1
|
Yadav S, Kumar S, Haritash AK. A comprehensive review of chlorophenols: Fate, toxicology and its treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118254. [PMID: 37295147 DOI: 10.1016/j.jenvman.2023.118254] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/28/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
Chlorophenols represent one of the most abundant families of toxic pollutants emerging from various industrial manufacturing units. The toxicity of these chloroderivatives is proportional to the number and position of chlorine atoms on the benzene ring. In the aquatic environment, these pollutants accumulate in the tissues of living organisms, primarily in fishes, inducing mortality at an early embryonic stage. Contemplating the behaviour of such xenobiotics and their prevalence in different environmental components, it is crucial to understand the methods used to remove/degrade the chlorophenol from contaminated environment. The current review describes the different treatment methods and their mechanism towards the degradation of these pollutants. Both abiotic and biotic methods are investigated for the removal of chlorophenols. Chlorophenols are either degraded through photochemical reactions in the natural environment, or microbes, the most diverse communities on earth, perform various metabolic functions to detoxify the environment. Biological treatment is a slow process because of the more complex and stable structure of pollutants. Advanced Oxidation Processes are effective in degrading such organics with enhanced rate and efficiency. Based on their ability to generate hydroxyl radicals, source of energy, catalyst type, etc., different processes such as sonication, ozonation, photocatalysis, and Fenton's process are discussed for the treatment or remediation efficiency towards the degradation of chlorophenols. The review entails both advantages and limitations of treatment methods. The study also focuses on reclamation of chlorophenol-contaminated sites. Different remediation methods are discussed to restore the degraded ecosystem back in its natural condition.
Collapse
Affiliation(s)
- Shivani Yadav
- Department of Environmental Engineering, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India.
| | - Sunil Kumar
- Solaris Chemtech Industries, Bhuj, Gujarat, India
| | - A K Haritash
- Department of Environmental Engineering, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India
| |
Collapse
|
2
|
Zharikova NV, Korobov VV, Zhurenko EI. Flavin-Dependent Monooxygenases Involved in Bacterial Degradation of Chlorophenols. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822060175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
3
|
Degradation of 2,6-dicholorophenol by Trichoderma longibraciatum Isolated from an industrial Soil Sample in Dammam, Saudi Arabia. Sci Rep 2022; 12:2940. [PMID: 35190624 PMCID: PMC8861096 DOI: 10.1038/s41598-022-07016-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 02/09/2022] [Indexed: 12/03/2022] Open
Abstract
2,6-Dichlorophenol (2,6-DCP) is an aromatic compound with industrial importance in making insecticides, herbicides, and other organic compounds. However, it poses serious health and ecological problems. Microbial degradation of 2,6-DCP has been widely applied due to its effectiveness and eco-friendly characteristics. In this study, Trichoderma longibraciatum was isolated from an industrial soil sample in Dammam, Saudi Arabia using the enrichment method of mineral salt's medium (MSM) amended with 2,6-DCP. Morphological and molecular identification (using the internal transcribed spacer rRNA gene sequencing) of the 2,6-DCP tolerating fungal isolate were charactraized. The fungal isolate has demonstrated a tolerance to 2,6-DCP up to 300 mg/L. Mycelial growth and fungal sporulation were reduced with increasing 2,6-DCP concentrations up to 96 h incubation period. However, after 168 h incubation period, the fungal isolate recorded maximum growth at all the tested 2,6-DCP concentrations up to 150 mg/L. Carboxy methyl cellulase production by tested fungus was decreased by increasing 2,6-DCP concentration up to 75 mg/L. The biodegradation pattern of 2,6-DCP in GM liquid medium using GC–mass analysis as well as the degradation pathway was presented. This study provides a promising fungal isolate that could be used in the bioremediation process for chlorinated phenols in soil.
Collapse
|
4
|
|
5
|
Higher-order epistasis shapes the fitness landscape of a xenobiotic-degrading enzyme. Nat Chem Biol 2019; 15:1120-1128. [DOI: 10.1038/s41589-019-0386-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 09/06/2019] [Indexed: 12/31/2022]
|
6
|
Diversity and structure of the bacterial microbiome of the American dog tick, Dermacentor variabilis, is dominated by the endosymbiont Francisella. Symbiosis 2019. [DOI: 10.1007/s13199-019-00642-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
7
|
Garba ZN, Zhou W, Lawan I, Xiao W, Zhang M, Wang L, Chen L, Yuan Z. An overview of chlorophenols as contaminants and their removal from wastewater by adsorption: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 241:59-75. [PMID: 30981144 DOI: 10.1016/j.jenvman.2019.04.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
In this review article, a significant number of published articles (over three decades) were consulted in order to provide comprehensive literature information about chlorophenols, their sources into the environment, classification, and toxicity, various wastewater treatment methods for their removal as well as the characteristics of their adsorption by various adsorbents. Organizing the scattered available information on a wide range of potentially effective adsorbents in the removal of chlorophenols is the principal objective of this article. Various adsorbents such as natural materials, waste materials from industries, agricultural by-products and biomass-based activated carbon in the removal of various chlorophenols have been compiled and discussed here. Crucial factors like temperature, solution pH, contact time and initial solution concentration are also reported and discussed here. The π-π dispersion interaction mechanism, hydrogen bonding formation mechanism, and the electron donor-acceptor complex mechanism were proposed for the chlorophenols adsorption onto various adsorbents with the help of current literature. Conclusions have been drawn proposing a few suggestions for future research on mitigating the effect of chlorophenols in the environment.
Collapse
Affiliation(s)
- Zaharaddeen N Garba
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian province, China; Department of Chemistry, Ahmadu Bello University Zaria, Nigeria.
| | - Weiming Zhou
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian province, China
| | - Ibrahim Lawan
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian province, China
| | - Wei Xiao
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian province, China
| | - Mingxi Zhang
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian province, China
| | - Liwei Wang
- Chemistry and Chemical Engineering Department, Minjiang University, Fuzhou, Fujian province, 350108, China
| | - Lihui Chen
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian province, China
| | - Zhanhui Yuan
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian province, China.
| |
Collapse
|
8
|
Adak S, Begley TP. Hexachlorobenzene Catabolism Involves a Nucleophilic Aromatic Substitution and Flavin-N5-Oxide Formation. Biochemistry 2019; 58:1181-1183. [DOI: 10.1021/acs.biochem.9b00012] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sanjoy Adak
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843, United States
| | - Tadhg P. Begley
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843, United States
| |
Collapse
|
9
|
Adak S, Begley TP. Flavin-N5-oxide intermediates in dibenzothiophene, uracil, and hexachlorobenzene catabolism. Methods Enzymol 2019; 620:455-468. [DOI: 10.1016/bs.mie.2019.03.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Mikkonen A, Yläranta K, Tiirola M, Dutra LAL, Salmi P, Romantschuk M, Copley S, Ikäheimo J, Sinkkonen A. Successful aerobic bioremediation of groundwater contaminated with higher chlorinated phenols by indigenous degrader bacteria. WATER RESEARCH 2018; 138:118-128. [PMID: 29574199 DOI: 10.1016/j.watres.2018.03.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 03/10/2018] [Accepted: 03/12/2018] [Indexed: 06/08/2023]
Abstract
The xenobiotic priority pollutant pentachlorophenol has been used as a timber preservative in a polychlorophenol bulk synthesis product containing also tetrachlorophenol and trichlorophenol. Highly soluble chlorophenol salts have leaked into groundwater, causing severe contamination of large aquifers. Natural attenuation of higher-chlorinated phenols (HCPs: pentachlorophenol + tetrachlorophenol) at historically polluted sites has been inefficient, but a 4-year full scale in situ biostimulation of a chlorophenol-contaminated aquifer by circulation and re-infiltration of aerated groundwater was remarkably successful: pentachlorophenol decreased from 400 μg L-1 to <1 μg L-1 and tetrachlorophenols from 4000 μg L-1 to <10 μg L-1. The pcpB gene, the gene encoding pentachlorophenol hydroxylase - the first and rate-limiting enzyme in the only fully characterised aerobic HCP degradation pathway - was present in up to 10% of the indigenous bacteria already 4 months after the start of aeration. The novel quantitative PCR assay detected the pcpB gene in situ also in the chlorophenol plume of another historically polluted aquifer with no remediation history. Hotspot groundwater HCPs from this site were degraded efficiently during a 3-week microcosm incubation with one-time aeration but no other additives: from 5400 μg L-1 to 1200 μg L-1 and to 200 μg L-1 in lightly and fully aerated microcosms, respectively, coupled with up to 2400% enrichment of the pcpB gene. Accumulation of lower-chlorinated metabolites was observed in neither in situ remediation nor microcosms, supporting the assumption that HCP removal was due to the aerobic degradation pathway where the first step limits the mineralisation rate. Our results demonstrate that bacteria capable of aerobic mineralisation of xenobiotic pentachlorophenol and tetrachlorophenol can be present at long-term polluted groundwater sites, making bioremediation by simple aeration a viable and economically attractive alternative.
Collapse
Affiliation(s)
- Anu Mikkonen
- Department of Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140 Lahti, Finland; Department of Biological and Environmental Science, University of Jyväskylä, Survontie 9 C, 40500 Jyväskylä, Finland.
| | - Kati Yläranta
- Department of Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140 Lahti, Finland
| | - Marja Tiirola
- Department of Biological and Environmental Science, University of Jyväskylä, Survontie 9 C, 40500 Jyväskylä, Finland
| | - Lara Ambrosio Leal Dutra
- Department of Biological and Environmental Science, University of Jyväskylä, Survontie 9 C, 40500 Jyväskylä, Finland
| | - Pauliina Salmi
- Department of Biological and Environmental Science, University of Jyväskylä, Survontie 9 C, 40500 Jyväskylä, Finland
| | - Martin Romantschuk
- Department of Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140 Lahti, Finland; Institute of Environmental Sciences, Kazan Federal University, 420008, Kremlevskaya 18, Kazan, Russia
| | - Shelley Copley
- Cooperative Institute for Research in Environmental Sciences and Molecular, Cellular and Developmental Biology, University of Colorado, CO 80309 Boulder, United States
| | | | - Aki Sinkkonen
- Department of Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140 Lahti, Finland
| |
Collapse
|
11
|
Smułek W, Zdarta A, Kwiczak J, Zgoła-Grześkowiak A, Cybulski Z, Kaczorek E. Environmental biodegradation of halophenols by activated sludge from two different sewage treatment plants. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2017; 52:1240-1246. [PMID: 28910566 DOI: 10.1080/10934529.2017.1356197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Halophenols make a group of aromatic compounds that are resistible to biodegradation by environmental microorganisms. In this study, the biodegradation of 4-bromo-, 4-chloro- and 4-fluorophenols was studied with two types of activated sludges (from a small rural plant and from a bigger municipal plant) as an inoculum. Because of their wide use, surfactants are present in the wastewater and inhibitors enhance the biodegradation of different pollutants; the influence of natural surfactants on halophenols' biodegradation was also tested. Both types of activated sludge contained bacterial strains which were active in the halophenols' biodegradation process. The coexistence of surfactants and halophenols in the wastewater does not prevent microorganisms from effective halophenols' biodegradation. Moreover, surfactants can enhance the effectiveness of halophenols' removal from the environment. Different cell surface modifications of two isolated bacterial strains were observed in the same system of halophenols with or without surfactants. Halophenols and surfactants may also induce changes in bacteria cell surface properties.
Collapse
Affiliation(s)
- Wojciech Smułek
- a Institute of Chemical Technology and Engineering , Poznan University of Technology , Poznan , Poland
| | - Agata Zdarta
- a Institute of Chemical Technology and Engineering , Poznan University of Technology , Poznan , Poland
| | - Joanna Kwiczak
- a Institute of Chemical Technology and Engineering , Poznan University of Technology , Poznan , Poland
| | | | - Zefiryn Cybulski
- c Department of Microbiology , Greater Poland Cancer Centre , Poznan , Poland
| | - Ewa Kaczorek
- a Institute of Chemical Technology and Engineering , Poznan University of Technology , Poznan , Poland
| |
Collapse
|
12
|
Biodegradation of phenol and its derivatives by engineered bacteria: current knowledge and perspectives. World J Microbiol Biotechnol 2017; 33:174. [DOI: 10.1007/s11274-017-2339-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/01/2017] [Indexed: 11/26/2022]
|
13
|
Karich A, Ullrich R, Scheibner K, Hofrichter M. Fungal Unspecific Peroxygenases Oxidize the Majority of Organic EPA Priority Pollutants. Front Microbiol 2017; 8:1463. [PMID: 28848501 PMCID: PMC5552789 DOI: 10.3389/fmicb.2017.01463] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 07/20/2017] [Indexed: 11/18/2022] Open
Abstract
Unspecific peroxygenases (UPOs) are secreted fungal enzymes with promiscuity for oxygen transfer and oxidation reactions. Functionally, they represent hybrids of P450 monooxygenases and heme peroxidases; phylogenetically they belong to the family of heme-thiolate peroxidases. Two UPOs from the basidiomycetous fungi Agrocybe aegerita (AaeUPO) and Marasmius rotula (MroUPO) converted 35 out of 40 compounds listed as EPA priority pollutants, including chlorinated benzenes and their derivatives, halogenated biphenyl ethers, nitroaromatic compounds, polycyclic aromatic hydrocarbons (PAHs) and phthalic acid derivatives. These oxygenations and oxidations resulted in diverse products and—if at all—were limited for three reasons: (i) steric hindrance caused by multiple substitutions or bulkiness of the compound as such (e.g., hexachlorobenzene or large PAHs), (ii) strong inactivation of aromatic rings (e.g., nitrobenzene), and (iii) low water solubility (e.g., complex arenes). The general outcome of our study is that UPOs can be considered as extracellular counterparts of intracellular monooxygenases, both with respect to catalyzed reactions and catalytic versatility. Therefore, they should be taken into consideration as a relevant biocatalytic detoxification and biodegradation tool used by fungi when confronted with toxins, xenobiotics and pollutants in their natural environments.
Collapse
Affiliation(s)
- Alexander Karich
- Department of Bio-and Environmental Sciences, Technische Universität Dresden-International Institute ZittauZittau, Germany
| | - René Ullrich
- Department of Bio-and Environmental Sciences, Technische Universität Dresden-International Institute ZittauZittau, Germany
| | - Katrin Scheibner
- Enzyme Technology Unit, Brandenburg University of TechnologyCottbus, Germany
| | - Martin Hofrichter
- Department of Bio-and Environmental Sciences, Technische Universität Dresden-International Institute ZittauZittau, Germany
| |
Collapse
|
14
|
Agarwal V, Miles ZD, Winter JM, Eustáquio AS, El Gamal AA, Moore BS. Enzymatic Halogenation and Dehalogenation Reactions: Pervasive and Mechanistically Diverse. Chem Rev 2017; 117:5619-5674. [PMID: 28106994 PMCID: PMC5575885 DOI: 10.1021/acs.chemrev.6b00571] [Citation(s) in RCA: 253] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Naturally produced halogenated compounds are ubiquitous across all domains of life where they perform a multitude of biological functions and adopt a diversity of chemical structures. Accordingly, a diverse collection of enzyme catalysts to install and remove halogens from organic scaffolds has evolved in nature. Accounting for the different chemical properties of the four halogen atoms (fluorine, chlorine, bromine, and iodine) and the diversity and chemical reactivity of their organic substrates, enzymes performing biosynthetic and degradative halogenation chemistry utilize numerous mechanistic strategies involving oxidation, reduction, and substitution. Biosynthetic halogenation reactions range from simple aromatic substitutions to stereoselective C-H functionalizations on remote carbon centers and can initiate the formation of simple to complex ring structures. Dehalogenating enzymes, on the other hand, are best known for removing halogen atoms from man-made organohalogens, yet also function naturally, albeit rarely, in metabolic pathways. This review details the scope and mechanism of nature's halogenation and dehalogenation enzymatic strategies, highlights gaps in our understanding, and posits where new advances in the field might arise in the near future.
Collapse
Affiliation(s)
- Vinayak Agarwal
- Center for Oceans and Human Health, Scripps Institution of Oceanography, University of California, San Diego
| | - Zachary D. Miles
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego
| | | | - Alessandra S. Eustáquio
- College of Pharmacy, Department of Medicinal Chemistry & Pharmacognosy and Center for Biomolecular Sciences, University of Illinois at Chicago
| | - Abrahim A. El Gamal
- Center for Oceans and Human Health, Scripps Institution of Oceanography, University of California, San Diego
| | - Bradley S. Moore
- Center for Oceans and Human Health, Scripps Institution of Oceanography, University of California, San Diego
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego
| |
Collapse
|
15
|
|
16
|
Kaczorek E, Smułek W, Zdarta A, Sawczuk A, Zgoła-Grześkowiak A. Influence of saponins on the biodegradation of halogenated phenols. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 131:127-134. [PMID: 27232205 DOI: 10.1016/j.ecoenv.2016.05.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/11/2016] [Accepted: 05/17/2016] [Indexed: 06/05/2023]
Abstract
Biotransformation of aromatic compounds is a challenge due to their low aqueous solubility and sorptive losses. The main obstacle in this process is binding of organic pollutants to the microbial cell surface. To overcome these, we applied saponins from plant extract to the microbial culture, to increase pollutants solubility and enhance diffusive massive transfer. This study investigated the efficiency of Quillaja saponaria and Sapindus mukorossi saponins-rich extracts on biodegradation of halogenated phenols by Raoultella planticola WS2 and Pseudomonas sp. OS2, as an effect of cell surface modification of tested strains. Both strains display changes in inner membrane permeability and cell surface hydrophobicity in the presence of saponins during the process of halogenated phenols biotransformation. This allows them to more efficient pollutants removal from the environment. However, only in case of the Pseudomonas sp. OS2 the addition of surfactants to the culture improved effectiveness of bromo-, chloro- and fluorophenols biodegradation. Also introduction of surfactant allowed higher biodegradability of halogenated phenols and can shorten the process. Therefore this suggests that usage of plant saponins can indicate more successful halogenated phenols biodegradation for selected strains.
Collapse
Affiliation(s)
- Ewa Kaczorek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.
| | - Wojciech Smułek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Agata Zdarta
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Agata Sawczuk
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Agnieszka Zgoła-Grześkowiak
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| |
Collapse
|
17
|
Lin Z, Zhen Z, Wu Z, Yang J, Zhong L, Hu H, Luo C, Bai J, Li Y, Zhang D. The impact on the soil microbial community and enzyme activity of two earthworm species during the bioremediation of pentachlorophenol-contaminated soils. JOURNAL OF HAZARDOUS MATERIALS 2016; 301:35-45. [PMID: 26342149 DOI: 10.1016/j.jhazmat.2015.08.034] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 08/19/2015] [Accepted: 08/20/2015] [Indexed: 06/05/2023]
Abstract
The ecological effect of earthworms on the fate of soil pentachlorophenol (PCP) differs with species. This study addressed the roles and mechanisms by which two earthworm species (epigeic Eisenia fetida and endogeic Amynthas robustus E. Perrier) affect the soil microbial community and enzyme activity during the bioremediation of PCP-contaminated soils. A. robustus removed more soil PCP than did E. foetida. A. robustus improved nitrogen utilisation efficiency and soil oxidation more than did E. foetida, whereas the latter promoted the organic matter cycle in the soil. Both earthworm species significantly increased the amount of cultivable bacteria and actinomyces in soils, enhancing the utilisation rate of the carbon source (i.e. carbohydrates, carboxyl acids, and amino acids) and improving the richness and evenness of the soil microbial community. Additionally, earthworm treatment optimized the soil microbial community and increased the amount of the PCP-4-monooxygenase gene. Phylogenic classification revealed stimulation of indigenous PCP bacterial degraders, as assigned to the families Flavobacteriaceae, Pseudomonadaceae and Sphingobacteriacea, by both earthworms. A. robustus and E. foetida specifically promoted Comamonadaceae and Moraxellaceae PCP degraders, respectively.
Collapse
Affiliation(s)
- Zhong Lin
- College of Agriculture, Guangdong Ocean University, Zhanjiang 524088, PR China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
| | - Zhen Zhen
- College of Agriculture, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zhihao Wu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
| | - Jiewen Yang
- College of Agriculture, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Laiyuan Zhong
- College of Agriculture, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Hanqiao Hu
- College of Agriculture, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Chunling Luo
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Jing Bai
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
| | - Yongtao Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China.
| | - Dayi Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 2YW, UK.
| |
Collapse
|
18
|
Ricken B, Kolvenbach BA, Corvini PFX. Ipso-substitution — the hidden gate to xenobiotic degradation pathways. Curr Opin Biotechnol 2015; 33:220-7. [DOI: 10.1016/j.copbio.2015.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 11/25/2022]
|
19
|
Rathore D, Singh R, Srivastava R. Use of flavins as catalyst for the remediation of halogenated compounds. Appl Biochem Biotechnol 2014; 174:1151-6. [PMID: 24861321 DOI: 10.1007/s12010-014-0994-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 05/19/2014] [Indexed: 11/29/2022]
Abstract
Flavin-containing monooxygenases (FMOs) are an important monooxygenase system present in living organisms starting from eukaryotes to human beings. They are involved in catalysing wide variety of oxygenation reactions including bioremediation process. The central reaction in these enzymes is always the formation of a peroxyflavin intermediate by reaction of reduced flavin with molecular oxygen. The microenvironment of the peroxyflavin regulates the reactive character of the peroxyflavin. Utilizing this aspect of the biology, chemremediation of aromatic halogenated phenols have been initiated and achieved using flavinium perchlorate salt as catalyst in 38 % yield. The flavinium perchlorate during the reaction gets converted to peroxyflavin with H2O2. This method will be useful in the removal of halogens from aromatic halogenated phenols.
Collapse
Affiliation(s)
- Deepshikha Rathore
- Department of Applied Chemistry and Polymer Technology, Delhi Technological University, Bawana Road, Delhi, 110 042, India
| | | | | |
Collapse
|
20
|
Role of Dehalogenases in Aerobic Bacterial Degradation of Chlorinated Aromatic Compounds. J CHEM-NY 2014. [DOI: 10.1155/2014/157974] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This review was conducted to provide an overview of dehalogenases involved in aerobic biodegradation of chlorinated aromatic compounds. Additionally, biochemical and molecular characterization of hydrolytic, reductive, and oxygenolytic dehalogenases was reviewed. This review will increase our understanding of the process of dehalogenation of chlorinated aromatic compounds.
Collapse
|
21
|
de los Cobos-Vasconcelos D, Ruiz-Ordaz N, Galíndez-Mayer J, Poggi-Varaldo H, Juàrez-Ramírez C, Aarón LM. Aerobic biodegradation of a mixture of sulfonated azo dyes by a bacterial consortium immobilized in a two-stage sparged packed-bed biofilm reactor. Eng Life Sci 2011. [DOI: 10.1002/elsc.201000227] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
22
|
Liang B, Jiang J, Zhang J, Zhao Y, Li S. Horizontal transfer of dehalogenase genes involved in the catalysis of chlorinated compounds: evidence and ecological role. Crit Rev Microbiol 2011; 38:95-110. [DOI: 10.3109/1040841x.2011.618114] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
Olaniran AO, Igbinosa EO. Chlorophenols and other related derivatives of environmental concern: properties, distribution and microbial degradation processes. CHEMOSPHERE 2011; 83:1297-306. [PMID: 21531434 DOI: 10.1016/j.chemosphere.2011.04.009] [Citation(s) in RCA: 246] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 04/01/2011] [Accepted: 04/04/2011] [Indexed: 05/24/2023]
Abstract
Chlorophenols are chlorinated aromatic compound structures and are commonly found in pesticide preparations as well as industrial wastes. They are recalcitrant to biodegradation and consequently persistent in the environment. A variety of chlorophenols derivatives compounds are highly toxic, mutagenic and carcinogenic for living organisms. Biological transformation by microorganisms is one of the key remediation options that can be exploited to solve environmental pollution problems caused by these notorious compounds. The key enzymes in the microbial degradation of chlorophenols are the oxygenases and dioxygenases. These enzymes can be engineered for enhanced degradation of highly chlorinated aromatic compounds through directed evolution methods. This review underscores the mechanisms of chlorophenols biodegradation with the view to understanding how bioremediation processes can be optimized for cleaning up chloroaromatic contaminated environments.
Collapse
Affiliation(s)
- Ademola O Olaniran
- Discipline of Microbiology, School of Biochemistry, Genetics and Microbiology, Faculty of Science and Agriculture, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, South Africa.
| | | |
Collapse
|
24
|
Jung C, Crocker F, Eberly J, Indest K. Horizontal gene transfer (HGT) as a mechanism of disseminating RDX-degrading activity among Actinomycete bacteria. J Appl Microbiol 2011; 110:1449-59. [DOI: 10.1111/j.1365-2672.2011.04995.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
25
|
Wang J, Liu G, Lu H, Jin R, Lei T, Zhang W, Yang H. Biodegradation of bromoamine acid using combined airlift loop reactor and biological activated carbon. BIORESOURCE TECHNOLOGY 2011; 102:4366-4369. [PMID: 21247761 DOI: 10.1016/j.biortech.2010.12.083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 12/19/2010] [Accepted: 12/20/2010] [Indexed: 05/30/2023]
Abstract
The biodegradation of bromoamine acid (BAA) in a combined airlift loop reactor (ALR) and biological activated carbon (BAC) system was investigated. The results showed that the ALR using Sphingomonas xenophaga as inoculum and granular activated carbon (GAC) as carrier, could run steadily for over 3 months at less than 950 mg L(-1) BAA. And the efficiencies of BAA decolorization and COD removal in ALR reached about 90% and 50% within 12h, respectively. When it was further aerated for another 12h, the ALR effluent gradually became yellow due to the auto-oxidation of BAA decolorization products which were identified by HPLC-MS. Further biotreatment of the ALR effluent using BAC showed that the efficiency of TOC removal could reach 90%. Moreover, the release efficiencies of Br(-) and SO(4)(2-) were 73.5% and 67.4%, respectively. It indicated that BAC system was effective in the biodegradation of the auto-oxidative BAA decolorization products.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental and Biological Science and Technology, Dalian 116024, China
| | | | | | | | | | | | | |
Collapse
|
26
|
Kim HJ, Du W, Ismagilov RF. Complex function by design using spatially pre-structured synthetic microbial communities: degradation of pentachlorophenol in the presence of Hg(ii). Integr Biol (Camb) 2011; 3:126-33. [PMID: 20717565 PMCID: PMC3005148 DOI: 10.1039/c0ib00019a] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Naturally occurring microbes perform a variety of useful functions, with more complex processes requiring multiple functions performed by communities of multiple microbes. Synthetic biology via genetic engineering may be used to achieve desired multiple functions, e.g. multistep chemical and biological transformations, by adding genes to a single organism, but this is sometimes not possible due to incompatible metabolic requirements or not desirable in certain applications, especially in medical or environmental applications. Achieving multiple functions by mixing microbes that have not evolved to function together may not work due to competition of microbes, or lack of interactions among microbes. In nature, microbial communities are commonly spatially structured. Here, we tested whether spatial structure can be used to create a community of microbes that can perform a function they do not perform individually or when simply mixed. We constructed a core-shell fiber with Sphingobium chlorophenolicum, a pentachlorophenol (PCP) degrader, in the core layer and Ralstonia metallidurans, a mercuric ion (Hg(ii)) reducer, in the shell layer as a structured community using microfluidic laminar flow techniques. We applied a mixture of PCP and Hg(ii) to either a simple well-mixed culture broth (i.e. the unstructured community) or the spatially structured core-shell fibers. We found that without spatial structure, the community was unable to degrade PCP in the presence of Hg(ii) because S. chlorophenolicum is sensitive to Hg(ii). In contrast, with spatial structure in a core-shell fiber system, S. chlorophenolicum in a core layer was protected by R. metallidurans deposited in a shell layer, and the community was able to completely remove both PCP and Hg(ii) from a mixture. The appropriate size of the core-shell fiber was determined by the Damköhler number-the timescale of removal of Hg(ii) was on the same order of the timescale of diffusion of Hg(ii) through the outer layer when the shell layer was on the order of ~200 μm. Ultimately, with the ease of a child putting together 'Legos' to build a complex structure, using this approach one may be able to put together microorganisms to build communities that perform functions in vitro or even in vivo, e.g. as in a "microbiome on a pill".
Collapse
Affiliation(s)
- Hyun Jung Kim
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | | | | |
Collapse
|
27
|
Yu Y, Qiu L, Wu H, Tang Y, Yu Y, Li X, Liu D. Degradation of zearalenone by the extracellular extracts of Acinetobacter sp. SM04 liquid cultures. Biodegradation 2010; 22:613-22. [DOI: 10.1007/s10532-010-9435-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 11/02/2010] [Indexed: 11/27/2022]
|
28
|
Analysis of two gene clusters involved in the degradation of 4-fluorophenol by Arthrobacter sp. strain IF1. Appl Environ Microbiol 2009; 75:7767-73. [PMID: 19837837 DOI: 10.1128/aem.00171-09] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Arthrobacter sp. strain IF1 is able to grow on 4-fluorophenol (4-FP) as a sole source of carbon and energy. To clone the 4-FP degradation genes, DNA libraries were constructed and screened with a probe obtained by PCR using primers designed on the basis of conserved regions of aromatic two-component monooxygenases. Sequencing of positive clones yielded two gene clusters, each harboring a gene encoding a monooxygenase with high sequence similarity to the oxygenase component of 4-nitrophenol and 4-chlorophenol monooxygenase systems. Both these monooxygenase genes were differentially expressed during growth on 4-FP, as revealed by Northern blotting and reverse transcription-PCR. One cluster also contained a gene for a flavin reductase. The monooxygenase and reductase were purified from Escherichia coli cells expressing the corresponding genes, and together they catalyzed NADH-dependent hydroxylation and dehalogenation of 4-halophenols. The results indicate that strain IF1 transforms 4-FP to hydroquinone by a two-component monooxygenase system of which one component provides reduced flavin adenine dinucleotide at the expense of NADH and the other catalyzes para-hydroxylation of 4-FP and other 4-substituted phenols.
Collapse
|
29
|
Molecular characteristics of xenobiotic-degrading sphingomonads. Appl Microbiol Biotechnol 2008; 81:793-811. [PMID: 19002456 DOI: 10.1007/s00253-008-1752-3] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 10/06/2008] [Accepted: 10/15/2008] [Indexed: 10/21/2022]
Abstract
The genus Sphingomonas (sensu latu) belongs to the alpha-Proteobacteria and comprises strictly aerobic chemoheterotrophic bacteria that are widespread in various aquatic and terrestrial environments. The members of this genus are often isolated and studied because of their ability to degrade recalcitrant natural and anthropogenic compounds, such as (substituted) biphenyl(s) and naphthalene(s), fluorene, (substituted) phenanthrene(s), pyrene, (chlorinated) diphenylether(s), (chlorinated) furan(s), (chlorinated) dibenzo-p-dioxin(s), carbazole, estradiol, polyethylene glycols, chlorinated phenols, nonylphenols, and different herbicides and pesticides. The metabolic versatility of these organisms suggests that they have evolved mechanisms to adapt quicker and/or more efficiently to the degradation of novel compounds in the environment than members of other bacterial genera. Comparative analyses demonstrate that sphingomonads generally use similar degradative pathways as other groups of microorganisms but deviate from competing microorganisms by the existence of multiple hydroxylating oxygenases and the conservation of specific gene clusters. Furthermore, there is increasing evidence for the existence of plasmids that only can be disseminated among sphingomonads and which undergo after conjugative transfer pronounced rearrangements.
Collapse
|