1
|
Helczman M, Tomka M, Arvay J, Tvrda E, Andreji J, Fik M, Snirc M, Jambor T, Massanyi P, Kovacik A. Selected micro- and macro-element associations with oxidative status markers in common carp ( Cyprinus carpio) blood serum and ejaculate: a correlation study. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:999-1014. [PMID: 39344187 DOI: 10.1080/15287394.2024.2406429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The aim of this study was to (1) determine complex interactions between macro- and micro-elements present in blood serum and ejaculate of common carp (Cyprinus carpio), and (2) examine the association between alterations in these macro- and micro-elements with markers of oxidative stress. Blood and ejaculate from 10 male carp were collected in the summer period on the experimental pond in Kolíňany (West Slovak Lowland). Reactive oxygen species (ROS), total antioxidant capacity (TAC), protein carbonyls (PC), and malondialdehyde (MDA) levels were measured in blood serum and ejaculate using spectrophotometric methods. The amounts of elements (Ag, Al, Ba, Co, Li, Mo, Ca, K, Na, and Mg) in all samples were quantified using inductively coupled plasma optical emission spectrophotometry. Data demonstrated significant differences in elemental concentrations between blood and ejaculate, specifically significantly higher ejaculate levels were detected for Ag, Al, Ba, Co, Li, Mo, K, and Mg. Potassium was the most abundant macro-element in the ejaculate, while sodium was the most abundant in blood serum. Among the micro-elements, Al was predominant in both types of samples. It is noteworthy that oxidative status markers including ROS, TAC, and MDA were significantly higher in ejaculate indicating the presence of oxidative stress in C. carpio reproductive tissue. The positive correlations between Mg and Ca in blood serum and ejaculate suggest these elements play a functional role in metabolic and physiological processes. In contrast, the positive correlations of Ba and Al with markers of oxidative stress indicated the association of these metals with induction of oxidative stress. Our findings provide insights into the association of metals with biomarkers of physiological function as well as adverse effects in C. carpio.
Collapse
Affiliation(s)
- Marek Helczman
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Marian Tomka
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Julius Arvay
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Eva Tvrda
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Jaroslav Andreji
- Institute of Animal Husbandry, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Martin Fik
- Institute of Animal Husbandry, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Marek Snirc
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Tomas Jambor
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Peter Massanyi
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
- Institute of Biology, Faculty of Exact and Natural Sciences, University of the National Education Commission, Krakow, Poland
| | - Anton Kovacik
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| |
Collapse
|
2
|
Anyachor CP, Orish CN, Ezejiofor AN, Cirovic A, Cirovic A, Dooka BD, Ezealisiji KM, Noundou XS, Orisakwe OE. Silica Nanoparticles from Melon Seed Husk Abrogated Binary Metal(loid) Mediated Cerebellar Dysfunction by Attenuation of Oxido-inflammatory Response and Upregulation of Neurotrophic Factors in Male Albino Rats. CEREBELLUM (LONDON, ENGLAND) 2024:10.1007/s12311-024-01747-1. [PMID: 39331240 DOI: 10.1007/s12311-024-01747-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
Silica nanoparticles (SiNPs) have been touted for their role in the management of non-communicable diseases. Their neuroprotective benefits against heavy metal-induced neurotoxicity remain largely unexplored. This is a comparative evaluation of the oxido-inflammatory and neurotrophic effects of Ni, Al, and Ni/Al mixture on the cerebellum of male albino rats with or without treatment with SiNPs generated from melon seed husk. The study complied with the ARRIVE guidelines for reporting in vivo experiments. A total of 91, 7-9 week-old weight-matched male Sprague rats (to avoid sex bias) were randomly divided into 13 different dosing groups where Group 1 served as the control. Other groups received 0.2 mg/kg Ni, 1 mg/kg Al, and 0.2 mg/kg Ni + 1 mg/kg Al mixture with or without different doses of SiNP for 90 days. Rotarod performance was carried out. Oxidative stress markers, Ni, Al, Ca, Fe, Mg, neurotrophic factors, amyloid beta (Aβ-42), cyclooxygenase-2 (COX-2), and acetylcholinesterase (AChE) were determined in the cerebellum. SiNPs from melon seed husk caused a significant decrease in Aβ-42 level and activities of AChE and COX-2 and a significant increase in brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) mediated by Ni, Al, and Ni/Al mixture exposure in rats. Neurotoxicity of the Ni/Al mixture is via heightened neuronal lipoperoxidative damage, decreased Mg, and increased Fe, and co-administration of SiNPs from melon seed husk with the Ni/Al mixture attenuated some of these biochemical changes in the cerebellum.
Collapse
Affiliation(s)
- Chidinma P Anyachor
- African Centre of Excellence for Public Health and Toxicological Research (ACE‑PUTOR), University of Port Harcourt, PMB, Port Harcourt, Choba, 5323, Nigeria
| | - Chinna N Orish
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Port Harcourt, PMB, Choba, Port Harcourt, 5323, Nigeria.
| | - Anthonet N Ezejiofor
- African Centre of Excellence for Public Health and Toxicological Research (ACE‑PUTOR), University of Port Harcourt, PMB, Port Harcourt, Choba, 5323, Nigeria
| | - Ana Cirovic
- Faculty of Medicine, Institute of Anatomy, University of Belgrade, Belgrade, Serbia
| | - Aleksandar Cirovic
- Faculty of Medicine, Institute of Anatomy, University of Belgrade, Belgrade, Serbia
| | - Baridoo Donatus Dooka
- African Centre of Excellence for Public Health and Toxicological Research (ACE‑PUTOR), University of Port Harcourt, PMB, Port Harcourt, Choba, 5323, Nigeria
| | - Kenneth M Ezealisiji
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Port Harcourt, PMB, Choba, Port Harcourt, 5323, Nigeria
| | - Xavier Siwe Noundou
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, MEDUNSA, Box 218, 0204, Pretoria, South Africa
| | - Orish E Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE‑PUTOR), University of Port Harcourt, PMB, Port Harcourt, Choba, 5323, Nigeria.
- Advanced Research Centre, European University of Lefke, Lefke, Mersin, TR-10, Northern Cyprus, Turkey.
| |
Collapse
|
3
|
Elzayat EM, Shahien SA, El-Sherif AA, Hosney M. Therapeutic potential of stem cells and acitretin on inflammatory signaling pathway-associated genes regulated by miRNAs 146a and 155 in AD-like rats. Sci Rep 2023; 13:9613. [PMID: 37311848 DOI: 10.1038/s41598-023-36772-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 06/09/2023] [Indexed: 06/15/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most common causes of dementia. Several drugs are used to improve the symptoms, but do not stop AD progression. There are more promising treatments that may have a significant role in AD diagnosis and treatment such as miRNAs and stem cells. The present study aims to develop a new approach for AD treatment by mesenchymal stem cells (MSCs) and/or acitretin with special reference to inflammatory signaling pathway as NF-kB and its regulator miRNAs in AD-like rat model. Fourty-five male albino rats were allotted for the present study. The experimental periods were divided into induction, withdrawal, and therapeutic phases. Expression levels of miR-146a, miR-155, necrotic, growth and inflammatory genes were assessed using RT-qPCR. Histopathological examination of brain tissues was performed in different rat groups. The normal physiological, molecular, and histopathological levels were restored after treatment with MSCs and/or acitretin. The present study demonstrates that the miR-146a and miR-155 might be used as promising biomarkers for AD. MSCs and/or acitretin proved their therapeutic potential in restoring the expression levels of targeted miRNAs and their related genes concerning NF-kB signaling pathway.
Collapse
Affiliation(s)
- Emad M Elzayat
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Sherif A Shahien
- Biotechnology/Bimolecular Chemistry Program, Faculty of Science, Helwan University, Cairo, Egypt
| | - Ahmed A El-Sherif
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Mohamed Hosney
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
4
|
Lokman M, Ashraf E, Kassab RB, Abdel Moneim AE, El-Yamany NA. Aluminum Chloride-Induced Reproductive Toxicity in Rats: the Protective Role of Zinc Oxide Nanoparticles. Biol Trace Elem Res 2022; 200:4035-4044. [PMID: 34741695 DOI: 10.1007/s12011-021-03010-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 10/31/2021] [Indexed: 12/30/2022]
Abstract
Reproductive toxicity is a major challenge associated with aluminum (Al) exposure. Therefore, this study aimed to investigate the effects of zinc oxide nanoparticle (ZnONP) treatment on Al-induced reproductive toxicity in rats. Thirty-two adult male albino rats were allocated into four equal groups as follows: control, AlCl3 orally administered group (100 mg/kg bwt), ZnONPs injected intraperitoneally (i.p.) group (4 mg/kg bwt), and ZnONPs + AlCl3-treated group. The treatment was daily extended for 42 consecutive days. Oral administration of AlCl3 showed an oxidative damage confirmed by an increase in malondialdehyde and nitric oxide levels and superoxide dismutase activity and accompanied by a decrease in glutathione content and catalase activity. Also, AlCl3 administration increased the pro-inflammatory mediator tumor necrosis factor-alpha. Furthermore, significant declines in the levels of serum male reproductive hormones testosterone, luteinizing hormone, and follicle-stimulating hormone in AlCl3-intoxicated rats were noticed. In parallel, severe histopathological alterations were observed in testis tissues. Additionally, the immunohistochemical analysis showed that AlCl3 administration potentiates cell death in the testicular tissue by elevating the immunostaining intensity signal for the pro-apoptotic protein, cysteinyl aspartate specific protease-3 (caspase-3) and a marked depletion in the cell proliferation expression marker, Ki-67, in germinal cells of AlCl3-treated group. On the other hand, the daily i.p. injection to rats with ZnONPs before AlCl3 was found to ameliorate the reproductive toxicity induced by Al administration through reducing the testicular oxidative stress and improving the inflammatory, apoptotic, and reproductive markers as well as histopathological alterations in the testis. These results suggest that ZnONPs could be used as an alternative agent to minimize the reproductive toxicity associated with Al exposure through its antioxidant, anti-inflammatory, anti-apoptotic, and reproductive modulatory activities.
Collapse
Affiliation(s)
- Maha Lokman
- Biology Department, College of Science and Humanities, Prince Sattam bin Abdul Aziz University, Alkharj, Saudi Arabia
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Eman Ashraf
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Rami B Kassab
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
- Department of Biology, Faculty of Science and Arts, Al-Baha University, Almakhwah, Al-Baha, Saudi Arabia
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt.
| | - Nabil A El-Yamany
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
5
|
Abbas F, Eladl MA, El-Sherbiny M, Abozied N, Nabil A, Mahmoud SM, Mokhtar HI, Zaitone SA, Ibrahim D. Celastrol and thymoquinone alleviate aluminum chloride-induced neurotoxicity: Behavioral psychomotor performance, neurotransmitter level, oxidative-inflammatory markers, and BDNF expression in rat brain. Biomed Pharmacother 2022; 151:113072. [PMID: 35576663 DOI: 10.1016/j.biopha.2022.113072] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 11/02/2022] Open
Abstract
Exposure to aluminum chloride (AlCl3) induces progressive multiregional neurodegeneration in animal models by promoting oxidative stress and neuroinflammation. The current study was designed to assess the potential efficacy of the natural antioxidants celastrol and thymoquinone (TQ) for alleviating AlCl3-induced psychomotor abnormalities and oxidative-inflammatory burden in male albino rats. Four treatment groups were compared: (i) a vehicle control group, (ii) a AlCL3 group receiving daily intraperitoneal (i.p.) injection of AlCl3 (10 mg/kg) for 6 weeks, (iii) a AlCl3 plus TQ (10 mg/kg, i.p.) cotreatment group, and (iv) a AlCl3 plus celastrol (1 mg/kg, i.p.) cotreatment group. Open-field, rotarod, and forced swimming tests were conducted to assess locomotor activity, motor coordination, anxiety-like behavior, and depressive-like behavior. Acetylcholine (ACh), dopamine, and serotonin levels were measured in brain homogenates. Malondialdehyde (MDA), total antioxidant capacity (TAC), and catalase activity were measured as oxidative stress markers, while tumor necrosis factor-α (TNF-α) and interlukin-6 (IL-6) expression levels were measured as inflammatory markers. Brain derived neurotrophic factor (BDNF) mRNA was measured as an index for the endogenous neuroprotective response. Daily AlCl3 injection reduced free ambulation, impaired motor coordination, promoted anxiety- and depression-like behaviors, reduced whole-brain ACh, dopamine, and serotonin concentrations, increased MDA accumulation, reduced TAC, elevated TNF-α and IL-6, and suppressed BDNF mRNA expression. All of these effects were significantly reversed by TQ or celastrol cotreatment. Thus, TQ and celastrol may be promising treatments for AlCl3-induced neurotoxicity as well as neurodegenerative diseases involving oxidative stress and neuroinflammation.
Collapse
Affiliation(s)
- Faten Abbas
- Physiology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Mohamed Ahmed Eladl
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh 71666, Saudi Arabia; Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Nadia Abozied
- Pharmacology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Amaal Nabil
- Pharmacology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Shereen M Mahmoud
- Forensic Medicine & Toxicology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Hatem I Mokhtar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sinai University, Kantara branch, Ismailia 41636, Egypt
| | - Sawsan A Zaitone
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; Department of Pharmacology & Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia.
| | - Dalia Ibrahim
- Physiology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
6
|
Lithium and Erectile Dysfunction: An Overview. Cells 2022; 11:cells11010171. [PMID: 35011733 PMCID: PMC8750948 DOI: 10.3390/cells11010171] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 12/11/2022] Open
Abstract
Lithium has been a mainstay of therapy for patients with bipolar disorders for several decades. However, it may exert a variety of adverse effects that can affect patients' compliance. Sexual and erectile dysfunction has been reported in several studies by patients who take lithium as monotherapy or combined with other psychotherapeutic agents. The exact mechanisms underlying such side effects of lithium are not completely understood. It seems that both central and peripheral mechanisms are involved in the lithium-related sexual dysfunction. Here, we had an overview of the epidemiology of lithium-related sexual and erectile dysfunction in previous clinical studies as well as possible pathologic pathways that could be involved in this adverse effect of lithium based on the previous preclinical studies. Understanding such mechanisms could potentially open a new avenue for therapies that can overcome lithium-related sexual dysfunction and improve patients' adherence to the medication intake.
Collapse
|
7
|
Molecular mechanisms of aluminum neurotoxicity: Update on adverse effects and therapeutic strategies. ADVANCES IN NEUROTOXICOLOGY 2021; 5:1-34. [PMID: 34263089 DOI: 10.1016/bs.ant.2020.12.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
8
|
Ghasemi M. Nitric oxide: Antidepressant mechanisms and inflammation. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2019; 86:121-152. [PMID: 31378250 DOI: 10.1016/bs.apha.2019.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Millions of individuals worldwide suffers from mood disorders, especially major depressive disorder (MDD), which has a high rate of disease burden in society. Although targeting the biogenic amines including serotonin, and norepinephrine have provided invaluable links with the pharmacological treatment of MDD over the last four decades, a growing body of evidence suggest that other biologic systems could contribute to the pathophysiology and treatment of MDD. In this chapter, we highlight the potential role of nitric oxide (NO) signaling in the pathophysiology and thereby treatment of MDD. This has been investigated over the last four decades by showing that (i) levels of NO are altered in patients with major depression; (ii) modulators of NO signaling exert antidepressant effects in patients with MDD or in the animal studies; (iii) NO signaling could be targeted by a variety of antidepressants in animal models of depression; and (iv) NO signaling can potentially modulate the inflammatory pathways that underlie the pathophysiology of MDD. These findings, which hypothesize an NO involvement in MDD, can provide a new insight into novel therapeutic approaches for patients with MDD in the future.
Collapse
Affiliation(s)
- Mehdi Ghasemi
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, United States; Department of Neurology, Massachusetts and General Hospital, Boston, MA, United States.
| |
Collapse
|
9
|
Drobyshev EJ, Solovyev ND, Gorokhovskiy BM, Kashuro VA. Accumulation Patterns of Sub-chronic Aluminum Toxicity Model After Gastrointestinal Administration in Rats. Biol Trace Elem Res 2018; 185:384-394. [PMID: 29441448 DOI: 10.1007/s12011-018-1247-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/11/2018] [Indexed: 01/08/2023]
Abstract
Although aluminum chronic neurotoxicity is well documented, there are no well-established experimental protocols of Al exposure. In the current study, toxic effects of sub-chronic Al exposure have been evaluated in outbreed male rats (gastrointestinal administration). Forty animals were used: 10 were administered with AlCl3 water solution (2 mg/kg Al per day) for 1 month, 10 received the same concentration of AlCl3 for 3 month, and 20 (10 per observation period) saline as control. After 30 and 90 days, the animals underwent behavioral tests: open field, passive avoidance, extrapolation escape task, and grip strength. At the end of the study, the blood, liver, kidney, and brain were excised for analytical and morphological studies. The Al content was measured by inductively coupled plasma mass-spectrometry. Essential trace elements-Co, Cr, Cu, Fe, Mg, Mn, Mo, Se, and Zn-were measured in whole blood samples. Although no morphological changes were observed in the brain, liver, or kidney for both exposure terms, dose-dependent Al accumulation and behavioral differences (increased locomotor activity after 30 days) between treatment and control groups were indicated. Moreover, for 30 days exposure, strong positive correlation between Al content in the brain and blood for individual animals was established, which surprisingly disappeared by the third month. This may indicate neural barrier adaptation to the Al exposure or the saturation of Al transport into the brain. Notably, we could not see a clear neurodegeneration process after rather prolonged sub-chronic Al exposure, so probably longer exposure periods are required.
Collapse
Affiliation(s)
- Evgenii J Drobyshev
- Institut für Ernährungswissenschaft, Universität Potsdam, Arthur-Scheunert-Allee 114-116, Nuthetal, 14558, Potsdam, Germany.
- St. Petersburg State University, St. Petersburg, Russia.
| | | | - Boris M Gorokhovskiy
- Institute of Precambrian Geology and Geochronology Russian Academy of Sciences, St. Petersburg, Russia
| | - Vadim A Kashuro
- Institute of Toxicology of Federal Medico-Biological Agency, St. Petersburg, Russia
| |
Collapse
|
10
|
Ghasemi M, Claunch J, Niu K. Pathologic role of nitrergic neurotransmission in mood disorders. Prog Neurobiol 2018; 173:54-87. [PMID: 29890213 DOI: 10.1016/j.pneurobio.2018.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/30/2018] [Accepted: 06/05/2018] [Indexed: 02/08/2023]
Abstract
Mood disorders are chronic, recurrent mental diseases that affect millions of individuals worldwide. Although over the past 40 years the biogenic amine models have provided meaningful links with the clinical phenomena of, and the pharmacological treatments currently employed in, mood disorders, there is still a need to examine the contribution of other systems to the neurobiology and treatment of mood disorders. This article reviews the current literature describing the potential role of nitric oxide (NO) signaling in the pathophysiology and thereby the treatment of mood disorders. The hypothesis has arisen from several observations including (i) altered NO levels in patients with mood disorders; (ii) antidepressant effects of NO signaling blockers in both clinical and pre-clinical studies; (iii) interaction between conventional antidepressants/mood stabilizers and NO signaling modulators in several biochemical and behavioral studies; (iv) biochemical and physiological evidence of interaction between monoaminergic (serotonin, noradrenaline, and dopamine) system and NO signaling; (v) interaction between neurotrophic factors and NO signaling in mood regulation and neuroprotection; and finally (vi) a crucial role for NO signaling in the inflammatory processes involved in pathophysiology of mood disorders. These accumulating lines of evidence have provided a new insight into novel approaches for the treatment of mood disorders.
Collapse
Affiliation(s)
- Mehdi Ghasemi
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01655, USA.
| | - Joshua Claunch
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Kathy Niu
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| |
Collapse
|
11
|
Shefa U, Kim D, Kim MS, Jeong NY, Jung J. Roles of Gasotransmitters in Synaptic Plasticity and Neuropsychiatric Conditions. Neural Plast 2018; 2018:1824713. [PMID: 29853837 PMCID: PMC5960547 DOI: 10.1155/2018/1824713] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/25/2018] [Accepted: 03/11/2018] [Indexed: 12/22/2022] Open
Abstract
Synaptic plasticity is important for maintaining normal neuronal activity and proper neuronal functioning in the nervous system. It is crucial for regulating synaptic transmission or electrical signal transduction to neuronal networks, for sharing essential information among neurons, and for maintaining homeostasis in the body. Moreover, changes in synaptic or neural plasticity are associated with many neuropsychiatric conditions, such as schizophrenia (SCZ), bipolar disorder (BP), major depressive disorder (MDD), and Alzheimer's disease (AD). The improper maintenance of neural plasticity causes incorrect neurotransmitter transmission, which can also cause neuropsychiatric conditions. Gas neurotransmitters (gasotransmitters), such as hydrogen sulfide (H2S), nitric oxide (NO), and carbon monoxide (CO), play roles in maintaining synaptic plasticity and in helping to restore such plasticity in the neuronal architecture in the central nervous system (CNS). Indeed, the upregulation or downregulation of these gasotransmitters may cause neuropsychiatric conditions, and their amelioration may restore synaptic plasticity and proper neuronal functioning and thereby improve such conditions. Understanding the specific molecular mechanisms underpinning these effects can help identify ways to treat these neuropsychiatric conditions.
Collapse
Affiliation(s)
- Ulfuara Shefa
- Department of Biomedical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Dokyoung Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Min-Sik Kim
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Na Young Jeong
- Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, 32 Daesingongwon-ro, Seo-gu, Busan 49201, Republic of Korea
| | - Junyang Jung
- Department of Biomedical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- East-West Medical Research Institute, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, 13 Seoul 02447, Republic of Korea
| |
Collapse
|
12
|
Cheng D, Zhang X, Xu L, Li X, Hou L, Wang C. Protective and prophylactic effects of chlorogenic acid on aluminum-induced acute hepatotoxicity and hematotoxicity in mice. Chem Biol Interact 2017. [DOI: 10.1016/j.cbi.2017.06.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Borai IH, Ezz MK, Rizk MZ, Aly HF, El-Sherbiny M, Matloub AA, Fouad GI. Therapeutic impact of grape leaves polyphenols on certain biochemical and neurological markers in AlCl 3-induced Alzheimer's disease. Biomed Pharmacother 2017; 93:837-851. [PMID: 28715867 DOI: 10.1016/j.biopha.2017.07.038] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/27/2017] [Accepted: 07/06/2017] [Indexed: 11/28/2022] Open
Abstract
Alzheimer's disease (AD) is a grave and prevailing neurodegenerative disease, characterized by slow and progressive neurodegeneration in different brain regions. Aluminum (Al) is a potent and widely distributed neurotoxic metal, implicated in the neuropathogenesis of AD. This study aimed to evaluate the possible neurorestorative potential of Vitis vinifera Leaves Polyphenolic (VLP) extract in alleviating aluminum chloride (AlCl3)-induced neurotoxicity in male rats. AlCl3 neurotoxicity induced a significant decrease in brain/serum acetylcholine (ACh) contents and serum dopamine (DA) levels, along with a significant increment of brain/serum acetylcholinesterase (AChE) activities. In addition, Al treatment resulted in significantly decreased serum levels of both total antioxidant capacity (TAC) and brain-derived neurotrophic factor (BDNF), and significantly increased serum levels of both interleukin-6 (IL-6) and total homocysteine (tHcy), as compared to control. Behavioral alterations, assessed by the T-maze test, showed impaired cognitive function. Furthermore, AD-brains revealed an increase in DNA fragmentation as evidenced by comet assay. AlCl3 induction also caused histopathological alterations in AD-brain. Treatment of AD-rats with VLP extract (100mg/kg body weight/day) improved neurobehavioral changes, as evidenced by the improvement in brain function, as well as, modulation of most biochemical markers, and confirmed by T-maze test, the histopathological study of the brain and comet assay. The current work indicates that the VLP extract has neuroprotective, antioxidative, anti-inflammatory, and anti-amnesic activities against AlCl3-induced cerebral damages and neurocognitive dysfunction.
Collapse
Affiliation(s)
- Ibrahim H Borai
- Biochemistry Department, Faculty of Science, Ain-Shams University, Cairo, Egypt.
| | - Magda K Ezz
- Biochemistry Department, Faculty of Science, Ain-Shams University, Cairo, Egypt.
| | - Maha Z Rizk
- Therapeutical Chemistry Department, National Research Center, Dokki, Cairo, Egypt.
| | - Hanan F Aly
- Therapeutical Chemistry Department, National Research Center, Dokki, Cairo, Egypt.
| | - Mahmoud El-Sherbiny
- Therapeutical Chemistry Department, National Research Center, Dokki, Cairo, Egypt.
| | - Azza A Matloub
- Pharmacognosy Department, National Research Center, Dokki, Cairo, Egypt.
| | - Ghadha I Fouad
- Therapeutical Chemistry Department, National Research Center, Dokki, Cairo, Egypt.
| |
Collapse
|
14
|
Al-Amoudi WM. Effect of Grapefruit Juice on Aluminum-Induced Hepatotoxicity in Albino Rats: Histological, Ultrastructural and Histochemical Assessment. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/abb.2017.812034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
El-Sheikh AAK, Kamel MY. Ginsenoside-Rb1 ameliorates lithium-induced nephrotoxicity and neurotoxicity: Differential regulation of COX-2/PGE 2 pathway. Biomed Pharmacother 2016; 84:1873-1884. [PMID: 27847198 DOI: 10.1016/j.biopha.2016.10.106] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/31/2016] [Accepted: 10/31/2016] [Indexed: 11/28/2022] Open
Abstract
To investigate the effect of Ginsenoside-Rb1 (GRb1) on lithium (Li+)-induced toxicity, GRb1 was given to rats orally (100mg/kg) for 14days. In independent groups, lithium chloride (4meq/kg/day i.p.) was administered at day 4 of the experiment for 10days, with or without GRb1. Li+ caused significant deterioration of behavioral responses including righting reflex, spontaneous motor activity and catalepsy. Li+ also caused distortion in normal renal, cerebral and cerebellum architecture and significantly worsened all kidney functional parameters tested compared to control. In addition, Li caused oxidative stress in both kidney and brain, evident by significant increase in malondialdehyde and nitric oxide levels, with decrease in reduced glutathione and catalase activity. Administration of GRb1 prior to Li+ significantly improved behavioral responses, renal and brain histopathological picture, kidney function tests and oxidative stress markers compared to sole Li+-treated group. Concomitant administration of GRb1 decreased Li+ levels by about 50% in serum, urine and brain and by 35% in the kidney. Interestingly, Li+ had a differential effect on cyclooxygenase (COX)-2/prostaglandin E2 (PGE2) pathway, as it significantly increased COX-2 expression and PGE2 level in the kidney, while decreasing them in the brain compared to control. On the other hand, administering GRb1 with Li+ suppressed COX-2/PGE2 pathway in both kidney and brain compared to Li+ alone. In conclusion, GRb1 can alter Li+ pharmacokinetics resulting in extensively decreasing its serum and tissue concentrations. Furthermore, COX-2/PGE2 pathway has a mechanistic role in the nephro- and neuro-protective effects of GRb1 against Li+-induced toxicity.
Collapse
Affiliation(s)
| | - Maha Y Kamel
- Pharmacology Department, Faculty of Medicine, Minia University, Egypt
| |
Collapse
|
16
|
Singla N, Dhawan DK. Modulation of (14) C-labeled glucose metabolism by zinc during aluminium induced neurodegeneration. J Neurosci Res 2015; 93:1434-41. [PMID: 25908409 DOI: 10.1002/jnr.23596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 04/08/2015] [Accepted: 04/08/2015] [Indexed: 12/24/2022]
Abstract
Aluminium (Al) is one of the most prominent metals in the environment and is responsible for causing several neurological disorders, including Alzheimer's disease. On the other hand, zinc (Zn) is an essential micronutrient that is involved in regulating brain development and function. The present study investigates the protective potential of Zn in the uptake of (14) C-labeled amino acids and glucose and their turnover in rat brain slices during Al intoxication. Male Sprague Dawley rats (140-160 g) were divided into four different groups: normal control, Al treated (100 mg/kg body weight/day via oral gavage), Zn treated (227 mg/liter in drinking water), and Al + Zn treated. Radiorespirometric assay revealed an increase in glucose turnover after Al exposure that was attenuated after Zn treatment. Furthermore, the uptake of (14) C-labeled glucose was increased after Al treatment but was appreciably decreased upon Zn supplementation. In addition, the uptakes of (14) C-lysine, (14) C-leucine, and (14) C-aspartic acid were also found to be elevated following Al exposure but were decreased after Zn treatment. Al treatment also caused alterations in the neurohistoarchitecture of the brain, which were improved after Zn coadministration. Therefore, the present study suggests that Zn provides protection against Al-induced neurotoxicity by regulating glucose and amino acid uptake in rats, indicating that Zn could be a potential candidate for the treatment of various neurodegenerative disorders.
Collapse
Affiliation(s)
- Neha Singla
- Department of Biophysics, Panjab University, Chandigarh, India
| | - D K Dhawan
- Department of Biophysics, Panjab University, Chandigarh, India
| |
Collapse
|
17
|
Lithium increases nitric oxide levels in subjects with bipolar disorder during depressive episodes. J Psychiatr Res 2014; 55:96-100. [PMID: 24768108 PMCID: PMC4084566 DOI: 10.1016/j.jpsychires.2014.03.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 02/12/2014] [Accepted: 03/27/2014] [Indexed: 11/23/2022]
Abstract
BACKGROUND Altered nitric oxide (NO) signaling has been associated with the pathophysiology of Bipolar Disorder (BD), directly affecting neurotransmitter release and synaptic plasticity cascades. Lithium has shown to regulate NO levels in preclinical models. However, no study has addressed peripheral NO levels in unmedicated BD. Also, lithium's effects on NO levels have not been studied in humans. METHODS Plasma NO was evaluated in subjects with BD I and II during a depressive episode (n = 26). Subjects had a score of ≥18 in the 21-item Hamilton Depression Rating Scale and were followed-up during a 6-week trial with lithium. Plasma NO levels were also compared to matched healthy controls (n = 28). NO was determined by chemiluminescence method. RESULTS Lithium treatment significantly increased plasma NO levels after 6 weeks of treatment in comparison to baseline levels in bipolar depression (p = 0.016). Baseline NO levels during depressive episodes showed no difference when matching up to healthy controls (p = 0.66). CONCLUSION The present findings suggest that lithium upregulates NO signaling in unmedicated BD with short illness duration. Further studies with larger samples are needed to confirm the effects of lithium on NO pathway and its association with synaptic plasticity and therapeutics of BD.
Collapse
|
18
|
Abstract
Lithium is an effective medication for the treatment of bipolar affective disorder. Accumulating evidence suggests that inflammation plays a role in the pathogenesis of bipolar disorder and that lithium has anti-inflammatory effects that may contribute to its therapeutic efficacy. This article summarizes the studies which examined the effects of lithium on pro- and anti-inflammatory mediators. Some of the summarized data suggest that lithium exerts anti-inflammatory effects (e.g., suppression of cyclooxygenase-2 expression, inhibition of interleukin (IL)-1β and tumor necrosis factor-α production, and enhancement of IL-2 and IL-10 synthesis). Nevertheless, there is a large body of data which indicates that under certain experimental conditions lithium also exhibits pro-inflammatory properties (e.g., induction of IL-4, IL-6 and other pro-inflammatory cytokines synthesis). The reviewed studies utilized various experimental model systems, and it is thus difficult to draw an unequivocal conclusion regarding the effect of lithium on specific inflammatory mediators.
Collapse
Affiliation(s)
- Ahmad Nassar
- Department of Clinical Biochemistry
and Pharmacology, and ‡School for Community
Health Professions − Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Abed N. Azab
- Department of Clinical Biochemistry
and Pharmacology, and ‡School for Community
Health Professions − Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
19
|
Singla N, Dhawan DK. Influence of zinc on the biokinetics of (65)Zn in brain and whole body and its bio-distribution in aluminium-intoxicated rats. Cell Mol Neurobiol 2014; 34:269-76. [PMID: 24287498 DOI: 10.1007/s10571-013-0010-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 11/19/2013] [Indexed: 12/24/2022]
Abstract
The present study was designed to understand the influence of zinc (Zn) if any, on the biokinetics of (65)Zn in brain as well as whole body and its bio-distribution following aluminium (Al) treatment to rats. Male Sprague-Dawley rats weighing 140-160 g were divided into four different groups viz: normal control, aluminium treated (100 mg/kg b.wt./day via oral gavage), zinc treated (227 mg/L in drinking water) and combined aluminium and zinc treated. All the treatments were carried out for a total duration of 8 weeks. Al treatment showed a significant increase in fast component (Tb1) but revealed a significant decrease in slow component (Tb2) of biological half-life in brain as well as in whole body. However, Zn supplementation to Al-treated rats reversed the trend in both brain and whole body, which indicates a significant decrease in Tb1 component while the Tb2 component was significantly increased. Further, Al treatment showed an increased percent uptake value of (65)Zn in cerebrum, cerebellum, heart, liver and lungs whereas a decrease in uptake was found only in blood. On the other hand, there was a significant decline in (65)Zn activity in nuclear and mitochondrial fractions of brain of Al-treated rats. However, Zn treatment reversed the altered (65)Zn uptake values in different organs as well as in various subcellular fractions. The study demonstrates that Zn shall prove to be effective in regulating the biokinetics of (65)Zn in brain and whole body and its distribution at the tissue and subcellular levels in Al-treated rats.
Collapse
Affiliation(s)
- Neha Singla
- Department of Biophysics, Panjab University, Sector-14, Chandigarh, 160014, India,
| | | |
Collapse
|
20
|
Singla N, Dhawan D. Zinc protection against aluminium induced altered lipid profile and membrane integrity. Food Chem Toxicol 2013; 55:18-28. [DOI: 10.1016/j.fct.2012.12.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 12/25/2012] [Accepted: 12/27/2012] [Indexed: 12/14/2022]
|
21
|
Zinc, a Neuroprotective Agent Against Aluminum-induced Oxidative DNA Injury. Mol Neurobiol 2013; 48:1-12. [DOI: 10.1007/s12035-013-8417-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 01/29/2013] [Indexed: 01/22/2023]
|
22
|
Moshtaghie AA, Malekpouri P, Moshtaghie M, Mohammadi-Nejad M, Ani M. Protective effects of copper against aluminum toxicity on acetylcholinesterase and catecholamine contents of different regions of rat's brain. Neurol Sci 2013; 34:1639-50. [PMID: 23354609 DOI: 10.1007/s10072-013-1305-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 01/09/2013] [Indexed: 10/27/2022]
Abstract
The probable protective effects of copper on the acetylcholinesterase activity and the catecholamine levels in cerebellum, cortex and mid-brain of rat, which was intoxicated by aluminum, were studied during short and long terms. In this respect, male Wistar rats weighing 200-250 g were received daily intraperitoneal doses of aluminum, copper and also combined doses of both metals for 15 days (Al 10 mg kg(-1) BW and Cu 1 mg kg(-1) BW), 30 days (Al 5 mg kg(-1) BW and Cu 0.5 mg kg(-1) BW) and 60 days (Al 1 mg kg(-1) BW and Cu 0.1 mg kg(-1) BW), respectively. The results obtained from the short period of exposure (15 days) showed that aluminum produced significant (P < 0.05) decreases in the acetylcholinesterase activity by 24.14, 23.30 and 25.81 %. Similarly, the catecholamine levels were reduced by 10.69, 12.25 and 12.64 % in cerebellum, cortex and mid-brain, respectively. Treatment with copper increases both acetylcholinesterase activity and catecholamine contents of cerebellum, cortex and mid-brain. Simultaneous injection of copper and aluminum increased both acetylcholinesterase activity and catecholamine contents in all three parts of rat brain when compared to aluminum-treated group. Same results were also observed following 30 and 60 days of exposures. In overall, it has been found that copper may have a protective-like ability to hinder aluminum toxicity in the brain.
Collapse
Affiliation(s)
- Ali Asghar Moshtaghie
- Department of Clinical Biochemistry, School of Pharmacy, Isfahan University of Medical Science, Isfahan, Iran
| | | | | | | | | |
Collapse
|
23
|
Sivakumar S, Sivasubramanian J, Prasad khatiwada C, Manivannan J, Raja B. Aluminium induced metabolic changes in kidney and heart tissue of mice: a Fourier transform infrared spectroscopy study. RSC Adv 2013. [DOI: 10.1039/c3ra42714e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
24
|
El-Sayed WM, Al-Kahtani MA, Abdel-Moneim AM. Prophylactic and therapeutic effects of taurine against aluminum-induced acute hepatotoxicity in mice. JOURNAL OF HAZARDOUS MATERIALS 2011; 192:880-886. [PMID: 21703760 DOI: 10.1016/j.jhazmat.2011.05.100] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 05/31/2011] [Accepted: 05/31/2011] [Indexed: 05/31/2023]
Abstract
Aluminum is a well known neurotoxin and a possible candidate of hepatotoxins to humans. Using natural antioxidants against metal-induced hepatotoxicity is a modern approach. In the present study, Aluminum (AlCl(3)) intoxication (a single injection of 25mg Al(3+)/kg, i.p.) for 24h in mice resulted in elevations in serum alanine aminotransferase activity and serum tumor necrosis factor and hepatic malondialdehyde levels. Aluminum reduced the activities of glutathione peroxidase, glutathione S-transferase, quinone oxidoreductase, and catalase in liver. In addition, Al caused hepatic hemorrhage, cellular degeneration as well as necrosis of hepatocytes. Ultrastructure examination showed swelling of mitochondria, derangement of rough endoplasmic reticulum cisternae and pleomorphic nuclei with abnormal chromatin distribution. Taurine, a sulfur-containing amino acid was administered to mice daily for 5 days before (at 100mg/kg, i.p.) or 2h after (a single dose of 1g/kg, i.p.) aluminum administration. Treating mice with taurine at either dosing regimens, pre- or post-aluminum administration alleviated aluminum oxidative damaging effects. The rate of recovery was better when taurine was administered prior to Al. Taurine had anaphylactic and therapeutic activity against hepatotoxicity induced by aluminum in mice.
Collapse
Affiliation(s)
- Wael M El-Sayed
- King Faisal University, Faculty of Science, Department of Biological Sciences, Al-Hufof 31982, Ahsaa, Saudi Arabia.
| | | | | |
Collapse
|
25
|
Ghasemi M, Dehpour AR. The NMDA receptor/nitric oxide pathway: a target for the therapeutic and toxic effects of lithium. Trends Pharmacol Sci 2011; 32:420-34. [PMID: 21492946 DOI: 10.1016/j.tips.2011.03.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 03/03/2011] [Accepted: 03/11/2011] [Indexed: 12/18/2022]
Abstract
Although lithium has largely met its initial promise as the first drug discovered in the modern era of psychopharmacology, to date no definitive mechanism for its effects has been established. It has been proposed that lithium exerts its therapeutic effects by interfering with signal transduction through G-protein-coupled receptor (GPCR) pathways or direct inhibition of specific targets in signaling systems, including inositol monophosphatase and glycogen synthase kinase-3 (GSK-3). Recently, increasing evidence has suggested that N-methyl-D-aspartate receptor (NMDAR)/nitric oxide (NO) signaling could mediate some lithium-induced responses in the brain and peripheral tissues. However, the probable role of the NMDAR/NO system in the action of lithium has not been fully elucidated. In this review, we discuss biochemical, preclinical/behavioral and physiological evidence that implicates NMDAR/NO signaling in the therapeutic effect of lithium. NMDAR/NO signaling could also explain some of side effects of lithium.
Collapse
Affiliation(s)
- Mehdi Ghasemi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|