and Atrogin-1 gene expression, indicating that SAA induces atrophy through TLR2. CONCLUSIONS These data demonstrate that SAA stimulates a robust pro-inflammatory response in skeletal muscle myotubes via the TLR2-dependent release of IL-6 and TNFα. Furthermore, the observed atrophy effects indicate that SAA could also be directly contributing to the wasting and poor recovery of muscle mass. Therapeutic strategies targeting this SAA-TLR2 axis may therefore ameliorate muscle wasting in AECOPD and a range of other inflammatory conditions associated with loss of muscle mass.
Collapse
Affiliation(s)
- Samantha L. Passey
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Melbourne, Victoria, Australia
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, Victoria, Australia
| | - Steven Bozinovski
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Melbourne, Victoria, Australia
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, Victoria, Australia
| | - Ross Vlahos
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Melbourne, Victoria, Australia
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, Victoria, Australia
| | - Gary P. Anderson
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Melbourne, Victoria, Australia
| | - Michelle J. Hansen
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Melbourne, Victoria, Australia
| |
Collapse
|
27
|
Sharples AP, Polydorou I, Hughes DC, Owens DJ, Hughes TM, Stewart CE. Skeletal muscle cells possess a 'memory' of acute early life TNF-α exposure: role of epigenetic adaptation. Biogerontology 2015; 17:603-17. [PMID: 26349924 DOI: 10.1007/s10522-015-9604-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/27/2015] [Indexed: 12/20/2022]
Abstract
Sufficient quantity and quality of skeletal muscle is required to maintain lifespan and healthspan into older age. The concept of skeletal muscle programming/memory has been suggested to contribute to accelerated muscle decline in the elderly in association with early life stress such as fetal malnutrition. Further, muscle cells in vitro appear to remember the in vivo environments from which they are derived (e.g. cancer, obesity, type II diabetes, physical inactivity and nutrient restriction). Tumour-necrosis factor alpha (TNF-α) is a pleiotropic cytokine that is chronically elevated in sarcopenia and cancer cachexia. Higher TNF-α levels are strongly correlated with muscle loss, reduced strength and therefore morbidity and earlier mortality. We have extensively shown that TNF-α impairs regenerative capacity in mouse and human muscle derived stem cells [Meadows et al. (J Cell Physiol 183(3):330-337, 2000); Foulstone et al. (J Cell Physiol 189(2):207-215, 2001); Foulstone et al. (Exp Cell Res 294(1):223-235, 2004); Stewart et al. (J Cell Physiol 198(2):237-247, 2004); Al-Shanti et al. (Growth factors (Chur, Switzerland) 26(2):61-73, 2008); Saini et al. (Growth factors (Chur, Switzerland) 26(5):239-253, 2008); Sharples et al. (J Cell Physiol 225(1):240-250, 2010)]. We have also recently established an epigenetically mediated mechanism (SIRT1-histone deacetylase) regulating survival of myoblasts in the presence of TNF-α [Saini et al. (Exp Physiol 97(3):400-418, 2012)]. We therefore wished to extend this work in relation to muscle memory of catabolic stimuli and the potential underlying epigenetic modulation of muscle loss. To enable this aim; C2C12 myoblasts were cultured in the absence or presence of early TNF-α (early proliferative lifespan) followed by 30 population doublings in the absence of TNF-α, prior to the induction of differentiation in low serum media (LSM) in the absence or presence of late TNF-α (late proliferative lifespan). The cells that received an early plus late lifespan dose of TNF-α exhibited reduced morphological (myotube number) and biochemical (creatine kinase activity) differentiation vs. control cells that underwent the same number of proliferative divisions but only a later life encounter with TNF-α. This suggested that muscle cells had a morphological memory of the acute early lifespan TNF-α encounter. Importantly, methylation of myoD CpG islands were increased in the early TNF-α cells, 30 population doublings later, suggesting that even after an acute encounter with TNF-α, the cells have the capability of retaining elevated methylation for at least 30 cellular divisions. Despite these fascinating findings, there were no further increases in myoD methylation or changes in its gene expression when these cells were exposed to a later TNF-α dose suggesting that this was not directly responsible for the decline in differentiation observed. In conclusion, data suggest that elevated myoD methylation is retained throughout muscle cells proliferative lifespan as result of early life TNF-α treatment and has implications for the epigenetic control of muscle loss.
Collapse
Affiliation(s)
- Adam P Sharples
- Stem Cells, Ageing and Molecular Physiology Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences (RISES), School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK.
| | - Ioanna Polydorou
- Department of Neuropediatrics and NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany.,UFR des Sciences de la Santé, Université de Versailles Saint-Quentin-en-Yvelines, Montigny-Le-Bretonneux, France
| | - David C Hughes
- Stem Cells, Ageing and Molecular Physiology Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences (RISES), School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK.,Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA, USA
| | - Daniel J Owens
- Stem Cells, Ageing and Molecular Physiology Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences (RISES), School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Thomas M Hughes
- Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan, Ghent, Belgium.,Instituto de Física y Astronomía, Universidad de Valparaíso, Valparaiso, Chile
| | - Claire E Stewart
- Stem Cells, Ageing and Molecular Physiology Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences (RISES), School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
28
|
Sharples AP, Hughes DC, Deane CS, Saini A, Selman C, Stewart CE. Longevity and skeletal muscle mass: the role of IGF signalling, the sirtuins, dietary restriction and protein intake. Aging Cell 2015; 14:511-23. [PMID: 25866088 PMCID: PMC4531066 DOI: 10.1111/acel.12342] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2015] [Indexed: 12/11/2022] Open
Abstract
Advancing age is associated with a progressive loss of skeletal muscle (SkM) mass and function. Given the worldwide aging demographics, this is a major contributor to morbidity, escalating socio-economic costs and ultimately mortality. Previously, it has been established that a decrease in regenerative capacity in addition to SkM loss with age coincides with suppression of insulin/insulin-like growth factor signalling pathways. However, genetic or pharmacological modulations of these highly conserved pathways have been observed to significantly enhance life and healthspan in various species, including mammals. This therefore provides a controversial paradigm in which reduced regenerative capacity of skeletal muscle tissue with age potentially promotes longevity of the organism. This paradox will be assessed and considered in the light of the following: (i) the genetic knockout, overexpression and pharmacological models that induce lifespan extension (e.g. IRS-1/s6K KO, mTOR inhibition) versus the important role of these signalling pathways in SkM growth and adaptation; (ii) the role of the sirtuins (SIRTs) in longevity versus their emerging role in SkM regeneration and survival under catabolic stress; (iii) the role of dietary restriction and its impact on longevity versus skeletal muscle mass regulation; (iv) the crosstalk between cellular energy metabolism (AMPK/TSC2/SIRT1) and survival (FOXO) versus growth and repair of SkM (e.g. AMPK vs. mTOR); and (v) the impact of protein feeding in combination with dietary restriction will be discussed as a potential intervention to maintain SkM mass while increasing longevity and enabling healthy aging.
Collapse
Affiliation(s)
- Adam P. Sharples
- Stem Cells, Ageing & Molecular Physiology Unit; Research Institute for Sport and Exercise Sciences (RISES); Exercise Metabolism and Adaptation Research Group (EMARG); Liverpool John Moores University; Tom Reilly Building Liverpool L3 3AF UK
| | - David C. Hughes
- Stem Cells, Ageing & Molecular Physiology Unit; Research Institute for Sport and Exercise Sciences (RISES); Exercise Metabolism and Adaptation Research Group (EMARG); Liverpool John Moores University; Tom Reilly Building Liverpool L3 3AF UK
- Department of Neurobiology, Physiology and Behavior; University of California; Davis California CA 95616 USA
| | - Colleen S. Deane
- MRC/ARUK Centre of Excellence for Musculoskeletal Ageing Research; School of Medicine; University of Nottingham; Royal Derby Hospital; Derby DE22 3DT UK
- School of Health and Social Care; Bournemouth University; Bournemouth BH12 5BB UK
| | - Amarjit Saini
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm 171 77 Sweden
| | - Colin Selman
- Glasgow Ageing Research Network (GARNER); Institute of Biodiversity, Animal Health and Comparative Medicine; College of Medicine, Veterinary and Life Sciences; University of Glasgow; Glasgow G12 8QQ UK
| | - Claire E. Stewart
- Stem Cells, Ageing & Molecular Physiology Unit; Research Institute for Sport and Exercise Sciences (RISES); Exercise Metabolism and Adaptation Research Group (EMARG); Liverpool John Moores University; Tom Reilly Building Liverpool L3 3AF UK
| |
Collapse
|
29
|
Brown AE, Jones DE, Walker M, Newton JL. Abnormalities of AMPK activation and glucose uptake in cultured skeletal muscle cells from individuals with chronic fatigue syndrome. PLoS One 2015; 10:e0122982. [PMID: 25836975 PMCID: PMC4383615 DOI: 10.1371/journal.pone.0122982] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 02/26/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Post exertional muscle fatigue is a key feature in Chronic Fatigue Syndrome (CFS). Abnormalities of skeletal muscle function have been identified in some but not all patients with CFS. To try to limit potential confounders that might contribute to this clinical heterogeneity, we developed a novel in vitro system that allows comparison of AMP kinase (AMPK) activation and metabolic responses to exercise in cultured skeletal muscle cells from CFS patients and control subjects. METHODS Skeletal muscle cell cultures were established from 10 subjects with CFS and 7 age-matched controls, subjected to electrical pulse stimulation (EPS) for up to 24h and examined for changes associated with exercise. RESULTS In the basal state, CFS cultures showed increased myogenin expression but decreased IL6 secretion during differentiation compared with control cultures. Control cultures subjected to 16 h EPS showed a significant increase in both AMPK phosphorylation and glucose uptake compared with unstimulated cells. In contrast, CFS cultures showed no increase in AMPK phosphorylation or glucose uptake after 16 h EPS. However, glucose uptake remained responsive to insulin in the CFS cells pointing to an exercise-related defect. IL6 secretion in response to EPS was significantly reduced in CFS compared with control cultures at all time points measured. CONCLUSION EPS is an effective model for eliciting muscle contraction and the metabolic changes associated with exercise in cultured skeletal muscle cells. We found four main differences in cultured skeletal muscle cells from subjects with CFS; increased myogenin expression in the basal state, impaired activation of AMPK, impaired stimulation of glucose uptake and diminished release of IL6. The retention of these differences in cultured muscle cells from CFS subjects points to a genetic/epigenetic mechanism, and provides a system to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Audrey E. Brown
- Institute of Cellular Medicine, William Leech Building, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - David E. Jones
- Institute of Cellular Medicine, William Leech Building, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
- Newcastle Hospitals, NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Mark Walker
- Institute of Cellular Medicine, William Leech Building, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
- Newcastle Hospitals, NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Julia L. Newton
- Newcastle Hospitals, NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
- Institute for Ageing and Health, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, United Kingdom
- * E-mail:
| |
Collapse
|
30
|
Huang D, Liu Y, Huang Y, Xie Y, Shen K, Zhang D, Mou Y. Mechanical compression upregulates MMP9 through SMAD3 but not SMAD2 modulation in hypertrophic scar fibroblasts. Connect Tissue Res 2014; 55:391-6. [PMID: 25166894 DOI: 10.3109/03008207.2014.959118] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE Activation of transforming growth factor-β (TGF-β) signaling and matrix metalloproteinases are involved in hypertrophic scar (HS) formation. Compression therapy is known to be an effective approach for the treatment of hypertrophic scarring; however, the underlying molecular mechanisms remain poorly understood. We investigated the relationship between TGF-β signaling activation and matrix metalloproteinases in HS fibroblasts during mechanical compressive stress. MATERIALS AND METHODS Two groups of skin tissue from HS and the nearby normal tissue were obtained from surgical patients and analyzed. Primary fibroblasts from the HS tissue and normal fibroblasts were isolated. Pressure therapy was recapitulated in an in vitro three-dimensional culture model, using mechanical stress produced with the Flexcell FX-4000C Compression Plus System. Quantitative real-time PCR (qPCR) was used to analyze the gene expression profiles in skin tissue and cultured primary cells exposed to compressive stress. Knockdown of SMAD2 and SMAD3 was performed using their specific siRNA in HS and normal fibroblasts subjected to compressive stress, and gene expression was examined by qPCR and Western blot. RESULTS There was a significant upregulation of the mRNA expression of matrix metalloproteinase-2 (MMP2) and MMP9 in primary HS fibroblasts in response to mechanical stress. In contrast, the mRNA levels of collagen I and collagen III were downregulated in primary HS fibroblasts compared with those in the control cells. SiRNA-mediated knockdown of SMAD3 in the primary fibroblasts exposed to mechanical stress resulted in a decrease in the expression of MMP9 compared to control cells. CONCLUSION These results demonstrate that compressive stress upregulates MMP9 by SMAD3 but not by SMAD2.
Collapse
Affiliation(s)
- Dong Huang
- Department of Trauma and Microsurgery, Non-Affiliated Guangdong No. 2 People's Hospital of Southern Medical University , Guangzhou , China and
| | | | | | | | | | | | | |
Collapse
|