1
|
Ewere EE, White S, Mauleon R, Benkendorff K. Soil microbial communities and degradation of pesticides in greenhouse effluent through a woodchip bioreactor. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124561. [PMID: 39019308 DOI: 10.1016/j.envpol.2024.124561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 07/05/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
Pesticides, including insecticides and fungicides, are major contaminants in the effluent from intensive agricultural systems, such as greenhouses. Because of their constant use and persistence, some pesticides can accumulate in soil and/or run off into adjacent waterways. Microbial communities in soil can degrade some pesticides, and bioreactors with enhanced microbial communities have the potential to facilitate decontamination before the effluent is released into the environment. In this study, we sampled the soil along a gradient from immediately below greenhouses, into, through and below a bioreactor. Multi-analyte pesticide screening was undertaken along with shotgun metagenomic sequencing, to assess microbial community taxonomic profiles and metabolic pathway responses for functional analysis. Two insecticides (imidacloprid and fipronil) and nine fungicides were identified in the soil samples, with a general decrease in most pesticides with increasing distance from the greenhouses. Diversity indexes of taxonomic profiles show changes in the microbial community along the gradient. In particular, microbial communities were significantly different in the bioreactor, with lower Shannon diversity compared to immediately below the greenhouses, in the channels leading into the bioreactor and further downstream. Metabolic pathway analysis revealed significant changes in a wide range of core housekeeping genes such as protein/amino acid synthesis and lipid/fatty acid biosynthesis among the sampling sites. The result demonstrates that the composition and potential functional pathways of the microbial community shifted towards an increased tendency for phytol and contaminant degradation in the bioreactor, facilitated by high organic matter content. This highlights the potential to use enhanced microbial communities within bioreactors to reduce contamination by some pesticides in sediment receiving run-off from greenhouses.
Collapse
Affiliation(s)
- Endurance E Ewere
- National Marine Science Centre, Southern Cross University, Coffs Harbour, NSW, 2450, Australia
| | - Shane White
- National Marine Science Centre, Southern Cross University, Coffs Harbour, NSW, 2450, Australia
| | - Ramil Mauleon
- Faculty of Science and Engineering, Southern Cross University, East Lismore, NSW, 2480, Australia
| | - Kirsten Benkendorff
- National Marine Science Centre, Southern Cross University, Coffs Harbour, NSW, 2450, Australia.
| |
Collapse
|
2
|
Yang J, Li G, Yang Y. Unraveling soil geochemical, geophysical, and microbial determinants of the vertical distribution of organic phosphorus pesticide pollutants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124946. [PMID: 39265765 DOI: 10.1016/j.envpol.2024.124946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Pesticide contamination has emerged as a global threat to humans. Here, we investigate the soil distribution pattern of organic phosphorus pesticide contamination at a pesticide manufacturing site in northern China, exploring their relationships with soil properties and microbial communities. The concentrations of four organic phosphorus pesticides (i.e., phorate, terbuthion, fenitrothion, and parathion) decreased substantially with soil depths from the surface down to 2 m. However, terbuthion, fenitrothion, and parathion had second-peak concentrations at a depth of 8 m. The concentrations of those organic phosphorus pesticides were negatively correlated with soil water content, but positively correlated with sulfide, pH, and total phosphorus. The distribution patterns of organic phosphorus pesticides closely aligned with that of soil organic matter and clay minerals, especially in the presence of montmorillonite, kaolinite, and chlorite. Various bacterial genera known to degrade organic phosphorus pesticides, such as Flavobacterium, Bacillus, Acinetobacter, Lactobacillus, Pseudomonas, Sphingomonas, and Thiobacillus, were correlated with these pesticides. Since these genera were among the top 50 abundant genera in our samples, they might play a significant role in the degradation of organic phosphorus pesticides. Together, this study unveils previously unrecognized pesticide-soil-microbe interactions, thus providing an important knowledge basis for environmental remediation strategies.
Collapse
Affiliation(s)
- Jie Yang
- School of Environment, Tsinghua University, Beijing, 100084, China; National Engineering Laboratory for Site Remediation Technologies, Beijing, 100015, China
| | - Guanghe Li
- School of Environment, Tsinghua University, Beijing, 100084, China; National Engineering Laboratory for Site Remediation Technologies, Beijing, 100015, China
| | - Yunfeng Yang
- School of Environment, Tsinghua University, Beijing, 100084, China; Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| |
Collapse
|
3
|
Guerrero Ramírez JR, Ibarra Muñoz LA, Balagurusamy N, Frías Ramírez JE, Alfaro Hernández L, Carrillo Campos J. Microbiology and Biochemistry of Pesticides Biodegradation. Int J Mol Sci 2023; 24:15969. [PMID: 37958952 PMCID: PMC10649977 DOI: 10.3390/ijms242115969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Pesticides are chemicals used in agriculture, forestry, and, to some extent, public health. As effective as they can be, due to the limited biodegradability and toxicity of some of them, they can also have negative environmental and health impacts. Pesticide biodegradation is important because it can help mitigate the negative effects of pesticides. Many types of microorganisms, including bacteria, fungi, and algae, can degrade pesticides; microorganisms are able to bioremediate pesticides using diverse metabolic pathways where enzymatic degradation plays a crucial role in achieving chemical transformation of the pesticides. The growing concern about the environmental and health impacts of pesticides is pushing the industry of these products to develop more sustainable alternatives, such as high biodegradable chemicals. The degradative properties of microorganisms could be fully exploited using the advances in genetic engineering and biotechnology, paving the way for more effective bioremediation strategies, new technologies, and novel applications. The purpose of the current review is to discuss the microorganisms that have demonstrated their capacity to degrade pesticides and those categorized by the World Health Organization as important for the impact they may have on human health. A comprehensive list of microorganisms is presented, and some metabolic pathways and enzymes for pesticide degradation and the genetics behind this process are discussed. Due to the high number of microorganisms known to be capable of degrading pesticides and the low number of metabolic pathways that are fully described for this purpose, more research must be conducted in this field, and more enzymes and genes are yet to be discovered with the possibility of finding more efficient metabolic pathways for pesticide biodegradation.
Collapse
Affiliation(s)
- José Roberto Guerrero Ramírez
- Instituto Tecnológico de Torreón, Tecnológico Nacional de México, Torreon 27170, Coahuila, Mexico; (J.R.G.R.); (J.E.F.R.); (L.A.H.)
| | - Lizbeth Alejandra Ibarra Muñoz
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreon 27275, Coahuila, Mexico; (L.A.I.M.); (N.B.)
| | - Nagamani Balagurusamy
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreon 27275, Coahuila, Mexico; (L.A.I.M.); (N.B.)
| | - José Ernesto Frías Ramírez
- Instituto Tecnológico de Torreón, Tecnológico Nacional de México, Torreon 27170, Coahuila, Mexico; (J.R.G.R.); (J.E.F.R.); (L.A.H.)
| | - Leticia Alfaro Hernández
- Instituto Tecnológico de Torreón, Tecnológico Nacional de México, Torreon 27170, Coahuila, Mexico; (J.R.G.R.); (J.E.F.R.); (L.A.H.)
| | - Javier Carrillo Campos
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Chihuahua 31453, Chihuahua, Mexico
| |
Collapse
|
4
|
Identification of two possible metabolic pathways responsible for the biodegradation of 3, 5, 6-trichloro-2-pyridinol in Micrococcus luteus ML. Biodegradation 2023; 34:371-381. [PMID: 36879077 DOI: 10.1007/s10532-023-10023-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/06/2023] [Indexed: 03/08/2023]
Abstract
3, 5, 6-Trichloro-2-pyridinol (TCP) is a metabolite of the insecticide chlorpyrifos and the herbicide triclopyr, and it is higher toxic than the parent compounds. Microbially-mediated mineralization appears to be the primary degradative pathway and the important biological process of detoxification. However, little information is available on TCP complete metabolic pathways and mechanisms. In this study, the degradation of TCP was studied with a novel strain Micrococcus luteus ML isolated from a stable TCP degrading microbiota. Strain ML was capable of degrading 61.6% of TCP (50 mg/L) and 35.4% of chlorpyrifos (50 mg/L) at 24 h and 48 h under the optimal conditions (temperature: 35 °C; pH: 7.0), respectively. It could also degrade 3, 5-dichloro-2-pyridone, 6-chloropyridin-2-ol, 2-hydroxypyridine and phoxim when provided as sole carbon and energy sources. Seven TCP intermediate metabolites were detected in strain ML and two possible degradation pathways of TCP were proposed on the basis of LC-MS analysis. Both the hydrolytic-oxidative dechlorination pathway and the denitrification pathway might be involved in TCP biodegradation by strain ML. To the best of our knowledge, this is the first report on two different pathways responsible for TCP degradation in one strain, and this finding also provides novel information for studying the metabolic mechanism of TCP in pure culture.
Collapse
|
5
|
Sun M, Xu W, Zhang W, Guang C, Mu W. Microbial elimination of carbamate pesticides: specific strains and promising enzymes. Appl Microbiol Biotechnol 2022; 106:5973-5986. [PMID: 36063179 DOI: 10.1007/s00253-022-12141-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/02/2022]
Abstract
Carbamate pesticides are widely used in the environment, and compared with other pesticides in nature, they are easier to decompose and have less durability. However, due to the improper use of carbamate pesticides, some nontarget organisms still may be harmed. To this end, it is necessary to investigate effective removal or elimination methods for carbamate pesticides. Current effective elimination methods could be divided into four categories: physical removal, chemical reaction, biological degradation, and enzymatic degradation. Physical removal primarily includes elution, adsorption, and supercritical fluid extraction. The chemical reaction includes Fenton oxidation, photo-radiation, and net electron reduction. Biological degradation is an environmental-friendly manner, which achieves degradation by the metabolism of microorganisms. Enzymatic degradation is more promising due to its high substrate specificity and catalytic efficacy. All in all, this review primarily summarizes the property of carbamate pesticides and the traditional degradation methods as well as the promising biological elimination. KEY POINTS: • The occurrence and toxicity of carbamate pesticides were shown. • Biological degradation strains against carbamate pesticides were presented. • Promising enzymes responsible for the degradation of carbamates were discussed.
Collapse
Affiliation(s)
- Minwen Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Cuie Guang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.,International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
6
|
ZHU JIANGWEI, ZHAO YAN, LI XIAOLOU, FU LI. Characteristics of two terbutylazine-degrading bacteria and the construction of a live bacterial agent for effective degradation of terbutylazine in soil. AN ACAD BRAS CIENC 2022; 94:e20200658. [DOI: 10.1590/0001-3765202220200658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 12/18/2020] [Indexed: 11/21/2022] Open
Affiliation(s)
| | - YAN ZHAO
- National Institute of Quality Inspection and Research on Product in Shanghai, China
| | - XIAOLOU LI
- Sichuan Vocational and Technological College, China
| | - LI FU
- Hangzhou Dianzi University, China
| |
Collapse
|
7
|
Biodegradation and metabolic pathway of sulfamethoxazole by Sphingobacterium mizutaii. Sci Rep 2021; 11:23130. [PMID: 34848765 PMCID: PMC8632973 DOI: 10.1038/s41598-021-02404-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/06/2021] [Indexed: 11/24/2022] Open
Abstract
Sulfamethoxazole (SMX) is the most commonly used antibiotic in worldwide for inhibiting aquatic animal diseases. However, the residues of SMX are difficult to eliminate and may enter the food chain, leading to considerable threats on human health. The bacterial strain Sphingobacterium mizutaii LLE5 was isolated from activated sludge. This strain could utilize SMX as its sole carbon source and degrade it efficiently. Under optimal degradation conditions (30.8 °C, pH 7.2, and inoculum amount of 3.5 × 107 cfu/mL), S. mizutaii LLE5 could degrade 93.87% of 50 mg/L SMX within 7 days. Four intermediate products from the degradation of SMX were identified and a possible degradation pathway based on these findings was proposed. Furthermore, S. mizutaii LLE5 could also degrade other sulfonamides. This study is the first report on (1) degradation of SMX and other sulfonamides by S. mizutaii, (2) optimization of biodegradation conditions via response surface methodology, and (3) identification of sulfanilamide, 4-aminothiophenol, 5-amino-3-methylisoxazole, and aniline as metabolites in the degradation pathway of SMX in a microorganism. This strain might be useful for the bioremediation of SMX-contaminated environment.
Collapse
|
8
|
Zhu J, Zhao Y, Li X, Wu L, Fu LI, Yang N, Yin J, Huang R. Isolation of 2 simazine-degrading bacteria and development of a microbial agent for bioremediation of simazine pollution. AN ACAD BRAS CIENC 2021; 93:e20210373. [PMID: 34644724 DOI: 10.1590/0001-3765202120210373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/27/2021] [Indexed: 11/22/2022] Open
Abstract
Simazine was one of the most commonly used herbicides and was widely used to control broadleaf weeds in agriculture and forestry. Its widespread use had caused wide public concern for its high ecological toxicity. In order to remove simazine residues, 2 strains capable of effectively degrading simazine were isolated from the soil and named SIMA-N5 and SIMA-N9. SIMA-N5 was identified as Bacillus licheniformis by 16SrRNA sequence analysis, and SIMA-N9 was Bacillus altitudinis. According to the degradation ratio of simazine in a certain period of time, the degradation ability of different strains was evaluated. The degradation efficiency of simazine (5 mg/L) by SIMA-N9 could reach about 98% in 5d, and the strain SIMA-N5 could reach 94% under the same conditions. In addition, the addition of Pennisetum rhizosphere soil during the process of degrading simazine by strain SIMA-N9 could effectively improve the degradation efficiency. The strain SIMA-N9 has been developed as a microbial agent for the bioremediation of simazine contamination in soil. The new microbial agent developed by using SIMA-N9 has achieved satisfactory application effects. Based on the research results already obtained in this study, it was considered that strain SIMA-N9 and its live bacterial agent could play an important role in bioremediation of simazine pollution. This study could not only provide a set of solutions to the simazine pollution, but also provide a reference for the treatment of other pesticide pollution.
Collapse
Affiliation(s)
- Jiangwei Zhu
- Nanjing Forestry University, Co-Innovation Center for Sustainable Forestry in Southern China, No. 159, Longpan Road, 210037, Nanjing, China
| | - Yan Zhao
- Shanghai Institute of Quality Inspection and Technical Research, No. 381, Cangwu Road, Xuhui District, 200233, Shanghai, China
| | - Xiaolou Li
- Sichuan Vocational and Technological College, Architecture and Environmental Engineering Department, No. 1, Xuefu North Road, 629000, Suining, China
| | - Lei Wu
- Shandong Medical College, Department of Medical Examination, No. 5460, Erhuan'nan Road, 250002, Jinan, China
| | - L I Fu
- Hangzhou Dianzi University, College of Materials and Environmental Engineering, No. 1158, No. 2 Baiyang Street, 310018, Hangzhou, China
| | - Ning Yang
- Ji'nan Landscape Flower and Plantlet Breeding Center, No. 30899, Jingshi East Road, 250103, Jinan, China
| | - Jun Yin
- Pudong Agrotechnology Extension Center, No. 386, Pailou Road, 201201, Shanghai, China
| | - Rong Huang
- Pudong Agrotechnology Extension Center, No. 386, Pailou Road, 201201, Shanghai, China
| |
Collapse
|
9
|
Lin Z, Pang S, Zhang W, Mishra S, Bhatt P, Chen S. Degradation of Acephate and Its Intermediate Methamidophos: Mechanisms and Biochemical Pathways. Front Microbiol 2020; 11:2045. [PMID: 33013750 PMCID: PMC7461891 DOI: 10.3389/fmicb.2020.02045] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/03/2020] [Indexed: 11/28/2022] Open
Abstract
Acephate is an organophosphate pesticide that has been widely used to control insect pests in agricultural fields for decades. However, its use has been partially restricted in many countries due to its toxic intermediate product methamidophos. Long term exposure to acephate and methamidophos in non-target organisms results in severe poisonous effects, which has raised public concern and demand for the removal of these pollutants from the environment. In this paper, the toxicological effects of acephate and/or methamidophos on aquatic and land animals, including humans are reviewed, as these effects promote the necessity of removing acephate from the environment. Physicochemical degradation mechanisms of acephate and/or methamidophos are explored and explained, such as photo-Fenton, ultraviolet/titanium dioxide (UV/TiO2) photocatalysis, and ultrasonic ozonation. Compared with physicochemical methods, the microbial degradation of acephate and methamidophos is emerging as an eco-friendly method that can be used for large-scale treatment. In recent years, microorganisms capable of degrading methamidophos or acephate have been isolated, including Hyphomicrobium sp., Penicillium oxalicum, Luteibacter jiangsuensis, Pseudomonas aeruginosa, and Bacillus subtilis. Enzymes related to acephate and/or methamidophos biodegradation include phosphotriesterase, paraoxonase 1, and carboxylesterase. Furthermore, several genes encoding organophosphorus degrading enzymes have been identified, such as opd, mpd, and ophc2. However, few reviews have focused on the biochemical pathways and molecular mechanisms of acephate and methamidophos. In this review, the mechanisms and degradation pathways of acephate and methamidophos are summarized in order to provide a new way of thinking for the study of the degradation of acephate and methamidophos.
Collapse
Affiliation(s)
- Ziqiu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shimei Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
10
|
Ding Q, Liu K, Song Z, Sun R, Zhang J, Yin L, Pu Y. Effects of Microcystin-LR on Metabolic Functions and Structure Succession of Sediment Bacterial Community under Anaerobic Conditions. Toxins (Basel) 2020; 12:toxins12030183. [PMID: 32183408 PMCID: PMC7150748 DOI: 10.3390/toxins12030183] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/05/2020] [Accepted: 03/14/2020] [Indexed: 01/02/2023] Open
Abstract
Microcystins (MCs), which are produced by harmful cyanobacteria blooms, pose a serious threat to environmental health. However, the effect of MCs on the bacterial community under anaerobic conditions is still unclear. This study examined the dynamic changes of MC-degrading capacity, metabolic activity, and structure of the bacterial community in lake sediment repeatedly treated with 1 mg/L microcystin-LR (MC-LR) under anaerobic conditions. The results showed that the MC-degrading capacity of the bacterial community was increased nearly three-fold with increased treatment frequency. However, the metabolic profile behaved in exactly opposite trend, in which the overall carbon metabolic activity was inhibited by repeated toxin addition. Microbial diversity was suppressed by the first addition of MC-LR and then gradually recovered. The 16S amplicon sequencing showed that the dominant genera were changed from Exiguobacterium and Acinetobacter to Prosthecobacter, Dechloromonas, and Agrobacterium. Furthermore, the increase in the relative abundance of Dechloromonas, Pseudomonas, Hydrogenophaga, and Agrobacterium was positively correlated with the MC-LR treatment times. This indicates that they might be responsible for MC degradation under anaerobic conditions. Our findings reveal the relationship between MC-LR and the sediment bacterial community under anaerobic conditions and indicate that anaerobic biodegradation is an effective and promising method to remediate MCs pollution.
Collapse
Affiliation(s)
- Qin Ding
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing 210009, China; (Q.D.)
| | - Kaiyan Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing 210009, China; (Q.D.)
| | - Zhiquan Song
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697, USA
| | - Rongli Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing 210009, China; (Q.D.)
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing 210009, China; (Q.D.)
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing 210009, China; (Q.D.)
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing 210009, China; (Q.D.)
- Correspondence: ; Tel.: +86-25-83272582
| |
Collapse
|
11
|
Ekram MAE, Sarker I, Rahi MS, Rahman MA, Saha AK, Reza MA. Efficacy of soil-borne Enterobacter
sp. for carbofuran degradation: HPLC quantitation of degradation rate. J Basic Microbiol 2020; 60:390-399. [DOI: 10.1002/jobm.201900570] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/22/2020] [Accepted: 02/01/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Md. Akhtar-E Ekram
- Molecular Biology and Protein Science Laboratory, Department of Genetic Engineering and Biotechnology; University of Rajshahi; Rajshahi Bangladesh
| | - Indrani Sarker
- Molecular Biology and Protein Science Laboratory, Department of Genetic Engineering and Biotechnology; University of Rajshahi; Rajshahi Bangladesh
| | - Md. Sifat Rahi
- Department of Genetic Engineering and Biotechnology; Jashore University of Science and Technology; Jashore Bangladesh
| | - Md. Atikur Rahman
- Molecular Biology and Protein Science Laboratory, Department of Genetic Engineering and Biotechnology; University of Rajshahi; Rajshahi Bangladesh
| | - Ananda K. Saha
- Department of Zoology; University of Rajshahi; Rajshahi Bangladesh
| | - Md. Abu Reza
- Molecular Biology and Protein Science Laboratory, Department of Genetic Engineering and Biotechnology; University of Rajshahi; Rajshahi Bangladesh
| |
Collapse
|
12
|
Shi T, Fang L, Qin H, Wu X, Li QX, Hua R. Minute-Speed Biodegradation of Organophosphorus Insecticides by Cupriavidus nantongensis X1 T. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13558-13567. [PMID: 31738544 DOI: 10.1021/acs.jafc.9b06157] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Organophosphorus insecticides (OPs) have been widely used to control agricultural pests, which has raised concerns about OP residues in crops and the environment. In this study, we investigated the degradation kinetics and pathways of 8 OPs by Cupriavidus nantongensis X1T and identified the enzyme via gene cloning and in vitro assays. The degradation half-life of methyl parathion, triazophos, and phoxim was only 5, 9, and 43 min, respectively. It was 46 fold faster than that of triazophos by Bacillus sp. TAP-1, a well-studied triazophos-degrader. Strain X1T completely degraded not only chlorpyrifos, methyl parathion, parathion, fenitrothion, triazophos, and phoxim at 50 mg/L within 48 h but also the phenolic metabolites. This was the fastest degradation of OPs by bacterial whole cells reported thus far. The OPs were first hydrolyzed by an OP hydrolase encoded by the opdB gene in strain X1T, followed by further degradation of the metabolites. The crude enzyme maintained a full activity.
Collapse
Affiliation(s)
- Taozhong Shi
- Key Laboratory for Agri-Food Safety, School of Resource & Environment , Anhui Agricultural University , Hefei , Anhui 230036 , China
| | - Liancheng Fang
- Key Laboratory for Agri-Food Safety, School of Resource & Environment , Anhui Agricultural University , Hefei , Anhui 230036 , China
| | - Han Qin
- Key Laboratory for Agri-Food Safety, School of Resource & Environment , Anhui Agricultural University , Hefei , Anhui 230036 , China
| | - Xiangwei Wu
- Key Laboratory for Agri-Food Safety, School of Resource & Environment , Anhui Agricultural University , Hefei , Anhui 230036 , China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering , University of Hawaii at Manoa , 1955 East-West Road , Honolulu , Hawaii 96822 , United States
| | - Rimao Hua
- Key Laboratory for Agri-Food Safety, School of Resource & Environment , Anhui Agricultural University , Hefei , Anhui 230036 , China
| |
Collapse
|
13
|
Jiang B, Zhang N, Xing Y, Lian L, Chen Y, Zhang D, Li G, Sun G, Song Y. Microbial degradation of organophosphorus pesticides: novel degraders, kinetics, functional genes, and genotoxicity assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:21668-21681. [PMID: 31129897 DOI: 10.1007/s11356-019-05135-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
Farmland soil sprayed with organophosphorus pesticides (OPs) annually was investigated for the identification and characterization of OP-degrading microorganisms. Six bacterial strains were identified, including Brevundimonas faecalis MA-B12 and Alcaligenes faecalis subsp. parafaecalis MA-B13 for methamidophos degradation, Citrobacter freundii TF-B21 and Ochrobactrum intermedium TF-B23 for trichlorfon degradation, Ochrobactrum intermedium DV-B31 for dichlorvos degradation, and Bacillus cereus for dimethoate degradation. The optimal biodegradation conditions for OPs were obtained at pH 7.0 and incubation temperature ranging from 28 to 37 °C. In an 8-day batch test, biodegradation of the four OPs all followed first-order kinetics, with biodegradation rates ranging from 58.08 to 96.42%. Functional genes responsible for OPs degradation were obtained, including ophB, ampA, opdE, opd, opdA, and mpd. As these strains were indigenous strains isolated from farmland soils, they can be potentially used as bacterial consortium for the bioremediation of mixed OP-contaminated soils. A time-course genotoxicity assessment of the degradation products was done by a bacterial whole-cell bioreporter, revealing that biodegradation of trichlorfon, dichlorvos, and dimethoate resulted a decreased genotoxicity within 5 days, which, however, significantly increased on day 8. The result demonstrated that more toxic products may be produced during the biodegradation processes of OPs, and more attention should be put not only on the pesticides themselves, but also on the toxic effects of their degradation products. To the best of our knowledge, this is for the first time that the genotoxicity of OP degradation products was evaluated by the bioreporter assay, broadening our understanding on the genotoxic risks of OPs during biodegradation process. Graphical Abstract.
Collapse
Affiliation(s)
- Bo Jiang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
| | - Nana Zhang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China.
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China.
| | - Luning Lian
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
| | - Yating Chen
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing, 100084, People's Republic of China
- State Key Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Guanghe Li
- School of Environment, Tsinghua University, Beijing, 100084, People's Republic of China
- State Key Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Guangdong Sun
- School of Environment, Tsinghua University, Beijing, 100084, People's Republic of China
- State Key Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Yizhi Song
- Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK
| |
Collapse
|
14
|
Wang S, Zhang C, Lv Z, Huang H, Cao X, Song Z, Shao M. Degradation of 3,5,6-trichloro-2-pyridinol by a microbial consortium in dryland soil with anaerobic incubation. Biodegradation 2019; 30:161-171. [DOI: 10.1007/s10532-019-09873-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 03/25/2019] [Indexed: 02/05/2023]
|
15
|
Study on the Isolation of Two Atrazine-Degrading Bacteria and the Development of a Microbial Agent. Microorganisms 2019; 7:microorganisms7030080. [PMID: 30875830 PMCID: PMC6463102 DOI: 10.3390/microorganisms7030080] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/03/2019] [Accepted: 03/08/2019] [Indexed: 11/17/2022] Open
Abstract
Two bacteria capable of efficiently degrading atrazine were isolated from soil, and named ATLJ-5 and ATLJ-11. ATLJ-5 and ATLJ-11 were identified as Bacillus licheniformis and Bacillus megaterium, respectively. The degradation efficiency of atrazine (50 mg/L) by strain ATLJ-5 can reach about 98.6% after 7 days, and strain ATLJ-11 can reach 99.6% under the same conditions. The degradation of atrazine is faster when two strains are used in combination. Adding the proper amount of fresh soil during the degradation of atrazine by these two strains can also increase the degradation efficiency. The strains ATLJ-5 and ATLJ-11 have high tolerance to atrazine, and can tolerate at least 1000 mg/L of atrazine. In addition, the strains ATLJ-5 and ATLJ-11 have been successfully made into a microbial agent that can be used to treat atrazine residues in soil. The degradation efficiency of atrazine (50 mg/kg) could reach 99.0% by this microbial agent after 7 days. These results suggest that the strains ATLJ-5 and ATLJ-11 can be used for the treatment of atrazine pollution.
Collapse
|
16
|
ZHU JIANGWEI, ZHAO YAN, RUAN HONGHUA. Comparative study on the biodegradation of chlorpyrifos-methyl by Bacillus megaterium CM-Z19 and Pseudomonas syringae CM-Z6. ACTA ACUST UNITED AC 2019; 91:e20180694. [DOI: 10.1590/0001-3765201920180694] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/26/2018] [Indexed: 11/22/2022]
Affiliation(s)
| | - YAN ZHAO
- Shanghai Institute of Quality Inspection and Technical Research, China
| | | |
Collapse
|
17
|
Zhou S, Song J, Dong W, Mu Y, Zhang Q, Fan Z, Wang Y, Kong D, Zhou Y, Jiang X, Zhao B, Han G, Ruan Z. Nicosulfuron Biodegradation by a Novel Cold-Adapted Strain Oceanisphaera psychrotolerans LAM-WHM-ZC. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10243-10249. [PMID: 29111703 DOI: 10.1021/acs.jafc.7b04022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nicosulfuron is a common environmental pollutant, posing a great threat to aquatic systems and causing significant damage to crops. This study reported a cold-adapted strain Oceanisphaera psychrotolerans LAM-WHM-ZC, which efficiently degrades nicosulfuron over a wide range of temperatures (5 to 40 °C). The Box-Behnken design method was used to optimize the degradation conditions. O. psychrotolerans LAM-WHM-ZC can degrade 92.4% and 74.6% of initially supplemented 100 mg/L nicosulfuron under the optimum and low temperature of 18.1 and 5 °C, respectively, within 7 days. O. psychrotolerans LAM-WHM-ZC was found to be highly efficient in degrading cinosulfuron, chlorsulfuron, rimsulfuron, bensulfuron methyl, and ethametsulfuron methyl. Metabolites from nicosulfuron degradation were identified by UPLC-MS, and a possible degradation pathway was proposed. Furthermore, O. psychrotolerans LAM-WHM-ZC can also degrade nicosulfuron in soil; 78.6% and 67.4% of the initial nicosulfuron supplemented at 50 mg/kg were removed at 18.1 and 5 °C, respectively, within 15 days.
Collapse
Affiliation(s)
- Shan Zhou
- Institute of Agricultural Resources and Regional Planning CAAS , Beijing 100081, China
- Wuhan University , Wuhan 430072, China
| | - Jinlong Song
- Key Laboratory of Control of Quality and Safety for Aquatic Products (Ministry of Agriculture) Chinese Academy of Fishery Sciences , Beijing 100141, China
| | - Weiwei Dong
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University , Wuhan 430070, China
| | - Yingchun Mu
- Key Laboratory of Control of Quality and Safety for Aquatic Products (Ministry of Agriculture) Chinese Academy of Fishery Sciences , Beijing 100141, China
| | - Qi Zhang
- Institute of Agricultural Resources and Regional Planning CAAS , Beijing 100081, China
| | - Ziwen Fan
- Wuhan University , Wuhan 430072, China
| | - Yanwei Wang
- Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture), Biogas Institute of Ministry of Agriculture , Chengdu 610041, China
| | - Delong Kong
- Institute of Agricultural Resources and Regional Planning CAAS , Beijing 100081, China
| | - Yiqing Zhou
- Institute of Agricultural Resources and Regional Planning CAAS , Beijing 100081, China
| | - Xu Jiang
- Institute of Agricultural Resources and Regional Planning CAAS , Beijing 100081, China
| | - Bin Zhao
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University , Wuhan 430070, China
| | - Gang Han
- Key Laboratory of Control of Quality and Safety for Aquatic Products (Ministry of Agriculture) Chinese Academy of Fishery Sciences , Beijing 100141, China
| | - Zhiyong Ruan
- Institute of Agricultural Resources and Regional Planning CAAS , Beijing 100081, China
| |
Collapse
|
18
|
Feng W, Wei Z, Song J, Qin Q, Yu K, Li G, Zhang J, Wu W, Yan Y. Hydrolysis of nicosulfuron under acidic environment caused by oxalate secretion of a novel Penicillium oxalicum strain YC-WM1. Sci Rep 2017; 7:647. [PMID: 28381881 PMCID: PMC5428040 DOI: 10.1038/s41598-017-00228-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 02/15/2017] [Indexed: 11/09/2022] Open
Abstract
A novel Penicillium oxalicum strain YC-WM1, isolated from activated sludge, was found to be capable of completely degrading 100 mg/L of nicosulfuron within six days when incubated in GSM at 33 °C. Nicosulfuron degradation rates were affected by GSM initial pH, nicosulfuron initial concentration, glucose initial concentration, and carbon source. After inoculation, the medium pH was decreased from 7.0 to 4.5 within one day and remained at around 3.5 during the next few days, in which nicosulfuron degraded quickly. Besides, 100 mg/L of nicosulfuron were completely degraded in GSM medium at pH of 3.5 without incubation after 4 days. So, nicosulfuron degradation by YC-WM1 may be acidolysis. Based on HPLC analysis, GSM medium acidification was due to oxalate accumulation instead of lactic acid and oxalate, which was influenced by different carbon sources and had no relationship to nicosulfuron initial concentration. Furthermore, nicosulfuron broke into aminopyrimidine and pyridylsulfonamide as final products and could not be used as nitrogen source and mycelium didn’t increase in GSM medium. Metabolomics results further showed that nicosulfuron degradation was not detected in intracellular. Therefore, oxalate secretion in GSM medium by strain YC-WM1 led to nicosulfuron acidolysis.
Collapse
Affiliation(s)
- Weimin Feng
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zheng Wei
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Insitute of Crop Science/Natonal Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Jinlong Song
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Chinese Academy of fishery sciences, Beijing, 100141, China
| | - Qiao Qin
- Insitute of Crop Science/Natonal Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Kaimin Yu
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guochao Li
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiayu Zhang
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wei Wu
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yanchun Yan
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
19
|
Bacterial community analysis of cypermethrin enrichment cultures and bioremediation of cypermethrin contaminated soils. J Basic Microbiol 2015; 55:819-29. [DOI: 10.1002/jobm.201400805] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/01/2015] [Indexed: 11/07/2022]
|
20
|
Bacterial community analysis in chlorpyrifos enrichment cultures via DGGE and use of bacterial consortium for CP biodegradation. World J Microbiol Biotechnol 2014; 30:2755-66. [PMID: 25008559 DOI: 10.1007/s11274-014-1699-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 06/27/2014] [Indexed: 10/25/2022]
Abstract
The organophosphate pesticide chlorpyrifos (CP) has been used extensively since the 1960s for insect control. However, its toxic effects on mammals and persistence in environment necessitate its removal from contaminated sites, biodegradation studies of CP-degrading microbes are therefore of immense importance. Samples from a Pakistani agricultural soil with an extensive history of CP application were used to prepare enrichment cultures using CP as sole carbon source for bacterial community analysis and isolation of CP metabolizing bacteria. Bacterial community analysis (denaturing gradient gel electrophoresis) revealed that the dominant genera enriched under these conditions were Pseudomonas, Acinetobacter and Stenotrophomonas, along with lower numbers of Sphingomonas, Agrobacterium and Burkholderia. Furthermore, it revealed that members of Bacteroidetes, Firmicutes, α- and γ-Proteobacteria and Actinobacteria were present at initial steps of enrichment whereas β-Proteobacteria appeared in later steps and only Proteobacteria were selected by enrichment culturing. However, when CP-degrading strains were isolated from this enrichment culture, the most active organisms were strains of Acinetobacter calcoaceticus, Pseudomonas mendocina and Pseudomonas aeruginosa. These strains degraded 6-7.4 mg L(-1) day(-1) of CP when cultivated in mineral medium, while the consortium of all four strains degraded 9.2 mg L(-1) day(-1) of CP (100 mg L(-1)). Addition of glucose as an additional C source increased the degradation capacity by 8-14 %. After inoculation of contaminated soil with CP (200 mg kg(-1)) disappearance rates were 3.83-4.30 mg kg(-1) day(-1) for individual strains and 4.76 mg kg(-1) day(-1) for the consortium. These results indicate that these organisms are involved in the degradation of CP in soil and represent valuable candidates for in situ bioremediation of contaminated soils and waters.
Collapse
|
21
|
Ramu S, Seetharaman B. Biodegradation of acephate and methamidophos by a soil bacterium Pseudomonas aeruginosa strain Is-6. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2014; 49:23-34. [PMID: 24138465 DOI: 10.1080/03601234.2013.836868] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The aim of this study was to isolate and characterize a new acephate-degrading bacteria from agricultural soil and to investigate its biodegradation ability and pathway of degradation. A bacterial strain Is-6, isolated from agriculture soil could completely degrade and utilize acephate as the sole carbon, phosphorus and energy sources for growth in M9 medium. Analysis of the 16S rRNA gene sequence and phenotypic analysis suggested that the strain Is-6 was belonging to the genus Pseudomonas aeruginosa. Strain Is-6 could completely degrade acephate (50 mg L(-1)) and its metabolites within 96 h were identified by high-performance liquid chromatography (HPLC) and electron spray ionization-mass spectrometry (ESI-MS) analyses. When exposed to the higher concentration, the strain Is-6 showed 92% degradation of acephate (1000 mg L(-1)) within 7 days of incubation. It could also utilize dimethoate, parathion, methyl parathion, chlorpyrifos and malathion. The inoculation of strain Is-6 (10(7) cells g(-1)) to acephate (50 mg Kg(-1))-treated soil resulted in higher degradation rate than in noninoculated soils. These results highlight the potential of this bacterium to be used in the cleanup of contaminated pesticide waste in the environment.
Collapse
MESH Headings
- Biodegradation, Environmental
- Chromatography, High Pressure Liquid
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- Dose-Response Relationship, Drug
- Insecticides/metabolism
- Molecular Sequence Data
- Organothiophosphorus Compounds/metabolism
- Phosphoramides/metabolism
- Phylogeny
- Pseudomonas aeruginosa/genetics
- Pseudomonas aeruginosa/isolation & purification
- Pseudomonas aeruginosa/metabolism
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- Sequence Analysis, DNA
- Soil Microbiology
- Soil Pollutants/metabolism
- Spectrometry, Mass, Electrospray Ionization
Collapse
Affiliation(s)
- Sasikala Ramu
- a Department of Biotechnology, School of Bioengineering , SRM University, Kattankulathur , Chennai , Tamilnadu , India
| | | |
Collapse
|
22
|
Kim CH, Choi JS, Jang IS, Cho KM. Biodegradation of Chlorpyrifos (CP) by a Newly Isolated Naxibacter sp. Strain CY6 and Its Ability to Degrade CP in Soil. ACTA ACUST UNITED AC 2013. [DOI: 10.7845/kjm.2013.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|