1
|
Saadé K, Hussain MA, Bainbridge SA, St-Gelais R, Variola F, Fenech M. Cost-Effective Bioimpedance Spectroscopy System for Monitoring Syncytialization In Vitro: Experimental and Numerical Validation of BeWo Cell Fusion. MICROMACHINES 2024; 15:1506. [PMID: 39770259 PMCID: PMC11678286 DOI: 10.3390/mi15121506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/29/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025]
Abstract
The placenta plays a critical role in nutrient and oxygen exchange during pregnancy, yet the effects of medicinal drugs on this selective barrier remain poorly understood. To overcome this, this study presents a cost-effective bioimpedance spectroscopy (BIS) system to assess tight junction integrity and monolayer formation in BeWo b30 cells, a widely used model of the multinucleated maternal-fetal exchange surface of the placental barrier. Cells were cultured on collagen-coated porous membranes and treated with forskolin to induce controlled syncytialization. Electrical impedance was measured using an entry level impedance analyzer, while immunofluorescence staining was used to confirm monolayer formation and syncytialization. The measurements and staining confirmed the formation of a confluent monolayer on day 4. In fact, the electrical resistance tripled for treated samples indicating a more electrically restrictive barrier. This resistance remained constant for treated samples reflecting the intact barrier's integrity over the next 3 days. The measurements show that, on day 4, the electrical capacitance of the cells decreased for the treated samples as opposed to the untreated samples. This reflects that the surface area of the BeWo b30 cells decreased when the samples were treated with forskolin. Finally, a COMSOL model was developed to explore the effects of electrode positioning, depth, and distance on TEER measurements, explaining discrepancies in the literature. In fact, there was a substantial 97% and 39.4% difference in the obtained TEER values. This study demonstrates the AD2 device's feasibility for monitoring placental barrier integrity and emphasizes the need for standardized setups for comparable results. The system can hence be used to analyze drug effects and nutrient transfer across the placental barrier.
Collapse
Affiliation(s)
- Karim Saadé
- Department of Mechanical Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (K.S.); (M.A.H.); (R.S.-G.)
| | - Mohammed Areeb Hussain
- Department of Mechanical Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (K.S.); (M.A.H.); (R.S.-G.)
| | | | - Raphael St-Gelais
- Department of Mechanical Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (K.S.); (M.A.H.); (R.S.-G.)
- Department of Physics, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Fabio Variola
- Department of Mechanical Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (K.S.); (M.A.H.); (R.S.-G.)
| | - Marianne Fenech
- Department of Mechanical Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (K.S.); (M.A.H.); (R.S.-G.)
| |
Collapse
|
2
|
Chakraborty R, Ray P, Barik S, Banik O, Mahapatra C, Banoth E, Kumar P. A Review on Microengineering of Epithelial Barriers for Biomedical and Pharmaceutical Research. ACS APPLIED BIO MATERIALS 2024; 7:8107-8125. [PMID: 39565389 DOI: 10.1021/acsabm.4c00813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Epithelial tissue forms a barrier around the human body and visceral organs, providing protection, permeation, sensation, and secretion. It is vital for our sustenance as it protects the tissue from harm and injury by restricting the entry of foreign bodies inside. Furthermore, it is a strong barrier to drugs, nutrients, and other essential deliverables. This layer also houses a large consortium of microbes, which thrive in tandem with human tissue, providing several health benefits. Moreover, the complex interplay of the microbiome with the barrier tissue is poorly understood. Therefore, replicating these barrier tissues on microdevices to generate physiological and pathophysiological models has been a huge interest for researchers over the last few decades. The artificially engineered reconstruction of these epithelial cellular barriers on microdevices could help underpin the host-microbe interaction, generating a physiological understanding of the tissue, tissue remodeling, receptor-based selective diffusion, drug testing, and others. In addition, these devices could reduce the burden of animal sacrifices for similar research and minimize the failure rate in drug discovery due to the use of primary human cells and others. This review discusses the nature of the epithelial barrier at different tissue sites, the recent developments in creating engineered barrier models, and their applications in pathophysiology, host-microbe interactions, drug discovery, and cytotoxicity. The review aims to provide know-how and knowledge behind engineered epithelial barrier tissue to bioengineers, biotechnologists, and scientists in allied fields.
Collapse
Affiliation(s)
- Ruchira Chakraborty
- Biodesign and Medical Devices Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Pragyan Ray
- Biodesign and Medical Devices Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Swagatika Barik
- Biodesign and Medical Devices Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769008, Odisha, India
- Opto-Biomedical Microsystem Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Sector-1, Rourkela 769008, Odisha, India
| | - Oindrila Banik
- Biodesign and Medical Devices Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769008, Odisha, India
- Opto-Biomedical Microsystem Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Sector-1, Rourkela 769008, Odisha, India
| | - Chinmaya Mahapatra
- Department of Biotechnology, National Institute of Technology, Raipur-492010 Chhattisgarh, India
| | - Earu Banoth
- Opto-Biomedical Microsystem Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Sector-1, Rourkela 769008, Odisha, India
| | - Prasoon Kumar
- Biodesign and Medical Devices Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769008, Odisha, India
| |
Collapse
|
3
|
Nguyen HT, Rissanen SL, Peltokangas M, Laakkonen T, Kettunen J, Barthod L, Sivakumar R, Palojärvi A, Junttila P, Talvitie J, Bassis M, Nickels SL, Kalvala S, Ilina P, Tammela P, Lehtonen S, Schwamborn JC, Mosser S, Singh P. Highly scalable and standardized organ-on-chip platform with TEER for biological barrier modeling. Tissue Barriers 2024; 12:2315702. [PMID: 38346163 PMCID: PMC11583584 DOI: 10.1080/21688370.2024.2315702] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 01/02/2024] [Accepted: 01/15/2024] [Indexed: 11/22/2024] Open
Abstract
The development of new therapies is hampered by the lack of predictive, and patient-relevant in vitro models. Organ-on-chip (OOC) technologies can potentially recreate physiological features and hold great promise for tissue and disease modeling. However, the non-standardized design of these chips and perfusion control systems has been a barrier to quantitative high-throughput screening (HTS). Here we present a scalable OOC microfluidic platform for applied kinetic in vitro assays (AKITA) that is applicable for high, medium, and low throughput. Its standard 96-well plate and 384-well plate layouts ensure compatibility with existing laboratory workflows and high-throughput data collection and analysis tools. The AKITA plate is optimized for the modeling of vascularized biological barriers, primarily the blood-brain barrier, skin, and lung, with precise flow control on a custom rocker. The integration of trans-epithelial electrical resistance (TEER) sensors allows rapid and repeated monitoring of barrier integrity over long time periods. Together with automated liquid handling and compound permeability testing analyses, we demonstrate the flexibility of the AKITA platform for establishing human-relevant models for preclinical drug and precision medicine's efficacy, toxicity, and permeability under near-physiological conditions.
Collapse
Affiliation(s)
- Hoang-Tuan Nguyen
- Finnadvance Ltd, Oulu, Finland
- Faculty of Biochemistry and Molecular Medicine, and Biocenter Oulu, University of Oulu, Oulu, Finland
| | | | | | | | | | | | | | | | | | | | - Michele Bassis
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Sarah L. Nickels
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Sara Kalvala
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Polina Ilina
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Päivi Tammela
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Sarka Lehtonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Jens C. Schwamborn
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | | | | |
Collapse
|
4
|
Koh I, Hagiwara M. Modular tissue-in-a-CUBE platform to model blood-brain barrier (BBB) and brain interaction. Commun Biol 2024; 7:177. [PMID: 38418614 PMCID: PMC10901775 DOI: 10.1038/s42003-024-05857-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 01/26/2024] [Indexed: 03/02/2024] Open
Abstract
With the advent of increasingly sophisticated organoids, there is growing demand for technology to replicate the interactions between multiple tissues or organs. This is challenging to achieve, however, due to the varying culture conditions of the different cell types that make up each tissue. Current methods often require complicated microfluidic setups, but fragile tissue samples tend not to fare well with rough handling. Furthermore, the more complicated the human system to be replicated, the more difficult the model becomes to operate. Here, we present the development of a multi-tissue chip platform that takes advantage of the modularity and convenient handling ability of a CUBE device. We first developed a blood-brain barrier-in-a-CUBE by layering astrocytes, pericytes, and brain microvascular endothelial cells in the CUBE, and confirmed the expression and function of important tight junction and transporter proteins in the blood-brain barrier model. Then, we demonstrated the application of integrating Tissue-in-a-CUBE with a chip in simulating the in vitro testing of the permeability of a drug through the blood-brain barrier to the brain and its effect on treating the glioblastoma brain cancer model. We anticipate that this platform can be adapted for use with organoids to build complex human systems in vitro by the combination of multiple simple CUBE units.
Collapse
Affiliation(s)
- Isabel Koh
- Cluster for Pioneering Research, RIKEN, Kobe, Hyogo, Japan
- Biosystems Dynamics Research, RIKEN, Kobe, Hyogo, Japan
| | - Masaya Hagiwara
- Cluster for Pioneering Research, RIKEN, Kobe, Hyogo, Japan.
- Biosystems Dynamics Research, RIKEN, Kobe, Hyogo, Japan.
| |
Collapse
|
5
|
Lin Y, Ma L, Dan H, Chen G, Dai J, Xu L, Liu Y. MiR-107-3p Knockdown Alleviates Endothelial Injury in Sepsis via Kallikrein-Related Peptidase 5. J Surg Res 2023; 292:264-274. [PMID: 37666089 DOI: 10.1016/j.jss.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 06/28/2023] [Accepted: 07/02/2023] [Indexed: 09/06/2023]
Abstract
INTRODUCTION Endothelial injury is a major characteristic of sepsis and contributes to sepsis-induced multiple-organ dysfunction. In this study, we investigated the role of miR-107-3p in sepsis-induced endothelial injury. METHODS Human umbilical vein endothelial cells (HUVECs) were exposed to 20 μg/mL of lipopolysaccharide (LPS) for 6-48 h. The levels of miR-107-3p and kallikrein-related peptidase 5 (KLK5) were examined. HUVECs were treated with LPS for 12 h and subsequently transfected with miR-107-3p inhibitor, KLK5 siRNA, or cotransfected with KLK5 siRNA and miR-107-3p inhibitor/negative control inhibitor. Cell survival, apoptosis, invasion, cell permeability, inflammatory response, and the Toll-like receptor 4/nuclear factor κB signaling were evaluated. In addition, the relationship between miR-107-3p and KLK5 expression was predicted and verified. RESULTS LPS significantly elevated miR-107-3p levels, which peaked at 12 h. Conversely, the KLK5 level was lower in the LPS group than in the control group and was lowest at 12 h. MiR-107-3p knockdown significantly attenuated reductions in cell survival and invasion, apoptosis promotion, hyperpermeability and inflammation induction, and activation of the NF-κB signaling caused by LPS. KLK5 knockdown had the opposite effect. Additionally, KLK5 was demonstrated as a target of miR-107-3p. MiR-107-3p knockdown partially reversed the effects of KLK5 depletion in LPS-activated HUVECs. CONCLUSIONS Our findings indicate that miR-107-3p knockdown may protect against sepsis-induced endothelial cell injury by targeting KLK5. This study identified a novel therapeutic target for sepsis-induced endothelial injury.
Collapse
Affiliation(s)
- Yongbo Lin
- Department of Cardiology, People's Hospital of Dongxihu District, Wuhan, China
| | - Li Ma
- Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Hanliang Dan
- Department of Cardiology, People's Hospital of Dongxihu District, Wuhan, China
| | - Gang Chen
- Department of ICU, Wuhan Wuchang Hospital, Wuhan, China
| | - Jian Dai
- Department of ICU, Wuhan Wuchang Hospital, Wuhan, China
| | - Liang Xu
- Department of ICU, Wuhan Wuchang Hospital, Wuhan, China.
| | - Yuqi Liu
- Department of Respiratory and Critical Care Medicine, 2nd Affiliated Hospital of Fujian Medical University, Quanzhou, China.
| |
Collapse
|
6
|
Advances in cell coculture membranes recapitulating in vivo microenvironments. Trends Biotechnol 2023; 41:214-227. [PMID: 36030108 DOI: 10.1016/j.tibtech.2022.07.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/05/2022] [Accepted: 07/25/2022] [Indexed: 01/24/2023]
Abstract
Porous membranes play a critical role in in vitro heterogeneous cell coculture systems because they recapitulate the in vivo microenvironment to mediate physical and biochemical crosstalk between cells. While the conventionally available Transwell® system has been widely used for heterogeneous cell coculture, there are drawbacks to precise control over cell-cell interactions and separation for implantation. The size and numbers of the pores and the thickness of the porous membranes are crucial in determining the efficiency of paracrine signaling and direct junctions between cocultured cells, and significantly impact on the performance of heterogeneous cell cultures. These opportunities and challenges have motivated the design of advanced coculture platforms through improvement of the structural and functional properties of porous membranes.
Collapse
|
7
|
McCloskey MC, Kasap P, Ahmad SD, Su SH, Chen K, Mansouri M, Ramesh N, Nishihara H, Belyaev Y, Abhyankar VV, Begolo S, Singer BH, Webb KF, Kurabayashi K, Flax J, Waugh RE, Engelhardt B, McGrath JL. The Modular µSiM: A Mass Produced, Rapidly Assembled, and Reconfigurable Platform for the Study of Barrier Tissue Models In Vitro. Adv Healthc Mater 2022; 11:e2200804. [PMID: 35899801 PMCID: PMC9580267 DOI: 10.1002/adhm.202200804] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/11/2022] [Indexed: 01/27/2023]
Abstract
Advanced in vitro tissue chip models can reduce and replace animal experimentation and may eventually support "on-chip" clinical trials. To realize this potential, however, tissue chip platforms must be both mass-produced and reconfigurable to allow for customized design. To address these unmet needs, an extension of the µSiM (microdevice featuring a silicon-nitride membrane) platform is introduced. The modular µSiM (m-µSiM) uses mass-produced components to enable rapid assembly and reconfiguration by laboratories without knowledge of microfabrication. The utility of the m-µSiM is demonstrated by establishing an hiPSC-derived blood-brain barrier (BBB) in bioengineering and nonengineering, brain barriers focused laboratories. In situ and sampling-based assays of small molecule diffusion are developed and validated as a measure of barrier function. BBB properties show excellent interlaboratory agreement and match expectations from literature, validating the m-µSiM as a platform for barrier models and demonstrating successful dissemination of components and protocols. The ability to quickly reconfigure the m-µSiM for coculture and immune cell transmigration studies through addition of accessories and/or quick exchange of components is then demonstrated. Because the development of modified components and accessories is easily achieved, custom designs of the m-µSiM shall be accessible to any laboratory desiring a barrier-style tissue chip platform.
Collapse
Affiliation(s)
- Molly C McCloskey
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Pelin Kasap
- Theodor Kocher Institute, University of Bern, Bern, 3012, Switzerland
- Graduate School of Cellular and Biomedical Sciences (GCB), University of Bern, Bern, 3012, Switzerland
| | - S Danial Ahmad
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Shiuan-Haur Su
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kaihua Chen
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Mehran Mansouri
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Natalie Ramesh
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Hideaki Nishihara
- Theodor Kocher Institute, University of Bern, Bern, 3012, Switzerland
| | - Yury Belyaev
- Microscopy Imaging Center, University of Bern, Bern, 3012, Switzerland
| | - Vinay V Abhyankar
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | | | - Benjamin H Singer
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kevin F Webb
- Optics & Photonics Research Group, Department of Electrical and Electronic Engineering, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Katsuo Kurabayashi
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jonathan Flax
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Richard E Waugh
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Britta Engelhardt
- Theodor Kocher Institute, University of Bern, Bern, 3012, Switzerland
| | - James L McGrath
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| |
Collapse
|
8
|
Cenhrang K, Robart L, Castiaux AD, Martin RS. 3D printed devices with integrated collagen scaffolds for cell culture studies including transepithelial/transendothelial electrical resistance (TEER) measurements. Anal Chim Acta 2022; 1221:340166. [PMID: 35934386 PMCID: PMC9511703 DOI: 10.1016/j.aca.2022.340166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/07/2022] [Accepted: 07/10/2022] [Indexed: 11/01/2022]
Abstract
In this paper, we describe the use of 3D printed devices for both static and flow studies that contain electrospun collagen scaffolds and can accommodate transepithelial/transendothelial electrical resistance (TEER) measurements. Electrospinning was used to create the collagen scaffold, followed by an optimized 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-Hydroxysuccinimide (EDC/NHS) cross-linking procedure to produce stable collagen fibers that are similar in size to fibers in vivo. LC/MS was used to study the leaching of solvent and NHS from the scaffold, with several rinsing steps being shown to eliminate the leaching and promote the culture of Madin-Darby Canine Kidney (MDCK) epithelial cells on the scaffold. Both static and flow 2-part devices were successfully fabricated by 3D printing using either VeroClear or MED610 material (PolyJet printing) and assembling the scaffold between laser cut Teflon gaskets. The devices were designed to easily accommodate commonly used STX2 chopstick electrodes for TEER measurements. A detailed comparison was made between the use of collagen scaffolds vs other electrospun materials for cell culture. The collagen extracellular matrix model displayed a high barrier functionality for up to 7 days. In addition, a different 3D printed device with a collagen scaffold is described to incorporate continuous flow and replenishment of media under the cell layer in a manner that also enables periodic recording of TEER measurements. Overall, this work shows that the combination of biological ECM materials such as collagen into microfluidic devices that incorporate flow have great potential to form more realistic cell culture models in areas such as blood brain barrier research.
Collapse
Affiliation(s)
| | - Logan Robart
- Department of Chemistry, Saint Louis University, USA
| | - Andre D Castiaux
- Department of Chemistry, Saint Louis University, USA; Center for Additive Manufacturing, Saint Louis University, USA
| | - R Scott Martin
- Department of Chemistry, Saint Louis University, USA; Center for Additive Manufacturing, Saint Louis University, USA.
| |
Collapse
|
9
|
Nicolas A, Schavemaker F, Kosim K, Kurek D, Haarmans M, Bulst M, Lee K, Wegner S, Hankemeier T, Joore J, Domansky K, Lanz HL, Vulto P, Trietsch SJ. High throughput transepithelial electrical resistance (TEER) measurements on perfused membrane-free epithelia. LAB ON A CHIP 2021; 21:1676-1685. [PMID: 33861225 DOI: 10.1039/d0lc00770f] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Assessment of epithelial barrier function is critically important for studying healthy and diseased biological models. Here we introduce an instrument that measures transepithelial electrical resistance (TEER) of perfused epithelial tubes in the microfluidic OrganoPlate platform. The tubules are grown in microfluidic channels directly against an extracellular matrix, obviating the need for artificial filter membranes. We present TEER measurements on Caco-2 intestinal and renal proximal tubule epithelium. Forty tubules on one single plate were interrogated in less than a minute. We show that TEER measurement is significantly more sensitive than a fluorescent reporter leakage assay in response to staurosporine. We demonstrate a 40-channel time-lapse data acquisition over a 25 hour time period under flow conditions. We furthermore observed a 50% reduction in Caco-2 TEER values following exposure to a cocktail of inflammatory cytokines. To our best knowledge, this is the first instrument of its kind that allows routine TEER studies in perfused organ-on-a-chip systems without interference by artificial filter membranes. We believe the apparatus will contribute to accelerating routine adoption of perfused organ-on-a-chip systems in academic research and in industrial drug development.
Collapse
Affiliation(s)
- A Nicolas
- Mimetas B. V., J.H. Oortweg 19, 2333CH, Leiden, The Netherlands. and Division of Analytical Biosciences, LACDR, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - F Schavemaker
- Mimetas B. V., J.H. Oortweg 19, 2333CH, Leiden, The Netherlands.
| | - K Kosim
- Mimetas B. V., J.H. Oortweg 19, 2333CH, Leiden, The Netherlands.
| | - D Kurek
- Mimetas B. V., J.H. Oortweg 19, 2333CH, Leiden, The Netherlands.
| | - M Haarmans
- Mimetas B. V., J.H. Oortweg 19, 2333CH, Leiden, The Netherlands.
| | - M Bulst
- Sciospec GmbH, Leipziger Str. 43b, 04828 Bennewitz, Germany
| | - K Lee
- Sciospec GmbH, Leipziger Str. 43b, 04828 Bennewitz, Germany
| | - S Wegner
- Sciospec GmbH, Leipziger Str. 43b, 04828 Bennewitz, Germany
| | - T Hankemeier
- Division of Analytical Biosciences, LACDR, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - J Joore
- Mimetas B. V., J.H. Oortweg 19, 2333CH, Leiden, The Netherlands.
| | - K Domansky
- Mimetas B. V., J.H. Oortweg 19, 2333CH, Leiden, The Netherlands.
| | - H L Lanz
- Mimetas B. V., J.H. Oortweg 19, 2333CH, Leiden, The Netherlands.
| | - P Vulto
- Mimetas B. V., J.H. Oortweg 19, 2333CH, Leiden, The Netherlands.
| | - S J Trietsch
- Mimetas B. V., J.H. Oortweg 19, 2333CH, Leiden, The Netherlands.
| |
Collapse
|
10
|
Sun M, Han K, Hu R, Liu D, Fu W, Liu W. Advances in Micro/Nanoporous Membranes for Biomedical Engineering. Adv Healthc Mater 2021; 10:e2001545. [PMID: 33511718 DOI: 10.1002/adhm.202001545] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/19/2021] [Indexed: 12/11/2022]
Abstract
Porous membrane materials at the micro/nanoscale have exhibited practical and potential value for extensive biological and medical applications associated with filtration and isolation, cell separation and sorting, micro-arrangement, in-vitro tissue reconstruction, high-throughput manipulation and analysis, and real-time sensing. Herein, an overview of technological development of micro/nanoporous membranes (M/N-PMs) is provided. Various membrane types and the progress documented in membrane fabrication techniques, including the electrochemical-etching, laser-based technology, microcontact printing, electron beam lithography, imprinting, capillary force lithography, spin coating, and microfluidic molding are described. Their key features, achievements, and limitations associated with micro/nanoporous membrane (M/N-PM) preparation are discussed. The recently popularized applications of M/N-PMs in biomedical engineering involving the separation of cells and biomolecules, bioparticle operations, biomimicking, micropatterning, bioassay, and biosensing are explored too. Finally, the challenges that need to be overcome for M/N-PM fabrication and future applications are highlighted.
Collapse
Affiliation(s)
- Meilin Sun
- School of Basic Medical Science Central South University Changsha Hunan 410013 China
| | - Kai Han
- School of Basic Medical Science Central South University Changsha Hunan 410013 China
| | - Rui Hu
- School of Basic Medical Science Central South University Changsha Hunan 410013 China
| | - Dan Liu
- School of Basic Medical Science Central South University Changsha Hunan 410013 China
| | - Wenzhu Fu
- School of Basic Medical Science Central South University Changsha Hunan 410013 China
| | - Wenming Liu
- School of Basic Medical Science Central South University Changsha Hunan 410013 China
| |
Collapse
|
11
|
Williams-Medina A, Deblock M, Janigro D. In vitro Models of the Blood-Brain Barrier: Tools in Translational Medicine. FRONTIERS IN MEDICAL TECHNOLOGY 2021; 2:623950. [PMID: 35047899 PMCID: PMC8757867 DOI: 10.3389/fmedt.2020.623950] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/30/2020] [Indexed: 12/28/2022] Open
Abstract
Medical progress has historically depended on scientific discoveries. Until recently, science was driven by technological advancements that, once translated to the clinic, fostered new treatments and interventions. More recently, technology-driven medical progress has often outpaced laboratory research. For example, intravascular devices, pacemakers for the heart and brain, spinal cord stimulators, and surgical robots are used routinely to treat a variety of diseases. The rapid expansion of science into ever more advanced molecular and genetic mechanisms of disease has often distanced laboratory-based research from day-to-day clinical realities that remain based on evidence and outcomes. A recognized reason for this hiatus is the lack of laboratory tools that recapitulate the clinical reality faced by physicians and surgeons. To overcome this, the NIH and FDA have in the recent past joined forces to support the development of a "human-on-a-chip" that will allow research scientists to perform experiments on a realistic replica when testing the effectiveness of novel experimental therapies. The development of a "human-on-a-chip" rests on the capacity to grow in vitro various organs-on-a-chip, connected with appropriate vascular supplies and nerves, and our ability to measure and perform experiments on these virtually invisible organs. One of the tissue structures to be scaled down on a chip is the human blood-brain barrier. This review gives a historical perspective on in vitro models of the BBB and summarizes the most recent 3D models that attempt to fill the gap between research modeling and patient care. We also present a summary of how these in vitro models of the BBB can be applied to study human brain diseases and their treatments. We have chosen NeuroAIDS, COVID-19, multiple sclerosis, and Alzheimer's disease as examples of in vitro model application to neurological disorders. Major insight pertaining to these illnesses as a consequence of more profound understanding of the BBB can reveal new avenues for the development of diagnostics, more efficient therapies, and definitive clarity of disease etiology and pathological progression.
Collapse
Affiliation(s)
- Alberto Williams-Medina
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, United States
- Flocel, Inc., Cleveland, OH, United States
| | - Michael Deblock
- Department of Biomedical Engineering, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Damir Janigro
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, United States
- Flocel, Inc., Cleveland, OH, United States
| |
Collapse
|
12
|
Yu M, Ma X, Jiang D, Wang L, Zhan Q, Zhao J. CXC chemokine ligand 5 (CXCL5) disrupted the permeability of human brain microvascular endothelial cells via regulating p38 signal. Microbiol Immunol 2021; 65:40-47. [PMID: 33026667 DOI: 10.1111/1348-0421.12854] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/27/2020] [Accepted: 09/30/2020] [Indexed: 01/07/2023]
Abstract
The ischemia-reperfusion-induced damage in human brain microvascular endothelial cells (BMECs) is associated with disruption of the blood-brain barrier. CXC chemokine ligand 5 (CXCL5) is reported to be up-regulated in ischemic stroke. However, the detailed function of CXCL5 in this pathological process remains largely unclear. To further analyze the function of CXCL5 in ischemic stroke, an oxygen-glucose deprivation model on human BMECs was constructed to mimic the ischemic stroke condition in vitro. Cell proliferation was analyzed using a cell counting kit-8 (CCK-8) assay. Quantitative real-time polymerase chain reaction and western blot were utilized to determine gene expression. The barrier function of BMECs was assessed using a fluorescently labeled dextran assay and a trans-epithelial/endothelial electrical resistance (TEER) technique. The results indicated that CXCL5 antibody (anti-CXCL5) promoted the proliferation of model cells, whereas it reduced the permeability. Moreover, the TEER value of model cells was enhanced in the presence of anti-CXCL5. Therefore, these findings demonstrated that CXCL5 silencing attenuated the ischemic/hypoxic-induced injury in human BMECs. Importantly, human recombinant protein CXCL5 (Re-CXCL5) deeply disrupted the function of BMECs in the normoxic condition. Furthermore, the p38 inhibitor SB203580 significantly abolished the function of CXCL5 in model cells. More importantly, similar results were also obtained in BMECs under normoxic conditions in the presence of Re-CXCL5. These results indicated that CXCL5 might regulate the function of BMECs by mediating the p38 pathway. This investigation not only enhanced the understanding of the biological effect of CXCL5 in human BMECs under ischemic/hypoxic conditions but also indicated its potential value as a therapeutic target for ischemic-induced brain disease.
Collapse
Affiliation(s)
- Min Yu
- Department of Neurology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaokun Ma
- Department of Nuclear Medicine, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dudu Jiang
- Department of Neurology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lijing Wang
- Department of Neurology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Zhan
- Department of Neurology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiangmin Zhao
- Department of Radiology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Liu Q, Zhu L, Liu X, Zheng J, Liu Y, Ruan X, Cao S, Cai H, Li Z, Xue Y. TRA2A-induced upregulation of LINC00662 regulates blood-brain barrier permeability by affecting ELK4 mRNA stability in Alzheimer's microenvironment. RNA Biol 2020; 17:1293-1308. [PMID: 32372707 DOI: 10.1080/15476286.2020.1756055] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The blood-brain barrier (BBB) plays a pivotal role in the maintenance and regulation of the neural microenvironment. The BBB breakdown is a pathological change in early Alzheimer's disease (AD). RNA-binding proteins (RBPs) and long non-coding RNAs (lncRNAs) are involved in the regulation of BBB permeability. Our study demonstrates the role of TRA2A/LINC00662/ELK4 axis in regulating BBB permeability in AD microenvironment. In Aβ1-42-incubated microvascular endothelial cells (ECs) of the BBB model in vitro, TRA2A and LINC00662 were enriched. TRA2A increased the stability of LINC00662 by binding with it. The knockdown of either TRA2A or LINC00662 decreased BBB permeability due to increased expression of tight junction-related proteins. ELK4 was less expressed in the BBB model in AD microenvironment in vitro. LINC00662 mediated the degradation of ELK4 mRNA by SMD pathway. Downregulation of ELK4 increased BBB permeability by increasing the tight junction-related protein expression.TRA2A/LINC00662/ELK4 axis plays a crucial role in the regulation of BBB permeability in AD microenvironment, which may provide a novel target for the therapy of AD.
Collapse
Affiliation(s)
- Qianshuo Liu
- Department of Neurobiology, School of Life Sciences, China Medical University , Shenyang, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University , Shenyang, People's Republic of China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University , Shenyang, People's Republic of China
| | - Lu Zhu
- Department of Neurobiology, School of Life Sciences, China Medical University , Shenyang, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University , Shenyang, People's Republic of China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University , Shenyang, People's Republic of China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University , Shenyang, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease , Shenyang, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province , Shenyang, People's Republic of China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University , Shenyang, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease , Shenyang, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province , Shenyang, People's Republic of China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University , Shenyang, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease , Shenyang, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province , Shenyang, People's Republic of China
| | - Xuelei Ruan
- Department of Neurobiology, School of Life Sciences, China Medical University , Shenyang, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University , Shenyang, People's Republic of China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University , Shenyang, People's Republic of China
| | - Shuo Cao
- Department of Neurobiology, School of Life Sciences, China Medical University , Shenyang, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University , Shenyang, People's Republic of China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University , Shenyang, People's Republic of China
| | - Heng Cai
- Department of Neurosurgery, Shengjing Hospital of China Medical University , Shenyang, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease , Shenyang, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province , Shenyang, People's Republic of China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University , Shenyang, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease , Shenyang, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province , Shenyang, People's Republic of China
| | - Yixue Xue
- Department of Neurobiology, School of Life Sciences, China Medical University , Shenyang, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University , Shenyang, People's Republic of China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University , Shenyang, People's Republic of China
| |
Collapse
|
14
|
Khire TS, Salminen AT, Swamy H, Lucas KS, McCloskey MC, Ajalik RE, Chung HH, Gaborski TR, Waugh RE, Glading AJ, McGrath JL. Microvascular Mimetics for the Study of Leukocyte-Endothelial Interactions. Cell Mol Bioeng 2020; 13:125-139. [PMID: 32175026 DOI: 10.1007/s12195-020-00611-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/24/2020] [Indexed: 02/06/2023] Open
Abstract
Introduction The pathophysiological increase in microvascular permeability plays a well-known role in the onset and progression of diseases like sepsis and atherosclerosis. However, how interactions between neutrophils and the endothelium alter vessel permeability is often debated. Methods In this study, we introduce a microfluidic, silicon-membrane enabled vascular mimetic (μSiM-MVM) for investigating the role of neutrophils in inflammation-associated microvascular permeability. In utilizing optically transparent silicon nanomembrane technology, we build on previous microvascular models by enabling in situ observations of neutrophil-endothelium interactions. To evaluate the effects of neutrophil transmigration on microvascular model permeability, we established and validated electrical (transendothelial electrical resistance and impedance) and small molecule permeability assays that allow for the in situ quantification of temporal changes in endothelium junctional integrity. Results Analysis of neutrophil-expressed β1 integrins revealed a prominent role of neutrophil transmigration and basement membrane interactions in increased microvascular permeability. By utilizing blocking antibodies specific to the β1 subunit, we found that the observed increase in microvascular permeability due to neutrophil transmigration is constrained when neutrophil-basement membrane interactions are blocked. Having demonstrated the value of in situ measurements of small molecule permeability, we then developed and validated a quantitative framework that can be used to interpret barrier permeability for comparisons to conventional Transwell™ values. Conclusions Overall, our results demonstrate the potential of the μSiM-MVM in elucidating mechanisms involved in the pathogenesis of inflammatory disease, and provide evidence for a role for neutrophils in inflammation-associated endothelial barrier disruption.
Collapse
Affiliation(s)
- Tejas S Khire
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627 USA
| | - Alec T Salminen
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627 USA
| | - Harsha Swamy
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14627 USA
| | - Kilean S Lucas
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627 USA
| | - Molly C McCloskey
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627 USA
| | - Raquel E Ajalik
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627 USA
| | - Henry H Chung
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY 14623 USA
| | - Thomas R Gaborski
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627 USA.,Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY 14623 USA
| | - Richard E Waugh
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627 USA
| | - Angela J Glading
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14627 USA
| | - James L McGrath
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627 USA
| |
Collapse
|
15
|
Salminen AT, Zhang J, Madejski GR, Khire TS, Waugh RE, McGrath JL, Gaborski TR. Ultrathin Dual-Scale Nano- and Microporous Membranes for Vascular Transmigration Models. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804111. [PMID: 30632319 PMCID: PMC6530565 DOI: 10.1002/smll.201804111] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/26/2018] [Indexed: 05/21/2023]
Abstract
Selective cellular transmigration across the microvascular endothelium regulates innate and adaptive immune responses, stem cell localization, and cancer cell metastasis. Integration of traditional microporous membranes into microfluidic vascular models permits the rapid assay of transmigration events but suffers from poor reproduction of the cell permeable basement membrane. Current microporous membranes in these systems have large nonporous regions between micropores that inhibit cell communication and nutrient exchange on the basolateral surface reducing their physiological relevance. Here, the use of 100 nm thick continuously nanoporous silicon nitride membranes as a base substrate for lithographic fabrication of 3 µm pores is presented, resulting in a highly porous (≈30%), dual-scale nano- and microporous membrane for use in an improved vascular transmigration model. Ultrathin membranes are patterned using a precision laser writer for cost-effective, rapid micropore design iterations. The optically transparent dual-scale membranes enable complete observation of leukocyte egress across a variety of pore densities. A maximal density of ≈14 micropores per cell is discovered beyond which cell-substrate interactions are compromised giving rise to endothelial cell losses under flow. Addition of a subluminal extracellular matrix rescues cell adhesion, allowing for the creation of shear-primed endothelial barrier models on nearly 30% continuously porous substrates.
Collapse
Affiliation(s)
- Alec T Salminen
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Jingkai Zhang
- Institute of Optics, University of Rochester, Rochester, NY, 14627, USA
| | - Gregory R Madejski
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Tejas S Khire
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Richard E Waugh
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - James L McGrath
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Thomas R Gaborski
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| |
Collapse
|
16
|
Chung HH, Mireles M, Kwarta BJ, Gaborski TR. Use of porous membranes in tissue barrier and co-culture models. LAB ON A CHIP 2018; 18:1671-1689. [PMID: 29845145 PMCID: PMC5997570 DOI: 10.1039/c7lc01248a] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Porous membranes enable the partitioning of cellular microenvironments in vitro, while still allowing physical and biochemical crosstalk between cells, a feature that is often necessary for recapitulating physiological functions. This article provides an overview of the different membranes used in tissue barrier and cellular co-culture models with a focus on experimental design and control of these systems. Specifically, we discuss how the structural, mechanical, chemical, and even the optical and transport properties of different membranes bestow specific advantages and disadvantages through the context of physiological relevance. This review also explores how membrane pore properties affect perfusion and solute permeability by developing an analytical framework to guide the design and use of tissue barrier or co-culture models. Ultimately, this review offers insight into the important aspects one must consider when using porous membranes in tissue barrier and lab-on-a-chip applications.
Collapse
Affiliation(s)
- Henry H Chung
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, USA.
| | | | | | | |
Collapse
|