1
|
Tuckey RC, Tang EKY, Chen YA, Slominski AT. Selective ability of rat 7-Dehydrocholesterol reductase (DHCR7) to act on some 7-Dehydrocholesterol metabolites but not on lumisterol metabolites. J Steroid Biochem Mol Biol 2021; 212:105929. [PMID: 34098080 PMCID: PMC8403650 DOI: 10.1016/j.jsbmb.2021.105929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/02/2021] [Indexed: 01/08/2023]
Abstract
7-Dehydrocholesterol reductase (DHCR7) catalyses the final step of cholesterol biosynthesis in the Kandutsch-Russel pathway, the reduction of 7-dehydrocholesterol (7DHC) to cholesterol. 7DHC can be acted on by a range of other enzymes including CYP27A1 and CYP11A1, as well as by UVB radiation, producing a number of derivatives including hydroxy-metabolites, some of which retain the C7-C8 double bond and are biologically active. These metabolites include lumisterol (L3) which is a stereoisomer of 7DHC produced in the skin by UVB radiation of 7DHC, as well as vitamin D3. The aim of this study was to test whether these metabolites could act as substrates or inhibitors of DHCR7 in rat liver microsomes. To initially screen the ability of these metabolites to interact with the active site of DHCR7, their ability to inhibit the conversion of ergosterol to brassicasterol was measured. Sterols that significantly inhibited this reaction included 7DHC (as expected), 20S(OH)7DHC, 27(OH)DHC, 8DHC, 20S(OH)L3 and 22(OH)L3 but not 7-dehydropregnenolone (7DHP), 25(OH)7DHC, L3 or vitamin D3 and its hydroxyderivatives. Sterols that inhibited ergosterol reduction were directly tested as substrates for DHCR7. 20S(OH)7DHC, 27(OH)DHC and 7-dehydrodesmosterol were confirmed to be substrates, giving the expected product with the C7-C8 double bond removed. No products were observed from 8DHC or 20S(OH)L3 indicating that these sterols are inhibitors and not substrates of DHCR7. The resistance of lumisterol and 7DHP to reduction by DHCR7 in cells will permit other enzymes to metabolise these sterols to their active forms retaining the C7-C8 double bond, conferring specificity to their biological actions.
Collapse
Affiliation(s)
- Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia.
| | - Edith K Y Tang
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Yunzhi A Chen
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, 35249, USA; Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL, 35249, USA; Pathology and Laboratory Medicine Service, VA Medical Center, Birmingham, AL, 35249, USA
| |
Collapse
|
2
|
Saponaro F, Saba A, Zucchi R. An Update on Vitamin D Metabolism. Int J Mol Sci 2020; 21:ijms21186573. [PMID: 32911795 PMCID: PMC7554947 DOI: 10.3390/ijms21186573] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/22/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023] Open
Abstract
Vitamin D is a steroid hormone classically involved in the calcium metabolism and bone homeostasis. Recently, new and interesting aspects of vitamin D metabolism has been elucidated, namely the special role of the skin, the metabolic control of liver hydroxylase CYP2R1, the specificity of 1α-hydroxylase in different tissues and cell types and the genomic, non-genomic and epigenomic effects of vitamin D receptor, which will be addressed in the present review. Moreover, in the last decades, several extraskeletal effects which can be attributed to vitamin D have been shown. These beneficial effects will be here summarized, focusing on the immune system and cardiovascular system.
Collapse
|
3
|
Smith-Lemli-Opitz Syndrome in a newborn infant with developmental abnormalities and low endogenous cholesterol. Clin Chim Acta 2018; 479:208-211. [PMID: 29355488 DOI: 10.1016/j.cca.2018.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 10/18/2022]
Abstract
BACKGROUND Patients with Smith-Lemli-Opitz Syndrome (SLOS) have defective endogenous cholesterol synthesis, and present with decreased cholesterol levels and multiple developmental dysmorphologies. CASE DESCRIPTION A newborn infant with normal XY karyotype and normal microarray was born with multiple developmental defects and ambiguous genitalia. The patient was diagnosed with SLOS, following biochemical genetic analysis of serum 7-DHC concentrations. The clinical course of the patient was further complicated by the comorbidities associated with SLOS and the bacterial infections. CONCLUSION We provide a detailed biochemical profile of the SLOS patient. The report can help us further understand the pathological impacts of cholesterol synthesis deficiency and provide relevant clinical management with outcome of this rare genetic disorder.
Collapse
|
4
|
Abstract
Twin studies indicate that genetic factors may explain about 50% of the variation of serum 25-hydroxyvitamin D (25OHD). Polymorphisms of 3 genes, delta-7-sterol-reductase, CYP2R1, and DBP/GC (and maybe CYP24A1) combined, can explain about 5% to 10% of the variation in serum 25OHD. These polymorphisms are found in nearly all populations. The variation in serum 25OHD found in different areas and populations in the world is mainly due to environmental and lifestyle factors, not truly dependent on racial differences. One genetic variant of DBP, (GC2), is associated with a modest (∼10%) decrease in serum DBP and 25OHD concentrations for unexplained reasons.
Collapse
Affiliation(s)
- Roger Bouillon
- Clinical and Experimental Endocrinology, KU Leuven, Herestraat 49 ON1 Box 902, Leuven 3000, Belgium.
| |
Collapse
|
5
|
Movassaghi M, Bianconi S, Feinn R, Wassif CA, Porter FD. Vitamin D levels in Smith-Lemli-Opitz syndrome. Am J Med Genet A 2017; 173:2577-2583. [PMID: 28796426 DOI: 10.1002/ajmg.a.38361] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/08/2017] [Accepted: 06/21/2017] [Indexed: 01/06/2023]
Abstract
Smith-Lemli-Opitz syndrome (SLOS) is an autosomal recessive congenital malformation syndrome caused by mutations in the 7-dehydrocholesterol reductase gene. This inborn error of cholesterol synthesis leads to elevated concentrations of 7-dehydrocholesterol (7-DHC). 7-DHC also serves as the precursor for vitamin D synthesis. Limited data is available on vitamin D levels in individuals with SLOS. Due to elevated concentrations of 7-DHC, we hypothesized that vitamin D status would be abnormal and possibly reach toxic levels in patients with SLOS. Through a retrospective analysis of medical records between 1998 and 2006, we assessed markers of vitamin D and calcium metabolism from 53 pediatric SLOS patients and 867 pediatric patients who were admitted to the NIH Clinical Center (NIHCC) during the same time period. SLOS patients had significantly higher levels of 25(OH)D (48.06 ± 19.53 ng/ml, p < 0.01) across all seasons in comparison to the NIHCC pediatric patients (30.51 ± 16.14 ng/ml). Controlling for season and age of blood draw, 25(OH)D levels were, on average, 15.96 ng/ml (95%CI 13.95-17.90) higher in SLOS patients. Although, mean calcium values for both patient cohorts never exceeded the normal clinical reference range (8.6-10.2 mg/dl), the levels were higher in the SLOS cohort (9.49 ± 0.56 mg/dl, p < 0.01) compared to the NIHCC patients (9.25 ± 0.68 mg/dl). Overall, in comparison to the control cohort, individuals with SLOS have significantly higher concentrations of 25(OH)D that may be explained by elevated concentrations of serum 7-DHC. Despite the elevated vitamin D levels, there was no laboratory or clinical evidence of vitamin D toxicity.
Collapse
Affiliation(s)
- Miyad Movassaghi
- Frank H. Netter MD School of Medicine at Quinnipiac University, North Haven, Connecticut.,Eunice Kennedy Shriver National Institute of Child Health and Human Development National Institutes of Health, Bethesda, Maryland
| | - Simona Bianconi
- Eunice Kennedy Shriver National Institute of Child Health and Human Development National Institutes of Health, Bethesda, Maryland
| | - Richard Feinn
- Frank H. Netter MD School of Medicine at Quinnipiac University, North Haven, Connecticut
| | - Christopher A Wassif
- Eunice Kennedy Shriver National Institute of Child Health and Human Development National Institutes of Health, Bethesda, Maryland
| | - Forbes D Porter
- Eunice Kennedy Shriver National Institute of Child Health and Human Development National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
6
|
Prabhu AV, Luu W, Li D, Sharpe LJ, Brown AJ. DHCR7: A vital enzyme switch between cholesterol and vitamin D production. Prog Lipid Res 2016; 64:138-151. [PMID: 27697512 DOI: 10.1016/j.plipres.2016.09.003] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/29/2016] [Accepted: 09/29/2016] [Indexed: 01/07/2023]
Abstract
The conversion of 7-dehydrocholesterol to cholesterol, the final step of cholesterol synthesis in the Kandutsch-Russell pathway, is catalyzed by the enzyme 7-dehydrocholesterol reductase (DHCR7). Homozygous or compound heterozygous mutations in DHCR7 lead to the developmental disease Smith-Lemli-Opitz syndrome, which can also result in fetal mortality, highlighting the importance of this enzyme in human development and survival. Besides serving as a substrate for DHCR7, 7-dehydrocholesterol is also a precursor of vitamin D via the action of ultraviolet light on the skin. Thus, DHCR7 exerts complex biological effects, involved in both cholesterol and vitamin D production. Indeed, we argue that DHCR7 can act as a switch between cholesterol and vitamin D synthesis. This review summarizes current knowledge about the critical enzyme DHCR7, highlighting recent findings regarding its structure, transcriptional and post-transcriptional regulation, and its links to vitamin D synthesis. Greater understanding about DHCR7 function, regulation and its place within cellular metabolism will provide important insights into its biological roles.
Collapse
Affiliation(s)
- Anika V Prabhu
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Winnie Luu
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Dianfan Li
- National Center for Protein Sciences, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Laura J Sharpe
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
7
|
Boland MR, Tatonetti NP. Investigation of 7-dehydrocholesterol reductase pathway to elucidate off-target prenatal effects of pharmaceuticals: a systematic review. THE PHARMACOGENOMICS JOURNAL 2016; 16:411-29. [PMID: 27401223 PMCID: PMC5028238 DOI: 10.1038/tpj.2016.48] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 04/15/2016] [Accepted: 05/02/2016] [Indexed: 12/18/2022]
Abstract
Mendelian diseases contain important biological information regarding developmental effects of gene mutations that can guide drug discovery and toxicity efforts. In this review, we focus on Smith–Lemli–Opitz syndrome (SLOS), a rare Mendelian disease characterized by compound heterozygous mutations in 7-dehydrocholesterol reductase (DHCR7) resulting in severe fetal deformities. We present a compilation of SLOS-inducing DHCR7 mutations and the geographic distribution of those mutations in healthy and diseased populations. We observed that several mutations thought to be disease causing occur in healthy populations, indicating an incomplete understanding of the condition and highlighting new research opportunities. We describe the functional environment around DHCR7, including pharmacological DHCR7 inhibitors and cholesterol and vitamin D synthesis. Using PubMed, we investigated the fetal outcomes following prenatal exposure to DHCR7 modulators. First-trimester exposure to DHCR7 inhibitors resulted in outcomes similar to those of known teratogens (50 vs 48% born-healthy). DHCR7 activity should be considered during drug development and prenatal toxicity assessment.
Collapse
Affiliation(s)
- M R Boland
- Department of Biomedical Informatics, Columbia University, New York, NY, USA.,Observational Health Data Sciences and Informatics, Columbia University, New York, NY, USA
| | - N P Tatonetti
- Department of Biomedical Informatics, Columbia University, New York, NY, USA.,Observational Health Data Sciences and Informatics, Columbia University, New York, NY, USA.,Department of Systems Biology, Columbia University, New York, NY, USA.,Department of Medicine, Columbia University, New York, NY, USA
| |
Collapse
|
8
|
Endogenous B-ring oxysterols inhibit the Hedgehog component Smoothened in a manner distinct from cyclopamine or side-chain oxysterols. Proc Natl Acad Sci U S A 2016; 113:1604984113. [PMID: 27162362 DOI: 10.1073/pnas.1604984113] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Cellular lipids are speculated to act as key intermediates in Hedgehog signal transduction, but their precise identity and function remain enigmatic. In an effort to identify such lipids, we pursued a Hedgehog pathway inhibitory activity that is particularly abundant in flagellar lipids of Chlamydomonas reinhardtii, resulting in the purification and identification of ergosterol endoperoxide, a B-ring oxysterol. A mammalian analog of ergosterol, 7-dehydrocholesterol (7-DHC), accumulates in Smith-Lemli-Opitz syndrome, a human genetic disease that phenocopies deficient Hedgehog signaling and is caused by genetic loss of 7-DHC reductase. We found that depleting endogenous 7-DHC with methyl-β-cyclodextrin treatment enhances Hedgehog activation by a pathway agonist. Conversely, exogenous addition of 3β,5α-dihydroxycholest-7-en-6-one, a naturally occurring B-ring oxysterol derived from 7-DHC that also accumulates in Smith-Lemli-Opitz syndrome, blocked Hedgehog signaling by inhibiting activation of the essential transduction component Smoothened, through a mechanism distinct from Smoothened modulation by other lipids.
Collapse
|
9
|
Gelzo M, Granato G, Albano F, Arcucci A, Dello Russo A, De Vendittis E, Ruocco MR, Corso G. Evaluation of cytotoxic effects of 7-dehydrocholesterol on melanoma cells. Free Radic Biol Med 2014; 70:129-40. [PMID: 24561580 DOI: 10.1016/j.freeradbiomed.2014.02.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 02/11/2014] [Accepted: 02/13/2014] [Indexed: 11/29/2022]
Abstract
Ultraviolet radiation is the main cause of skin cancers, and melanoma is the most serious form of tumor. There is no therapy for advanced-stage melanoma and its metastasis because of their high resistance to various anticancer therapies. Human skin is an important metabolic organ in which occurs photoinduced synthesis of vitamin D3 from 7-dehydrocholesterol (7-DHC). 7-DHC, the precursor of cholesterol biosynthesis, is highly reactive and easily modifiable to produce 7-DHC-derived compounds. The intracellular levels of 7-DHC or its derivatives can have deleterious effects on cellular functionality and viability. In this study we evaluated the effects on melanoma cell lines of 7-DHC as such and for this aim we used much care to minimize 7-DHC modifications. We found that from 12 to 72 h of treatment 82-86% of 7-DHC entered the cells, and the levels of 7-DHC-derived compounds were not significant. Simultaneously, reactive oxygen species production was significantly increased already after 2h. After 24 h and up to 72 h, 7-DHC-treated melanoma cells showed a reduction in cell growth and viability. The cytotoxic effect of 7-DHC was associated with an increase in Bax levels, decrease in Bcl-2/Bax ratio, reduction of mitochondrial membrane potential, increase in apoptosis-inducing factor levels, unchanged caspase-3 activity, and absence of cleavage of PARP-1. These findings could explain the mechanism through which 7-DHC exerts its cytotoxic effects. This is the first report in which the biological effects found in melanoma cells are mainly attributable to 7-DHC as such.
Collapse
Affiliation(s)
- Monica Gelzo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche and
| | | | - Francesco Albano
- Dipartimento di Sanità Pubblica, Università degli Studi di Napoli Federico II, I-80131 Napoli, Italy
| | - Alessandro Arcucci
- Dipartimento di Sanità Pubblica, Università degli Studi di Napoli Federico II, I-80131 Napoli, Italy
| | | | | | | | - Gaetano Corso
- Dipartimento di Medicina Clinica e Sperimentale, Università di Foggia, I-71122 Foggia, Italy.
| |
Collapse
|
10
|
Pinto JT, Cooper AJL. From cholesterogenesis to steroidogenesis: role of riboflavin and flavoenzymes in the biosynthesis of vitamin D. Adv Nutr 2014; 5:144-63. [PMID: 24618756 PMCID: PMC3951797 DOI: 10.3945/an.113.005181] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Flavin-dependent monooxygenases and oxidoreductases are located at critical branch points in the biosynthesis and metabolism of cholesterol and vitamin D. These flavoproteins function as obligatory intermediates that accept 2 electrons from NAD(P)H with subsequent 1-electron transfers to a variety of cytochrome P450 (CYP) heme proteins within the mitochondria matrix (type I) and the (microsomal) endoplasmic reticulum (type II). The mode of electron transfer in these systems differs slightly in the number and form of the flavin prosthetic moiety. In the type I mitochondrial system, FAD-adrenodoxin reductase interfaces with adrenodoxin before electron transfer to CYP heme proteins. In the microsomal type II system, a diflavin (FAD/FMN)-dependent cytochrome P450 oxidoreductase [NAD(P)H-cytochrome P450 reductase (CPR)] donates electrons to a multitude of heme oxygenases. Both flavoenzyme complexes exhibit a commonality of function with all CYP enzymes and are crucial for maintaining a balance of cholesterol and vitamin D metabolites. Deficits in riboflavin availability, imbalances in the intracellular ratio of FAD to FMN, and mutations that affect flavin binding domains and/or interactions with client proteins result in marked structural alterations within the skeletal and central nervous systems similar to those of disorders (inborn errors) in the biosynthetic pathways that lead to cholesterol, steroid hormones, and vitamin D and their metabolites. Studies of riboflavin deficiency during embryonic development demonstrate congenital malformations similar to those associated with genetic alterations of the flavoenzymes in these pathways. Overall, a deeper understanding of the role of riboflavin in these pathways may prove essential to targeted therapeutic designs aimed at cholesterol and vitamin D metabolism.
Collapse
|
11
|
Genetic Influences on Circulating Vitamin D Level: A Review. CURRENT CARDIOVASCULAR RISK REPORTS 2012. [DOI: 10.1007/s12170-012-0278-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
Abstract
PURPOSE OF REVIEW The role of vitamin D beyond its importance for bone health is under much debate. In this article, we review recent evidence for genetic influences on 25-hydroxyvitamin D [25(OH)D] and discuss the uses of this information and its importance for public health. RECENT FINDINGS Findings from large-scale genome-wide association meta-analyses on 25(OH)D confirmed the associations for loci nearby genes encoding vitamin D binding protein (GC, group component), 7-dehydrochlesterol reductase (DHCR7), 25-hydroxylase (CYP2R1) and 24-hydroxylase (CYP24A1), all influencing key sites for vitamin D metabolism. Findings from candidate gene studies have been inconsistent, with some implicating an association with 25(OH)D for loci near the gene encoding the hormonal vitamin D activation enzyme (CYP27B1). SUMMARY The amount of variation in 25(OH)D explained by genetic determinants is small compared with environmental exposures. Information on genetic variants affecting 25(OH)D can be used as tools for Mendelian randomization analyses on vitamin D, and they provide some potential for the use as drug targets.
Collapse
|
13
|
Abstract
Smith-Lemli-Opitz syndrome (SLOS) is an autosomal recessive, multiple congenital malformation and intellectual disability syndrome, with clinical characteristics that encompass a wide spectrum and great variability. Elucidation of the biochemical and genetic basis for SLOS, specifically understanding SLOS as a cholesterol deficiency syndrome caused by mutation in DHCR7, opened up enormous possibilities for therapeutic intervention. When cholesterol was discovered to be the activator of sonic hedgehog, cholesterol deficiency with inactivation of this developmental patterning gene was thought to be the cause of SLOS malformations, yet this explanation is overly simplistic. Despite these important research breakthroughs, there is no proven treatment for SLOS. Better animal models are needed to allow potential treatment testing and the study of disease pathophysiology, which is incompletely understood. Creation of human cellular models, especially models of brain cells, would be useful, and in vivo human studies are also essential. Biomarker development will be crucial in facilitating clinical trials in this rare condition, because the clinical phenotype can change over many years. Additional research in these and other areas is critical if we are to make headway towards ameliorating the effects of this devastating condition.
Collapse
|
14
|
Serra M, Matabosch X, Ying L, Watson G, Shackleton C. Hair and skin sterols in normal mice and those with deficient dehydrosterol reductase (DHCR7), the enzyme associated with Smith-Lemli-Opitz syndrome. J Steroid Biochem Mol Biol 2010; 122:318-25. [PMID: 20804844 PMCID: PMC2964438 DOI: 10.1016/j.jsbmb.2010.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 08/19/2010] [Accepted: 08/20/2010] [Indexed: 12/20/2022]
Abstract
Our recent studies have focused on cholesterol synthesis in mouse models for 7-dehydrosterolreductase (DHCR7) deficiency, also known as Smith-Lemli-Opitz syndrome. Investigations of such mutants have relied on tissue and blood levels of the cholesterol precursor 7-dehydrocholesterol (7DHC) and its 8-dehydro isomer. In this investigation by gas chromatography/mass spectrometry (GC/MS) we have identified and quantified cholesterol and its precursors (7DHC, desmosterol, lathosterol, lanosterol and cholest-7,24-dien-3β-ol) in mouse hair. The components were characterized and their concentrations were compared to those found in mouse skin and serum. Hair appeared unique in that desmosterol was a major sterol component, almost matching in concentration cholesterol itself. In DHCR7 deficient mice, dehydrodesmosterol (DHD) was the dominant hair Δ(7) sterol. Mutant mouse hair had much higher concentrations of 7-dehydrosterols relative to cholesterol than did serum or tissue at all ages studied. The 7DHC/C ratio in hair was typically about sevenfold the value in serum or skin and the DHD/D ratio was 100× that of the serum 7DHC/C ratio. Mutant mice compensate for their DHCR7 deficiency with maturity, and the tissue and blood 7DHC/C become close to normal. That hair retains high relative concentrations of the dehydro precursors suggests that the apparent up-regulation of Dhcr7 seen in liver is slower to develop at the site of hair cholesterol synthesis.
Collapse
Affiliation(s)
- Montserrat Serra
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | | | | | | | | |
Collapse
|
15
|
Wang TJ, Zhang F, Richards JB, Kestenbaum B, van Meurs JB, Berry D, Kiel D, Streeten EA, Ohlsson C, Koller DL, Palotie L, Cooper JD, O'Reilly PF, Houston DK, Glazer NL, Vandenput L, Peacock M, Shi J, Rivadeneira F, McCarthy MI, Anneli P, de Boer IH, Mangino M, Kato B, Smyth DJ, Booth SL, Jacques PF, Burke GL, Goodarzi M, Cheung CL, Wolf M, Rice K, Goltzman D, Hidiroglou N, Ladouceur M, Hui SL, Wareham NJ, Hocking LJ, Hart D, Arden NK, Cooper C, Malik S, Fraser WD, Hartikainen AL, Zhai G, Macdonald H, Forouhi NG, Loos RJ, Reid DM, Hakim A, Dennison E, Liu Y, Power C, Stevens HE, Jaana L, Vasan RS, Soranzo N, Bojunga J, Psaty BM, Lorentzon M, Foroud T, Harris TB, Hofman A, Jansson JO, Cauley JA, Uitterlinden AG, Gibson Q, Järvelin MR, Karasik D, Siscovick DS, Econs MJ, Kritchevsky SB, Florez JC, Todd JA, Dupuis J, Hypponen E, Spector TD. Common genetic determinants of vitamin D insufficiency: a genome-wide association study. Lancet 2010; 376:180-8. [PMID: 20541252 PMCID: PMC3086761 DOI: 10.1016/s0140-6736(10)60588-0] [Citation(s) in RCA: 1182] [Impact Index Per Article: 78.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Vitamin D is crucial for maintenance of musculoskeletal health, and might also have a role in extraskeletal tissues. Determinants of circulating 25-hydroxyvitamin D concentrations include sun exposure and diet, but high heritability suggests that genetic factors could also play a part. We aimed to identify common genetic variants affecting vitamin D concentrations and risk of insufficiency. METHODS We undertook a genome-wide association study of 25-hydroxyvitamin D concentrations in 33 996 individuals of European descent from 15 cohorts. Five epidemiological cohorts were designated as discovery cohorts (n=16 125), five as in-silico replication cohorts (n=9367), and five as de-novo replication cohorts (n=8504). 25-hydroxyvitamin D concentrations were measured by radioimmunoassay, chemiluminescent assay, ELISA, or mass spectrometry. Vitamin D insufficiency was defined as concentrations lower than 75 nmol/L or 50 nmol/L. We combined results of genome-wide analyses across cohorts using Z-score-weighted meta-analysis. Genotype scores were constructed for confirmed variants. FINDINGS Variants at three loci reached genome-wide significance in discovery cohorts for association with 25-hydroxyvitamin D concentrations, and were confirmed in replication cohorts: 4p12 (overall p=1.9x10(-109) for rs2282679, in GC); 11q12 (p=2.1x10(-27) for rs12785878, near DHCR7); and 11p15 (p=3.3x10(-20) for rs10741657, near CYP2R1). Variants at an additional locus (20q13, CYP24A1) were genome-wide significant in the pooled sample (p=6.0x10(-10) for rs6013897). Participants with a genotype score (combining the three confirmed variants) in the highest quartile were at increased risk of having 25-hydroxyvitamin D concentrations lower than 75 nmol/L (OR 2.47, 95% CI 2.20-2.78, p=2.3x10(-48)) or lower than 50 nmol/L (1.92, 1.70-2.16, p=1.0x10(-26)) compared with those in the lowest quartile. INTERPRETATION Variants near genes involved in cholesterol synthesis, hydroxylation, and vitamin D transport affect vitamin D status. Genetic variation at these loci identifies individuals who have substantially raised risk of vitamin D insufficiency. FUNDING Full funding sources listed at end of paper (see Acknowledgments).
Collapse
Affiliation(s)
- Thomas J. Wang
- Massachusetts General Hospital, Division of Cardiology, Department of Medicine, Boston MA
- Harvard Medical School, Boston MA
- Framingham Heart Study, Framingham MA
| | - Feng Zhang
- King's College London, Department of Twin Research and Genetic Epidemiology, London England
| | - J. Brent Richards
- McGill University, Jewish General Hospital, Departments of Medicine, Human Genetics, Epidemiology and Biostatistics, Montreal Canada
| | - Bryan Kestenbaum
- University of Washington, Kidney Research Institute, Department of Medicine, Division of Nephrology, Harborview Medical Center, Seattle, WA
| | - Joyce B. van Meurs
- Erasmus Medical Center, Department of Internal Medicine, Rotterdam Netherlands
- Netherlands Genomics Initiative (NGI)-sponsored Netherlands Consortium for Healthy Aging (NCHA), Rotterdam Netherlands
| | - Diane Berry
- UCL Institute of Child Health, MRC Centre of Epidemiology for Child Health and Centre for Paediatric Epidemiology and Biostatistics, London England
| | - Douglas Kiel
- Harvard Medical School, Boston MA
- Framingham Heart Study, Framingham MA
- Hebrew SeniorLife, Institute for Aging Research, Genetic Epidemiology Program, Harvard Medical School, Boston MA
| | | | - Claes Ohlsson
- University of Gothenburg, Sahlgrenska Academy, Institute of Medicine, Department of Internal Medicine, Gothenburg Sweden
| | | | - Leena Palotie
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1HH, United Kingdom
- University of Helsinki and National Institute for Health and Welfare, Partnership for Molecular Medicine, Institute for Molecular Medicine Finland FIMM, Helsinki Finland
- National Institute for Health and Welfare, Helsinki Finland
| | - Jason D. Cooper
- University of Cambridge, JDRF/WT Diabetes and Inflammation Laboratory, Cambridge United Kingdom
| | - Paul F. O'Reilly
- Imperial College, Faculty of Medicine, Department of Epidemiology and Public Health, London England
| | - Denise K. Houston
- Wake Forest University School of Medicine, Sticht Center on Aging, Winston Salem NC
| | - Nicole L. Glazer
- University of Washington, Cardiovascular Health Research Unit and Department of Medicine, Seattle WA
| | - Liesbeth Vandenput
- University of Gothenburg, Sahlgrenska Academy, Institute of Medicine, Department of Internal Medicine, Gothenburg Sweden
| | - Munro Peacock
- Indiana University, School of Medicine, Indianapolis Indiana
| | - Julia Shi
- University of Maryland School of Medicine, Division of Endocrinology, Baltimore MD
| | - Fernando Rivadeneira
- Erasmus Medical Center, Department of Internal Medicine, Rotterdam Netherlands
- Netherlands Genomics Initiative (NGI)-sponsored Netherlands Consortium for Healthy Aging (NCHA), Rotterdam Netherlands
| | - Mark I. McCarthy
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Oxford United Kingdom
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK
| | - Pouta Anneli
- National Institute of Health and Welfare, Oulu Finland
| | - Ian H. de Boer
- University of Washington, Kidney Research Institute, Department of Medicine, Division of Nephrology, Harborview Medical Center, Seattle, WA
| | - Massimo Mangino
- King's College London, Department of Twin Research and Genetic Epidemiology, London England
| | - Bernet Kato
- King's College London, Department of Twin Research and Genetic Epidemiology, London England
| | - Deborah J. Smyth
- University of Cambridge, JDRF/WT Diabetes and Inflammation Laboratory, Cambridge United Kingdom
| | - Sarah L. Booth
- Tufts University, Jean Mayer USDA Human Nutrition Research Center on Aging, Boston MA
| | - Paul F. Jacques
- Tufts University, Jean Mayer USDA Human Nutrition Research Center on Aging, Boston MA
| | - Greg L. Burke
- Wake Forest University Health Sciences, Division of Public Health Sciences, Winston-Salem, NC
| | - Mark Goodarzi
- Cedars-Sinai Medical Center, Department of Medicine, Los Angeles CA
| | - Ching-Lung Cheung
- Harvard Medical School, Boston MA
- Hebrew SeniorLife, Institute for Aging Research, Genetic Epidemiology Program, Harvard Medical School, Boston MA
- Genome Institute of Singapore, Computational and Mathematical Biology, ASTAR (Agency for Science, Technology and Research), Biopolis, Singapore
| | - Myles Wolf
- University of Miami Miller School of Medicine, Division of Nephrology and Hypertension, Miami FL
| | - Kenneth Rice
- University of Washington, Cardiovascular Health Research Unit and Department of Medicine, Seattle WA
| | - David Goltzman
- McGill University, Department of Medicine, Montreal Canada
- McGill University Health Centre, Montreal, Canada
| | | | - Martin Ladouceur
- McGill University, Jewish General Hospital, Departments of Medicine, Human Genetics, Epidemiology and Biostatistics, Montreal Canada
| | - Siu L. Hui
- Indiana University, School of Medicine, Indianapolis Indiana
| | - Nicholas J. Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Lynne J. Hocking
- University of Aberdeen, Division of Applied Medicine, Bone and Musculoskeletal Research Programme, Aberdeen United Kingdom
| | - Deborah Hart
- King's College London, Department of Twin Research and Genetic Epidemiology, London England
| | - Nigel K. Arden
- University of Southampton, MRC Epidemiology Resource Centre, Southampton England
- University of Oxford, NIHR Musculoskeletal Biomedical Research Unit, Oxford England
| | - Cyrus Cooper
- University of Southampton, MRC Epidemiology Resource Centre, Southampton England
- University of Oxford, NIHR Musculoskeletal Biomedical Research Unit, Oxford England
| | - Suneil Malik
- Office of Biotechnology, Genomics and Population Health, Public Health Agency of Canada, Toronto, Canada
| | - William D. Fraser
- Unit of Clinical Chemistry, School of Clinical Sciences, University of Liverpool, Liverpool
| | | | - Guangju Zhai
- King's College London, Department of Twin Research and Genetic Epidemiology, London England
| | - Helen Macdonald
- University of Aberdeen, Division of Applied Medicine, Bone and Musculoskeletal Research Programme, Aberdeen United Kingdom
| | - Nita G. Forouhi
- MRC Epidemiology Unit, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Ruth J.F. Loos
- MRC Epidemiology Unit, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - David M. Reid
- University of Aberdeen, Division of Applied Medicine, Bone and Musculoskeletal Research Programme, Aberdeen United Kingdom
| | - Alan Hakim
- Whipps Cross Rheumatology Department, London England
| | - Elaine Dennison
- University of Southampton, MRC Epidemiology Resource Centre, Southampton England
| | - Yongmei Liu
- Wake Forest University School of Medicine, Sticht Center on Aging, Winston Salem NC
| | - Chris Power
- UCL Institute of Child Health, MRC Centre of Epidemiology for Child Health and Centre for Paediatric Epidemiology and Biostatistics, London England
| | - Helen E. Stevens
- University of Cambridge, JDRF/WT Diabetes and Inflammation Laboratory, Cambridge United Kingdom
| | - Laitinen Jaana
- Finnish Institute of Occupational Health, Oulu Finland
- University of Oulu, Institute of Health Sciences, Oulu Finland
| | - Ramachandran S. Vasan
- Framingham Heart Study, Framingham MA
- Boston University School of Medicine, Division of Preventive Medicine, Boston MA
| | - Nicole Soranzo
- King's College London, Department of Twin Research and Genetic Epidemiology, London England
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1HH, United Kingdom
| | - Jörg Bojunga
- Klinikum der Johann Wolfgang Goethe University, Frankfurt Germany
| | - Bruce M. Psaty
- University of Washington, Departments of Medicine, Epidemiology and Health Services, Seattle WA
| | - Mattias Lorentzon
- University of Gothenburg, Sahlgrenska Academy, Institute of Medicine, Department of Internal Medicine, Gothenburg Sweden
| | - Tatiana Foroud
- Indiana University, School of Medicine, Indianapolis Indiana
| | - Tamara B. Harris
- National Institutes of Health, National Institute on Aging, Bethesda MD
| | - Albert Hofman
- Netherlands Genomics Initiative (NGI)-sponsored Netherlands Consortium for Healthy Aging (NCHA), Rotterdam Netherlands
- Erasmus Medical Center, Department of Epidemiology, Rotterdam Netherlands
| | - John-Olov Jansson
- University of Gothenburg, Sahlgrenska Academy, Institute of Neuroscience and Physiology, Department of Physiology, Gothenburg Sweden
| | - Jane A. Cauley
- University of Pittsburgh, Department of Epidemiology, Pittsburgh PA
| | - Andre G. Uitterlinden
- Netherlands Genomics Initiative (NGI)-sponsored Netherlands Consortium for Healthy Aging (NCHA), Rotterdam Netherlands
- Erasmus Medical Center, Departments of Internal, Epidemiology and Klinical Genetics, Rotterdam Netherlands
| | - Quince Gibson
- Erasmus Medical Center, Department of Internal Medicine, Rotterdam Netherlands
| | - Marjo-Riitta Järvelin
- Imperial College, Faculty of Medicine, Department of Epidemiology and Public Health, London England
- National Institute of Health and Welfare, Oulu Finland
- University of Oulu, Institute of Health Sciences, Oulu Finland
- University of Oulu, Biocenter Oulu, Oulu Finland
| | - David Karasik
- Harvard Medical School, Boston MA
- Hebrew SeniorLife, Institute for Aging Research, Genetic Epidemiology Program, Harvard Medical School, Boston MA
| | - David S. Siscovick
- University of Washington, Cardiovascular Health Research Unit and Departments of Medicine and Epidemiology, Seattle WA
| | | | | | - Jose C. Florez
- Harvard Medical School, Boston MA
- Massachusetts General Hospital, Diabetes Research Center (Diabetes Unit) and Center for Human Genetic Research, Boston MA
- Broad Institute, Program in Medical and Population Genetics, Cambridge MA
| | - John A. Todd
- University of Cambridge, JDRF/WT Diabetes and Inflammation Laboratory, Cambridge United Kingdom
| | - Josee Dupuis
- Framingham Heart Study, Framingham MA
- Boston University School of Public Health, Department of Biostatistics, Boston MA
| | - Elina Hypponen
- UCL Institute of Child Health, MRC Centre of Epidemiology for Child Health and Centre for Paediatric Epidemiology and Biostatistics, London England
| | - Timothy D. Spector
- King's College London, Department of Twin Research and Genetic Epidemiology, London England
| |
Collapse
|
16
|
|
17
|
Holme S, Anstey A, Badminton M, Elder G. Serum 25-hydroxyvitamin D in erythropoietic protoporphyria. Br J Dermatol 2008; 159:211-3. [DOI: 10.1111/j.1365-2133.2008.08616.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
18
|
Eapen BR. Photosensitivity in Smith-Lemli-Opitz syndrome: a flux balance analysis of altered metabolism. Bioinformation 2007; 2:78-82. [PMID: 18188427 PMCID: PMC2174425 DOI: 10.6026/97320630002078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 08/18/2007] [Accepted: 10/24/2007] [Indexed: 11/23/2022] Open
Abstract
Ultraviolet A photosensitivity is a debilitating symptom associated with the metabolic disorder Smith-Lemli-Opitz syndrome (SLOS). SLOS is a manifestation
of the deficiency of 7-dehydrocholesterol reductase, an enzyme involved in the cholesterol biosynthesis. As a result several abnormal intermediary compounds
are formed among which Cholesta 5, 7, 9(11)-trien-3beta-ol is the most likely cause of photosensitivity. The effect of various drugs acting on cholesterol
biosynthetic pathway on SLOS is not clear as clinical trials are not available for this rare disorder. A Flux Balance Analysis (FBA) has been carried out using
the software CellNetAnalyzer or FluxAnalyzer to gain insight into the probable effects of various drugs acting on cholesterol biosynthetic pathway on photosensitivity
in SLOS. The model consisted of 44 metabolites and 40 reactions. The formation flux of Cholesta 5, 7, 9(11)-trien-3beta-ol increased in SLOS and remained unchanged on
simulation of the effect of miconazole and SR31747. However zaragozic acid can potentially reduce the flux through the entire pathway. FBA predicts zaragozic acid
along with cholesterol supplementation as an effective treatment for photosensitivity in SLOS.
Collapse
|