1
|
Zhong C, Chen R, He Y, Hou D, Chen F. Interactions between microbial communities and polymers in hydraulic fracturing water cycle: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174412. [PMID: 38977097 DOI: 10.1016/j.scitotenv.2024.174412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/29/2024] [Accepted: 06/29/2024] [Indexed: 07/10/2024]
Abstract
Hydraulic fracturing (HF) has substantially boosted global unconventional hydrocarbon production but has also introduced various environmental and operational challenges. Understanding the interactions between abundant and diverse microbial communities and chemicals, particularly polymers used for proppant delivery, thickening, and friction reduction, in HF water cycles is crucial for addressing these challenges. This review primarily examined the recent studies conducted in China, an emerging area for HF activities, and comparatively examined studies from other regions. In China, polyacrylamide (PAM) and its derivatives products became key components in hydraulic fracturing fluid (HFF) for unconventional hydrocarbon development. The microbial diversity of unconventional HF water cycles in China was higher compared to North America, with frequent detection of taxa such as Shewanella, Marinobacter, and Desulfobacter. While biodegradation, biocorrosion, and biofouling were common issues across regions, the mechanisms underlying these microbe-polymer interactions differed substantially. Notably, in HF sites in the Sichuan Basin, the use of biocides gradually decreased its efficiency to mitigate adverse microbial activities. High-throughput sequencing proved to be a robust tool that could identify key bioindicators and biodegradation pathways, and help select optimal polymers and biocides, leading to more efficient HFF systems. The primary aim of this study is to raise awareness about the interactions between microorganisms and polymers, providing fresh insights that can inform decisions related to enhanced chemical use and biological control measures at HF sites.
Collapse
Affiliation(s)
- Cheng Zhong
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China; Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu, Sichuan 610500, China
| | - Rong Chen
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China; Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu, Sichuan 610500, China
| | - Yuhe He
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong, China
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing, China
| | - Fu Chen
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China.
| |
Collapse
|
2
|
Kashani M, Engle MA, Kent DB, Gregston T, Cozzarelli IM, Mumford AC, Varonka MS, Harris CR, Akob DM. Illegal dumping of oil and gas wastewater alters arid soil microbial communities. Appl Environ Microbiol 2024; 90:e0149023. [PMID: 38294246 PMCID: PMC10880632 DOI: 10.1128/aem.01490-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/27/2023] [Indexed: 02/01/2024] Open
Abstract
The Permian Basin, underlying southeast New Mexico and west Texas, is one of the most productive oil and gas (OG) provinces in the United States. Oil and gas production yields large volumes of wastewater with complex chemistries, and the environmental health risks posed by these OG wastewaters on sensitive desert ecosystems are poorly understood. Starting in November 2017, 39 illegal dumps, as defined by federal and state regulations, of OG wastewater were identified in southeastern New Mexico, releasing ~600,000 L of fluid onto dryland soils. To evaluate the impacts of these releases, we analyzed changes in soil geochemistry and microbial community composition by comparing soils from within OG wastewater dump-affected samples to unaffected zones. We observed significant changes in soil geochemistry for all dump-affected compared with control samples, reflecting the residual salts and hydrocarbons from the OG-wastewater release (e.g., enriched in sodium, chloride, and bromide). Microbial community structure significantly (P < 0.01) differed between dump and control zones, with soils from dump areas having significantly (P < 0.01) lower alpha diversity and differences in phylogenetic composition. Dump-affected soil samples showed an increase in halophilic and halotolerant taxa, including members of the Marinobacteraceae, Halomonadaceae, and Halobacteroidaceae, suggesting that the high salinity of the dumped OG wastewater was exerting a strong selective pressure on microbial community structure. Taxa with high similarity to known hydrocarbon-degrading organisms were also detected in the dump-affected soil samples. Overall, this study demonstrates the potential for OG wastewater exposure to change the geochemistry and microbial community dynamics of arid soils.IMPORTANCEThe long-term environmental health impacts resulting from releases of oil and gas (OG) wastewater, typically brines with varying compositions of ions, hydrocarbons, and other constituents, are understudied. This is especially true for sensitive desert ecosystems, where soil microbes are key primary producers and drivers of nutrient cycling. We found that releases of OG wastewater can lead to shifts in microbial community composition and function toward salt- and hydrocarbon-tolerant taxa that are not typically found in desert soils, thus altering the impacted dryland soil ecosystem. Loss of key microbial taxa, such as those that catalyze organic carbon cycling, increase arid soil fertility, promote plant health, and affect soil moisture retention, could result in cascading effects across the sensitive desert ecosystem. By characterizing environmental changes due to releases of OG wastewater to soils overlying the Permian Basin, we gain further insights into how OG wastewater may alter dryland soil microbial functions and ecosystems.
Collapse
Affiliation(s)
- Mitra Kashani
- U.S. Geological Survey, Geology, Energy & Minerals Science Center, Reston, Virginia, USA
| | - Mark A. Engle
- Department of Earth, Environmental and Resource Sciences, University of Texas at El Paso, El Paso, Texas, USA
| | - Douglas B. Kent
- U.S. Geological Survey, Earth Systems Processes Division, Menlo Park, California, USA
| | | | - Isabelle M. Cozzarelli
- U.S. Geological Survey, Geology, Energy & Minerals Science Center, Reston, Virginia, USA
| | - Adam C. Mumford
- U.S. Geological Survey, Maryland-Delaware-D.C. Water Science Center, Baltimore, Maryland, USA
| | - Matthew S. Varonka
- U.S. Geological Survey, Geology, Energy & Minerals Science Center, Reston, Virginia, USA
| | - Cassandra R. Harris
- U.S. Geological Survey, Geology, Energy & Minerals Science Center, Reston, Virginia, USA
| | - Denise M. Akob
- U.S. Geological Survey, Geology, Energy & Minerals Science Center, Reston, Virginia, USA
| |
Collapse
|
3
|
Nixon SL, Plominsky AM, Hernandez-Becerra N, Boothman C, Bartlett DH. Microbial communities in freshwater used for hydraulic fracturing are unable to withstand the high temperatures and pressures characteristic of fractured shales. Access Microbiol 2023; 5:000515.v3. [PMID: 37223063 PMCID: PMC10202394 DOI: 10.1099/acmi.0.000515.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/22/2023] [Indexed: 05/25/2023] Open
Abstract
Natural gas is recovered from shale formations by hydraulic fracturing, a process known to create microbial ecosystems in the deep subsurface. Microbial communities that emerge in fractured shales include organisms known to degrade fracturing fluid additives and contribute to corrosion of well infrastructure. In order to limit these negative microbial processes, it is essential to constrain the source of the responsible micro-organisms. Previous studies have identified a number of potential sources, including fracturing fluids and drilling muds, yet these sources remain largely untested. Here, we apply high-pressure experimental approaches to assess whether the microbial community in synthetic fracturing fluid made from freshwater reservoir water can withstand the temperature and pressure conditions of hydraulic fracturing and the fractured shale environment. Using cell enumerations, DNA extraction and culturing, we show that the community can withstand high pressure or high temperature alone, but the combination of both is fatal. These results suggest that initial freshwater-based fracturing fluids are an unlikely source of micro-organisms in fractured shales. These findings indicate that potentially problematic lineages, such as sulfidogenic strains of Halanaerobium that have been found to dominate fractured shale microbial communities, likely derive from other input sources into the downwell environment, such as drilling muds.
Collapse
Affiliation(s)
- Sophie L. Nixon
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
- Department of Earth and Environmental Sciences, University of Manchester, Manchester, UK
| | - Alvaro M. Plominsky
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, San Diego, CA, USA
| | | | - Christopher Boothman
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
- Department of Earth and Environmental Sciences, University of Manchester, Manchester, UK
| | - Douglas H. Bartlett
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
4
|
Luo M, Yang H, Wang K, Song F, He Y, Zhang Y, Zhong C. Coupling iron-carbon micro-electrolysis with persulfate advanced oxidation for hydraulic fracturing return fluid treatment. CHEMOSPHERE 2023; 313:137415. [PMID: 36464016 DOI: 10.1016/j.chemosphere.2022.137415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/18/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Improving the sustainability of the hydraulic fracturing water cycle of unconventional oil and gas development needs an advanced water treatment that can efferently treat flowback and produced water (FPW). In this study, we developed a robust two-stage process that combines flocculation, and iron-carbon micro-electrolysis plus sodium persulfate (ICEPS) advanced oxidation to treat field-based FPW from the Sulige tight gas field, China. Influencing factors and optimal conditions of the flocculation-ICEPS process were investigated. The flocculation-ICEPS system at optimal conditions sufficiently removed the total organic contents (95.71%), suspended solids (92.4%), and chroma (97.5%), but the reaction stoichiometric efficiency (RSE) value was generally less than 5%. The particles and chroma were effectively removed by flocculation, and the organic contents was mainly removed by the ICEPS system. Fourier-transform infrared spectroscopy (FTIR) analysis was performed to track the changes in FPW chemical compositions through the oxidation of the ICEPS process. Multiple analyses demonstrated that PS was involved in the activation of Fe oxides and hydroxides accreted on the surface of the ICE system for FPW treatment, which led to increasing organics removal rate of the ICEPS system compared to the conventional ICE system. Our study suggests that the flocculation-ICEPS system is a promising FPW treatment process, which provides technical and mechanistic foundations for further field application.
Collapse
Affiliation(s)
- Mina Luo
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, China.
| | - Hanchao Yang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, China
| | - Kuntai Wang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, China
| | - Fang Song
- Chengdu Xiyouhuawei Science & Technology Co., Ltd. Chengdu, 610500, China
| | - Yuhe He
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Yunhui Zhang
- College of Environmental Science and Engineering, Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai, 200092, China
| | - Cheng Zhong
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
5
|
Tao Z, Liu C, He Q, Chang H, Ma J. Detection and treatment of organic matters in hydraulic fracturing wastewater from shale gas extraction: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153887. [PMID: 35181355 DOI: 10.1016/j.scitotenv.2022.153887] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/28/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Although shale gas has shown promising potential to alleviate energy crisis as a clean energy resource, more attention has been paid to the harmful environmental impacts during exploitation. It is a critical issue for the management of shale gas wastewater (SGW), especially the organic compounds. This review focuses on analytical methods and corresponding treatment technologies targeting organic matters in SGW. Firstly, detailed information about specific shale-derived organics and related organic compounds in SGW were overviewed. Secondly, the state-of-the art analytical methods for detecting organics in SGW were summarized. The gas chromatography paired with mass spectrometry was the most commonly used technique. Thirdly, relevant treatment technologies for SGW organic matters were systematically explored. Forward osmosis and membrane distillation ranked the top two most frequently used treatment processes. Moreover, quantitative analyses on the removal of general and single organic compounds by treatment technologies were conducted. Finally, challenges for the analytical methods and treatment technologies of organic matters in SGW were addressed. The lack of effective trace organic detection techniques and high cost of treatment technologies are the urgent problems to be solved. Advances in the extraction, detection, identification and disposal of trace organic matters are critical to address the issues.
Collapse
Affiliation(s)
- Zhen Tao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Caihong Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| | - Qiang He
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Haiqing Chang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| |
Collapse
|
6
|
Zhong C, Nesbø CL, von Gunten K, Zhang Y, Shao X, Jin R, Konhauser KO, Goss GG, Martin JW, He Y, Qian PY, Lanoil BD, Alessi DS. Complex impacts of hydraulic fracturing return fluids on soil microbial community respiration, structure, and functional potentials. Environ Microbiol 2022; 24:4108-4123. [PMID: 35416402 DOI: 10.1111/1462-2920.16009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/07/2022] [Indexed: 11/27/2022]
Abstract
The consequences of soils exposed to hydraulic fracturing (HF) return fluid, often collectively termed flowback and produced water (FPW), are poorly understood, even though soils are a common receptor of FPW spills. Here, we investigate the impacts on soil microbiota exposed to FPW collected from the Montney Formation of western Canada. We measured soil respiration, microbial community structure, and functional potentials under FPW exposure across a range of concentrations, exposure time, and soil types (luvisol and chernozem). We find that soil type governs microbial community response upon FPW exposure. Within each soil, FPW exposure led to reduced biotic soil respiration, and shifted microbial community structure and functional potentials. We detect substantially higher species richness and more unique functional genes in FPW-exposed soils than in FPW-unexposed soils, with metagenome-assembled genomes (e.g., Marinobacter persicus) from luvisol soil exposed to concentrated FPW being most similar to genomes from HF/FPW sites. Our data demonstrate the complex impacts of microbial communities following FPW exposure, and highlight the site-specific effects in evaluation of spills and agricultural reuse of FPW on the normal soil functions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Cheng Zhong
- Department of Earth and Atmospheric Sciences, Faculty of Science, University of Alberta, Edmonton, Alberta, T6G 2E3, Canada.,Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, China.,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangzhou, China
| | - Camilla L Nesbø
- Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Konstantin von Gunten
- Department of Earth and Atmospheric Sciences, Faculty of Science, University of Alberta, Edmonton, Alberta, T6G 2E3, Canada
| | - Yifeng Zhang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Xiaoqing Shao
- Department of Physical and Environmental Sciences, University of Toronto, Toronto, Ontario, M1C 1A4, Canada
| | - Rong Jin
- Department of Earth and Atmospheric Sciences, Faculty of Science, University of Alberta, Edmonton, Alberta, T6G 2E3, Canada
| | - Kurt O Konhauser
- Department of Earth and Atmospheric Sciences, Faculty of Science, University of Alberta, Edmonton, Alberta, T6G 2E3, Canada
| | - Greg G Goss
- Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Jonathan W Martin
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Yuhe He
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Pei-Yuan Qian
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, China.,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangzhou, China
| | - Brian D Lanoil
- Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Daniel S Alessi
- Department of Earth and Atmospheric Sciences, Faculty of Science, University of Alberta, Edmonton, Alberta, T6G 2E3, Canada
| |
Collapse
|
7
|
Jew AD, Druhan JL, Ihme M, Kovscek AR, Battiato I, Kaszuba JP, Bargar JR, Brown GE. Chemical and Reactive Transport Processes Associated with Hydraulic Fracturing of Unconventional Oil/Gas Shales. Chem Rev 2022; 122:9198-9263. [PMID: 35404590 DOI: 10.1021/acs.chemrev.1c00504] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hydraulic fracturing of unconventional oil/gas shales has changed the energy landscape of the U.S. Recovery of hydrocarbons from tight, hydraulically fractured shales is a highly inefficient process, with estimated recoveries of <25% for natural gas and <5% for oil. This review focuses on the complex chemical interactions of additives in hydraulic fracturing fluid (HFF) with minerals and organic matter in oil/gas shales. These interactions are intended to increase hydrocarbon recovery by increasing porosities and permeabilities of tight shales. However, fluid-shale interactions result in the dissolution of shale minerals and the release and transport of chemical components. They also result in mineral precipitation in the shale matrix, which can reduce permeability, porosity, and hydrocarbon recovery. Competition between mineral dissolution and mineral precipitation processes influences the amounts of oil and gas recovered. We review the temporal/spatial origins and distribution of unconventional oil/gas shales from mudstones and shales, followed by discussion of their global and U.S. distributions and compositional differences from different U.S. sedimentary basins. We discuss the major types of chemical additives in HFF with their intended purposes, including drilling muds. Fracture distribution, porosity, permeability, and the identity and molecular-level speciation of minerals and organic matter in oil/gas shales throughout the hydraulic fracturing process are discussed. Also discussed are analysis methods used in characterizing oil/gas shales before and after hydraulic fracturing, including permeametry and porosimetry measurements, X-ray diffraction/Rietveld refinement, X-ray computed tomography, scanning/transmission electron microscopy, and laboratory- and synchrotron-based imaging/spectroscopic methods. Reactive transport and spatial scaling are discussed in some detail in order to relate fundamental molecular-scale processes to fluid transport. Our review concludes with a discussion of potential environmental impacts of hydraulic fracturing and important knowledge gaps that must be bridged to achieve improved mechanistic understanding of fluid transport in oil/gas shales.
Collapse
Affiliation(s)
- Adam D Jew
- DOE EFRC─Center for Mechanistic Control of Water-Hydrocarbon-Rock Interactions in Unconventional and Tight Oil Formations, Stanford University, Stanford, California 94305, United States.,Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Jennifer L Druhan
- DOE EFRC─Center for Mechanistic Control of Water-Hydrocarbon-Rock Interactions in Unconventional and Tight Oil Formations, Stanford University, Stanford, California 94305, United States.,Departments of Geology and Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Matthias Ihme
- DOE EFRC─Center for Mechanistic Control of Water-Hydrocarbon-Rock Interactions in Unconventional and Tight Oil Formations, Stanford University, Stanford, California 94305, United States.,Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Anthony R Kovscek
- DOE EFRC─Center for Mechanistic Control of Water-Hydrocarbon-Rock Interactions in Unconventional and Tight Oil Formations, Stanford University, Stanford, California 94305, United States.,Department of Energy Resources Engineering, School of Earth, Energy and Environmental Sciences, Stanford University, Stanford, California 94305-2220, United States
| | - Ilenia Battiato
- DOE EFRC─Center for Mechanistic Control of Water-Hydrocarbon-Rock Interactions in Unconventional and Tight Oil Formations, Stanford University, Stanford, California 94305, United States.,Department of Energy Resources Engineering, School of Earth, Energy and Environmental Sciences, Stanford University, Stanford, California 94305-2220, United States
| | - John P Kaszuba
- Department of Geology and Geophysics and School of Energy Resources, University of Wyoming, Laramie, Wyoming 82071, United States
| | - John R Bargar
- DOE EFRC─Center for Mechanistic Control of Water-Hydrocarbon-Rock Interactions in Unconventional and Tight Oil Formations, Stanford University, Stanford, California 94305, United States.,Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Gordon E Brown
- DOE EFRC─Center for Mechanistic Control of Water-Hydrocarbon-Rock Interactions in Unconventional and Tight Oil Formations, Stanford University, Stanford, California 94305, United States.,Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States.,Department of Geological Sciences, School of Earth, Energy and Environmental Sciences, Stanford University, Stanford, California 94305-2115, United States
| |
Collapse
|
8
|
Zhou S, Peng S, Li Z, Zhang D, Zhu Y, Li X, Hong M, Li W, Lu P. Characterization of microbial communities and functions in shale gas wastewaters and sludge: Implications for pretreatment. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127649. [PMID: 34740504 DOI: 10.1016/j.jhazmat.2021.127649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
As hydraulic fracturing (HF) practices keep expanding in China, a comparative understanding of biological characteristics of flowback and produced waters (FPW) and sludge in impoundments for FPW reserve will help propose appropriate treatment strategies. Therefore, in this study, the microbial communities and functions in impoundments that collected wastewaters from dozens of wells were characterized. The results showed that microbial richness and diversity were significantly increased in sludge compared with those in FPW. The vast majority of microorganisms found in FPW and sludge are organic degraders, providing the possibility of using these indigenous microorganisms to biodegrade organic compounds. Our laboratory findings first show that wastewater pretreatment using these microorganisms was effective, and organic compounds in FPW from different shale formations were removed by 35-68% within 72 h in a wide temperature range (8 - 30 ℃). Meanwhile, highly toxic compounds such as phthalate esters (PAEs), polycyclic aromatic hydrocarbons (PAHs), and petroleum hydrocarbons were effectively eliminated in reactors. The main microorganisms, key functional genes, and putative pathways for alkanes, PAHs, and PAEs degradation were also identified.
Collapse
Affiliation(s)
- Shangbo Zhou
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Shuchan Peng
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; College of Environment and Ecology, Chongqing University, Chongqing 400044, China; School of Civil Engineering and Architecture, Chongqing University of Science & Technology, Chongqing 401331, China
| | - Zhiqiang Li
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Daijun Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Yantao Zhu
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Xingquan Li
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Mingyu Hong
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Weichang Li
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Peili Lu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
9
|
Zhang A, Gao C, Chen T, Xie Y, Wang X. Treatment of fracturing wastewater by anaerobic granular sludge: The short-term effect of salinity and its mechanism. BIORESOURCE TECHNOLOGY 2022; 345:126538. [PMID: 34902487 DOI: 10.1016/j.biortech.2021.126538] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
The effects of salinity shock on the anaerobic treatment of fracturing wastewater regarding chemical oxygen demand (COD) removal performance, sludge characteristics and microbial community were investigated. Results showed COD removal efficiency decreased from 76.0% to 69.1%, 65.6%, 33.7% and 21.9% with the increase of salinity from 2.5 g/L to 10, 15, 25 and 45 g/L, respectively. The cumulative biogas production decreased by 13.8%-81.1% when salinity increased to 15-85 g/L. The increase of salinity led to the decline in particle size of granular sludge, and the activity of granular sludge, including SMA, coenzyme F420 and dehydrogenase, was inhibited significantly. Flow cytometry indicated the percentage of damaged cells in granular sludge gradually increased with the increase of salinity. Sequence analysis illustrated that microbial community structure in anaerobic digestion reactor was influenced by the salinity, high salinity reduced the diversity of archaea and decreased the abundance of methanogens, especially Methanosaeta.
Collapse
Affiliation(s)
- Anlong Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi Province 710021, PR China; China Light Industry Water Pollution Control Engineering Center, Xi'an, Shaanxi Province 710021, PR China
| | - Chuyue Gao
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi Province 710021, PR China
| | - Tiantian Chen
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi Province 710021, PR China
| | - Yili Xie
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi Province 710021, PR China
| | - Xianbao Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi Province 710021, PR China; China Light Industry Water Pollution Control Engineering Center, Xi'an, Shaanxi Province 710021, PR China.
| |
Collapse
|
10
|
Akob DM, Mumford AC, Fraser A, Harris CR, Orem WH, Varonka MS, Cozzarelli IM. Oil and Gas Wastewater Components Alter Streambed Microbial Community Structure and Function. Front Microbiol 2021; 12:752947. [PMID: 34938277 PMCID: PMC8686200 DOI: 10.3389/fmicb.2021.752947] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/21/2021] [Indexed: 11/13/2022] Open
Abstract
The widespread application of directional drilling and hydraulic fracturing technologies expanded oil and gas (OG) development to previously inaccessible resources. A single OG well can generate millions of liters of wastewater, which is a mixture of brine produced from the fractured formations and injected hydraulic fracturing fluids (HFFs). With thousands of wells completed each year, safe management of OG wastewaters has become a major challenge to the industry and regulators. OG wastewaters are commonly disposed of by underground injection, and previous research showed that surface activities at an Underground Injection Control (UIC) facility in West Virginia affected stream biogeochemistry and sediment microbial communities immediately downstream from the facility. Because microbially driven processes can control the fate and transport of organic and inorganic components of OG wastewater, we designed a series of aerobic microcosm experiments to assess the influence of high total dissolved solids (TDS) and two common HFF additives-the biocide 2,2-dibromo-3-nitrilopropionamide (DBNPA) and ethylene glycol (an anti-scaling additive)-on microbial community structure and function. Microcosms were constructed with sediment collected upstream (background) or downstream (impacted) from the UIC facility in West Virginia. Exposure to elevated TDS resulted in a significant decrease in aerobic respiration, and microbial community analysis following incubation indicated that elevated TDS could be linked to the majority of change in community structure. Over the course of the incubation, the sediment layer in the microcosms became anoxic, and addition of DBNPA was observed to inhibit iron reduction. In general, disruptions to microbial community structure and function were more pronounced in upstream and background sediment microcosms than in impacted sediment microcosms. These results suggest that the microbial community in impacted sediments had adapted following exposure to OG wastewater releases from the site. Our findings demonstrate the potential for releases from an OG wastewater disposal facility to alter microbial communities and biogeochemical processes. We anticipate that these studies will aid in the development of useful models for the potential impact of UIC disposal facilities on adjoining surface water and shallow groundwater.
Collapse
Affiliation(s)
- Denise M. Akob
- United States Geological Survey, Geology, Energy & Minerals Science Center, Reston, VA, United States
| | - Adam C. Mumford
- United States Geological Survey, Water Mission Area, Reston, VA, United States
| | - Andrea Fraser
- United States Geological Survey, Water Mission Area, Reston, VA, United States
| | - Cassandra R. Harris
- United States Geological Survey, Geology, Energy & Minerals Science Center, Reston, VA, United States
| | - William H. Orem
- United States Geological Survey, Geology, Energy & Minerals Science Center, Reston, VA, United States
| | - Matthew S. Varonka
- United States Geological Survey, Geology, Energy & Minerals Science Center, Reston, VA, United States
| | - Isabelle M. Cozzarelli
- United States Geological Survey, Geology, Energy & Minerals Science Center, Reston, VA, United States
| |
Collapse
|
11
|
Sun Y, Huang L, Lai C, Li H, Yang P. Removal of organics from shale gas fracturing flowback fluid using expanded granular sludge bed and moving bed biofilm reactor. ENVIRONMENTAL TECHNOLOGY 2021; 42:3736-3746. [PMID: 32149585 DOI: 10.1080/09593330.2020.1739750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
Shale gas fracturing flowback fluid contains various degradation difficulty organic compounds after hydraulic fracturing. A hybrid treatment method was developed for treating flowback and produced water (FPW) using pre-treatment (NaClO) followed by the expanded granular sludge bed (EGSB) and moving bed biofilm reactor (MBBR). Gas chromatography-mass spectrometry (GC-MS) was employed to detect organic composition in the FPW, the pre-treated FPW, EGSB and MBBR effluent. FPW had high chemical oxygen demand (COD) (3278 mg/L) and the majority of organic compounds in the FPW composed of alkanes and heteroatomic compounds with polymers and polarity. 20% COD removal was achieved after adding 5 g/L of NaClO in FPW (pH = 7, stirring for 20 mins) as pre-treatment and > C30 alkanes in FPW were decomposed a lot in the pre-treatment process. The pre-treated FPW was diluted (volumetric ratio of 20%/50%) with synthetic wastewater/pure water. In the final stage of operation, Cl- and COD concentration of influent to EGSB-MBBR system was around 7000 ± 100 mg/L and 3000 mg/L. EGSB-MBBR system achieved 93.84% COD removal rate, in which EGSB dominated COD removal (>80%). According to the GC-MS results, EGSB had an increase of C11-C30 compounds and a decrease of less C1-C10 content due to the consumption of > C30 compounds and low molecular weight (LWM) compounds. Meanwhile, aerobic microorganisms in MBBR metabolized LWM organics which contributed a lot to the COD removal (25.06∼68. 22%). The results indicated that the pre-treatment and biological EGSB-MBBR system could be an efficient option used for FPW treating.
Collapse
Affiliation(s)
- Yu Sun
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, People's Republic of China
| | - Liang Huang
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, People's Republic of China
| | - Changmiao Lai
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, People's Republic of China
| | - Huiqiang Li
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, People's Republic of China
| | - Ping Yang
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
12
|
Abstract
The accumulation of solid and liquid organic waste requires their treatment to develop energy biotechnologies and prevent environment pollution. Aim. The goal of the work was to study the efficiency of the purification of the filtrate from dissolved organic compounds by aerobic oxidation and methane fermentation. Methods. The standard methods were used to determine рН and redox potential (Eh), the gas composition, the content of short-chain fatty acids, the concentration of dissolved organic compounds counting to the total сarbon. The efficiency of two types of microbial metabolism for the degradation of soluble organic compounds of filtrate was compared. Results. The aerobic oxidation was established to provide 1.9 times more efficient removal of dissolved organic compounds, compared with the anaerobic methane fermentation. However, it provided CH4 yield 1 L/dm3 of filtrate (сarbon concentration — 1071 mg/L). The necessity to optimize the methods for purifying filtrate to increase the efficiency of the process was determined. Conclusions. The obtained results will be the basis to develop complex biotechnology providing not only the production of environmentally friendly energy H2 via the fermentation of solid food waste, but also the purification of filtrate to solve the ecological and energy (CH4 production) problem of society.
Collapse
|
13
|
Shao B, Tan X, Li JL, He M, Tian L, Chen WJ, Lin Y. Enhanced treatment of shale gas fracturing waste fluid through plant-microbial synergism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:29919-29930. [PMID: 33576958 DOI: 10.1007/s11356-021-12830-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Cost-efficient and environmentally friendly treatment of hydraulic fracturing effluents is of great significance for the sustainable development of shale gas exploration. We investigated the synergistic effects of plant-microbial treatment of shale gas fracturing waste fluid. The results showed that illumination wavelength and temperature are direct drivers for microbial treatment effects of CODCr and BOD5, while exhibit little effects on nitrogen compounds, TDS, EC, and SS removals as well as microbial species and composition. Plant-microbial synergism could significantly enhance the removal of pollutants compared with removal efficiency without plant enhancement. Additionally, the relative abundance and structure of microorganisms in the hydraulic fracturing effluents greatly varied with the illumination wavelength and temperature under plant-microbial synergism. 201.24 g water dropwort and 435 mg/L activated sludge with illumination of 450-495 nm (blue) at 25 °C was proved as the best treatment condition for shale gas fracturing waste fluid samples, which showed the highest removal efficiency of pollutants and the lowest algal toxicity in treated hydraulic fracturing effluents. The microbial community composition (36.73% Flavobacteriia, 25.01% Gammaproteobacteria, 18.55% Bacteroidia, 9.3% Alphaproteobacteria, 4.1% Cytophagia, and 2.83% Clostridia) was also significantly different from other treatments. The results provide a potential technical solution for improved treatment of shale gas hydraulic fracturing effluents.
Collapse
Affiliation(s)
- Bo Shao
- School of Resources and Environment, Yangtze University, Wuhan, 430100, China
| | - Xu Tan
- School of Resources and Environment, Yangtze University, Wuhan, 430100, China
| | - Ju-Long Li
- School of Resources and Environment, Yangtze University, Wuhan, 430100, China
| | - Mei He
- School of Resources and Environment, Yangtze University, Wuhan, 430100, China.
- Key Laboratory of Exploration Technologies for Oil and Gas Resources, Ministry of Education, Yangtze University, Wuhan, China.
| | - Lei Tian
- Key Laboratory of Exploration Technologies for Oil and Gas Resources, Ministry of Education, Yangtze University, Wuhan, China
- School of Petroleum Engineering, Yangtze University, Wuhan, 430100, China
| | - Wen-Jie Chen
- School of Resources and Environment, Yangtze University, Wuhan, 430100, China
| | - Yan Lin
- Norwegian Institute for Water Research, Gaustadalléen 21, 0349, Oslo, Norway.
| |
Collapse
|
14
|
Zhong C, Zolfaghari A, Hou D, Goss GG, Lanoil BD, Gehman J, Tsang DCW, He Y, Alessi DS. Comparison of the Hydraulic Fracturing Water Cycle in China and North America: A Critical Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7167-7185. [PMID: 33970611 DOI: 10.1021/acs.est.0c06119] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
There is considerable debate about the sustainability of the hydraulic fracturing (HF) water cycle in North America. Recently, this debate has expanded to China, where HF activities continue to grow. Here, we provide a critical review of the HF water cycle in China, including water withdrawal practices and flowback and produced water (FPW) management and their environmental impacts, with a comprehensive comparison to the U.S. and Canada (North America). Water stress in arid regions, as well as water management challenges, FPW contamination of aquatic and soil systems, and induced seismicity are all impacts of the HF water cycle in China, the U.S., and Canada. In light of experience gained in North America, standardized practices for analyzing and reporting FPW chemistry and microbiology in China are needed to inform its efficient and safe treatment, discharge and reuse, and identification of potential contaminants. Additionally, conducting ecotoxicological studies is an essential next step to fully reveal the impacts of accidental FPW releases into aquatic and soil ecosystems in China. From a policy perspective, the development of China's unconventional resources lags behind North America's in terms of overall regulation, especially with regard to water withdrawal, FPW management, and routine monitoring. Our study suggests that common environmental risks exist within the world's two largest HF regions, and practices used in North America may help prevent or mitigate adverse effects in China.
Collapse
Affiliation(s)
- Cheng Zhong
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada
- School of Environment, Tsinghua University, Beijing, China
| | - Ashkan Zolfaghari
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing, China
| | - Greg G Goss
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Brian D Lanoil
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Joel Gehman
- Department of Strategy, Entrepreneurship and Management, University of Alberta, Edmonton, Alberta, Canada
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yuhe He
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong, China
| | - Daniel S Alessi
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
15
|
Mohamad-Zainal NSL, Ramli N, Zolkefli N, Mustapha NA, Hassan MA, Maeda T. Survivability of Alcaligenaceae and Chromatiaceae as palm oil mill effluent pollution bioindicators under fluctuations of temperature, pH and total suspended solid. J Biosci Bioeng 2021; 132:174-182. [PMID: 34074597 DOI: 10.1016/j.jbiosc.2021.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/09/2021] [Accepted: 04/27/2021] [Indexed: 11/16/2022]
Abstract
Alcaligenaceae and Chromatiaceae were previously reported as the specific pollution bioindicators in the receiving river water contaminated by palm oil mill effluent (POME) final discharge. Considering the inevitable sensitivity of bacteria under environmental stresses, it is crucial to assess the survivability of both bacteria in the fluctuated environmental factors, proving their credibility as POME pollution bioindicators in the environment. In this study, the survivability of Alcaligenaceae and Chromatiaceae from facultative pond, algae (aerobic) pond and final discharge were evaluated under varying sets of temperature (25-40°C), pH (pH 7-9) and low/high total suspended solid (TSS) contents of POME collected during low/high crop seasons of oil palm, respectively. Following treatment, the viability status and compositions of the bacterial community were assessed using flow cytometry-based assay and high-throughput Illumina MiSeq, respectively, in correlation with the changes of physicochemical properties. The changes in temperature, pH and TSS indeed changed the physicochemical properties of POME. The functionality of bacterial cells was also shifted where the viable cells and high nucleic acid contents reduced at elevated levels of temperature and pH but increased at high TSS content. Interestingly, the Alcaligenaceae and Chromatiaceae continuously detected in the samples which accounted for more than 0.5% of relative abundance, with a positive correlation with biological oxygen demand (BOD5) concentration. Therefore, either Alcaligenaceae or Chromatiaceae or both could be regarded as the reliable and specific bacterial indicators to indicate the pollution in river water due to POME final discharge despite the fluctuations in temperature, pH and TSS.
Collapse
Affiliation(s)
- Noor Shaidatul Lyana Mohamad-Zainal
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Norhayati Ramli
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Nurhasliza Zolkefli
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Nurul Asyifah Mustapha
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Fukuoka 808-0196, Japan
| | - Mohd Ali Hassan
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Toshinari Maeda
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Fukuoka 808-0196, Japan
| |
Collapse
|
16
|
Design of facile technology for the efficient removal of hydroxypropyl guar gum from fracturing fluid. PLoS One 2021; 16:e0247948. [PMID: 33661981 PMCID: PMC7932517 DOI: 10.1371/journal.pone.0247948] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/16/2021] [Indexed: 11/23/2022] Open
Abstract
With the increasing demand for energy, fracturing technology is widely used in oilfield operations over the last decades. Typically, fracturing fluids contain various additives such as cross linkers, thickeners and proppants, and so forth, which makes it possess the properties of considerably complicated components and difficult processing procedure. There are still some difficult points needing to be explored and resolved in the hydroxypropyl guar gum (HPG) removal process, e.g., high viscosity and removal of macromolecular organic compounds. Our works provided a facile and economical HPG removal technology for fracturing fluids by designing a series of processes including gel-breaking, coagulation and precipitation according to the diffusion double layer theory. After this treatment process, the fracturing fluid can meet the requirements of reinjection, and the whole process was environment friendly without secondary pollution characteristics. In this work, the fracturing fluid were characterized by scanning electron microscopy (SEM), Energy dispersive X-ray (EDX), X-ray diffraction (XRD) and Fourier transformed infrared (FTIR) spectroscopy technologies, etc. Further, the micro-stabilization and destabilization mechanisms of HPG in fracturing fluid were carefully investigated. This study maybe opens up new perspective for HPG removal technologies, exhibiting a low cost and strong applicability in both fundamental research and practical applications.
Collapse
|
17
|
Pires JF, Viana DC, Braga RA, Schwan RF, Silva CF. Protocol to select efficient microorganisms to treat coffee wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 278:111541. [PMID: 33129032 DOI: 10.1016/j.jenvman.2020.111541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/25/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
The coffee processing wastewater (CPWW) requires treatment before being disposed of in the environment or reused due to its high organic and inorganic composition and a low pH. The indigenous microbiota from CPWW is highly diverse and could be selected as inoculums in treatment waste plants. Considering the physico-chemical characteristics of wastewater coffee, we elaborate on steps to select the microbial consortium that showed positive impact via decreasing the pollutant parameters of this effluent. The effectiveness was confirmed using wastewater from different origins with different chemical characteristics. A bacterial consortium composed by Serratia marcescens CCMA 1010 and CCMA 1012, Corynebacterium flavescens CCMA 1006, and Acetobacter indonesiensis CCMA 1002 was selected as the inoculums-based phenotypic assays. The mixed inoculum showed a highly active population (11.18 log CFU mL-1), promoting an 85% decrease in biochemical oxygen demand and a 60% decrease in chemical oxygen demand. There was also an 80% reduction in phosphorus and nitrogen. The final pH changed from 6.0 to 7.5. Additionally, the eco-toxicity using Daphnia similis was reduced by more than 59%. The microbial inoculum was efficient in the biological treatment in CPWWs, demonstrating the efficiency and robustness of the selected strains, independent of the physico-chemical characteristics of wastewater.
Collapse
|
18
|
Acharya SM, Chakraborty R, Tringe SG. Emerging Trends in Biological Treatment of Wastewater From Unconventional Oil and Gas Extraction. Front Microbiol 2020; 11:569019. [PMID: 33013800 PMCID: PMC7509137 DOI: 10.3389/fmicb.2020.569019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/19/2020] [Indexed: 01/16/2023] Open
Abstract
Unconventional oil and gas exploration generates an enormous quantity of wastewater, commonly referred to as flowback and produced water (FPW). Limited freshwater resources and stringent disposal regulations have provided impetus for FPW reuse. Organic and inorganic compounds released from the shale/brine formation, microbial activity, and residual chemicals added during hydraulic fracturing bestow a unique as well as temporally varying chemical composition to this wastewater. Studies indicate that many of the compounds found in FPW are amenable to biological degradation, indicating biological treatment may be a viable option for FPW processing and reuse. This review discusses commonly characterized contaminants and current knowledge on their biodegradability, including the enzymes and organisms involved. Further, a perspective on recent novel hybrid biological treatments and application of knowledge gained from omics studies in improving these treatments is explored.
Collapse
Affiliation(s)
- Shwetha M Acharya
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Romy Chakraborty
- Department of Ecology, Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Susannah G Tringe
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
19
|
Zhong C, Nesbø CL, Goss GG, Lanoil BD, Alessi DS. Response of aquatic microbial communities and bioindicator modelling of hydraulic fracturing flowback and produced water. FEMS Microbiol Ecol 2020; 96:5819956. [PMID: 32286608 DOI: 10.1093/femsec/fiaa068] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/09/2020] [Indexed: 02/05/2023] Open
Abstract
The response of microbial communities to releases of hydraulic fracturing flowback and produced water (PW) may influence ecosystem functions. However, knowledge of the effects of PW spills on freshwater microbiota is limited. Here, we conducted two separate experiments: 16S rRNA gene sequencing combined with random forests modelling was used to assess freshwater community changes in simulated PW spills by volume from 0.05% to 50%. In a separate experiment, live/dead cell viability in a freshwater community was tested during exposure to 10% PW by volume. Three distinct patterns of microbial community shifts were identified: (i) indigenous freshwater genera remained dominant in <2.5% PW, (ii) from 2.5% to 5% PW, potential PW organic degraders such as Pseudomonas, Rheinheimera and Brevundimonas became dominant, and (iii) no significant change in the relative abundance of taxa was observed in >5% PW. Microbial taxa including less abundant genera such as Cellvibrio were potential bioindicators for the degree of contamination with PW. Additionally, live cells were quickly damaged by adding 10% PW, but cell counts recovered in the following days. Our study shows that the responses of freshwater microbiota vary by spill size, and these responses show promise as effective fingerprints for PW spills in aquatic environments.
Collapse
Affiliation(s)
- Cheng Zhong
- Department of Earth and Atmospheric Sciences, Faculty of Science, University of Alberta, Edmonton, Canada
| | - Camilla L Nesbø
- Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, Canada
| | - Greg G Goss
- Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, Canada
| | - Brian D Lanoil
- Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, Canada
| | - Daniel S Alessi
- Department of Earth and Atmospheric Sciences, Faculty of Science, University of Alberta, Edmonton, Canada
| |
Collapse
|
20
|
Shale gas development has limited effects on stream biology and geochemistry in a gradient-based, multiparameter study in Pennsylvania. Proc Natl Acad Sci U S A 2020; 117:3670-3677. [PMID: 32015108 PMCID: PMC7035526 DOI: 10.1073/pnas.1911458117] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
This investigation provides a comprehensive evaluation of the geochemical and biological effects of shale gas development on 25 small watersheds over the course of 2 y. Sampling headwater streams seasonally over two consecutive years yielded no statistically significant relationships between the intensity, presence, or absence of shale gas development and any signal in a comprehensive set of chemical constituents (including those recognized as oil and gas geochemical tracers) or any changes in microbial or benthic macroinvertebrate community composition. This work provides a framework for investigations of anthropogenic effects stemming from natural resource development, and highlights the importance of conducting studies which control for regional and temporal variability. The number of horizontally drilled shale oil and gas wells in the United States has increased from nearly 28,000 in 2007 to nearly 127,000 in 2017, and research has suggested the potential for the development of shale resources to affect nearby stream ecosystems. However, the ability to generalize current studies is limited by the small geographic scope as well as limited breadth and integration of measured chemical and biological indicators parameters. This study tested the hypothesis that a quantifiable, significant relationship exists between the density of oil and gas (OG) development, increasing stream water concentrations of known geochemical tracers of OG extraction, and the composition of benthic macroinvertebrate and microbial communities. Twenty-five headwater streams that drain lands across a gradient of shale gas development intensity were sampled. Our strategy included comprehensive measurements across multiple seasons of sampling to account for temporal variability of geochemical parameters, including known shale OG geochemical tracers, and microbial and benthic macroinvertebrate communities. No significant relationships were found between the intensity of OG development, shale OG geochemical tracers, or benthic macroinvertebrate or microbial community composition, whereas significant seasonal differences in stream chemistry were observed. These results highlight the importance of considering spatial and temporal variability in stream chemistry and biota and not only the presence of anthropogenic activities in a watershed. This comprehensive, integrated study of geochemical and biological variability of headwater streams in watersheds undergoing OG development provides a robust framework for examining the effects of energy development at a regional scale.
Collapse
|
21
|
McAdams BC, Carter KE, Blotevogel J, Borch T, Hakala JA. In situ transformation of hydraulic fracturing surfactants from well injection to produced water. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:1777-1786. [PMID: 31588952 DOI: 10.1039/c9em00153k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chemical changes to hydraulic fracturing fluids (HFFs) within fractured unconventional reservoirs may affect hydrocarbon recovery and, in turn, the environmental impact of unconventional oil and gas development. Ethoxylated alcohol surfactants, which include alkyl ethoxylates (AEOs) and polyethylene glycols (PEGs), are often present in HFF as solvents, non-emulsifiers, and corrosion inhibitors. We present detailed analysis of polyethoxylates in HFF at the time of injection into three hydraulically fractured Marcellus Shale wells and in the produced water returning to the surface. Despite the addition of AEOs to the injection fluid during almost all stages, they were rarely detected in the produced water. Conversely, while PEGs were nearly absent in the injection fluid, they were the dominant constituents in the produced water. Similar numbers of ethoxylate units support downhole transformation of AEOs to PEGs through central cleavage of the ethoxylate chain from the alkyl group. We also observed a decrease in the average ethoxylate (EO) number of the PEG-EOs in the produced water over time, consistent with biodegradation during production. Our results elucidate an overlooked surfactant transformation pathway that may affect the efficacy of HFF to maximize oil and gas recovery from unconventional shale reservoirs.
Collapse
Affiliation(s)
- Brandon C McAdams
- National Energy Technology Laboratory, United States Department of Energy, 626 Cochrans Mill Road, Pittsburgh, Pennsylvania 15236, USA.
| | | | | | | | | |
Collapse
|
22
|
Hanson AJ, Luek JL, Tummings SS, McLaughlin MC, Blotevogel J, Mouser PJ. High total dissolved solids in shale gas wastewater inhibit biodegradation of alkyl and nonylphenol ethoxylate surfactants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 668:1094-1103. [PMID: 31018450 DOI: 10.1016/j.scitotenv.2019.03.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/01/2019] [Accepted: 03/03/2019] [Indexed: 06/09/2023]
Abstract
Hydraulic fracturing fluids are injected into unconventional oil and gas systems to stimulate hydrocarbon production, returning to the surface in flowback and produced waters containing a complex mixture of xenobiotic additives and geogenic compounds. Nonionic polyethoxylates are commonly added surfactants that act as weatherizers, emulsifiers, wetting agents, and corrosion inhibitors in hydraulic fracturing fluid formulations. Understanding the biodegradability of these ubiquitous additives is critical for produced water pre-treatment prior to reuse and for improving treatment trains for external beneficial reuse. The objective of this study was to determine the effect of produced water total dissolved solids (TDS) from an unconventional natural gas well on the aerobic biodegradation of alkyl ethoxylate and nonylphenol ethoxylate surfactants. Changes in surfactant concentrations, speciation and metabolites, as well as microbial community composition and activity were quantified over a 75-day aerobic incubation period. Alkyl ethoxylates (AEOs) were degraded faster than nonylphenol ethoxylates (NPEOs), and both compound classes and bulk organic carbon biodegraded slower in TDS treatments (10 g L-1, 40 g L-1) as compared to controls. Short-chain ethoxylates were more rapidly biodegraded than longer-chain ethoxylates, and changes in the relative abundance of metabolites including acetone, alcohols, and carboxylate and aldehyde intermediates of alkyl units indicated metabolic pathways may shift in the presence of higher produced water TDS. Our key finding that polyethoxylated alcohol surfactant additives are less labile at high TDS has important implications for produced water management, as these fluids are increasingly recycled for beneficial reuse in hydraulic fracturing fluids and other purposes.
Collapse
Affiliation(s)
- Andrea J Hanson
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO 80523, United States; Department of Civil and Environmental Engineering, University of New Hampshire, Durham, NH 03824, United States
| | - Jenna L Luek
- Department of Civil and Environmental Engineering, University of New Hampshire, Durham, NH 03824, United States
| | - Shantal S Tummings
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, OH 43210, United States
| | - Molly C McLaughlin
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO 80523, United States
| | - Jens Blotevogel
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO 80523, United States
| | - Paula J Mouser
- Department of Civil and Environmental Engineering, University of New Hampshire, Durham, NH 03824, United States.
| |
Collapse
|
23
|
Mullins NR, Daugulis AJ. The biological treatment of synthetic fracking fluid in an extractive membrane bioreactor: Selective transport and biodegradation of hydrophobic and hydrophilic contaminants. JOURNAL OF HAZARDOUS MATERIALS 2019; 371:734-742. [PMID: 30952014 DOI: 10.1016/j.jhazmat.2019.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/03/2018] [Accepted: 01/02/2019] [Indexed: 06/09/2023]
Abstract
The biodegradation of selected organic constituents present in hydraulic fracturing wastewater were examined in an extractive membrane bioreactor (EMB) operating with Hytrel™ 3548 tubing. Synthetic hydraulic fracturing wastewater was generated via an extensive literature review and contained high concentrations (1000 mg L-1) of contaminant compounds of varied hydrophobicity, viz. methyl ethyl ketone, benzene, phenol and acetic acid, as well as 30-120 g L-1 of Cl- at low pH. This hostile wastewater was circulated through the polymeric tubing, selectively transporting the organic compounds through the membrane for biological degradation by an enriched bacterial consortium. 16S rDNA analysis revealed the presence of five dominant microbial strains within the consortium, including: Pseudomonas sp., Comamonas sp., Achromobacter sp., Lysinibacillus sp., and Oxalobacter sp. EMBs in batch operation achieved 99% removal of methyl ethyl ketone, benzene, and phenol after 72 h and effectively removed acetic acid up to its ionization point. Continuous EMB operation provided 99% removal of benzene and phenol, 96% removal of methyl ethyl ketone, and 53% of acetic acid. The treatment of synthetic hydraulic fracturing fluid demonstrated the effectiveness of carefully selected amphiphilic polymers in EMBs for treating the hydrophilic and hydrophobic organic profile found in hydraulic fracturing wastewaters.
Collapse
Affiliation(s)
- Nathan R Mullins
- Department of Chemical Engineering, Dupuis Hall, 19 Division St., Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Andrew J Daugulis
- Department of Chemical Engineering, Dupuis Hall, 19 Division St., Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| |
Collapse
|
24
|
Sun Y, Wang D, Tsang DCW, Wang L, Ok YS, Feng Y. A critical review of risks, characteristics, and treatment strategies for potentially toxic elements in wastewater from shale gas extraction. ENVIRONMENT INTERNATIONAL 2019; 125:452-469. [PMID: 30763832 DOI: 10.1016/j.envint.2019.02.019] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 02/01/2019] [Accepted: 02/05/2019] [Indexed: 06/09/2023]
Abstract
Shale gas extraction via horizontal drilling and hydraulic fracturing (HF) has enhanced gas production worldwide, which has altered global energy markets and reduced the prices of natural gas and oil. Water management has become the most challenging issue of HF, as it demands vast amounts of freshwater and generates high volumes of complex liquid wastes contaminated by diverse potentially toxic elements at variable rates. This critical review focuses on characterizing HF wastewater and establishing strategies to mitigate environmental impacts. High prioritization was given to the constituents with mean concentrations over 10 times greater than the maximum contamination level (MCL) guidelines for drinking water. A number of potentially harmful organic compounds in HF wastewaters were identified via the risk quotient approach to predict the associated toxicity for freshwater organisms in recipient surface waters. Currently, two options for HF wastewater treatment are preferred, i.e., disposal by deep well injection or on-site re-use as a fracturing fluid. Supplementary treatment will be enforced by increasingly rigorous regulations. Partial treatment and reuse remain the preferred method for managing HF wastewater where feasible. Otherwise, advanced technologies such as membrane separation/distillation, forward osmosis, mechanical vapor compression, electrocoagulation, advanced oxidation, and adsorption-biological treatment will be required to satisfy the sustainable requirements for reuse or surface discharge.
Collapse
Affiliation(s)
- Yuqing Sun
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Di Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Linling Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
25
|
Rogers JD, Thurman EM, Ferrer I, Rosenblum JS, Evans MV, Mouser PJ, Ryan JN. Degradation of polyethylene glycols and polypropylene glycols in microcosms simulating a spill of produced water in shallow groundwater. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:256-268. [PMID: 30318550 DOI: 10.1039/c8em00291f] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Polyethylene glycols (PEGs) and polypropylene glycols (PPGs) are frequently used in hydraulic fracturing fluids and have been detected in water returning to the surface from hydraulically fractured oil and gas wells in multiple basins. We identified degradation pathways and kinetics for PEGs and PPGs under conditions simulating a spill of produced water to shallow groundwater. Sediment-groundwater microcosm experiments were conducted using four produced water samples from two Denver-Julesburg Basin wells at early and late production. High-resolution mass spectrometry was used to identify the formation of mono- and di-carboxylated PEGs and mono-carboxylated PPGs, which are products of PEG and PPG biodegradation, respectively. Under oxic conditions, first-order half-lives were more rapid for PEGs (<0.4-1.1 d) compared to PPGs (2.5-14 d). PEG and PPG degradation corresponded to increased relative abundance of primary alcohol dehydrogenase genes predicted from metagenome analysis of the 16S rRNA gene. Further degradation was not observed under anoxic conditions. Our results provide insight into the differences between the degradation rates and pathways of PEGs and PPGs, which may be utilized to better characterize shallow groundwater contamination following a release of produced water.
Collapse
Affiliation(s)
- Jessica D Rogers
- Department of Civil, Environmental and Architectural Engineering, University of Colorado Boulder, 607 UCB, Boulder, CO 80309, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Plata DL, Jackson RB, Vengosh A, Mouser PJ. More than a decade of hydraulic fracturing and horizontal drilling research. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:193-194. [PMID: 30753249 DOI: 10.1039/c9em90004g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Guest editors Desiree Plata, Rob Jackson, Avner Vengosh and Paula Mouser introduce “The environmental geochemistry and biology of hydraulic fracturing” themed issue of Environmental Science: Processes & Impacts.
Collapse
Affiliation(s)
- Desiree L Plata
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | | | | | |
Collapse
|
27
|
Taherdangkoo R, Tatomir A, Anighoro T, Sauter M. Modeling fate and transport of hydraulic fracturing fluid in the presence of abandoned wells. JOURNAL OF CONTAMINANT HYDROLOGY 2019; 221:58-68. [PMID: 30679092 DOI: 10.1016/j.jconhyd.2018.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/05/2018] [Accepted: 12/19/2018] [Indexed: 06/09/2023]
Abstract
Hydraulic fracturing in shale/tight gas reservoirs creates fracture network systems that can intersect pre-existing subsurface flow pathways, e.g. fractures, faults or abandoned wells. This way, hydraulic fracturing operations could pose environmental risks to shallow groundwater systems. This paper explores the long-term (> 30 years) flow and transport of fracturing fluids into overburden layers and groundwater aquifers through a leaky abandoned well, using the geological setting of North German Basin as a case study. A three-dimensional model consisting of 15 sedimentary layers with three hydrostratigraphic units representing the hydrocarbon reservoir, overburden, and the aquifer is built. The model considers one perforation location at the first section of the horizontal part of the well, and a discrete hydraulic fracture intersecting an abandoned well. A sensitivity analysis is carried out to quantify and understand the influence of a broad spectrum of field possibilities (reservoir properties, overburden properties, abandoned well properties and its proximity to hydraulic fractures) on the flow of fracturing fluid to shallower permeable strata. The model results suggest the spatial properties of the abandoned well as well as its distance from the hydraulic fracture are the most important factors influencing the vertical flow of fracturing fluid. It is observed that even for various field set-tings, only a limited amount of fracturing fluid can reach the aquifer in a long-term period.
Collapse
Affiliation(s)
- Reza Taherdangkoo
- Department of Applied Geology, Geosciences Center, University of Goettingen, Goldschmidtstr. 3, D-37077 Goettingen, Germany.
| | - Alexandru Tatomir
- Department of Applied Geology, Geosciences Center, University of Goettingen, Goldschmidtstr. 3, D-37077 Goettingen, Germany
| | - Tega Anighoro
- Department of Applied Geology, Geosciences Center, University of Goettingen, Goldschmidtstr. 3, D-37077 Goettingen, Germany
| | - Martin Sauter
- Department of Applied Geology, Geosciences Center, University of Goettingen, Goldschmidtstr. 3, D-37077 Goettingen, Germany
| |
Collapse
|
28
|
Chen See JR, Ulrich N, Nwanosike H, McLimans CJ, Tokarev V, Wright JR, Campa MF, Grant CJ, Hazen TC, Niles JM, Ressler D, Lamendella R. Bacterial Biomarkers of Marcellus Shale Activity in Pennsylvania. Front Microbiol 2018; 9:1697. [PMID: 30116227 PMCID: PMC6083035 DOI: 10.3389/fmicb.2018.01697] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 07/09/2018] [Indexed: 01/24/2023] Open
Abstract
Unconventional oil and gas (UOG) extraction, also known as hydraulic fracturing, is becoming more prevalent with the increasing use and demand for natural gas; however, the full extent of its environmental impacts is still unknown. Here we measured physicochemical properties and bacterial community composition of sediment samples taken from twenty-eight streams within the Marcellus shale formation in northeastern Pennsylvania differentially impacted by hydraulic fracturing activities. Fourteen of the streams were classified as UOG+, and thirteen were classified as UOG- based on the presence of UOG extraction in their respective watersheds. One stream was located in a watershed that previously had UOG extraction activities but was recently abandoned. We utilized high-throughput sequencing of the 16S rRNA gene to infer differences in sediment aquatic bacterial community structure between UOG+ and UOG- streams, as well as correlate bacterial community structure to physicochemical water parameters. Although overall alpha and beta diversity differences were not observed, there were a plethora of significantly enriched operational taxonomic units (OTUs) within UOG+ and UOG- samples. Our biomarker analysis revealed many of the bacterial taxa enriched in UOG+ streams can live in saline conditions, such as Rubrobacteraceae. In addition, several bacterial taxa capable of hydrocarbon degradation were also enriched in UOG+ samples, including Oceanospirillaceae. Methanotrophic taxa, such as Methylococcales, were significantly enriched as well. Several taxa that were identified as enriched in these samples were enriched in samples taken from different streams in 2014; moreover, partial least squares discriminant analysis (PLS-DA) revealed clustering between streams from the different studies based on the presence of hydraulic fracturing along the second axis. This study revealed significant differences between bacterial assemblages within stream sediments of UOG+ and UOG- streams and identified several potential biomarkers for evaluating and monitoring the response of autochthonous bacterial communities to potential hydraulic fracturing impacts.
Collapse
Affiliation(s)
- Jeremy R Chen See
- Department of Biology, Juniata College, Huntingdon, PA, United States
| | - Nikea Ulrich
- Department of Biology, Juniata College, Huntingdon, PA, United States
| | | | | | - Vasily Tokarev
- Department of Biology, Juniata College, Huntingdon, PA, United States
| | - Justin R Wright
- Department of Biology, Juniata College, Huntingdon, PA, United States
| | - Maria F Campa
- The Bredesen Center, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | | | - Terry C Hazen
- The Bredesen Center, The University of Tennessee, Knoxville, Knoxville, TN, United States.,Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, Knoxville, TN, United States.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Jonathan M Niles
- Freshwater Research Initiative, Susquehanna University, Selinsgrove, PA, United States
| | - Daniel Ressler
- Department of Earth and Environmental Sciences, Susquehanna University, Selinsgrove, PA, United States
| | - Regina Lamendella
- Department of Biology, Juniata College, Huntingdon, PA, United States
| |
Collapse
|
29
|
Butkovskyi A, Faber AH, Wang Y, Grolle K, Hofman-Caris R, Bruning H, Van Wezel AP, Rijnaarts HHM. Removal of organic compounds from shale gas flowback water. WATER RESEARCH 2018; 138:47-55. [PMID: 29573628 DOI: 10.1016/j.watres.2018.03.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/09/2018] [Accepted: 03/15/2018] [Indexed: 06/08/2023]
Abstract
Ozonation, sorption to granular activated carbon and aerobic degradation were compared as potential treatment methods for removal of dissolved organic carbon (DOC) fractions and selected organic compounds from shale gas flowback water after pre-treatment in dissolved air flotation unit. Flowback water was characterised by high chemical oxygen demand and DOC. Low molecular weight (LMW) acids and neutral compounds were the most abundant organic fractions, corresponding to 47% and 35% of DOC respectively. Ozonation did not change distribution of organic carbon fractions and concentrations of detected individual organic compounds significantly. Sorption to activated carbon targeted removal of individual organic compounds with molecular weight >115 Da, whereas LMW compounds remained largely unaffected. Aerobic degradation was responsible for removal of LMW compounds and partial ammonium removal, whereas formation of intermediates with molecular weight of 200-350 Da was observed. Combination of aerobic degradation for LMW organics removal with adsorption to activated carbon for removal of non-biodegradable organics is proposed to be implemented between pre-treatment (dissolved air floatation) and desalination (thermal or membrane desalination) steps.
Collapse
Affiliation(s)
- Andrii Butkovskyi
- Department of Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA, Wageningen, The Netherlands.
| | - Ann-Hélène Faber
- KWR Watercycle Research Institute, P.O. Box 1072, 3430 BB, Nieuwegein, The Netherlands; Copernicus Institute of Sustainable Development, Utrecht University, Heidelberglaan 2, 3584 CS, Utrecht, The Netherlands
| | - Yue Wang
- Department of Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA, Wageningen, The Netherlands
| | - Katja Grolle
- Department of Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA, Wageningen, The Netherlands
| | - Roberta Hofman-Caris
- KWR Watercycle Research Institute, P.O. Box 1072, 3430 BB, Nieuwegein, The Netherlands
| | - Harry Bruning
- Department of Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA, Wageningen, The Netherlands
| | - Annemarie P Van Wezel
- KWR Watercycle Research Institute, P.O. Box 1072, 3430 BB, Nieuwegein, The Netherlands; Copernicus Institute of Sustainable Development, Utrecht University, Heidelberglaan 2, 3584 CS, Utrecht, The Netherlands
| | - Huub H M Rijnaarts
- Department of Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA, Wageningen, The Netherlands
| |
Collapse
|
30
|
Brooker MR, Longnecker K, Kujawinski EB, Evert MH, Mouser PJ. Discrete Organic Phosphorus Signatures are Evident in Pollutant Sources within a Lake Erie Tributary. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:6771-6779. [PMID: 29779381 DOI: 10.1021/acs.est.7b05703] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Phosphorus loads are strongly associated with the severity of harmful algal blooms in Lake Erie, a Great Lake situated between the United States and Canada. Inorganic and total phosphorus measurements have historically been used to estimate nonpoint and point source contributions, from contributing watersheds with organic phosphorus often neglected. Here, we used ultrahigh resolution mass spectrometry to characterize the dissolved organic matter and specifically dissolved organic phosphorus composition of several nutrient pollutant source materials and aqueous samples in a Lake Erie tributary. We detected between 23 and 313 organic phosphorus formulas across our samples, with manure samples having greater abundance of phosphorus- and nitrogen containing compounds compared to other samples. Manures also were enriched in lipids and protein-like compounds. The greatest similarities were observed between the Sandusky River and wastewater treatment plant effluent (WWTP), or the Sandusky River and agricultural edge of field samples. These sample pairs shared 84% of organic compounds and 59-73% of P-containing organic compounds, respectively. This similarity suggests that agricultural and/or WWTP sources dominate the supply of organic phosphorus compounds to the river. We identify formulas shared between the river and pollutant sources that could serve as possible markers of source contamination in the tributary.
Collapse
Affiliation(s)
- M R Brooker
- Department of Civil, Environmental, and Geodetic Engineering , Ohio State University , Columbus , Ohio 43210 , United States
- Environmental Science Graduate Program , Ohio State University , Columbus , Ohio 43210 , United States
| | - K Longnecker
- Woods Hole Oceanographic Institution , Department of Marine Chemistry and Geochemistry , Woods Hole , Massachusetts 02543 , United States
| | - E B Kujawinski
- Woods Hole Oceanographic Institution , Department of Marine Chemistry and Geochemistry , Woods Hole , Massachusetts 02543 , United States
| | - M H Evert
- Department of Civil, Environmental, and Geodetic Engineering , Ohio State University , Columbus , Ohio 43210 , United States
- Environmental Science Graduate Program , Ohio State University , Columbus , Ohio 43210 , United States
| | - P J Mouser
- Department of Civil, Environmental, and Geodetic Engineering , Ohio State University , Columbus , Ohio 43210 , United States
- Department of Civil and Environmental Engineering , University of New Hampshire , Durham , New Hampshire 03824 , United States
| |
Collapse
|
31
|
Ulrich N, Kirchner V, Drucker R, Wright JR, McLimans CJ, Hazen TC, Campa MF, Grant CJ, Lamendella R. Response of Aquatic Bacterial Communities to Hydraulic Fracturing in Northwestern Pennsylvania: A Five-Year Study. Sci Rep 2018; 8:5683. [PMID: 29632304 PMCID: PMC5890257 DOI: 10.1038/s41598-018-23679-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 03/08/2018] [Indexed: 01/09/2023] Open
Abstract
Horizontal drilling and hydraulic fracturing extraction procedures have become increasingly present in Pennsylvania where the Marcellus Shale play is largely located. The potential for long-term environmental impacts to nearby headwater stream ecosystems and aquatic bacterial assemblages is still incompletely understood. Here, we perform high-throughput sequencing of the 16 S rRNA gene to characterize the bacterial community structure of water, sediment, and other environmental samples (n = 189) from 31 headwater stream sites exhibiting different histories of fracking activity in northwestern Pennsylvania over five years (2012-2016). Stream pH was identified as a main driver of bacterial changes within the streams and fracking activity acted as an environmental selector for certain members at lower taxonomic levels within stream sediment. Methanotrophic and methanogenic bacteria (i.e. Methylocystaceae, Beijerinckiaceae, and Methanobacterium) were significantly enriched in sites exhibiting Marcellus shale activity (MSA+) compared to MSA- streams. This study highlighted potential sentinel taxa associated with nascent Marcellus shale activity and some of these taxa remained as stable biomarkers across this five-year study. Identifying the presence and functionality of specific microbial consortia within fracking-impacted streams will provide a clearer understanding of the natural microbial community's response to fracking and inform in situ remediation strategies.
Collapse
Affiliation(s)
- Nikea Ulrich
- Juniata College, Department of Biology, Huntingdon, 16652, USA
| | | | - Rebecca Drucker
- Juniata College, Department of Biology, Huntingdon, 16652, USA
| | | | | | - Terry C Hazen
- University of Tennessee, Department of Civil and Environmental Engineering, Knoxville, 37996, USA
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, 37831, USA
| | - Maria F Campa
- University of Tennessee, Department of Civil and Environmental Engineering, Knoxville, 37996, USA
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, 37831, USA
| | | | - Regina Lamendella
- Juniata College, Department of Biology, Huntingdon, 16652, USA.
- Wright Labs LLC, Huntingdon, 16652, USA.
| |
Collapse
|
32
|
Common Hydraulic Fracturing Fluid Additives Alter the Structure and Function of Anaerobic Microbial Communities. Appl Environ Microbiol 2018; 84:AEM.02729-17. [PMID: 29453259 DOI: 10.1128/aem.02729-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/08/2018] [Indexed: 11/20/2022] Open
Abstract
The development of unconventional oil and gas (UOG) resources results in the production of large volumes of wastewater containing a complex mixture of hydraulic fracturing chemical additives and components from the formation. The release of these wastewaters into the environment poses potential risks that are poorly understood. Microbial communities in stream sediments form the base of the food chain and may serve as sentinels for changes in stream health. Iron-reducing organisms have been shown to play a role in the biodegradation of a wide range of organic compounds, and so to evaluate their response to UOG wastewater, we enriched anaerobic microbial communities from sediments collected upstream (background) and downstream (impacted) of an UOG wastewater injection disposal facility in the presence of hydraulic fracturing fluid (HFF) additives: guar gum, ethylene glycol, and two biocides, 2,2-dibromo-3-nitrilopropionamide (DBNPA) and bronopol (C3H6BrNO4). Iron reduction was significantly inhibited early in the incubations with the addition of biocides, whereas amendment with guar gum and ethylene glycol stimulated iron reduction relative to levels in the unamended controls. Changes in the microbial community structure were observed across all treatments, indicating the potential for even small amounts of UOG wastewater components to influence natural microbial processes. The microbial community structure differed between enrichments with background and impacted sediments, suggesting that impacted sediments may have been preconditioned by exposure to wastewater. These experiments demonstrated the potential for biocides to significantly decrease iron reduction rates immediately following a spill and demonstrated how microbial communities previously exposed to UOG wastewater may be more resilient to additional spills.IMPORTANCE Organic components of UOG wastewater can alter microbial communities and biogeochemical processes, which could alter the rates of essential natural attenuation processes. These findings provide new insights into microbial responses following a release of UOG wastewaters and are critical for identifying strategies for the remediation and natural attenuation of impacted environments.
Collapse
|
33
|
Oetjen K, Chan KE, Gulmark K, Christensen JH, Blotevogel J, Borch T, Spear JR, Cath TY, Higgins CP. Temporal characterization and statistical analysis of flowback and produced waters and their potential for reuse. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 619-620:654-664. [PMID: 29156284 DOI: 10.1016/j.scitotenv.2017.11.078] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/07/2017] [Accepted: 11/07/2017] [Indexed: 06/07/2023]
Abstract
Hydraulic fracturing (HF) has allowed for the utilization of previously unattainable shale oil and gas (O&G) resources. After HF is complete, the waters used to increase the facies' permeability return uphole as wastewaters. When these waters return to the surface, they are characterized by complex organic and inorganic chemistry, and can pose a health risk if not handled correctly. Therefore, these waters must be treated or disposed of properly. However, the variability of these waters' chemical composition over time is poorly understood and likely limits the applicability of their reuse. This study examines the water chemistry of a hydraulically fractured site in the Niobrara formation throughout the flowback period. Samples were collected every other day for the first 18days, then on a regular basis for three months. We identified HF fluid additives, including benzalkonium chlorides (BACs), alkyl ethoxylates (AEOs), and polyethylene glycols (PEGs), as well as geogenic components present in flowback and produced waters, their overall temporal pattern, and variables affecting the reuse of these waters. Observations indicate that alkalinity and iron may limit the reuse of these waters in HF, while chloride and alkalinity may limit the use of these waters for well-casing cement. The presence of numerous surfactant homologs, including biocides, was also observed, with the highest levels at the beginning of the flowback period. Principal component analysis identified three unique groupings in the chemical data that correspond to different stages in the flowback period: (1) the flowback stage (days 1-2); (2) the transition stage (days 6-21); and (3) the produced water stage (days 21-87). Results from this study will be important when designing decision frameworks for assessing water treatment options, particularly if onsite treatment is attempted. Successful reclamation of these waters may alleviate stress on water resources that continues to negatively impact the U. S.
Collapse
Affiliation(s)
- Karl Oetjen
- Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Kevin E Chan
- Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Kristoffer Gulmark
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej, 40, 1871 Frederiksberg C, Denmark
| | - Jan H Christensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej, 40, 1871 Frederiksberg C, Denmark
| | - Jens Blotevogel
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Thomas Borch
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO 80523, USA; Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - John R Spear
- Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Tzahi Y Cath
- Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Christopher P Higgins
- Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA.
| |
Collapse
|
34
|
Sun Y, Lei C, Khan E, Chen SS, Tsang DCW, Ok YS, Lin D, Feng Y, Li XD. Aging effects on chemical transformation and metal(loid) removal by entrapped nanoscale zero-valent iron for hydraulic fracturing wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 615:498-507. [PMID: 28988085 DOI: 10.1016/j.scitotenv.2017.09.332] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 09/30/2017] [Accepted: 09/30/2017] [Indexed: 06/07/2023]
Abstract
In this study, alginate and polyvinyl alcohol (PVA)-alginate entrapped nanoscale zero-valent iron (nZVI) was tested for structural evolution, chemical transformation, and metals/metalloids removal (Cu(II), Cr(VI), Zn(II), and As(V)) after 1-2month passivation in model saline wastewaters from hydraulic fracturing. X-ray diffraction analysis confirmed successful prevention of Fe0 corrosion by polymeric entrapment. Increasing ionic strength (I) from 0 to 4.10M (deionized water to Day-90 fracturing wastewater (FWW)) with prolonged aging time induced chemical instability of alginate due to dissociation of carboxyl groups and competition for hydrogen bonding with nZVI, which caused high Na (7.17%) and total organic carbon (24.6%) dissolution from PVA-alginate entrapped nZVI after 2-month immersion in Day-90 FWW. Compared to freshly-made beads, 2-month aging of PVA-alginate entrapped nZVI in Day-90 FWW promoted Cu(II) and Cr(VI) uptake in terms of the highest removal efficiency (84.2% and 70.8%), pseudo-second-order surface area-normalized rate coefficient ksa (2.09×10-1Lm-2h-1 and 1.84×10-1Lm-2h-1), and Fe dissolution after 8-h reaction (13.9% and 8.45%). However, the same conditions inhibited Zn(II) and As(V) sequestration in terms of the lowest removal efficiency (31.2% and 39.8%) by PVA-alginate nZVI and ksa (4.74×10-2Lm-2h-1 and 6.15×10-2Lm-2h-1) by alginate nZVI. The X-ray spectroscopic analysis and chemical speciation modelling demonstrated that the difference in metals/metalloids removal by entrapped nZVI after aging was attributed to distinctive removal mechanisms: (i) enhanced Cu(II) and Cr(VI) removal by nZVI reduction with accelerated electron transfer after pronounced dissolution of non-conductive polymeric immobilization matrix; (ii) suppressed Zn(II) and As(V) removal by nZVI adsorption due to restrained mass transfer after blockage of surface-active micropores. Entrapped nZVI was chemically fragile and should be properly stored and regularly replaced for good performance.
Collapse
Affiliation(s)
- Yuqing Sun
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Cheng Lei
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Eakalak Khan
- Department of Civil and Environmental Engineering, North Dakota State University, Dept 2470, P.O. Box 6050, Fargo, ND 58108, USA
| | - Season S Chen
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Yong Sik Ok
- O-Jeong Eco-Resilience Institute (OJERI), Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiang-Dong Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
35
|
Hamdy AM, El-massry M, Kashef MT, Amin MA, Aziz RK. Toward the Drug Factory Microbiome: Microbial Community Variations in Antibiotic-Producing Clean Rooms. ACTA ACUST UNITED AC 2018; 22:133-144. [DOI: 10.1089/omi.2017.0091] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Amal M. Hamdy
- Misr Company for Pharmaceutical Industries, Cairo, Egypt
| | - Moamen El-massry
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas
| | - Mona T. Kashef
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Magdy A. Amin
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ramy K. Aziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
36
|
Heyob KM, Blotevogel J, Brooker M, Evans MV, Lenhart JJ, Wright J, Lamendella R, Borch T, Mouser PJ. Natural Attenuation of Nonionic Surfactants Used in Hydraulic Fracturing Fluids: Degradation Rates, Pathways, and Mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:13985-13994. [PMID: 29110455 DOI: 10.1021/acs.est.7b01539] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Hydraulic fracturing fluids are injected into shales to extend fracture networks that enhance oil and natural gas production from unconventional reservoirs. Here we evaluated the biodegradability of three widely used nonionic polyglycol ether surfactants (alkyl ethoxylates (AEOs), nonylphenol ethoxylates (NPEOs), and polypropylene glycols (PPGs)) that function as weatherizers, emulsifiers, wetting agents, and corrosion inhibitors in injected fluids. Under anaerobic conditions, we observed complete removal of AEOs and NPEOs from solution within 3 weeks regardless of whether surfactants were part of a chemical mixture or amended as individual additives. Microbial enzymatic chain shortening was responsible for a shift in ethoxymer molecular weight distributions and the accumulation of the metabolite acetate. PPGs bioattenuated the slowest, producing sizable concentrations of acetone, an isomer of propionaldehyde. Surfactant chain shortening was coupled to an increased abundance of the diol dehydratase gene cluster (pduCDE) in Firmicutes metagenomes predicted from the 16S rRNA gene. The pduCDE enzymes are responsible for cleaving ethoxylate chain units into aldehydes before their fermentation into alcohols and carboxylic acids. These data provide new mechanistic insight into the environmental fate of hydraulic fracturing surfactants after accidental release through chain shortening and biotransformation, emphasizing the importance of compound structure disclosure for predicting biodegradation products.
Collapse
Affiliation(s)
- Katie M Heyob
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University , Columbus, Ohio 43210, United States
| | | | - Michael Brooker
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University , Columbus, Ohio 43210, United States
| | - Morgan V Evans
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University , Columbus, Ohio 43210, United States
| | - John J Lenhart
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University , Columbus, Ohio 43210, United States
| | - Justin Wright
- Department of Biology, Juniata College , Huntingdon, Pennsylvania 16652, United States
| | - Regina Lamendella
- Department of Biology, Juniata College , Huntingdon, Pennsylvania 16652, United States
| | | | - Paula J Mouser
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University , Columbus, Ohio 43210, United States
- Department of Civil and Environmental Engineering, University of New Hampshire , Durham, New Hampshire 03824, United States
| |
Collapse
|
37
|
Rosenblum J, Thurman EM, Ferrer I, Aiken G, Linden KG. Organic Chemical Characterization and Mass Balance of a Hydraulically Fractured Well: From Fracturing Fluid to Produced Water over 405 Days. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:14006-14015. [PMID: 29132208 DOI: 10.1021/acs.est.7b03362] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A long-term field study (405 days) of a hydraulically fractured well from the Niobrara Formation in the Denver-Julesburg Basin was completed. Characterization of organic chemicals used in hydraulic fracturing and their changes through time, from the preinjected fracturing fluid to the produced water, was conducted. The characterization consisted of a mass balance by dissolved organic carbon (DOC), volatile organic analysis by gas chromatography/mass spectrometry, and nonvolatile organic analysis by liquid chromatography/mass spectrometry. DOC decreased from 1500 mg/L in initial flowback to 200 mg/L in the final produced water. Only ∼11% of the injected DOC returned by the end of the study, with this 11% representing a maximum fraction returned since the formation itself contributes DOC. Furthermore, the majority of returning DOC was of the hydrophilic fraction (60-85%). Volatile organic compound analysis revealed substantial concentrations of individual BTEX compounds (0.1-11 mg/L) over the 405-day study. Nonvolatile organic compounds identified were polyethylene glycols (PEGs), polypropylene glycols (PPG), linear alkyl-ethoxylates, and triisopropanolamine (TIPA). The distribution of PEGs, PPGs, and TIPA and their ubiquitous presence in our samples and the literature illustrate their potential as organic tracers for treatment operations or in the event of an environmental spill.
Collapse
Affiliation(s)
| | | | | | - George Aiken
- U.S. Geological Survey, Boulder, Colorado 80309, United States
| | | |
Collapse
|
38
|
Rosenblum J, Nelson AW, Ruyle B, Schultz MK, Ryan JN, Linden KG. Temporal characterization of flowback and produced water quality from a hydraulically fractured oil and gas well. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 596-597:369-377. [PMID: 28448913 DOI: 10.1016/j.scitotenv.2017.03.294] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/31/2017] [Accepted: 03/31/2017] [Indexed: 05/23/2023]
Abstract
This study examined water quality, naturally-occurring radioactive materials (NORM), major ions, trace metals, and well flow data for water used and produced from start-up to operation of an oil and gas producing hydraulically-fractured well (horizontal) in the Denver-Julesburg (DJ) Basin in northeastern Colorado. Analysis was conducted on the groundwater used to make the fracturing fluid, the fracturing fluid itself, and nine flowback/produced water samples over 220days of operation. The chemical oxygen demand of the wastewater produced during operation decreased from 8200 to 2500mg/L, while the total dissolved solids (TDS) increased in this same period from 14,200 to roughly 19,000mg/L. NORM, trace metals, and major ion levels were generally correlated with TDS, and were lower than other shale basins (e.g. Marcellus and Bakken). Although at lower levels, the salinity and its origin appear to be the result of a similar mechanism to that of other shale basins when comparing Cl/Br, Na/Br, and Mg/Br ratios. Volumes of returned wastewater were low, with only 3% of the volume injected (11millionliters) returning as flowback by day 15 and 30% returning by day 220. Low levels of TDS indicate a potentially treatment-amenable wastewater, but low volumes of flowback could limit onsite reuse in the DJ Basin. These results offer insight into the temporal water quality changes in the days and months following flowback, along with considerations and implications for water reuse in future hydraulic fracturing or for environmental discharge.
Collapse
Affiliation(s)
- James Rosenblum
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado, UCB 607, Boulder, CO 80309, USA
| | - Andrew W Nelson
- Interdisciplinary Human Toxicology Program, University of Iowa, Iowa City, IA 52242, USA
| | - Bridger Ruyle
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado, UCB 607, Boulder, CO 80309, USA
| | - Michael K Schultz
- Interdisciplinary Human Toxicology Program, University of Iowa, Iowa City, IA 52242, USA; Departments of Radiology and Radiation Oncology, Free Radical and Radiation Biology Program, Medical Scientist Training Program, University of Iowa, Iowa City, IA 52240, USA
| | - Joseph N Ryan
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado, UCB 607, Boulder, CO 80309, USA
| | - Karl G Linden
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado, UCB 607, Boulder, CO 80309, USA.
| |
Collapse
|
39
|
Luek JL, Gonsior M. Organic compounds in hydraulic fracturing fluids and wastewaters: A review. WATER RESEARCH 2017; 123:536-548. [PMID: 28697484 DOI: 10.1016/j.watres.2017.07.012] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 05/27/2023]
Abstract
High volume hydraulic fracturing (HVHF) of shale to stimulate the release of natural gas produces a large quantity of wastewater in the form of flowback fluids and produced water. These wastewaters are highly variable in their composition and contain a mixture of fracturing fluid additives, geogenic inorganic and organic substances, and transformation products. The qualitative and quantitative analyses of organic compounds identified in HVHF fluids, flowback fluids, and produced waters are reviewed here to communicate knowledge gaps that exist in the composition of HVHF wastewaters. In general, analyses of organic compounds have focused on those amenable to gas chromatography, focusing on volatile and semi-volatile oil and gas compounds. Studies of more polar and non-volatile organic compounds have been limited by a lack of knowledge of what compounds may be present as well as quantitative methods and standards available for analyzing these complex mixtures. Liquid chromatography paired with high-resolution mass spectrometry has been used to investigate a number of additives and will be a key tool to further research on transformation products that are increasingly solubilized through physical, chemical, and biological processes in situ and during environmental contamination events. Diverse treatments have been tested and applied to HVHF wastewaters but limited information has been published on the quantitative removal of individual organic compounds. This review focuses on recently published information on organic compounds identified in flowback fluids and produced waters from HVHF.
Collapse
Affiliation(s)
- Jenna L Luek
- University of Maryland Center for Environmental Science, Chesapeake Biological Laboratory, Solomons, MD 20688, USA.
| | - Michael Gonsior
- University of Maryland Center for Environmental Science, Chesapeake Biological Laboratory, Solomons, MD 20688, USA
| |
Collapse
|
40
|
Rogers JD, Ferrer I, Tummings SS, Bielefeldt AR, Ryan JN. Inhibition of Biodegradation of Hydraulic Fracturing Compounds by Glutaraldehyde: Groundwater Column and Microcosm Experiments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:10251-10261. [PMID: 28780853 DOI: 10.1021/acs.est.7b02316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The rapid expansion of unconventional oil and gas development has raised concerns about the potential contamination of aquifers; however, the groundwater fate and transport of hydraulic fracturing fluid compounds and mixtures remains a significant data gap. Degradation kinetics of five hydraulic fracturing compounds (2-propanol, ethylene glycol, propargyl alcohol, 2-butoxyethanol, and 2-ethylhexanol) in the absence and presence of the biocide glutaraldehyde were investigated under a range of redox conditions using sediment-groundwater microcosms and flow-through columns. Microcosms were used to elucidate biodegradation inhibition at varying glutaraldehyde concentrations. In the absence of glutaraldehyde, half-lives ranged from 13 d to >93 d. Accurate mass spectrometry indicated that a trimer was the dominant aqueous-phase glutaraldehyde species. Microbial inhibition was observed at glutaraldehyde trimer concentrations as low as 5 mg L-1, which demonstrated that the trimer retained some biocidal activity. For most of the compounds, biodegradation rates slowed with increasing glutaraldehyde concentrations. For many of the compounds, degradation was faster in the columns than the microcosms. Four compounds (2-propanol, ethylene glycol, propargyl alcohol, and 2-butoxyethanol) were found to be both mobile and persistent in groundwater under a range of redox conditions. The glutaraldehyde trimer and 2-ethylhexanol were more rapidly degraded, particularly under oxic conditions.
Collapse
Affiliation(s)
- Jessica D Rogers
- Department of Civil, Environmental and Architectural Engineering, University of Colorado Boulder , Boulder, Colorado 80309, United States
| | - Imma Ferrer
- Department of Civil, Environmental and Architectural Engineering, University of Colorado Boulder , Boulder, Colorado 80309, United States
| | - Shantal S Tummings
- Department of Civil, Environmental and Architectural Engineering, University of Colorado Boulder , Boulder, Colorado 80309, United States
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University , Columbus, Ohio 43210, United States
| | - Angela R Bielefeldt
- Department of Civil, Environmental and Architectural Engineering, University of Colorado Boulder , Boulder, Colorado 80309, United States
| | - Joseph N Ryan
- Department of Civil, Environmental and Architectural Engineering, University of Colorado Boulder , Boulder, Colorado 80309, United States
| |
Collapse
|
41
|
Costa D, Jesus J, Branco D, Danko A, Fiúza A. Extensive review of shale gas environmental impacts from scientific literature (2010-2015). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:14579-14594. [PMID: 28452035 DOI: 10.1007/s11356-017-8970-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/30/2017] [Indexed: 06/07/2023]
Abstract
Extensive reviews and meta-analyses are essential to summarize emerging developments in a specific field and offering information on the current trends in the scientific literature. Shale gas exploration and exploitation has been extensively debated in literature, but a comprehensive review of recent studies on the environmental impacts has yet to be carried out. Therefore, the goal of this article is to systematically examine scientific articles published between 2010 and 2015 and identify recent advances and existing data gaps. The examined articles were classified into six main categories (water resources, atmospheric emissions, land use, induced seismicity, occupational and public health and safety, and other impacts). These categories are analyzed separately to identify specific challenges, possibly existing consensus and data gaps yet remained in the literature.
Collapse
Affiliation(s)
- Daniele Costa
- Centre for Natural Resources and Environment (CERENA), Department of Mining Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465, Porto, Portugal
| | - João Jesus
- Centre for Natural Resources and Environment (CERENA), Department of Mining Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465, Porto, Portugal
| | - David Branco
- Energy Planning Program, Graduate School of Engineering, Universidade Federal do Rio de Janeiro, Centro de Tecnologia, Bloco C, Sala 211, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-972, Brazil
| | - Anthony Danko
- Centre for Natural Resources and Environment (CERENA), Department of Mining Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465, Porto, Portugal
| | - António Fiúza
- Centre for Natural Resources and Environment (CERENA), Department of Mining Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465, Porto, Portugal.
| |
Collapse
|
42
|
Sun Y, Lei C, Khan E, Chen SS, Tsang DCW, Ok YS, Lin D, Feng Y, Li XD. Nanoscale zero-valent iron for metal/metalloid removal from model hydraulic fracturing wastewater. CHEMOSPHERE 2017; 176:315-323. [PMID: 28273539 DOI: 10.1016/j.chemosphere.2017.02.119] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 02/20/2017] [Accepted: 02/23/2017] [Indexed: 06/06/2023]
Abstract
Nanoscale zero-valent iron (nZVI) was tested for the removal of Cu(II), Zn(II), Cr(VI), and As(V) in model saline wastewaters from hydraulic fracturing. Increasing ionic strength (I) from 0.35 to 4.10 M (Day-1 to Day-90 wastewaters) increased Cu(II) removal (25.4-80.0%), inhibited Zn(II) removal (58.7-42.9%), slightly increased and then reduced Cr(VI) removal (65.7-44.1%), and almost unaffected As(V) removal (66.7-75.1%) by 8-h reaction with nZVI at 1-2 g L-1. The removal kinetics conformed to pseudo-second-order model, and increasing I decreased the surface area-normalized rate coefficient (ksa) of Cu(II) and Cr(VI), probably because agglomeration of nZVI in saline wastewaters restricted diffusion of metal(loid)s to active surface sites. Increasing I induced severe Fe dissolution from 0.37 to 0.77% in DIW to 4.87-13.0% in Day-90 wastewater; and Fe dissolution showed a significant positive correlation with Cu(II) removal. With surface stabilization by alginate and polyvinyl alcohol, the performance of entrapped nZVI in Day-90 wastewater was improved for Zn(II) and Cr(VI), and Fe dissolution was restrained (3.20-7.36%). The X-ray spectroscopic analysis and chemical speciation modelling demonstrated that the difference in removal trends from Day-1 to Day-90 wastewaters was attributed to: (i) distinctive removal mechanisms of Cu(II) and Cr(VI) (adsorption, (co-)precipitation, and reduction), compared to Zn(II) (adsorption) and As(V) (bidentate inner-sphere complexation); and (ii) changes in solution speciation (e.g., from Zn2+ to ZnCl3- and ZnCl42-; from CrO42- to CaCrO4 complex). Bare nZVI was susceptible to variations in wastewater chemistry while entrapped nZVI was more stable and environmentally benign, which could be used to remove metals/metalloids before subsequent treatment for reuse/disposal.
Collapse
Affiliation(s)
- Yuqing Sun
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Cheng Lei
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Eakalak Khan
- Department of Civil Engineering, North Dakota State University, Dept 2470, P.O. Box 6050, Fargo, ND, 58108, USA
| | - Season S Chen
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Yong Sik Ok
- School of Natural Resources and Environmental Science & Korea Biochar Research Center, Kangwon National University, Chuncheon, 24341, South Korea
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Xiang-Dong Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
43
|
Camarillo MK, Domen JK, Stringfellow WT. Physical-chemical evaluation of hydraulic fracturing chemicals in the context of produced water treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 183:164-174. [PMID: 27591844 DOI: 10.1016/j.jenvman.2016.08.065] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/03/2016] [Accepted: 08/24/2016] [Indexed: 06/06/2023]
Abstract
Produced water is a significant waste stream that can be treated and reused; however, the removal of production chemicals-such as those added in hydraulic fracturing-must be addressed. One motivation for treating and reusing produced water is that current disposal methods-typically consisting of deep well injection and percolation in infiltration pits-are being limited. Furthermore, oil and gas production often occurs in arid regions where there is demand for new water sources. In this paper, hydraulic fracturing chemical additive data from California are used as a case study where physical-chemical and biodegradation data are summarized and used to screen for appropriate produced water treatment technologies. The data indicate that hydraulic fracturing chemicals are largely treatable; however, data are missing for 24 of the 193 chemical additives identified. More than one-third of organic chemicals have data indicating biodegradability, suggesting biological treatment would be effective. Adsorption-based methods and partitioning of chemicals into oil for subsequent separation is expected to be effective for approximately one-third of chemicals. Volatilization-based treatment methods (e.g. air stripping) will only be effective for approximately 10% of chemicals. Reverse osmosis is a good catch-all with over 70% of organic chemicals expected to be removed efficiently. Other technologies such as electrocoagulation and advanced oxidation are promising but lack demonstration. Chemicals of most concern due to prevalence, toxicity, and lack of data include propargyl alcohol, 2-mercaptoethyl alcohol, tetrakis hydroxymethyl-phosphonium sulfate, thioglycolic acid, 2-bromo-3-nitrilopropionamide, formaldehyde polymers, polymers of acrylic acid, quaternary ammonium compounds, and surfactants (e.g. ethoxylated alcohols). Future studies should examine the fate of hydraulic fracturing chemicals in produced water treatment trains to demonstrate removal and clarify interactions between upstream and downstream processes.
Collapse
Affiliation(s)
- Mary Kay Camarillo
- Ecological Engineering Research Program, School of Engineering & Computer Science, University of the Pacific, 3601 Pacific Avenue, Stockton, CA 95211, USA.
| | - Jeremy K Domen
- Ecological Engineering Research Program, School of Engineering & Computer Science, University of the Pacific, 3601 Pacific Avenue, Stockton, CA 95211, USA
| | - William T Stringfellow
- Ecological Engineering Research Program, School of Engineering & Computer Science, University of the Pacific, 3601 Pacific Avenue, Stockton, CA 95211, USA; Earth & Environmental Sciences Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| |
Collapse
|
44
|
Mouser PJ, Borton M, Darrah TH, Hartsock A, Wrighton KC. Hydraulic fracturing offers view of microbial life in the deep terrestrial subsurface. FEMS Microbiol Ecol 2016; 92:fiw166. [DOI: 10.1093/femsec/fiw166] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2016] [Indexed: 11/12/2022] Open
|
45
|
Liang R, Davidova IA, Marks CR, Stamps BW, Harriman BH, Stevenson BS, Duncan KE, Suflita JM. Metabolic Capability of a Predominant Halanaerobium sp. in Hydraulically Fractured Gas Wells and Its Implication in Pipeline Corrosion. Front Microbiol 2016; 7:988. [PMID: 27446028 PMCID: PMC4916785 DOI: 10.3389/fmicb.2016.00988] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 06/08/2016] [Indexed: 11/13/2022] Open
Abstract
Microbial activity associated with produced water from hydraulic fracturing operations can lead to gas souring and corrosion of carbon-steel equipment. We examined the microbial ecology of produced water and the prospective role of the prevalent microorganisms in corrosion in a gas production field in the Barnett Shale. The microbial community was mainly composed of halophilic, sulfidogenic bacteria within the order Halanaerobiales, which reflected the geochemical conditions of highly saline water containing sulfur species (S2O3 (2-), SO4 (2-), and HS(-)). A predominant, halophilic bacterium (strain DL-01) was subsequently isolated and identified as belonging to the genus Halanaerobium. The isolate could degrade guar gum, a polysaccharide polymer used in fracture fluids, to produce acetate and sulfide in a 10% NaCl medium at 37°C when thiosulfate was available. To mitigate potential deleterious effects of sulfide and acetate, a quaternary ammonium compound was found to be an efficient biocide in inhibiting the growth and metabolic activity of strain DL-01 relative to glutaraldehyde and tetrakis (hydroxymethyl) phosphonium sulfate. Collectively, our findings suggest that predominant halophiles associated with unconventional shale gas extraction could proliferate and produce sulfide and acetate from the metabolism of polysaccharides used in hydraulic fracturing fluids. These metabolic products might be returned to the surface and transported in pipelines to cause pitting corrosion in downstream infrastructure.
Collapse
Affiliation(s)
- Renxing Liang
- Department of Microbiology and Plant Biology and OU Biocorrosion Center, University of Oklahoma Norman, OK, USA
| | - Irene A Davidova
- Department of Microbiology and Plant Biology and OU Biocorrosion Center, University of Oklahoma Norman, OK, USA
| | - Christopher R Marks
- Department of Microbiology and Plant Biology and OU Biocorrosion Center, University of Oklahoma Norman, OK, USA
| | - Blake W Stamps
- Department of Microbiology and Plant Biology and OU Biocorrosion Center, University of Oklahoma Norman, OK, USA
| | - Brian H Harriman
- Department of Microbiology and Plant Biology and OU Biocorrosion Center, University of Oklahoma Norman, OK, USA
| | - Bradley S Stevenson
- Department of Microbiology and Plant Biology and OU Biocorrosion Center, University of Oklahoma Norman, OK, USA
| | - Kathleen E Duncan
- Department of Microbiology and Plant Biology and OU Biocorrosion Center, University of Oklahoma Norman, OK, USA
| | - Joseph M Suflita
- Department of Microbiology and Plant Biology and OU Biocorrosion Center, University of Oklahoma Norman, OK, USA
| |
Collapse
|
46
|
McLaughlin MC, Borch T, Blotevogel J. Spills of Hydraulic Fracturing Chemicals on Agricultural Topsoil: Biodegradation, Sorption, and Co-contaminant Interactions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:6071-6078. [PMID: 27171137 DOI: 10.1021/acs.est.6b00240] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Hydraulic fracturing frequently occurs on agricultural land. Yet the extent of sorption, transformation, and interactions among the numerous organic frac fluid and oil and gas wastewater constituents upon environmental release is hardly known. Thus, this study aims to advance our current understanding of processes that control the environmental fate and toxicity of commonly used hydraulic fracturing chemicals. Poly(ethylene glycol) surfactants were completely biodegraded in agricultural topsoil within 42-71 days, but their transformation was impeded in the presence of the biocide glutaraldehyde and was completely inhibited by salt at concentrations typical for oil and gas wastewater. At the same time, aqueous glutaraldehyde concentrations decreased due to sorption to soil and were completely biodegraded within 33-57 days. While no aqueous removal of polyacrylamide friction reducer was observed over a period of 6 months, it cross-linked with glutaraldehyde, further lowering the biocide's aqueous concentration. These findings highlight the necessity to consider co-contaminant effects when we evaluate the risk of frac fluid additives and oil and gas wastewater constituents in agricultural soils in order to fully understand their human health impacts, likelihood for crop uptake, and potential for groundwater contamination.
Collapse
Affiliation(s)
- Molly C McLaughlin
- Department of Civil and Environmental Engineering, Colorado State University , 1320 Campus Delivery, Fort Collins, Colorado 80523, United States
| | - Thomas Borch
- Department of Civil and Environmental Engineering, Colorado State University , 1320 Campus Delivery, Fort Collins, Colorado 80523, United States
- Department of Chemistry, Colorado State University , 1872 Campus Delivery, Fort Collins, Colorado 80523, United States
- Department of Soil and Crop Sciences, Colorado State University , 1170 Campus Delivery, Fort Collins, Colorado 80523, United States
| | - Jens Blotevogel
- Department of Civil and Environmental Engineering, Colorado State University , 1320 Campus Delivery, Fort Collins, Colorado 80523, United States
| |
Collapse
|